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PREFACE:

As a result of improvements in fabrication technology, Large Scale Integrated (LSI) electronic
circuitry has become so dense that a single silicon LSI chip may conlain tens of thousands of
transistors.  Many LSI chips, such as microprocessors, now consist of multiple, complex
subsystems, and thus are really inzegrated systems rather than integrated circuits.

What we have seen so far is only the beginning. Achievable circuit density now approximately
doubles with each passing year. How long can this continue, and how small can the transistor be
made? From the physics we find that the linear dimensions of transistors can be reduced 1o less
than 1/10 of those in current integraled systems before they cease to function as the sort of
switching elements from which we can easily build digital systems. Tt will eventually be possible
to fabricate chips with hundreds of times as many components as today’s. The transistors in such
very large scale integrated (VLSI) systems will ultimately have lincar dimensions smaller than the
wave-length of visible light.  New, non-optical, high-resolution lithographic techniques are now
being developed by many firms to enable fabrication of such circuitry.

The emerging VLSI presents a challenge not only to those involved in development of
appropriate fabrication technology, but also to computer scientists and computer architects, The
ways in which digital systems are structured, the procedures used to design them, the tradeoffs
between hardware and sofiware, and the methodology and metrics of analysis of algorithms will
all be greatly affected by the maturation of electronic technology towards its maximum density.
We believe this will be an important area of activily for computer science on through the 1980's.

Until recently, the design of integrated electronic circuitry has been largely the province of circuit
and logic designers working wilhin semiconductor firms.  Computer system  architects have
traditionally built systems from standard integrated circuits designed and manufactured by these
firms, but haven’t oflen participated in the specification and design of thesc integrated circuits.
Flectrical Engineering and Computer Science (EE/CS) curricula have reflecled this tradition, with
courses in device physics and integrated circuit design aimed at and generally taken by different
students than those intercsted in digital system archilecture and computer science.

This text is written to fill a current gap in the literature, and provide students of computer science
and electrical engineering with an introduction tv integrated system architecture and design.
Combined with individual study in related rescarch areas and parlticipation in actual system
design projects, the texl could serve as a basis for a graduate course sequence in integrated
systems.  Portions could be used for an undergraduate text on the subject, or to augment a
graduate course on computer architecture. It could also be used 1o extend, in the system
direction, a classical clectrical engineering course in integrated circuits. We assume the reader’s
background contains the equivalent of an introduclory course sequence in computer science, and
introductory courses in electronic circuits and digital design.






Up till now there have been major obstacles in the path of those attempting to gain an overall
understanding of integrated systems. Integrated electronics, developing in a heatedly competitive
business environment, has proliferated into a large array of different device technologies, circuit
design families, logic design techniques, maskmaking and wafer fabrication techniques, etc. The
technologies have sprung up from the grass roots of "Silicon Valley” in California. Most
participants in the industry have of necessity concentrated on rather narrow specialties. Texts on
the subject have tended to give detailed accounts of some very narrow horizontal segment of the
overall subject, such as device physics or circuit design.

We have chosen instead to provide the minimum of basic information about devices, circuits,
fabrication technology, logic design tcchniques, and system architecture, which is sufficient to
enable the reader to span fully the entire ranpe of abstractions, from the underlying physics to
complete VLSI digital computer systems. A rather small sct of carcfully selected key concepts is
all that is necessary for this purpose. We believe that only by carrying along the least amount of
unnecessary mental baggage at each step in such a study, will the student emerge with a good
overall understanding of the subject. Once this range of abstractions is spanned, the sequence of
concepts can then be mapped into the reader’s own space of application and technology.

Another major obstacle has been the high rate of change of integrated clectronics, The
uninitiated could easily get the feeling that much energy could be invested in learning material
which becomes obsolete as rapidly as it is assimilated. The major driving mechanism in all this
change is the continual improvement in fabrication technology. This evolutionary process results
in the feasibility of manufacturing smaller und smaller devices as time passes. By including the
effects of scaling down device dimensions as an essential ingredient of all topics in this text, many
of the important changes of the architectural paramcters of the technology are predicted,
expected, and indeed hoped for.

The key concepts of this text are illustrated by way of specific examples. In any given
technology, form follows function in a particular way. The skill of mapping function into form,
when once acguired, can be readily applied to any technology. Because of its density, speed,
topological properties, and general availability of wafer fabrication, nMOS has been chosen as the
technology in which examples are implemented.

An atmosphere of excitement and anticipation pervades this field. Workers from many
backgrounds, computer scientists, electrical engincers, and physicists, arc collaborating on a
common problem area which has not yet become classical, The territory is vast, and largely
unexplored. The rewards are great for those who simply press forward.

Carver A. Mead
Pasadena, California

Lynn A, Conway
Belmont, California






BACKGROUND

Prior to the commetrcial publication of this textbook, this limited printing is being distributed to a
selected group of universities as course notes for graduate courses on integrated systems, for the
purpose of obtaining critical reviews. Copies are also being distributed to the industrial
participants in the Cattech Silicon Structures Project, and to selected individuals in universities
and in industry for their review. The authors welcome any and all comments and suggestions
from readers. We are cspecially interested in hearing of the experiences of those teaching from
the text. Nolifications and corrections of errors, ideas for improvements in the tutorial techniques
used. and suggestions of instructive problems for cach chapter would be greatly appreciated.

While the material in this text is presented in a particular order, it need not be read in that order.
Fach chapter presents material from a distinet fevel in the hicrarchy of disciplines involved in
intcgrated systems. The malcrial falls into four major groupings: chapters 1 and 2 provide the
basics of devices and fabrication, chaplers 3 and 4 give the basics of design and implementation,
chapters 5 and 6 present an cxample of LSI system design, and chapters 7, 8, and 9 discuss topics
of current interest in integrated systems research. We recommend that the reader start in the
chapter where he or she is most knowledgeable, and read until information is required from an
adjacent arca described in some other chapter. By using this algorithm and consulting the
reading references where necessary, the reader can gradually work through the primary material
of all chapters. Although much of the material in this text is previously unpublished, it contains
only fundamental concepts. However, these concepts cover a wide range of disciplines, and are
nasily visualized only after the overall context becomes clear.

This text has its origins in a serics of courses in intcgrated circuit design given by Carver Mead at
Caltech, beginning in 1970. Starting in 1971, students in these courses designed and debugged
their own integrated circuits. The students undertook increasingly complex system designs, using
only rather simple implementation aids. The structured design methodology presented in this
text evolved within this milieu. A separate Computer Science department was formed at Caltech
in 1976, with integralcd systems as a focus. An early association was formed with systems
architects in industry. Interaction of Caltech students and faculty with industrial researchers
resulted in the idca of a joint Callech-industry cooperative program. The initial industrial
participants in this program, known as the Callech Silicon Structures Project, are Intel, DEC,
IBM, Hewlett-Packard, Xerox, and Burroughs.

Work on this text began in August 1977, The first three chapters were uscd as course notes
during the fall of 1977, in courscs given by Carver Mcad at Caltech and by Carlo Sequin at U. C.
Berkeley. The first five chaplers were used during the spring of 1978 in courses given by Ivan
Sutherland at Caltech, by Robert Sproull at Carnegic-Mclon  University, and by Fred
Roscnberger at Washington University, St Louis.  This printing is being used again during the
fall of 1978 in the courses al Caltech and U.C. Berkeley, and in new courses by Lynn Conway,
while visiting at M.LT., by Kent Smith at University of Utah, and by Bob Bower at U.CLA.
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Chapter 1: MOS Devices and Circuits
Copyright ©® 1978, C.Mead, L.Conway

Sections;

The MOS Transistor - - - The Basic Inverter - - - Inverter Delay - - - Parasitic Effects - - -
Driving Large Capacitive Loads - - - Space vs Time - - - Basic NAND and NOR Logic
Circuits - - - Super Buffers - - + A Closer Look at the Elcctrical Parameters - - - Depletion Mode
vs Enhancement Mode Pullups - - - Delays in Another Form of Logic Circuitry - - -
Pullup/Pulldown Ratios for Inverting Logic Coupled by Pass Transistors - - - Transit Times and
Clock Periods - - - Properties of Cross Coupled Circuits - - - A Fluid Model for Visualizing MOS
Transistor Behavior - - - Effccts of Scaling Down the Dimensions of MOS Circuits and Systems

In this chapter we begin wilh a discussion of the basic properties of the n-channel, metal-oxide-
semiconductor (MOS), field effect transistor (FET). We then describe and analyze a number of
circuils composed of interconnected MOS field effect transistors. The circuits described are
typical of those we will commonly use in the design of integrated systems. The analysis, though
highly condensed, is conceptually correct and provides a basis for the solution of most system

problems typically encountered.

Integrated systems in MOS technology contain three levels of conducting material separated by
intervening layers of insulating material. Proceeding from top to bottom, these levels are termed
the metal, the polysilicon, and the diffuston levels respectively. Patterns for paths on these three
Jevels, and the locations of contact cuts through the insulating material to connect certain points
between levels, are transferred into the levels during the fabrication process from masks similar to

photographic negatives. The details of the fabrication process will be discussed in chapter 2.

In the absence of contact cuts through the insulating material, paths on the metal level may cross
over paths on the polysilicon or diffusion levels with no significant functional effect. However,
wherever a path on the polysilicon level crosses a path on the diffusion level, a transistor is
created.  Such a transistor has the characteristics of a simple switch, with a voltage on the
polysilicon level path controiling the flow of current in the diffusion level path. Circuits
composed of such transistors, interconnected by patterned paths on the three levels, form our
basic building blocks. With these basic circuits, we will architect integrated systems, to be

fabricated on the surface of monolithic crystalline chips of silicon.
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The MOS Transistor

An MOS transistor will be produced on the integrated system chip wherever a polysilicon path
crosses a diffusion path, as shown in figure la. The electrical symbol used to represent the MOS
transistor in our circuit diagrams is shown in figure 1b, along with symbols and polarities of
certain voltages of interest. Note that the source and drain terminals of the device are physically
symmetrical. For the n-channel MOSFETs, these terminal labels are assigned such that Vg, is
normatly p(lsitive. A more detailed view of the rectangular region called the gate, where the
polysilicon (poly) crosses the diffusion, is given in figure lc. During fabrication the diffusion
paths are formed after the poly paths are formed, as explained more fully in chapter 2. The poly
gate, and the thin layer of oxide beneath it, mask the region under the gate during diffusion.
Therefore, no diffusion path forms under the gate, and there is no direct connection on the
diffusion level between the source and drain terminals of the transistor. Notice in this discussion
that metal, poly, and diffusion paths all conduct eclectricity well enough to be considered "wires”

until further notice,

In the absence of any charge on the gate, the drain to source path through the transistor is like an
open switch. The gate, separated from the substrate by the layer cf thin oxide, forms a capacitor.
If sufficient positive charge is placed on the gate so that Vgs exceeds a threshold voltage Vg,
electrons will be attracted to the region under the gate to form a conducting path between drain
and source. Most of the transistors we will use in our systems have threshold voltages greater
than zero. These are called enhancement mode MOSFETs, and their threshold voltage typically
equals ~ 0.2(VDD), where VDD is the positive supply voltage for the particular technology.

The basic operation performed by the MOS transistor is to use charge on its gate to control the
movement of negative charge between source and drain through the channel under the gate. The
current from source to drain equals the charge induced in the channel divided by the transit time
or average time required for an electron to move from source to drain. The transit time itself is
the distance the electron has to move divided by its average velocity. In semiconductors under
normal conditions, the velocity is proportional to the electric field driving the electrons. The
relationship between drain to source current I, drain to source voltage Vds, and gate to source

voltage Vgs is sketched in figure 1d. For small V 4, the transit time r is given by equation 1.
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Transit time: r = Lvelocity = L/uE = L¥/[pVyq [eq.1]

The proportionality constant p is called the mobility of the charge carriers, in this case electrons,
under the influence of an electric field in the conducting material of the channel region. Itis a
velocity per unit electric field (cmzlvolt-sec). We shall see that the transit time is the

fundamental time unit of the entire integrated system.

The amount of negative charge in Lransit is just the gale capacitance times the voltage on the gate
in excess of the threshold voltage. The capacitance of two parallel conductors of area A,
separated by insutating material of thickness D, equals ¢A/D. The proportionality constant & is
called the permittivity of the insulating malerial, and has a simple interpretation. It is the
capacitance of parallel conductors of area A =1 cmz, separated by a thickness D = 1 ¢cm of the
insulator material, and is in the units farad/cm. Therefore, the gate capacitance equals eWL/D.

Thus the charge in transit is given by eq. 2, and the current is given by eq. 3.

Charge in transit: Q=- Cg(\’gs = Vig) = - sWL(VgS - Vin) [eq.2]
D
Current: Iy = - Igg = - charge in transit = m‘W(Vgs - VinlVg9  [eqd]
transit time LD

Note that for small V4, the drain current is proportional to the source-drain voltage and also to
the gate vollage above threshold. Any device with a current through it proportional to the
voltage across it, may be viewed as a resistor, and in the case of an MQOS device with Jow drain to

source voltage, the resistance is controlled by the gate voltage as given in eq. 3a.

Vas/lgs = R = L2/[pCylVys = Vi)l [eq.3a)

In both equations 2 and 3a, Cg is the gate to channel capacitance of the turned on transistor. In
the simple case where this transistor is driving the gate of another one identical to it, the time
response of the system will be an exponential with a time constant RCg. given in equation 4,

This time constant is identical to the transit time + given in equation 1.
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RC, = LY/[p(Vgs - Vil = 7 | [eq4]

Although the above equations are greatly simplified, they provide sufficient information to make
many design decisions which we will face, and also give us insight into the scaling of devices to
smaller sizes. In particular, the transit time v can be viewed as the basic time unit of any system
we shall build in the integrated technology. In almost all situations, the fastest operation which
we can perform is to transfer a signal from the gate of one MOS transistor onto the gate of
another. The transit time is the minimum time in which a charge placed on the gate of one
_transistor results in the transfer of a similar chargé through that transistor’s channel onto the gate
of a subsequent transistor. " For example, to transfer a charge from one transistor onto two
transistors jdentical to it requires 2 minimum of two transit times. Thus, the transit time of the
basic transistor in an integrated system can be viewed as the unit of time in which all other times
in the system are scaled. Although it is a somewhat optimistic approximation, we will use + as
the primary time metric in calculating the delay through elementary inverting logic stages. More
accurate predictions of circuit behavior can be produced using any one of a number of available

circuit simulation programs.5'6

As Vyq is increased, not ail of the drain 10 source voitage is available for reducing the transit
time. Drain voltage in excess of one threshold below the gate voltage creates a short region of
high electric field adjacent to the drain which the carriers cross very quickly. The electric field in
the major portion of the channel from the source up o this region is proportional to Vgs - Vip
as shown in figure le. For V4o > (VgS - Viph the drain current becomes independent of Vds.

Further increases in V j; neither increase [4g nor decrease the transit time. This range of V44

values is known as saturation.

In saturation: Iqs = u;zll)gvgs - Vth)2 [eq.5]

With the exception of the factor of 2 in the denominator, this equation is similar to equation 3,
with the V4 factor in that equation replaced by its maximum effective value, Vgs - Vip - The
factor of 2 in equation 5 arises from the non-uniformity of the electric field in the channel region

when in saturationl-R4.
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The Basic Inverter

The first logic circuit we will describe is the basic digital inverter. Analysis of this circuit is then
extended to analysis of basic NAND and NOR logic gates. The inverter's logic function is to
produce an output which is the complement of its input. When describing the logic function of
circuits in integrated systems, we assign the value logic-1 to voltages equaling or excceding some
defined logic threshold voltage, and logic-0 to voltages less than this threshold voltage.

Were there an efficient way to implement resistors in the MOS technology, we c:ould build a
basic digital inverter circuit using the configuration of figure 2a. Here, if the inverter input
voltage V., is less than the transistor threshold voltage Vth, then the transistor is switched off,
and V;,, is "pulled-up” to the positive supply voltage VDD. In this case the output is the
complement of the input.  If Vj, is greater than Vth, the transistor is switched on and current
flows from the VDD supply through the resistor R to GND. If R were sufficiently large, Vout
could be "pulled-down” well below V. thus again complementing the input. However, the
resistance per unit length of minimum width lines of various available conducting elements is far
less than the effective resistance of the switched on MOSFET. Implementing a sufficiently large
inverter pullup using resistive lines would require 2 very large area cempared te that occupied by

the transistor itself.

To circumvent this problem a depletion mode MOSFET is used as a pullup for the basic inverter
circuit, symbolized and configured as shown in figure 2b. In contrast to the usual enhancement
mode transistor, the depletion mode transistor has a threshold voltage, Vdep' that is less than
zero. During fabrication, one of the masks is used to select any desired subset of transistors in
the integrated system for processing as depletion mode transistors. For a depletion mode
transistor to turn off, it requires a voltage on its gate relative to its source that is more negative
than Vdep' But the depletion mode pullup transistor’s gate is connected to its source, and thus it
is always turned on. Hence, when the enhancement mode transistor s turned off, for example by
connecting zero voltage to its gate, the output of the inverter will be equal to VDD. We will find
that for reasonable ratios of the gate geometries of the two transistors, input voltages above a
defined logic threshold voltage, V.. will produce output voltages below that logic threshold

voltage, and vice versa.

The top view of the layout of an inverter on the silicon surface is sketched in figure 2c. It
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consists of two polysilicon regions overhanging a path in the diffusion level which runs between
VDD and GND. This arrangement forms the two MOS transistors of the inverter. The inverter
input A is connected to the poly forming the gate of the lower of the two transistors. The pullup
is formed by connecting the gate of the upper transistor to its source. The fabrication details of
such connections are described in chapter 2. The output of the inverter is shown emerging on
the diffusion level, from between the drain of the pulldown and the source of the pullup. The
puliup is a depletion mode transistor, and it is usually several times longer than the pulldown, to

achieve the proper inverter logic threshold.

Figures 3a and 3b show the characteristics of a typical pair of MOS transistors used to implement
an inverter. The relative locations of the saturation regions of the pullup and pulldown differ in

these characteristics, due to the difference in their threshold voltages.

We can use a graphical construct o determine the actual transfer characteristic, Vout ¥8 Vip: of
the inverter circuit. From figure 2b we see that the Vds(enh) of the enhancement mode transistor
equals VDD minus V4 (dep) of the depletion mode transistor. Also, V g (enly) equals V.. In a
steady state and with no current drawn from the output, the [, of the two transistors are equal.
Since the pullup has its gate connected to its source, only one of its characteristic curves is
relevant, namely the one for Vgs(dep) = 0. Taking these facts into accbunt, we begin the
graphical solution (fig. 3¢) by superimposing plots of [(enh) vs V4s(enh), and the one plot of
I4(dep) vs [VDD - Vys(dep)]. Since the currents in both transistors must be equal, the
intersections of these sets of curves yields Vds{enh) = Vgyut Vversus Vgs(enh) = Vip- The

resulting transfer characteristic is plotted in figure 3d.

Studying figures 3¢ and 3d, consider the effect of starting with V;; = 0 and then gradually
increasing Vi, towards VDD. While the input voltage is below the threshold of the pulldown
transistor, no current flows in that transistor, the output voltage is constant at VDD, and the drain
to source voltage across the pullup transistor is equal to zero. When Vj, is first increased above
the enhancement mode thfeshold, current begins to flow in the puildown transistor. The output
voltage decreases slowly as the input voltage is first increased above Vy,. Subsequent increases in
the input voltage rapidly lower the pulldown’s drain to source voltage, until the point is reached
where the pulldown leaves its saturation region and becomes resistive. Then as Vj, continues to

increase, the output voltage asymptotically approaches zero. The input voltage at which Vi,
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equals V, is known as the logic threshold voltage Vi, Figure 3d also shows the effect of
changes in the transistor length to width ratios on the transfer characteristics and on the logic
threshold voltage. The resistive impedance of the MOS transistor is proportional to the length to
width ratio Z of its gate region. Using the subscript pu for the pullup transistor and pd for the
pulldown transistor: If Zpu = Lpu/wpu is increased relative to Zpd = Lpd/Wpd, then Vi,
decreases, and vice-versa. The gain, or negative slope of the transfer characteristic near Vi, .,
increases as Zpulzpd increases. The gain G must be substantially greater than unity for digital

circuits to function properly.

Inverter Logic Threshold Voltage

The most fundamental property of the basic inverter circuit is its logic threshold voltage, Vi,
The logic threshold here is not the same as Vi3, of the enhancement mode transistor, but is that
voltage on the input of the enhancement mode transistor which causes an equal output voltage.
If Vi, is increased above this logic threshold, V, falls below it, and if V;, is decreased below

Vv Vout rises above it. The following simple analysis assumes that both pullup and pulidown

inv -
following is still nearly correct. Vi, is approximately that input vollage which would cause
saturation current through the pulldown transistor to be equal lo saturation current through the

pullup transistor. Referring to eq.5, we find the condition for equality of the two currents given

in eq.6.

Currents equal when: Wpd (Vi - Vth)2 = Wpu ('Vdep)z , [eq.6]
Lpd Lpu

or thus when: Viny = Vi - Vdep/[Zpu/Zpd]V" {eq.6a]

Here we note that the current through the depletion mode transistor is dependent only on its
geometry and threshold voltage Vdep- since its Vgs = 0. Note that V;,, is dependent upon the
thresholds of both the enhancement and depletion mode transistors, and also the square root of

the ratio of the Z = L/W of the enhancement mode transistor to that of the depletion mode

transistor,

[ Chl.; Sect1] < Conway > newmosl.vlsi July 1, 1978 2:30 PM



Tradeoffs are possible between these threshold voltages and the areas and current driving
capability of transistors in the system's inverters. To maximize (Vgs - Vi) and increase the
pulldowns’ current driving capability for a given area, Vi should be as low as possible.
However, if Vy;, is too low, inverter outputs won't be driveable below Vy,, and inverters won't be
able to turn off transistors used as simple switches. The original choice of Vi, ~ 0.2VDD is a

reasonable compromise here.

Similarly, to maximize the current driving capability of pullups of given area, we might set the
system’s Vdep as far negative as possible. However, eq. 6a shows that for chosen Vi, and Vm,
decrea;ing vdep requires an increase in Lpu/wpu* typically leading to an increase in pullup area.
The compromise made in this case is usually as follows. The negative threshold of depletion
mode transistors is set during fabrication such that with gate tied to source, they turm on
approximately as strongly as would an enhancement mode transistor with VDD connected to its
gate and its source grounded. In other words, depletion mode and enhancement mode transistors
of equal gate dimensions would have equal drain to source currents under those conditions,

Applying eq.6 in those conditions we find that:
v
(-Vgepl® ~ (VDD - Vgt

Therefore, ‘vdep ~ (VDD - Vth)- and Vdep ~ -0.8VDD. While adjustments in the details of
this choice are often made in the interest of optimization of processes for a particular product,
we will assume here this approximate equality of turn-on voltages of the two transistor types for
the sake of simplicity. Substituting this choice of Vdep into eq.6a, we find that for Vi small
compared to VDD:

1
Vi, ~ VDD/[Zpu/Zpd]” [eq.7]

In general it is desirable that the margins around the inverter threshold be approxirmately equal,
ie. that the inverter threshold, V, .. lie approximately midway between VDD and ground. We
see from eq.7 that this criterion is met by a ratio of pullup Z to pulldown Z of approximately 4:1.
We will see later that the choice of Vdep ~ VDD - Vy,, producing a ratio of 4:1 here, will lead

to a balancing of performances in certain other important circuits.
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Inverter Delay

A minimum requirement for an inverter is that it drive another identical to itself. Let us analyze
the delay through a string of inverters of identical dimensions. This is the simplest case in which
we can estimate performance, Inverters connected in this way are shown in Fig. 4a. We define
the inverter ratio k as the ratio of Z of the pullups to Z of the pulldowns, We will sometimes use

the alternative "resistor with gate" pullup symbol, as in fig.4a, to clarify its functional purpose.

Let us assume that prior to t = 0, the voltage at the input of the first inverter is zero, and hence,
the voltage output of the second inverter will be low. At time t=0, let us place a voltage equal
to VDD on the input of the first inverter and follow the sequence of events which follows, The
output of the first inverter, which leads to the gate of the second inverter, will initially be at
VDD. Within approximately one transit time, the pulldown transistor of the first inverter will
remove from this node an amount of charge equal to VDD times the gate capacitance of the
pulldown of the sccond inverter. The pullup transistor of the second inverter is now faced with
the task of supplying a similar charge to the gate of the third inverter, 10 raise it to VDD. Since
it can supply at most only 1/k’th of the current that can be supplied by the pulldown transistor,

the delay in the second inverter stage is approximately k times that of the first.

It is thus convenient to speak of the inverter pair delay which includes the delay for one lowgoing
transition and one highgoing transition. This inverter pair delay is approximately (1+k) times
the transit time, as shown in figure 4a. The fact that the rising transition is slower than the
falling transition by approximately the inverter transistors’ geomelry ratios is an inherent
characteristic of any ratio type logic. It is not true of all logic families. For example, in families
such as complementary MOS where there are both pMOS and nMOS devices on the same silicon
chip and both types operate strictly as pulldown enhancement mode devices, any delay
asymmetry is a function of the difference in mobilities of the p and n type charge carriers rather

than of the transistor. geometrical ratios.

Fig. 4b shows an inverter driving the inputs of several other inverters. In this case, for a fanout
factor f, it is clear that in either the pullup or pulidown direction, the active device must supply f
times as much charge as it did in the case of driving a single input. In this case, the delay both

in the up and downgoing directions is increased by approximately the factor f. In the case of the
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downgoing transition, the delay is approximately f times the transit time of the pulldown
transistor, and in the case of the upgoing transition, the delay is approximately the inverter ratio k

times the fanout factor times the pulldown transit time.

In the discussions of transit time given earlier, it was assumed that both the depletion mode
pullup device and the enhancement mode pulldown device were operating in the resistive region.
It was also assumed that all capacitances were constant, and not a function of voltage. These
conditions are not strictly met in the technology we are discussing. Delay calculations given in
this text are based on a "switching model” where individual stages spend a small fraction of their
time in the mid-range of voltages around Vj,,. This assumption introduces a small error of the
order of 1/G. Because of these and other second order effects, the switching times actually

observed vary somewhat from those derived.
Parasitic Effects

In integrated systems, capacitances of circuit nodes are due not only to the capacitance of gates
connected 1o the nodes, but also include capacitances to ground of signal paths connected to the
nodes and other stray capacitances. These other capacitances, scmetimes called parasitic or stray
capacitances, are not negligible. While gate capacitances are typically an order of magnitude’
greater per unit area than the capacitances of the signal paths, the signal paths are often much
larger in area than the associated gate regions. Therefore, a substantial fraction of the delay
encountered may be accounted for by stray capacitance rather than by the inherent properties of
the active transistors. In the simplest case where the capacitance of a node is increased by the
presence of parasitic area attached to the node, the delays can be accounted for by simply
increasing the transit time by the ratio of the total capacitance to that of the gate of the transistor
being driven. Time is required to supply charge not only to the gate itself but also to the

parasitic capacitance.

There is one type of parasitic, however, which is not accounted for so simply. All MOS
transistors have a parasitic capacitance between the drain edge of the gate and the drain node.
This effect is shown schematically in figure 4c. In an inverter string, this capacitance will be
charged in one direction for one polarity of input, and in the opposite direction for the opposite
polarity input. Thus, on a gross scale its effect on the system is twice that of an equivalent

parasitic capacitance to ground. Therefore, gate to drain capacitances should be approximately
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doubled, and added to the gate capacitance Cg and the stray capacitances, to account for the total
capacitance of the node and thus for the effective delay time of the inverter. The effective

inverter pair delay then is equal to 7(1+k)Ctota1/Cg.
Driving Large Capacitive Loads

As we have seen, the delay per inverter stage is muitiplied by a fanout factor. The overall
performance of a system may be seriously degraded if it contains any large fanouts, where one
circuit within the system is required to drive a large capacitive load. As we shall -see, this
situation often occurs in the case of control drivers required to drive a large number of inputs to
memory cells or logic function blocks. A similar and more serious problem is driving wires which
go off the silicon chip to other chips or input/output devices. In such cases the ratio of the
capacitance which must be driven to the inherent capacitance of a gate circuit on the chip is often

many orders of magnitude, causing a serious delay and a degradation of system performance.

Consider how we may drive a capacitive load C; in the minimum possible time given that we are
starting with a signal on the gate of an MOS transistor of capacitance Cg. Define the ratio of the
lnad capacitance to the gate capacilance, CL/Cg, as Y. It seems intuitivelv clear that the
optimum way to drive a large capacilance is to use our elementary inverter o drive a larger
inverter and that larger inverter to drive a still larger inverter until at some point the larger
inverter is able to drive the load capacitance directly. Using an argument similar to the fanout
argument it is clear that for one inverter to drive another inverter, where the second is larger in
size by a factor of f, results in a delay f times the inherent inverter delay, 7. If N such stages are
used, each larger than the previous by a faclor f, then the total delay of the inverter chain is Nfr,
where fN equals Y. Note that if we use a large factor f, we can get by with few stages, but each
stage will have a long delay. If we use a smaller factor f, we can shorten the delay of each stage,

but are required to use more stages. What value of N minimizes the overall delay for a given Y?

We compute this value as follows:

Since fN= Y, n(Y) = Nin{)

Delay of one stage = fr ,

Thus total delay is = Nfr = In(Y){ f/In(f) }r [eq.8)
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Notice that the delay is always proportional to In(Y), a resuit of the exponential growth in
successive stages of the driver. The multiplicative factor, f/In(f), is plotted as a function of f in
figure 5, normalized to its minimum value (¢). Total delay is minimized when each stage is larger
than the previous one by a factor of e, the base of natural logarithms. Minimum total delay is
the elementary inverter delay r times e times the natural logarithm of the ratio of the load

capacitance to the elementary inverter capacitance.
Min. total delay  ~ re[ln(CL/Cg)] [eq.9]

Minimum delay through the driver is seldom the only design criterion. The relative time penalty

introduced b'y the choice of other values of f can be read directly from figure 3.

Space vs Time

From the results of the sections on inverter delay, parasitic effects, and driving large capacitances,
we see that areas and distances on the silicon surface trade off against delay times. For an
inverter to drive ancther invertsr some distance away, it must charge not only the gate
capacitance of the succeeding inverter but also the capacitance to ground of the signal path
connecting the two. Increasing the distance between the two inverters will therefore increase the
inverter pair delay. This effect can be counterbalanced by increasing the area of the first inverter,
5o as to reduce the ratio of the load capacitance to the gate capacitance of the first inverter. But
the delay of some previous driving stage is then increased. There is no way to get around the
fact that transporting a signal from one node to another some distance away requires charging or
discharging capacitance, and therefore takes time. Note that this is not a velocity of light
limitation as is often the case outside the chip. The times are typically several orders of
magnitude longer than those required for light to traverse the distances involved. To minimize
both the time and space required to implement system functions, we will tend to use the smallest

possible circuits and locate them in ways which tend to minimize the interconnection distances

The results of a previous section can be used here to illustrate another interesting space v§ time
effect. Suppose that the minimum size transistors of an integrated system have a transit time -
and gate capacitance Cg. A minimum size transistor within the system produces a signal which is

then passed through successively larger inverting logic stages and eventually drives a large
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capacitance Cy with minimum total delay equal to ty;,. With the passage of time, fabrication
technology improves. We replace the system with one in which all circuit dimensions, including
those vertical to the surface, are scaled down in size by dividing by a factor « , and the values of
Vyq and Vyy, are also scaled down by dividing by a. The motivation for this scaling is clear: the
new system may contain o2 as many circuits. As described in a later section, we will find that
the transit times of the smallest circuits will now be ©* = r/«, and their gate capacitance will be
C, = Cg/ «. The new ratio of load to minimum gate capacitance is: Y' = aY. Referring to

-3
equation 9., we find that the new minimum total delay, tnin . 10 drive Cp scales as follows:

tmin =me (1/a} [1+.(1nr!/1nY)]

Therefore, as the inverters scale down and r gets smatler, more inverting logic stages are required
to obtain the minimum offchip delay. Thus the relative delay to the outside world becomes

larger. However, the absolute delay becomes smaller.

Basic NAND and NOR Logic Circuits

NAND and NOR logic circuits may be constructed in integrated systems as simple expansions of
the basic inverter circuit. The analysis of the behavior of these circuits, including their logic
threshold voltages, transistor geometry ratios and time delays, is also a direct extension of the

analysis of the basic inverter.

The circuit layout diagram of a two input NAND gate is shown in figure 6a. The layout is that of
a basic inverter with an additional enhancement mode transistor in series with the pulldown
transistor. NAND gates with more inputs may be constructed by simply adding more -transistors
in series with the pulldown path. The electrical circuit diagram, truth table and logic symbol for
the two input NAND gate are shown in figure 6b. If either of the inputs A or B is a logic-0, the
pulldown path is open and the output will be high, and therefore a logic-1. For the output to be
driven low, to logic-0, both inputs must be high, at logic-1. The logic threshold voitage of this
NAND gate is calculated in a similar manner to that of the basic inverter, except equation 7 is
rewritten with the length of the pulldowns replaced with the sum of the lengths of the two

pulldowns (assuming their widths are equal} as follows:
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Vinnanp ~ VPD/[(Lpu/Wpu)/((Lpd, + Lpdy,)/ Wpd)]

This equation indicates that as pulldowns are added in seres to form NAND gate inputs, the
pullup length must be enlarged to hold the logic threshold voltage constant.

The logic threshold voltage of an n-input NAND gate, assuming all the pulldowns have equal

geometries, is:

Vinnanp ~ VDD/[Lpu/Wpu)/(aLpd/Wpd)] %
As inputs are added and pullup length is increased, the delay time of the NAND gate is also

correspondingly increased, both for rising and falling transitions.

TNAND ~ BTinv

The circuit layout diagram of a two input NOR gate is shown i figure 6c. The layout is that of a
basic inverler with an additional enhancement mode transistor in parallel with the pulldown
transistor. Additional inputs may be constructed by simply placing more transistors in parallel
with the pulldown path. The circuit diagram, truth table and logic symbol for the two input
NOR gate are shown in figure 6d. If either of the inputs A or B is a logic-1. the pulldown path
to ground is closed and the output will be low, and therefore a logic-0. For the output to be
driven high, to logic-1, both inputs must be low, at logic-0. If one of its inputs is kept at logic-0,
and the other swings between logic-0 and logic-1, the logic threshold voltage of the NOR gate is
the same as that of a basic inverter of equal pullup to pulldown ratio. If this ratio were 4:1 to
provide equal margins, then Viynap ~ VDD/2 with only one input active. However, if both
pulldowns had equal geometries, and if both inputs were to move together between logic-0 and
logic-1, Viynor Would be reduced to ~ VDD/(S)%. The logic threshold voitage of an n-input
NOR circuit decreases as a function of the number of active inputs (inputs moving together from
logic-0 to logic-1). The delay time of the NOR gate with one input active is the same as that of
an inverter of equal transistor geometries, except for added stray capacitance. Its delay time for

falling transitions is decreased as more of its inputs are active.

[ Chi: Sect.l] <Conway > newmoslvisi July 1, 1978 2:30 PM



[Ch.1, Sect.]]

VDD
1
vDhD
depl. mode
: (—/punup A
8 :DD— (ABY
(poly)
(ABY
connected =1 if]
(see Ch2,Chd) \\ (aiff)
A T [ A B lBy
g o1
0 111
B [ 1 011
1 1160
1
GND
Fig. 6a. NAND Gate Fig. 6b. NAND Gate Circuit Diagram,
[top view of layout] Logic Symbol, Logic Function
vYDD
f VDD
depl. mode
pullup [
< gj’)—mmy
—
ed {poly) —4A+BY
connet .
(sce Ch2,Chd) . (dify -7
' —*{A+B) A B KA+BY
0 011
A H: ]}_B 010
1 4]0
l 1 1]¢0
!
GND
Fig. 6c. NOR Gate Fig. 6d. NOR Gate Circuit Diagram,
[top view of layout] Logic Symbol, Logic Function

(mosb.press)






[Ch.l, Sectl]

ﬁ {
vout

Fig. 7a. Inverting Super Buffer

vDD

—

out

Al
= .

] [

Fig. 7b. Non-Inverting Super Buffer

(mos7ab.press)






Super Buffers

As we have noted, ratio type logic suffers from an asymmetry in its ability to drive capacitive
loads. This asymmetry results from the fact that the pullup transistor has of necessity less driving
capability than the pulldown transistor. There are, however, methods for avoiding this
asymmetry. Shown in figures 7a and 7b are circuits for inverting and non-inverting drivers which
are approximately symmetrical in their capability of sourcing or sinking charge into a capacitive

toad. Drivers of this type are called super buffers.

Both types of super buffer are built using a depletion mode pullup transistor and an enhancement
mode puildown transistor, with a ratio of Z's of approximately 4:1 as in the basic inverter.
However, the gate of the pullup transistor, rather than being tied to its source, is tied to a signal

which is the complement of that driving the pulldown transistor.

When the pulldown transistor gate is at a high voltage, the pullup transistor gate will be
approximately at ground, and the current through the super buffer will be similar to that through
a standard inverter of the same size. However, when the gate of the pulldown transistor is put to
zero, the gate of the pullup transistor will go rapidly to VDD since it is the only load on the
output of the previous inverter, and the depletion mode transistor will be turned on at
approximately twice the drive which it would experience if its gate were tied to its source. Since
the current from a device in saturation goes approximately as the square of the gate voltage, the
current sourcing capability of a super buffer is approximately four times that of a standard
inverter. Hence, the current sourcing capability of its pullups is approximately equai to the
current sinking capability of its pulldowns, and wave forms from super buffers driving capacitive

loads are nearly symmetrical.

The effective delay time, r, of super buffers is thus reduced to approximately the same value for
highgoing and ]owgbing wave forms. Needless to say, when large capacitive loads are to be
driven, super buffers are universally used. The arguments used in the last section to determine
how many stages are used to drive a large capacitive load from a small source apply directly to

super buffers. For that reason we have not explicitly indicated an inverter ratio k in that section.
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A Closer Look at the Electrical Parameters

Up to this point we have talked in very simple terms about the properties of the MOS transistors.
They have a capacitance associated with their gate input and a transit time for electrons to move
from the source to the drain. We have given simple expressions for the drain to source current.
For very low V 4, the MOS transistor’s drain to source path acts as a resistor whose conductance
is directly proportional Lo the gate vollage above threshold, as given in equation 3. For values of
Vg larger than Vgs - Vi, the device acts as a currenl source, with a current proportional to

(vgs - Vt.h)z' as given in equation 5. As V4o passes through the intermediate range between
1

these (wo exiremes, there is a smooth transistion between the two types of behavior-, as given in
the following equation:
Igs = Q1 = pCallVys - Vi) Vs - (VgPyaWL? [eq.10]

Figure 9a plots Ly vs V4o summarizing the various regions of MOS transistor operation.

There is another electrical characteristic we may occasionally have to take into account. The
threshold voltage of an MOS transistor is not a constant, but varies slightly as a function of the
voltage between the source terminal of the transistor and the silicon substrate, which is usually at
ground. This so called body effect is illustrated in figure 9b. If the source to bulk (substrate)
voltage, Vg, , equals zero, then Vi is at its minimum value of approximately 0.2 VDD. As Vg, is

increased, V4, increases slightly,

For enhancement mode transistors fabricated using typical processes, Vi reaches a maximum
value of about 0.3 VDD when Vg is increased to ~ VDD. The value of the depletion mode
transistor threshold, Vdep* is similarly affected, ranging from about -0.8 VDD to -0.7 VDD as
Vg is raised from zero to VDD volts. As shown in figure 9b, it is possible to insert a fixed bias
voltage between the circuit ground and the substrate, rather than just connect them. Such a

substrate bias provides an clectrical mechanism for setting the threshold to an appropriate value,
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Depletion Mode vs Enhancement Mode Pullups

With its gate tied to VDD, an enhancement mode transistor will be on for all V3. > Viy, and
thus can be used for a pullup device in inverting logic circuits. Early MOS processes used pullup

devices of exactly this type.

In this section we will make a comparison of the rising transients of the two types of pullup
circuits. As noted earlier, rising transients in ratio type logic are usually slower than falling
transients, and thus rising transients generally have greater impact on system performance. In the
simplest cases, this asymmetry in the transients results from the current sourcing capability of the
pullup transistor being less than that of its pulldown counterpart. The simple intuitive time
argumenis given earlier are quite adequate for making estimates of system performance in most
cases. However, there are situations in which the transient time may be much longer than a naive

estimate would indicate. The rising transient of the enhancement mode pullup is one of these.

A depletion mode pullup transistor fecding a capacitive load is shown schematically in figure 10a.

Since Voo > Vi and V gd > Vi the pullup transistor is in the resistive regicn. The final stages

g
of the rising transient are given by the following exponential:

Vi) = VDD[1 - e V(RCL)

For an inverter ratio k, pulldown transit time 7, and gate capacitance Cg the time-constant of the

rising transient is given by:
RC = erL/Cg

A somewhat more complicated situation is presented by an enhancement mode transistor sourcing
charge into a capacitive load. This situation is shown schematically in Fig. 10b. Note that since
ng = 0, the transistor is in saturation whenever Vgs > Vi, The problem with sourcing charge
from the enhancement mode transistor is that as the voltage at the output node gets closer and

closer to one threshold below VDD, the amount of current provided by the enhancement mode

transistor decreases rapidly.
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The dependence of the enhancement mode pullup current, I3, upon output voltage, V, is given

in equation 11:

Q = - WL [(VDD - Vy) - V]
D

r = 2LY/u(VDD - Vi) - V]

Igo = - Q/7 = peW [(VDD - V) - VI feq.11]
2LD
The fact that the pullup current decreases as the output voliage nears its maximum value causes
the rising transient from such a circuit to be of qualitatively different form than that of a
depletion mode pullup. Equating Iy, = CpdV/dt with the expression in equation 11, and then

solving for V(t), we find the rising voltage transient, for large t:

V(t) = VDD - Vy - ¢ _LD [eq.12]
peWt

Note that in this configuration, the threshold voltage Vth' of the puilup is near its maximum

value as V(t) rises towards VDD, due to the body effect.

A comparison of the rising transients of the preceding two circuils, assuming the same load
capacitance and the same pullup source current at zero output voltage, is shown in Fig. 10c. The
rising transient for the depletion mode pullup transistor is crisp and converges rapidly towards
VDD. However, the rising transient for the enhancement mode pullup transistor, while starting
rapidly, lags far behind and within the expected time response of the system, never even comes
close to one threshold below VDD, Even for very large t, V(1) < VDD - V.

The practical effect of this property of enhancement mode transistors is that circuits designed to
work from the output of such a circuit should be designed with an inverter threshold V.,
considerably lower than that of circuits designed to work with the output of a depletion mode
pullup circuit. In order to obtain equal inverter margins without sacrificing performance, we will

normally use depletion mode pullups.
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Delays in Another Form of Logic Circuitry

Enhancement mode transistors, when used in small numbers and driving small capacitive loads,
may often be used as switches in circuits of simple topology to provide logic signal steering
functions of much greater complexity than could be easily achieved in ratio type inverting logic.
These circuits are reminiscent of relay switching logic, and transistors used in this way are
referred to as “pass transistors” or "transmission gates”. Example circuits using this type of
design are given in Chapter 3. A particularly interesting example is the Manchester carry
chain4a‘b, used for propagating carry signals in paralicl adders. In each stage of the adder a carry
propagate signal is derived from the two inpul variables to the adder, and if it is desired to
propagate the carry, this propagate signal is applied to the gate of an enhancement mode pass
transistor. The source of the tramsistor is carry-in to the present stage, and the drain of the
transistor is carry-out to the next stage. In this way, a carry can be propagated from less to more
significant stages of the adder without inserting a full inverter delay between stages. The circuit

is shown schematically in Fig. 1la.

The delay through such a circuit does not involve inverter delays but is of an cntirely different
sort. A voltage along the chain divides into V4 across each poss transictor.  Thus V4 is usually
low. and the pass transistors operate primarily in the resistive region. We can think of each
transistor as a series resistance in the carry path, and a capacitance to ground formed by the gate
to channel capacitance of each transistor, and the strays associated with the source, drain, and
connections with the following stage. An abstraction of the electrical representation is shown in
Fig. 11b. The minimum value of R is the turned on resistance of each enhancement mode pass
transistor, while the minimum value of C is the capacitance from gate to channel of the pass
transistor. Strays will increase both values, especially that of C. The response at the node
labelled V, with respect to time is given in eq. 13. In the limit as the number of sections in the
network becomes large, eq. 13 reduces to the differential form shown in eq. 14 where R and C

are now the resistance and capacitance per unit length, respectively.
C dVy/dt = [(Vy - V5) - (V; - VIR [eq.13]

RC dv/dt = d2v/dx2 [eq.14]
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Equation 14 is the well-known diffusion equation, and while its solutions are complex, in general
the ltime required for a transient to propagate a distance x in such a system is proportional to X2
One can see qualitatively that this might be so. Doubling the number of sections in such a
network doubles both the resistance and the capacitance, and therefore causes the time required
for the system to respond to increase by a factor of approximately four. The response of a system

of n stages to a step function input is shown in Fig. llc,

If we add one more pass transistor to such a chain of n pass transistors, the added delay through
the chain is small for small n, but very large for large n. Therefore, it is highly desirablerto
group the pass transistors used for steering, multiplexing, and carry-chain type logic into short
sections and interpose inverting logic between these sections. This approach applied to the carry
chain is shown in figure 11d. The delay through a section of n pass transistors is proportional to
RCn?. Thus the total delay is ~ RCn2 plus the delay through the inverter r, . The average
delay per stage is given in eq. 15. To minimize the delay per stage, chose n such that the delay

through n pass lransistors cquals the inverter delay:

Total delay ~ RCn? + Tinv
Average delay/stage ~ RCn + 74,,/n [eq.15]

Min. delay when: RCn? ~ Tinv

Since logic done by stecring signals with pass transistors does not require static power dissipation,
a generalization of this result may be formulated. It pays to put as much logic into steering type
circuits as possible until there are enough pass transistors to delay the stgnal by approximately
one inverting logic delay. At this point, the level of the signal can be restored by an inverting

logic stage.

The pass transistor has another important advantage over an inverting logic stage. When used to
control or steer a logic signal, the pass transistor has only an input, control, and output
connections. A NAND or NOR logic gate implementing the same function, in addition to
containing two more transistors and thus occupying more area, also requires VDD and GND
connections. As a result, the topology of interconnection of pass transistor circuits is far simpler
than that of inverting logic circuits. This topological simplicity of pass transistor control gates is

an important factor in the system design concepts developed in later chapters,
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Pullup/Pulldown Ratios for Inverting Logic Coupled by Pass Transistors

Earlier we found that when an inverting logic stage directly drives another such stage, a pullup to
pulldown ratio Zpu/Zpd = (Lpu/Wpu)/(Lpd/Wpd) of 4:1 yields equal inverter margins, and
also provides an output sufficiently less than Vi, for an input equal to VDD. Rather than
coupling inverling logic stages directly, we often couple them with pass transistors for the reasons

developed in the preceding section, thus affecting the required pullup to pulldown ratio.

Figure 12a shows two inverters connected through a pass transistor. If the output of the first
inverter nears VDD, the input of the second inverter can rise at most to (VDD - Vthp)' where
Vth is the threshold of the pass transistor. Why does this effect occur? Consider the following:
The output of the first inverter is at or above (VDD - Vth)* the pass transistor gate is at zero
volts, and the input gate of the second inverter is also at zero volts. The pass transistor's gate
voltage is now driven quickly to VDD, turning on the pass transistor. As current flows through
the pass transistor, from drain to source, the input gate voltage of the second inverter rises and
the gate to source voltage of the pass transistor falls. When the gate voltage of the second
inverter has risen to (VDD - Vthp)' the pass transistor's gate to source voltage has fallen to its

threshold value, and the pass transistor will switch off.

If the second inverter is to have its output driven as low with an input of (VDD - Vthp) as
would a standard inverter with an input of VDD, then the sccond inverter must have a pullup to
pulldown ratio larger than 4:1. This larger ratio is calculated as follows: With inputs near VDD,
the pullups of inverters are in saturation, and the pulldowns are in the resistive region. Figure
12b shows equivalent circuits for two inverters. VDD is input to one, and (VDD - Vthp) to the
other. For the output voltages of the two inverters to be equal under these conditions, [} Ry must

equal [5R4. Referring to equations 3a and 5, we find:
252
(Zpullzpdl)(VDD - vth) = (ZpuZ/Zde)(VDD - Vth - Vthp)

Since Vi, of the pulldowns is approximately 0.2VDD, and Vthp of the pass transistor is

approximately 0.3VDD due to the body effect, then Zpuz/Zde ~ zz'pullzpdl- Thus a ratio of
(Lpu/Wpu)/(Lpd/Wpd) = 8 is usually used for inverting logic stages placed as level restorers
between sections of pass transistor logic.
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Transit Times and Clock Periods

In chapter 3 we will develop a system design methodology in which we will be able to construct
and estimate the performance of arbitrarily complex digital systems, using only the basic circuit
forms presented in the preceding sections. The basic system building block in the design
methodology is a register to register transfer through combinational logic, implemented with pass
transistors and inverting logic stages. Using the basic ideas already presented, we may anticipate

the results of that chapter in order to estimate the maximum clocking frequency of such systems.

The design methodology uses a two-phase non-overlapping clock scheme. During the first clock
phase, data passes from one register, through combinational logic stages and pass transistors 10 a
second register. During the second clock phase, data passes from the second register through still
" more logic and pass transistors to a third (or possibly back to the first) register. The data storage
registers are implemented by using charge stored on the inpul gates of inverting logic stages, the

charge being isolated by pass transistors controlled by clock signals, as described in chapter 3.

Since pass transistors are used to comnect inverting logic stages, inverter ratios of k ~ 3 are
required. If the combinaticnal lo;__',ic between registers is implemented using orly pass transistors,
and if the delays through the pass (ransistors have been carefully malched to those of the’
inverting logic stages, the total delay will be twice that of the simple k = 8 inverter. In the
absence of strays, the k = 8 inverters have a maximum delay (in the case of the output rising
towards VDD) of 8+, and hence a minimum of 16t must be allowed for the inverter plus logic
delay. However, in most designs the stray capacitance is at least equal to that inherent in the
circuit. Thus the minimum time required for one such operation is ~ 30r. Control lines to the
combinational logic and pass transistors each typically drive the gates of 10 to 30 transistors.
Even when using a super buffer driver, the delay introduced by this fan out is at least the
minimum driving time for a capacitive load. With Y = 30, this time is ~ 97. To this we must

add an 8 inverter delay for operation of the drivers,

Thus the total time for one clock phase is ~ 50r. Since two clock phases are required per cycle,
a minimum clocking period of ~ 100+ is required for system designed in this way. In 1978, 7
~0.3 nanoseconds, and clocking periods of 30 to 50 ns$ are achievable in carefully structured
integrated systems where successive stages are in close physical proximity. If it is necessary to

communicate data over long distances, longer periods are required.
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Properties of Cross-Coupled Circuits

In many control sequencing and data storage applications, memory cells and registers are built
using two inverters driving each other, as shown in figure 13a. This circuit can be set in either
the state where V; is high and V, is low, or in the state where V, is low and V, is high. In either
case, the condition is stable and will not change to the other condition uniless it is forced there
through some external means. The detailed methods of setting such cross-coupled circuits into
one state or another will be discussed in detail later. However, it is important at the present time
to understand the time evolution of signals impressed upon cross-coupled circuits, since they

exhibit properties different from circuits not having a feedback path from their output to an

input.

We have seen that there exists a voltage at which the output of an inverter is approximately equal
to its inpul voltage. If a cross-coupled circuit is inadvertently placed in a situation where its input
voltage is equal to this value, then an unstable equilibrium condition is created where voltages V,
and V, are equal. Since the net current flowing onto either gate is now zero, there is no forcing
function driving the system to any voltage other than this equilibrium one, and the circuit can
stay in this condition for an indefinite period. However. if either voltage changes, even very
slightly, the circuit will leave this unstable equilibrium. For example, if the voltage V, is
increased from its unstable equilibrium value V, by a slight amount., this will in time cause a
lowering of voltage V, , as net current flows from gate 1. This lowering of V4 will at some later
time cause V, to increase further. As time goes on, the circuit will feedback on itself until it rests

in 2 stable equilibrium state.

The possibility of such unstable equilibria in cross coupled circuits has important system
implicationsz, as we will later see. For this reason, we will make a fairly detailed analysis of this
circuit’s behavior near the metastable state. While it is not essential that the reader follow all the
details of the analysis, the final resuit should be studied carefully. The time constant of the final
result depends in detail on the regions of operation of the transistors near the metastable state, as
given in the following analysis. However, the exponential form of the result follows simply from
the fact that the forcing function pushing the voltage away from the metastable point is
proportional to the voltage's distance away from that point. This general behavior is characteristic
of bistable storage elements in any technology. However, more complex waveforms are observed

in logic families having more than one time constant per stage.
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The time evolution of this process can be traced as follows. At the unstable equilibrium, the
current in the pullups equals that in the pulldowns, and is some constant, ky, times (vinv'vth)z'
If V1 is then changed by some small AVyto Vi, Lpuz remains constant but Ipd2 changes

immediately, producing a non-zero Igl:

L1 = Lhuy - a2 = KV Vi = Viny+8V7-Vip )l

For small AV, Igl = =2ky(Vipy-Vin)AVy More precisely, since Igl = function(V{,V,), then
near Vi,

gy 73V = ~2ky(Vigy~Viy)

Noting that the pullups are not quite in saturation, but are in the resistive region, and:

where Rpu = effective resistance of the pullup near V;,,. Noting that Igl = ngVgZ/dL we
find that:

dly /dt = -2K)(Vigy-VipldVy/dll = (I/RpNdVy/di] = Cald?vy/dtli

Evaluating the constants in this equation yields 'kl(vinv'vth) = Cg/'ro, where 7 is the
saturation transit time of the pulldowns for t near zero. Assume a pullup/pulldown Z ratio of
4:1, and consider the operating conditions ncar t = 0. Evaluating the effective resistance of the

pullups in terms of the parameters of the pulldowns yields l/Rpu ~ Cg/"o'

Therefore: -(2/7 JldVy/dl] ~(U/r)ldVyrdl] = d2Vy/aed

Il

Similarly: -@/r JldVq/di] ~(UrldVy/dl] = ¢2Vy/ald
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Near time t = 0, dV,/dt approximately equals - dV,/dt, and therefore:

d2vy/dt? = -(U/r) dVo/dt = (/7> V) + const [eq.162]

The solution to eq. 16a is an exponential diverging from the equilibrium voltage Vi, . with a
time constant 7 /2 equal to 1/2 the pulldown delay time. Note that the solution given in eg.16b

salisfies the conditions that V(0) = Vi, and that V{t) is constant, if Vinit = Vinv:
Vi) = Vigy + Vini = Viny) €770 [eq.16b]

The above analysis applies to cross coupled circuits in the absence of noise. Noise unavoidably
present in the circuit spreads the input voliage into a band from which such an unstable
equilibrium can statistically be initiated. The width of this band is equal to the noise amplitude.
Any timing condition which causes the input voltage to settle in this band has some probability of
causing a balanced condition, from which the circuit may require an arbitrarly long time to
recover. The lime cvolution of such a system is shown in Fig. 13b, for several initial voltages
near V. .. The time for the cross-coupled system to reach one of its cquilibria is thus logarithmic
and is given approximately by eq. 16c:

in the displacement from V_,

t ~ 710[Viny/Vinit Viny)l [eq.16c]
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A Fluid Model for Visualizing MOS Transistor Behavior
[ Section Contributed by Carlo H. Sequin, U. C. Berkeley)

When designing circuits and systems, it is often useful to have some method for visualizing the
physical behavior of the devices used as basic building blocks. This section develops such a
method for the MOS transistor. Some readers of this text may be unfamiliar with semiconductor
device physics, and would have difficulty visualizing what is going on inside an active
semiconductor device, if device behavior were described in purely analytical terms. However, it is
possible to construct a simple but very effective model of the behavior of certain charge
controlled devices, such as MOS transistors, charge coupled devices (CCD's), and bucket brigade
devices (BBD’s)g, without referring to the details of device physics.

This model will be developed using two basic ideas: We think of electrical charge as though it
were a fluid, and we mentally map the relevant electrical potentials into the geometry of a
"container” in which the charge is free to move around. One can then apply one’s intuitive
understanding of, say, water in buckets of various shapes towards a visualization of what is going
on inside the devices. Often a design guided by a good intuitive understanding of how a fluid
would behave in the designed structure may show superior performance over designs based on

complicated but possibly inadequate two-dimensional analytical modeiling.

The MOS Capacitor

The basic element of MOS transistors or charge transfer devices is the MOS capacitor, The

notions of a fluid model will first be introduced using this elementary building block.

In physical space an MOS capacitor is a sandwich structure of a metal or polysilicon electrode on
a thin insulator on the surface of a silicon crystal (fig. fm-1a). A suitable voltage applied to the
electrode, i.e. positive for a p-type silicon substrate as used in nMOS, will repel the majority
carriers in the substrate under the electrode, generating a depletion region which is at first free of
any mobile charge carriers. Minority carriers, in this case electrons, can be injected electrically
into this area, or generated by incident light, and subsequently stored underneath the MGQOS

electrode. Applying the notions of a fluid model, the same situation can be described as foilows:

The positive voltage applied to the MOS electrode generates a pocket in the surface potential of

the silicon substrate. This can be visualized as a container, where the shape of the container is
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defined by the potential along the silicon surface, as plotted by the dashed line in figure fm-1b.
Note that in fig. fm-1b, increasing positive potential is plotted in the downward direction. The
presence of minority charge carriers in an inversion layer changes the surface potential: an
increase in this charge decreases the positive surface potential under the MOS electrode. The
potential profile in the presence of inversion charge is indicated by the solid line in fig. fin-1b.
The area between the dashed and solid lines in fig. fm-1b is hatched to indicate the presence of
this charge. This representation shows charge sitting at the bottom of the container, just as a
fluid would reside in a bucket. Of course the surface of the fluid (solid line) must be level in an
equilibrium condition; if it were not, electrons would move under the influence of the potential

difference until a constant surface potential has been established.

This model allows one to visualize easily the amount of charge present (hatched area), the fact
that the charge tends to sit in the deepest part of the potential well, and the fact that the capacity
of the bucket is finite and dependent upon the applied electrode voltage. The higher this voitage,
the decper the bottom of the bucket and the more charge that can be stored, It should be kept
in mind that this fluid model differs from the physical reality in so far as in reality the minority

carriers in the inversion layer reside directly at the silicon surface.

The MOS Transistor

The same kind of model can be used to describe MOS transistor behavior. Figure fin-2a shows
the physical cross section through an MOS transistor. Source and drain diffusions have been
added to the simple MOS capacitor. For the moment we consider these two diffusions to be
connected to two identical voltage sources, Vo = Vyp,. which thus define the potential of the

source and drain regions.

In the potential plot these diffusions are represented by excecdingly deep buckets, filled with
charge carriers up to the levels of the source and drain region potentials. Whether the MOS
transistor is conducting, or is isolating the two diffused regions from one another, now depends
on the potential underneath the MOS gate clectrode. If the applied gate potential is chosen so
that the potential underneath is less than Vg, then there exists a potential barrier between source
and drain regions (case 1 and 2 in fig. fim-2b). However, if the potential of an "empty bucket”
under the gate electrode would be higher than vsb- then the transistor is turned on (case 4 and
5). Of course, in cases 4 and 5, carriers from the source and drain regions will spill underneath

the gate electrode so that a uniform surface potential exists throughout the whole transistor. The
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conductivity of the channel area depends on the thickness of the inversion layer, which can
readily be visualized in fig. fm-2b, Channel conductivity goes to zero at the turn-on threshold of
the transistor (case 3), when the "emply bucket" polential under the gate clectrode is equal to the
source and drain potential. Thus, the region under the gate can be viewed as a movable barrier

of variable height which controls the flow of charge between the source and drain areas.

The same model enables us to visualize what happens when source and drain regions are biased
to different potentials, as is usually the case in normal operation of MOS transistors. Figure fin-
3a again shows a physical cross section through an MOS transistor, as a reference for the
following figures. Figure fm-3b reviews the case of equal source and drain potentials with the
channel turned on fairly strongly, thus readily allowing charge to move between source and drain.
Figure fm-3c shows the situation when a small voltage difference, AV, has been applied between
source and drain. Since the potential difference is maintained by external voltage sources,
electrons will be forced to move from source to drain under the influence of the poteatial

gradient, just as a liquid would flow from the higher to the lower level.

As the potential difference between source and drain is made larger, the variation in the "depth”
of the fluid along the channel becomes significant (fig. fm-3d). Continuity in the fluid requires
that the charge move faster in the areas where the layer is thinner. This implies that the potential
increases more rapidly closer to the drain region. With increasing drain potential the amount of
charge flowing from source to drain per unit time increases, since the product of charge layer
depth and local gradient increases. However there is a limit. Once the drain potential exceeds
the empty channel potential the rate of charge flow will be limited by the drain-side edge of the
barrier under the gate clectrode. The MOS transistor has now reached saturation (fig. fm-3e).
The drain current density now is determined by the potential differcnce between the source and
the empty channel and by the length of the channel (or the width of the barrier over which- the

charge has to flow), and is to first order independent of the drain voltage V gy,

Even in simple transitor circuits the above fluid model helps one quickly develop a feeling for
device and circuit operation. However, the real power of this intuitive model emerges when it is
applied to complex structures where closed form solutions describing charge motion can no longer
be found. The empty potential under the various electrodes can first be plotted as in the above

examples, and the flow of charge then visualized using the analogy to the behavior of a fluid.
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Effects of Scaling Down the Dimensions of MOS Circuits and Systems

This section examines the effects on major system parameters resulting from scaling down all
dimensions of an integrated system, including those vertical to the surface, by dividing them by a
constanl factor «. The voltage is likewise scaled down by dividing by the same constant factor o,
Using this convention, all electric fields in the circuit will remain constant. Thus many non-linear

factors affecting performance will not change as they would if a more complex scaling were used.

Figure 14a. shows a MOSFET of dimensions L, W, D, with a (Vgs - Vth) = V. Figure 14b.
shows a MOSFET similar to that in figure 14a., but of dimensions L' = L/a, W' = W/qa,
D' = D/a, and V' = V/a. Refer to equations 1., 2., and 3. From these equations we will find
that as the scale down factor a is increased, the tramsit time, the gate capacitance, and drain to

source current of every individual transistor in the system scale down proportionally, as follows:
;@ LAV, 1/ = (a2 /(V/Q[LE/V], therefore, 1 = r/a
C« LW/D, C/C = (L/a)fW/a)/(D/w)}/[LW/D}, and C' = C/a

[ « WVYLD, I/1 = [(WVZ/3)/(LD/ad)/[WVE/LD), and I' = Va

Switching power, P, is the energy stored on the capacitance of a given device divided by the
clock period, or time between successive charging and discharging of the capacitance. A system’s
clock period is proportional to the r of its smallest devices. As devices are made smaller and
faster, the clock period is proportionally shortened. Also, the dc power, Pic dissipated by any

static circuit equals 1 times V. Therefore, Pg,, and Pgy. scale as follows:

P o CV¥r « WVI/DL, and Py, = Pg/o?

SwW

- " = 2
Py = IV, and Py' = Py/a
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Both the switching power and static power per device scale down as 1/ «2. The average dc power
for most systems can be approximated by adding the total Py, to one-half of the dc power which
would result if all level restoring logic pulldowns were tumed on. The contribution of pass
transistor logic to the average dc power drawn by the system is due to the switching power

consumed by the driving circuits which charge and discharge the pass transistor control gates.

The switching energy per device, E,, , is an important metric of device performance. It is equal
to the power consumed by the device at maximum clock frequency multiplied by the device

delay, and scales down as follows:

By « CV2,  and Eg = Eg/a’

The following table summarizes values of the important system parameters for current technology,

and for a future technology near the limits imposed by physical law:

1978 19XX
Minimum Feature Size: 6 pm 03 pm
T 03tolns ~0.02 ns
Esw: ~10'12) ~2 % 10716]
System Clock Period: ~30 to 50 ns ~21t04 ns

[see earlier section]

A more detailed plot of the channel conductance of an MOS transistor near the threshold voitage
is shown in figure 15. Below the nominal thresheld, the conductance (1/R) is not in reality zero,

but depends on gate voltage and temperature as follows:
1I/R « e(vgs'vth)/ (kT/ Q).

where T is the absolute temperature, q is the charge on the electron, and k is Boltzmann’s

constant. At room temperature, kT/q ~ 0.025 volts. At present threshold voltages, as in the
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rightmost curve in figure 15., an off device is below threshold by perhaps 20 kT/q, i.e. by about
0.5 volts, and its conductance is decreased by a factor of the order of ten million. Said another
way, if the device is used as a pass transistor, a quantity of charge which takes a time 7 tO pass

through the on device, will take a time on the order of 1077 to "leak" through the off device.

The use of pass transistors switches to isolate and "dynamically store” charge on circuit nodes is
common in many memory applications using 1978 transistor dimensions. However, if the
threshold voltage is scaled down by a factor of perhaps 5, as shown in the lefimost curve in figure
15., then an off transistor is only 4xT/q below threshold. Therefore, its conductance when "off" is
only a factor of 100 or so less than when it is "on". For such relatively large values of
subthreshold conductance, charge stored dynamically on a circuit node by the transistor when
*on" will safely remain on that node for only a few system clock periods. The charge will not
remain on the node for a very large number of periods as it does in present memory devices
using this technique. One way of possibly coping with this problem, as device dimensions and

threshold voltages are scaled down, is to reduce the temperature of device operation—".

Suppose we scale down an entire integrated system by a scale down factor of a = 10. The
resulting system will have one hundred times the number of circuits per unit area, The total
power per unit area remains constant. All voitages in the system are reduced by the factor of 10.
The current per unit area is increased by a factor of 10. The lime delay per stage is decreased by

a factor of 10. Therefore, the power-delay product decreases by a factor of 1000.

This is a rather attractive scaling in all ways except for the current density. The delivery of the
required average dc current presents an important obstacle to scaling. This current must be
carried to the various circuits in the system on metal conductors, in order that the voltage drop
from the off-chip source to the on-chip subsystems will not be excessive. Metal paths have an
upper current density limit imposed by a phenomenon called metal migration, discussed further
in chapter 2. Many metal paths in today's integrated circuits are already operated near their
current density limit. As the above type of scaling is applied to a system, the conductors get

narrower, but still deliver the same current on the average to the circuits supplied by them.
Therefore, it will be necessary to find ways of decreasing system current requirements to

approximately a constant current per unit area relative to the present current densities. In n-

channel silicon gate technology, this objective can be partially achieved by using pass transistor
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logic in as many places as possible and avoiding restoring logic except where it is absolutely
necéssary. Numerous examples of this sort of design are given later in this text. This design
approach also has the advantages of tending to minimize delay per unit function and to maximize
logic functions per unit area. However, when scaled down to submicron size, the pass transistors
will suffer from the subthreshold current problem. It is possible that when the fabrication
technologies have been developed to enable scaling down to sub-micron devices, a technology
such as complementary MOS, which does not draw any dc current, may be preferable to the
nMOS technology used to illustrate this text. However, even if this occurs, the methodology
developed in the text can still be applied in the design of integrated systems in that technology.

The limit to the kind of scaling described above occurs when the devices created are no longer
able 1o perform the switching function. To perform the switching function, the ratio of transistor
on to off conductance must be > > 1, and therefore the vollage operating the circuit must be
many times kT/q. For this reason, even circuits optimized for operation at the lowest possible
supply voltages still require a VDD of ~ 0.5 volts. Devices in 1978 operate with a VDD of
approximately five volts and minimum channel lengths of approximately six microns. Therefore,
the kind of scaling we have envisioned here will take us to devices with approximately one haif
micron channel lengths and current densities approximately ten times what they are today. Power
per unit area will remain constant over that range. Smaller devices might be built but must be
used without lowering the voltage any further. Consequently the power per unit area will
increase. Finally, there appears to be a fundamental limit3 of approximately one quarter micron
channel length, where certain physical effects such as the tunneling through the gate oxide, and
fluctuations in the positions of impurities in the depletion layers, begin to make the devices of

smatler dimension unworkable.
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Chapter 2: Integrated System Fabrication
Copyright ® 1978, C.Mead, L.Conway

Sections:

Patterning - - - Scaling of Patterning Technology - - - The Silicon Gate n-Channel Process - - -
Yield Statistics - - - Scaling of the Processing Technology - - - Design Rules - - - Formal
Description of Design Rules - - - Electrical Parameters - - - Current Limitations in
Conductors - - - A Closer Look at Some Details - - - Choice of Technology

The series of steps by which a geometric pattern or set of geometric patterns is transforined into
an operating integrated system is called a wafer fabrication process, oOr simply a process. An
integrated system in MOS technology consists of a number of superimposed layers of conducting,
insulating, and transistor forming materials. By arranging predetermined geometric shapes in
each of these layers, a system of the required function may be constructed. The task of the
integrated system designer is to devise the geometric shapes and their locations in each of the
various layers of the system. The task of the process itself is to create the layers and transfer into

each of them the geometric shapes determined by the system design.

Modern wafer fabrication is probably the most exacting production process ever developed. Since
the 1950's, enormous human resources have been expended by the industry to perfect the myriad
of details involved. The impurities in materials and chemical reagents are measured in parts per
billion. Dimensions are controlled to a few parts per million. Each step has been carefully
devised to produce some circuit feature with the minimum possible deviation from the ideal
behavior. The results have been little short of spectacular: chips with many tens of thousands of
transistors are being produced for under ten dollars each. In addition, wafer fabrication has
reached a level of maturity where the system designer need nol be concerned with the fine details
of its execution. The following sections present a broad overview sufficient to convey the ideas
involved, and in particular those relevant for system design. Our formulation of the basic

concepts anticipates the evolution of the technology towards ever finer dimensions.

In this chapter we describe the patterning sequence and how it is applied in a simple, specific
integrated system process: nMOS. A number of other topics are covered which are related to the

processing technology, or are closely tied to the properties of the underlying materials.
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Patterning

The overall fabrication process consists of the patterning of a particular sequence of successive
layers. The patterning steps by which geometrical shapes are transferred into a layer of the final
system, is very similar for each of the layers. The overall process is more easily visualized if we
first describe the details of patterning one layer. We can then describe the particular sequence of
layers used in the process to build up an integrated system, without repeating the details of

patterning for each of the layers.

A common step in many processes is the creation of a silicon dioxide insulating layer on the
surface of a silicon wafer, and the selective removal of sections of the insulating layer exposing
the underlying silicon. We will use this step for our patterning example. The step begins with a
bare polished silicon wafer, shown in cross section in figure 1. The wafer is exposed to oxygen in
a high temperature furnace to grow a uniform layer of silicon dioxide on its surface, as shown in
figure 2. After the wafer is cooled, it is coated with a thin film of organic resist material as
shown in figure 3. The resist is thoroughly dried and baked to insure its integrity. The wafer is

now ready to begin the patterning.

At the time of wafer fabrication the pattern to be transferred to the wafer surface exists as a
mask. A mask is merely a transparent support material coated with a m}n layer of opaque
material. Certain portions of the opague material are removed, leaving opaque material on the
mask in the precise pattern required on the silicon surface. Such a mask with the desired pattern
engraved upon it is brought face down into close proximity with the wafer surface, as shown in
figure 4. The dark areas of opaque material on the surface of the mask are located where it is
desired to leave silicon dioxide on the surface of the silicon. Openings in the mask correspond to
areas where it is desired to remove silicon dioxide from the silicon surface. When the mask has
been brought firmly into proximity with the wafer itself, its back surface i8 flooded with an
intense source of ionizing radiation such as ultraviolet light or low energy x-rays. The radiation is
stopped in areas where the mask has opaque material on its surface. Where there is no opaque
material on the mask surfaée, the ionizing radiation passes on through into the resist, the silicon
dioxide, and silicon. While the ionizing radiation has little effect on the silicon dioxide and

silicon, it breaks down the molecular structure of the resist into considerably smaller molecules,

We have chosen to illustrate this text using positive resist, i.e. the resist material remaining after

exposure and development corresponds to the opaque mask areas. Negative resists are also in
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common use. Positive resists are typically workable to finer feature sizes, and are likely to

become dominant as the technology progresses.

After exposure to the ionizing radiation, the wafer has the characteristics shown in figure 5. In
areas exposed to the radiation, the resist molecules have been broken down to much lighter
molecular weight than that of unexposed resist molecules. The solubility of organic molecules in
various organic solvents is a very steep function of the molecular weight of the molecules. Hence,
it is possible to dissolve exposed resist material in solvents which will not dissolve the unexposed
resist material. In this way the resist can be "developed” as shown in figure 6 by merely

immersing the silicon wafer in a suitable solvent.

Thus far, the pattern originally existing as a set of opaque geometries on the mask surface has
been transferred into a corresponding pattern in the resist material on the surface of the silicon
dioxide. This same pattern can now be transferred to the silicon dioxide itself by exposing the
wafer to a material which will etch silicon dioxide but not attack either the organic resist material
or the silicon wafer surface. This etching step is usually done with hydrofluoric acid, which easily
dissolves silicon dioxide. However, organic materials are very resistant to hydrofluoric acid, and it

is incapable of etching the surface of silicon. The result of this etching step is shown in figure 7.

The final step in patterning is removal of the remaining organic resist material. Three techniques
have been used to remove resist materials. Strong organic solvents will dissolve even unexposed
resist material. Strong acids such as chromic acid actively attack organics. The wafer can be
exposed to atomic oxygen which will oxidize away any organic materials present on its surface.
Once the resist material is removed, the finished pattern on the wafer surface is as shown in
figure 8. Notice that we have transferred the geometric pattern which originally existed on the
surface of the mask directly into the silicon dioxide on the wafer surface. While a foreign
material was present on the wafer surface during the patterning process, it has now disappeared

and the only materials present are those which will be part of the finished wafer.

A similar sequence of steps is used to selectively pattern each of the layers of the integrated
system. These differ only in the details of the etchants used, etc. Thus as we study the
processing of the various layers, the reader need not visualize all the details of the patterning
sequence for each layer, but only recognize that a mask pattern for a layer can be transferred into

a pattern in the material of that layer.
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Scaling of Patterning Technology

As discussed in chapter 1, semiconductor devices could be at least an order of magnitude smaller
in linear dimension than those typically manufactured in 1978 and still function correctly. The
fundamental dimensional limitation is approximately a one quarter micron channel length,
corresponding to a length unit A (to be discussed under design rules) of approximately 0.1
micron. This limitation appears to apply to both bipolar and MOS technologies. It has been
possible for several years to create sub-micron lines using electron beam and x-ray techniques,
and there is considerable research and development under way to bring these patterning
technologies into general manufacturing use. It appears that there are no fundamental barriers
preventing creation of patterns for ultimately small devices. A more detailed discussion of the

techniques involved is given in chapter 4.

The Siticon Gate n-Channel MOS Process

We now describe the particular sequence of patterned layers used to build up nMOS integrated
circuits and systems. Figures 9 through 14 illustrate a simple but complete sequence of
patterning and processing steps which are sufficient to fabricate a complete, intcgrated system.
The example follows the fabrication of one simple circuit within a system, but all other circuits
are simultaneously implemented by the same process. The example used is the basic inverter
circuit. The top illustration in figures 9 through 14 shows the top view of the layers of the circuit
layout. The lower illustration in each of those figures shows the cross section through the cut
indicated by the downward arrows. The vertical scale in these cross sections has been greatly

exaggerated for illustrative purposes.

The opening in the opaque material of the first mask is shown by the green outline in the top
portion of figure 9. This opening exposes all areas that will eventually be the diffusion level. It
includes the sources and drains of all transistors in the circuit, together with the transistor gate
areas, and any diffusion level circuit interconnection paths. This mask is used for the first step in
the process, the patterning of silicon dioxide on silicon as described in the previous section. The

resulting cross section is shown in the lower portion of figure 9.

The second step in the process is to differentiate transistors which are normally "on” (depletion
mode) from those which are normally "off” (enhancement mode). This is done by overcoating

the wafer with resist material, exposing the resist material through openings in a second mask,
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and developing it in the manner shown in figure 10. This patterning step leaves an opening in
the resist material over the area to be selectively turned into depletion mode transistors. The
actual conversion of the underlying silicon is then done by implanting ions of arsenic or antimony
into the silicon surface. The resist material, where present, acts to prevent the ions from reaching
the silicon surface. Therefore, ions are only implanted in the silicon area free of resist. The
implanted layer, which causes a slight n-type conductivity in the underlying silicon, is shown by
the yellow box in figure 10. Once the depletion areas are defined, the resist material is removed

from the surface of the wafer.

The wafer is then heated while exposed to oxygen, to grow a very thin layer of silicon dioxide
over its entire surface. It is then entirely coated with a thin layer of polycrystalline silicon,
usually called pelysilicon or poly for short. Note that this polysilicon layer is everywhere insulated
from the underlying materials by the layer of thin oxide, and additionally by thicker oxide in
some areas. The polysilicon will form the gates of all the transistors in the circuit and will also
serve as a second layer for circuit interconnections. A third mask is used to pattern the
polysilicon by steps similar to those previously described, with the result shown in red in figure
11. The lefi-most polysilicon area will function as the gate of the pull down transistor of the
inverter we are constructing, while the square to the right will function as the gate of the

depletion mode pull up transistor.

Once the polysilicon areas have been defined, n-type regions can be diffused into the p-type
silicon substrate, forming the sources and drains of the transistors and the first level of
interconnections. This step is done by first removing the thin gate oxide in all areas not covered
by the (red) polysilicon. The wafer is then exposed to n-type impurities such as arsenic, antimony
or phosphorus at high temperature for a sufficient period of time to allow these impurities to
convert the exposed underlying silicon to n-type material. The areas of resulting n-type material
are shown in green. Notice, in the cross section of figure 12., that the red polysilicon area and
the thin oxide under it act to prevent impurities from diffusing into the underlying silicon.
Therefore the impurities reach the silicon substrate only in areas not covered by the polysilicon
and not overlain by the thick original oxide. In this way the active transistor area is formed in all
places where the patterned polysilicon overlies the thin oxide area defined in the previous step.
The diffusion level sources and drains of the transistors are automatically filled in between the
polysilicon areas and extend up to the edges of the thick oxide areas. The major advantage of

the silicon gate process is that it does not require a critical alignment between a mask which
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defines the green source and drain areas and a separate mask which defines the gate areas.
Rather, the transistors are formed by the intersection of the two masks, and the conducting n-type

diffused regions are formed in all areas where the green mask is not covered by the red mask.

All the transistors of the basic inverter circuit are now defined. Connections must now be made
to the input gate, between the gate and source of the pullup, and to VDD and GND. These
interconnections will be made with a metal layer that can make contact to both the diffused areas
and the polycrystalline areas. However, in order to ensure that the metal does not make contact
to underlying areas except where intended, another layer of insulating oxide is coated over the
entire circuit. At the places where the overlying metal is to make contact to either the polysilicon
or the diffused areas, the overlying oxide is selectively removed by the patterning process as
previously described. The result of coating the wafer with the overlying oxide and removing this
oxide in places where contacts are desired, is shown in figure 13. In the top view, the black areas
are those defined by openings in the contact mask, the fourth in the process's sequence of mask
patterns. In cross section notice that in the contact areas all oxide has been removed down to

either the polycrystalline silicon or the diffused area.

Once the overlying oxide has been patterned in this way, the entire wafer is coated with metal,
usually aluminum, and the metal is patterned with a fifth mask to form the conducting areas
required by the circuit. The top view in figure 14 shows three metal lines running verticatly, the
left most connecting to the input gate of the inverter, the center one being ground, and the right-
most one forming the VDD connection to the inverter. The peculiar structure formed by the
metal square slightly to the right of center connects the polysilicon gate of the depletion mode
pull up transistor o its source and to the drain of the pull down transisior. Rather than making
two separate contacts from the metal line to the pullup’s polysilicon gate region and to the
adjacent diffusion region, area can be conserved by coalescing the contacts into the compact
arrangement shown, This geometrical arrangement is known as a butting contact and will be used

extensively throughout the text.

In general, it is good practice to avoid placing contacts over active transistor area whenever
possible. However, butting contacts in the location shown here reduce the area and simplify the
geometry of the basic inverter and many other circuits, and have been so placed by the authors in
many systems successfully implemented by a number of different commercial wafer fabrication
lines. A more conservative approach would be to place the butting contact adjacent to, rather

than over, the active pullup area. See also the later section on design rules in this chapter.
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The inherent properties of the silicon gate process allow the blue metal layer to cross over either
the red polysilicon layer or the green diffused areas, without making contact unless one is
specifically provided. The red polysilicon areas, however, cannot cross the green diffused areas
without forming a transistor. The transistors formed by the intersection of these two masks can
be either enhancement mode if no yellow implantation is provided, or depletion mode if such an
implantation is provided. Hence, the enhancement mode transistors are defined by the
intersection of the green and red masks while the depletion mode transistors are defined by the

intersection of the green, red and yellow masks.

If we wish to fabricate only a small number of prototype system chips and to have access to the
metal level for the probing of test points, the wafer fabrication sequence can be terminated at this
step. However, when fabricating large numbers of chips of a debugged design, the wafer surface
is usually coated with another layer of oxide. This step, called overglassing, provides physical
protection for the devices in the system. A sixth mask is then used 1o pattern contact cuts in the

overglassing at the locations of relatively large metal contact pads.

Each wafer contains many individual chips. The chips are separated by scribing the wafer surface
with a diamond scribe, and then fracturing the wafer along the scribe lines. Each individu;al chip
is then cemented in place in a package, and fine metal wire leads are bonded to the metal contact
pads on the chip and to pads in the package which connect with its external pins. A cover is
then cemented over the recess in the package which contains the silicon chip, and the completed

system is ready for testing and use.

Yield Statistics

Of the large number of individual integrated system chips fabricated on a single silicon wafer,
only a fraction will be completely functional. Flaws in the masks, dust particles on the wafer
surface, defects in the underlying silicon, etc., all cause certain devices to be less than perfect.

With present design techniques, any single flaw of sufficient size will kill an entire chip.

The simplest model for the yield, or the fraction of the chips fabricated which do not contain fatal
flaws, assumes (naively) that the flaws are randomly distributed over the wafer, and that one or
more flaws anywhere on a chip will cause it to be non-operative. If there are N fatal flaws per
unit area, and the area of an individual chip is A, the probability that a chip has n flaws is in the
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simplest case just given by the Poisson distribution, P,(NA). The probability of a good chip is:
P,(NA) = e"NA [eq.1]

While this equation does not accurately represent the detailed behavior of real fabrication
processes, it is a good approximate model for estimating the yield of alternative designs. The
exponential is such a steep function that a very simple rule is possible: chips with areas many
times 1/N will simply never be found without flaws. Areas must be kept less than a few times
1/N if one flaw will kill a system. Design forms may be developed in the future which will
permit systems to work even in the presence of flaws. If such forms are developed, the entire

notion of yield will be completely changed and much larger chips will be possible.

Once a wafer has been fabricated, each chip must be tested to determine if it is functional.
Testing of simple combinatorial logic networks is straightforward and may be done compietely.
Complete testing of complex systems with internal sequencing is not in general possible, and most
integrated system chips manufactured, even at 1978 levels of complexity, are not economically

testable even for a small fraction of their possible internal states.

As time passes and the number of devices per chip increases, it will become important to consider
including special functions in the design of integrated systems to improve their testability. The

basic problem is to linearize an otherwise combinatorial problem. One approach to this is:

(i) Define the entire system as a set of register to register transfer blocks, ie. successive stages of

storage registers with combinational logic between them.

(ii) Provide for reading and writing from the external world to/from each of the storage registers.

The storage locations are first tested independently for their ability to store data or control
information. If all storage locations pass this test, each combinational logic block can be tested
separately, by use of its input and output storage locations. Such a test becomes essentially linear
in the number of components, and may be accomplished in an acceptable time period, even for
extremely complex systems. However, without access to the individual storage locations, testing
rapidly becomes hopeless. For this reason even present day microprocessors are very incompletely
tested. When one is used for a while, an apparently new and sudden malfunction may simply be
the first occurrence of a particular state of control and data in the system, and thus may represent

the first time the device had been "tested” under those conditions.
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From experience gained in testing memory parts, it is known that the behavior of one circuit can
be influenced by the state of a nearby circuit. For example, a memory cell may be able to
remember both a logic-1 and a logic-0 if its neighbor is at a logic-0, but may be able to retain
only a logic-0 if its neighbor is at a logic-1. Failures of this type are dependent upon the data
patterns present in the system, and are known as patlern sensitive failures. In a reasonable {(or
even an unreasonable) time, it is not possible to exercise even a minute fraction of all the
combinations of bit patterns of many integrated systems. What is done instead is to apply our
knowledge of the physics of such failures, and construct a model for possible failure modes. In
the memory example, we may conclude that any flaw not visible optically will be unable to reach
beyond the immediate locality of the cell involved. Hence, pattern sensitivity in the behavior of a
particular cell may be introduced by other cells in the same row or column of an array of
memory cells, or by diagonal nearest neighbors. A test for pattern sensitivity under this model is

quite fast, being only slightly worse than a linear function of the number of devices on the chip.

In order 1o test for pattern sensitive failures, we must construct a physical model for the possible
failure mechanisms. This model will inevitably include the physical proximity of other signals.
For this reason, any practical test for pattern sensitive failures must be based on a knowledge of
the physical location of the various elements of the subsystem being tested. The task of preparing

such tests is thus greatly eased by regularity in the design and physical layout of a system.

Scaling of the Processing Technology

In order to have a complete process for sub-micron transistors, it is necessary not only to make
patterns in the resist material but to transfer these patterns to the underlying layers in the silicon
and silicon dioxide. Traditionally, wet etching processes have been used. However, wet etching

processes do not scale well into the sub-micron range.

Alternatives are currently being developed which appear workable. Etching with plasmas (ie.
glow discharges of gaseous materials resulting in free ions of great chemical activity) is already
used in a number of advanced processing facilities. It is known that very well controlled etching
can be achieved in this way and it seems likely that essentially no wet processing will be used in
the construction of sub-micron devices. lon implantation, an ideal method for achieving
controlled doses of impurity ions in the silicon surface, is already a common production technique

in essentially all MOS processing facilities.
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Metal layers for sub-micron processes must be thicker in relationship to their width than today’s
commercial processing technology allows. A possible solution to this problem may be the use of
a process known as ion milling for metal patterning. In this process, ions of modest energy
sputter away any metal not covered with resist material, yielding much steeper sides on the metal

thus patterned than do current wet etching processes.

It appears that the basic technological pieces exist to enable development of a complete patterning
and wafer fabrication process at sub-micron dimensions. In reality, the ultimate submicron
process will not emerge full-blown, but dimensions will gradually be reduced, as one after another
of the myriad of technological difficulties are surmounted. The sketch we have given is rather an
artist’s conception of the possibility of such an ultimate process. We do believe, however, that the
evolution of this process is of fundamental importance to the entire electronics industry.
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Design Rules

Perhaps the most powerful attribute of modem wafer fabrication processes is that they are pattern
independent. 'That is, there is a clean separation between the processing done during wafer
fabrication and the design effort which creates the patterns to be implemented. This separation
requires a precise definition to the designer of the capabilities of the processing line. This
specification usually takes the form of a set of -pemlissible geometries which may be used by the
designer with the knowledge that they are within the resolution of the process itself and that they
do not violate lhe device physics required for proper operation of Lransistors and interconnections
formed by the process. When reduced to their simplest form, such geometrical constraints are
called design rules. The constraints are of the form of minimum allowable values for certain
widths, separations, extensions, and overlaps of geometrical objects patterned in the various levels

of a system.

As processes have improved over the years, the absolute values of the permissible sizes and
spacings of various layers have become progressively smaller. There is no evidence that this trend
is abating. In fact, there is every reason to believe that at least another order of magnitude of
shrinkage in linear dimensions is possible. For this reason we present a set of design rules in
dimensionless form, as constraints on the allowable ratios of certain distances to a basic length
unit. The basic unit of length measurement used is equal to the fundamental resolution of the
process itself. This is the distance by which a geometrical feature on any one layer may stray
from another geometrical feature on the same or on another layer, all processing factors
considered and an appropriate safety factor added. It is set by phenomena such as overetching,
misalignment between mask levels, distortion of the silicon wafer ("runout") due to high
temperature processing, over or underexposure of resist, etc. All dimensions are given in terms of
this elementary distance unit, which we call the length-unit, A. In 1978 the length-unit A is

6

approximately 3 microns for typical commercial processes. One micron (pm) = 107° meters.

The rules given below have been abstracted from a number of processes over a range of values of
A, corresponding to different points in time at different fabrication areas. They represent
somewhat of a "least common deniominator " likely to be representative of nMOS design rules for

a reasonable period of time, as the value of A decreases in the future.

A typical minimum for the line width Wy of the diffused regions is 2A, as shown in figure 15.

The spacing required between two electrically separate diffused regions is a parameter which
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depends not merely upon the geometric resolution of the process, but also upon the physics of
the &evices formed. If two diffused regions pass too close together, the depletion layers associated
with the junctions formed by these regions may overlap and result in a current flowing between
the two regions whén none was intended. In typical processes a safe rule of thumb is to allow 3A
of separation, 84, between any two diffused regions which are unconnected, as shown in figure
16. The width of a depletion layer associated with any diffused region depends upon the voltage
on the region. If one of the regions is at ground potential, its depletion layer will of necessity be
quite thin, In addition some processes provide a heavier doping level at the surface of the wafer
between the diffused areas in order to alleviate the problem of overlap of depletion layers. In
cases where either very low voltage exists on both diffused regions or where a heavily doped
region has been implanted in the surface between the diffused areas, it is often possible to space
diffused areas 2\ apart. However, this should not be done without carefully checking the actual
process by which the design is to be fabricated.

The minimum for the width Wp of polysilicon lines is similarly 2\. No depletion layers are
associated with polysilicon lines, and therefore the separation, Spp. of two such lines may be as

little as 2. These rules are illustrated in figures 17 and 18.

We have so far considered the diffused and polysilicon layers separately. Another type of design
rule concerns how the two layers interact with each other. Figure 19 shows a situation where a
diffused line is running parallel o an independent polysilicon line, to which it is not anywhere
connected. The only consideration here is that the two unconnected lines not overlap. If they
did they would form an unwanted capacitor. Avoidance of this overlap requires a separation Spd
of only A betwecen the two regions as shown in figure 19. A slightly more complex situation is
shown in figure 20, where a polysilicon gate area intentionally crosses a diffused area, thereby
forming 2 transistor. In order to make absolutely sure that the diffused region does not reach
around the end of the gate and short out the drain to source path of he transistor with a thin
diffused area, it is necessary for the polysilicon gate to extend a distance Epd of at least 2A
beyond the nominal boundary of the diffused area, as shown in figure 20.

A composite of several of these design rules is shown in figure 21. Note that the minimum width
for a diffused region applies to diffused regions formed between a normal boundary of the
diffused region and an edge of a transistor as well as to a diffused line formed by two normal

boundaries. This situation is illustrated in the lower left corner of the figure.
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As we have seen in figure 10, ion implantation in the regidn which becomes the gate of a
transistor will convert the resulting transistor into the depletion mode type. It is important that
the implanted region extend outward beyond all four boundaries of the gate region, as shown in
figure 22. To avoid any possibility that some small fraction of the transistor might remain
enhancement mode, the yellow ion implantation region should extend a distance Eig of at least
1% A beyond each edge of the gate region. The separation Sig between an ion implantation
region and an adjacent enhancement mode transistor gate region should also be at least 1'% A.

Both situations and their design rules are illustrated in the figure.

A contact may be formed between the metal layer and either the diffused level or the polysilicon
level by means of the contact mask. A set of rules apply to the amount by which each layer must
provide an area surrounding any contact to it, so that the contact opening not find its way around
the layer to something unintended below it. Since no physical factors apply here other than the
relative registration of two levels, a very simple set of design rules results. Each level involved in
a given contact must extend beyond the outer boundary of the contact cut by A at all points, as
illustrated by extension distances Ej., Epc' and E ., in figures 23, 24, and 26. The contacts
themselves, like the minimum width lines in the other levels, must be at least 2A long and 2A
wide (W.). This situation is illustrated for the diffusion and potysilicon levels in figures 23 and
24. When making contact between a large metal region and a large diffused region, many small
contacts spaced 2 A apart should be used, as shown in figure 25. Contact cuts to diffusion should

be at least 2A from the nearest gate region, as shown in figure 25.

Note that a cut down to the polysilicon level does not penetrate the polysilicon. Thus one can in
principle make a contact cut o poly over a gate region, and such contacts are permitted in these
design rules. However, since such a cut must be 2A wide and surrounded on all sides by 1A of
poly, it is not possible to make such a contact above a minimum size transistor's gate region.
Also, as device dimensions scale down and the poly and thin oxide become ever thinner, such

cuts might penetrate too far, and thus they may not be allowed in the design rules in the future.

When a direct connéction is required between a polysilicon region and a diffused region, we
normally use a construct known as the butting contact. The detailed geometric layout of the
butting contact is shown in figure 26. In its minimum sized configuration, it is composed of a
square region of diffision 4 A on a side, overlapped by a 3 A by 4 A rectangle of polysilicon. A
rectangular contact cut, 2 A by 4 A in size, is made in the center of this structure. The structure

is then overlayed with metal, thus connecting the polysilicon to the diffusion. The rules involved
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in figure 26 are identical to those given so far, with the addition of a minimum of one A overiap,

Opd’ of the diffused and polysilicon layers in the center area of the contact,

In considering the design rules for the metal layer, notice that this layer in general runs over
much more rugged terrain than any other level, as can be seen by referring to the cross section of
figure 14, For this reason it is generally accepted practice to allow somewhat wider minimum
lines and spaces for the metal layer than for the other layers. As a good working rule 3A widths
(W), and 3A separations (Sm) between independent metal lines should be provided, as shown

in figure 27.

The metal layer must surroﬁnd the contact layer in much the same way that the diffused and
polysilicon layers did. Since the resist material used for patterning the metal generally
accumulates in the low areas of the wafer, it tends to be thicker in the neighborhood of contact
than elsewhere. For this reason metal tends to be slightly larger after patterning in the vicinity of
a contact than elsewhere. It is generally sufficient to allow only one A of space around the
contact region for the metal, as for the other two layers. The rule for metal surrounding contacts

is shown in figure 28,

Additional layout artifacts, and guidelines and rules related to the layout artifacts, such as
alignment marks, which are associated with conveying a chip’s layout through the processes of
maskmaking and wafer fabrication are given in chapter 4. Included there are guidelines for sizing
such macroscopic layoul artifacts as chip scribe lines, wire bonding pads, etc. However, the
design rules given here in chapter 2 are sufficient for the layout of the functional circuitry within

an nMOS integrated system.

The above design rules are likely to remain valid as the length-unit A scales down in size with the
passage of time. Occasionally, for specific commercial fabrication processes, some one of more of
these rules may be relaxed or replaced by more complex rules, enabling slight reductions in the
area of a system. While these details may be important for certain competitive products such as
memory systems, they have the disadvantgage of making the system design a captive of the
process specific design rules. Extensive redesign and checking is required to scale down such a
design as the length-unit scales down. For this reason, we recommend use of the dimensioniess
rules given, especially for prototype systems. Designs implemented according to these rules are

easily scaled, and may have reasonable longevity.
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Formal Description of Design Rules

{ in preparation }

Electrical Parameters

By satisfying the constraints imposed by the design rules, designers may create circuit layout
patierns with the knowledge that the appropriate transistors, lines, etc., produced by the wafer
fabrication process will be as originally specified in their layout patterns. To complete a design it
is necessary to also know the electrical parameters of the transistors, diffused layers, polysilicon
layers, etc., so that the performance of circuits can be evaluated. The resistances per square of
the various layers and the capacitance per square micron with respect 10 underlying substrate are
shown in Table 1. Note that the resistance of a square of material contacted along two opposite
sides is independant of the size of the square, and equals the resistivity of the material divided by
its thickness. The tabulated values are typical of processes running in 1978. As the circuit
dimensions are scaled down by dividing by a factor «, the parameters scale approximately as

shown in the table.

Resistances: Metal ~ 0.1 ohms/O] Resistances/square scale up by a.,
Diffusion ~ 10 ohms/O] as dimensions scale down by a,
Poly ~ 15-100 ohms/( except that the transistor
Transistor ~ 10% ohms/0 R/0 s independent of a
Capacitances: Gate-channel ~ 4x1074 pf/ p.m2 C;n:acitanc:f:s.fmin_:rcm2 scale
Diffusion ~ 0.8x10™4 pf/um?  up by a.. as dimensions
Poly ~ 0.4x10°% pf/um?  scale down by a
Metal ~ 0.3x1074 pf/pm?

Table 1. Typical MOS Electrical Parameters (1978).

The relative resistance values of metal, diffusion, poly, and drain to source paths of transistors are

quite different. Diffusion and good polysilicon layers have approximately one hundred times the

{ Ch2.: Sect2 ] < Conway > newfab2.visi July 1, 1978 3:44 PM



16

resistance per square area of the metal layer. A fully turned on transistor has approximately one
thousand times the resistance of the diffused and polysilicon layers. The capacitances are not as
wildly different as the resistances of the various layers. Compare the capacitances in Table 1 to
the gate to channel capacitance, as a reference. The diffused areas typically have one fifth the
capacitance per square micron. Polysilicon on thick oxide has approximately one tenth, and the

metal layer stightly less than one tenth, of the gate-channel capacitance per square micron.

The relative values of the resistances and capacitances are not expected to vary dramatically as the
processes evolve towards smaller dimensions, with the exception of the transistor resistance per

square, which is independent of a.

One note of warning: There is a wide range of possible values of polysilicon resistance for
different commercial processes. Polycrystalline silicon suffers from inordinately high resistances at
the crystal grain boundaries if the doping level in the polysilicon itself is not held quite high.
This disease does not affect the diffused layers. For this reason, any processing which tends to
degrade the doping levels in the diffused and polysilicon layers, affects the polysilicon resistance
much more dramatically than the resistance of the diffused area. It is in general difficult to
design circuits which are optimum over the entire range of polysilicon resistivity. If a circuit is to
be run on a variety of fabrication lines, it is desirable for the circuit to be designed in such a way
that no appreciable current is drawn through a long thin line of polysilicon. In an important
example in Chapter S., polysilicon lines are used as buses along which information flows. The
timing of these buses can be dramatically affected by the resistance of the polysilicon. However,
the protocol used on these busscs has the polysilicon lines precharged during one period of a
clock and then pulled low by the appropriate bus source during a following clock period. In this
way the circuit is guaranteed to work independent of the resistance of the poly. However, it may

be considerably slower in processes of high poly resistivity.

Current Limitations in Conductors

One limit which is not covered in either the design rules or the electrical parameters section is
that associated with the maximum currents through metal conductors. There is a physical process
called metal migration whereby a current flux through a metal conductor, exceeding a certain

limit, causes the metal atoms to move slowly in the direction of the current. If there is a smalil
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constriction in the metal, the current density will be higher and therefore more metal atoms will
be carried forward from that point, narrowing the point still more. Hence, metal migration is a

destructive mechanism causing open circuits in the metal layer carrying heavy currents.

For metals like aluminum this limit is a few times 10° amperes per square centimeter, i.e. a few
milliamperes per square micron of cross section. This limit does not interfere too drastically with
the design of integrated systems in current MOS technologies. However, many metal conductors
in present integrated systems are operated near their current limit, and currents do not scale well
as the individual elcments are made smaller. Applying the scaling rules devcloped earlier, we
found that the power per unit area is independent of the scale down ratio. However, the supply
voltage decreases and therefore the current per unit area increases as the devices are scaled down.
For this reason it will not be paossible to use processes for very large scale integrated systems
where the metal thickness scales in the same way as other dimensions in the circuit. Much work
will likely be done to develop processes enabling fabrication of metal lines of greater height

relative to width than is presently possible.

Short pulses of current are known to contribute much less (0 metal migration than steady direct
current. Nanosecond pulses of currents two orders of magnitude higher than the dc limit given
above may be carried in metal conductors without apparent damage. Therefore, switching current

may not be as damaging to metal conductors as a steady current.

These effects strongly favor processes like CMOS which do not require static dc current, and

favor design methodologies which maximize system function per unit dc current.

A Closer Look at Some Details

Thus far our discussion of fabrication has been a general one, adequate for readers whose primary
interest is in the systems aspects of VLSI. The following sections involve a more detailed
examination of the capacitance of several important structures and a discussion of the relative
merits and scaling behavior of several common processes. We suggest that the reader just skim

through these sections during the first reading of this text.

In Table 1 we gave typical capacitance for the various layers to the substrate. These capacitances
are those which would be measured if the voltage on the particular layer were zero (relative to

the substrate). The dependence upon voltage of the capacitance of the different layers may
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sometimes be important and we will now discuss how this dependence arises. References R1, R2,
R4, and Reference 4 of Chapter 1, are good sources for those wishing more background

information on the concepts of device physics used in this text.

When a negative voltage is applied to an n-type diffused region relative to the p-type bulk silicon,
the negative electrons are pushed out of the n-type layer into the bulk and a current flows. In
integrated systems we are careful to never allow the voltage on the n-type diffused regions to be
more negative than the p-type bulk. Diffused regions are biased positively with respect to the p-
type bulk, resulting in a reversed biased p/n junction. With the exception of a small leakage
current, the reverse biased p/n junction acts merely to isolate one diffused region from another.
The p-type bulk of our integrated system has a small number (typically 1015-1016 per cubic
centimeter) of impurity atoms. When a voltage is épplied to an n-type diffused region, its
influence is felt well out into the p-type bulk. Positive charge carriers in the p-type bulk are
repelled from the positively charged n-type layer, thereby exposing negatively charged impurity
jons. The region surrounding the n-type diffused layer which has been depleted of positive
charge carriers is referred to as a depletion layer and is shown schematically in Figure 29b. As
the voltage on the n-type layer is increased, charge carriers are pushed further back from the
junction between the n-type layer into the p-type bulk, widening the depletion layer and exposing
more charged impurity ions. The charge thus induced in the depletion layer as the voltage on the
n-type diffused region is increased is responsible for the capacitance of the n-type diffused region
relative to the substrate,

We will now consider a unit area of the junction. The total charge in the depletion layer per unit
area is proportional to the number per unit volume of impurity ions in the bulk (N), and the

width, s, of the depletion layer.
Total charge/area & Ns,

The electric field in the region is proportional to the charge per unit area.
Electric field <« charge/area & Ns,

The voltage between the n-type diffused layer and the p-type bulk on the far side of the
depletion layer is proportional to the electric field times thickness of the depletion layer, and
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therefore to the density of negatively charged ions in the depletion layer times the square of the

width of the depletion layer.
Voltage o electric field X s, & Nsy?

The capacitance per unit area is just the charge per unit area divided by the voltage across the
depletion layer. From the above equations the capacitance is proportional to the square root of

the density of impurity atoms in the p-type bulk divided by the voltage.
Capacitance/area = Q/V & 1l/s; & (N/V)VZ

This relationship is plotted in Figure 30. Notice that the capacitance tends towards infinity as the
voltage across the junction tends to zero. It would seem that this large capacitance would be
disastrous for the performance of our integrated systems. However, this proves not to be the
case. When the p/n junction was formed the n-type region had an excess of negative charge
carriers while the p-type bulk had an excess of positive charge carriers. When the two were
brought together to form the junction, there was no voltage to prevent charge carriers of either
tvpe from flowing over into the opposite region. This initial flow caused the n-type layer to
become more positive than the p-type layer. This flow ceased when just enough voltage built up
to stop it. In silicon the voltage required to prevent the flow of charge carriers in such a situation
is approximately 0.7 volt. Thus the true voltage across the junction is this initial "built-in"
voltage plus the iroltage we apply in our circuit. The variation of the capacitance per unit area
with applied voltage is shown in Figure 31. An approximate equation which can be used to
calculate the junction capacitance Cj per unit area of diffused layers as a function of the applied

voltage is given by:

C. = 45X107IN/AV+0.7))% pf/pm?

]

In this equation, N, the density of impurity ions in the p-type bulk, should be given in number
per cm3. The voltage is in volts and the capacitance per unit area is evaluated in picofarads per

square micron. This equation is adequate for most design purposes.

Aside from the diffused regions, there are two other situations where the capacitance is of

interest. The first is poly or metal over thick oxide and the second is the gate of an MOS
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transistor. We will discuss poly or metal over oxide first, Figure 32 iflustrates once more the
capacitance per unit area of a junction over the p-type bulk. If the poly or metal layer was lain
on an oxide much thinner than the depletion layer, its capacitance would be nearly the same as
that of the corresponding p/n junction. However, if an oxide is interposed whose thickness is of
the order of the depletion layer thickness, the capacitance of the poly or metal line will be

decreased. The formula which applies in this case is given by:

VCioar = VG + 1/Cq

A typical dependence is shown in Figure 32. For an oxide thickness d, Cyy = 3.5%107%/4,
where the thickness d is given in angstrom units (10'4 microns), and the result is in picofarads

per square micron as before.

The most spectacular voltage dependence of a capacitance in the technology we will be using is
that of the gate of an MOS transistor. When the gate voltage Vgs is less than the threshold
voltage Vyy,, the capacitance of the gate to the bulk is just that given above for metal or poly over
oxide, since the voltage on the gate merely depletes positive charge carriers back from the
channe! area. However, when the voltage on the gate reaches the threshold voltage of the
transistor, negative charge is brought in under the gate oxide from the source of the transistor’
and the capacitance changes abruptly from the smail value associated with depleting charges in
the bulk to the much larger oxide capacitance between the gale and the channel region. Further
increase in voltage on the gate merely increases the amount of mobile charge under the gate
oxide with no change in the width of the depletion layer underneath the channel. Hence, the
character of the gate capacitance changes abruptly as the gate voltage passes through the
threshold voltage.

The dependence of the total gate capacitance on gate voltage is shown in figure 33. The
capacitance from channel to bulk is completely separate from the gate to channel capacitance. It
is associated with the depletion layer underneath the channel region, and is almost identical to
that of a diffused region of the same area. When the gate voltage is below threshold, the gate to
channe! capacitance disappears altogether leaving only the small parasitic overlap capacitances

between the gate and the source and drain regions.
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Choice of Technology

Before proceeding to the chapters on system design, let us briefly examine some alternative
technologies. Using the knowledge developed in these first two chapters, we will discuss the
reasons for selecting nMOS as the single technology used to illustrate integrated systems in this
text. Some of the factors which must be considered in choosing a technology include circuit
density, richness of available circuit functions, performance per unit power, the topological
properties of circuit interconnection paths, suitability for total system implementation, and general

availability of processing facilities.

As the technology advances, more system modules can be placed on the same sized chip. An
ultimate goal is the fabrication of large scale systems on single chips of silicon. For this goal to
be attained, any signal which is required- in the system other than inputs, outputs, VDD, and
GND, must be generated in the technology on the chip. In other words, no subsystem can
require a different technology for the generation of its internal signals. Thus such technologies as
magnetic bubbles are ruled out for full integrated systems because they are not able to create the

signals required for all operations in the on-chip medium.

We believe that for any silicon technology to implement practical large scale systems, it must
provide two kinds of transistor. The rationale for this observation is as follows. In order to
provide some kind of nonlinear threshold phenomenon there must be a transistor which is
normally off when its control input is at the lowest voltage used in the system. Bipolar
technologies use NPN transistors for this purpose. The nMOS technology uses n-channel
enhancement mode devices. In addition to this transistor, a separate type of transistor must be
supplied to allow the output of a driver device to reach the highest voltage in the circuit (VDD).
In the bipolar technologies, PNP lateral devices are used to supply this function, in the n-channel
technology a depletion mode device is used, and in complementary MOS technology a p-channel
enhancement mode device is used. All three choices allow output voltages of drivers to reach

VDD and thus meet the above criterion.

To date three technologies have emerged which are reasonably high in density and scale to
submicron dimensions without an explosion in the power per unit area required for their
operation. These are the n-channel silicon gate process, the complementary MOS silicon gate
process, and the integrated injection logic, or IzL, processz. Although present forms of 2L

technology lack the additional level of interconnect available in the silicon gate technologies, there
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is no inherent reason that such a level could not be provided. It is important to note that
increasing the flexibility of interconnect enriches the types of array functions which can be
created. I2L has the advantage over nMOS that the power per unit area (and hence the effective
r of its elementary logic functions) can be controlled by an off chip voltage. The decision
concerning what point on the speed vs power curve to operate may thus be postponed until the

time of application (or even changed dynamically).

The nMOS scaling has been described previously. Any technology in which a capacitive layer on
the surface induces a charge in transit under it to form the current control “transistor” will scale
in the same way. Examples include Schottky Barrier Gate FET's (MESFETs), Junction FET’s,
and CMOS.

There are certain MOS processes (VMOS, DMOS) of an intermediate form in which the channel
length is determined by diffusion profiles. While competitive at present feature sizes, these are
likely to be interim technologies which will present no particular advantage at submicron feature

sizes.

Scaling of the bipolar te:c:hnology1 is quite different from that of MOS technologies. For
completeness, we include here 2 discussicn of the scaling of bipolar devices, which may be of

interest to those familiar with those technologies.

Traditionally, bipolar circuits have been "fast” because their transit time was determnined by the
narrow base width of the bipolar devices. In the 1950's, technologists learned how to form
bipolar transistor base regions as the difference between two impurity diffusion profiles. This
technique allowed very precise control of the distance perpendicular to the silicon surface, and
therefore permitted the construction of very thin base regions with correspondingly short transit
times. Since current in a bipolar device flows perpendicular to the surface, both the current and
the capacitance of such devices are decreased by the same factor as the device surface dimensions
are scaled down, resulting in no change in time performance. The base widths of high
performance bipolar devices are already nearly as thin as device physics allows. For this reason,
the delay times of bipolar circuits is expected to remain approximately constant as their surface

dimensions are scaled down.

The properties of bipolar devices may be analyzed as follows. The collector current is due to the

diffusion of electrons from emitter to collector. For a minority carrier density N(x) varying
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linearly with distance x, from N, at the emitter to zero at the collector (at x=d), the current I per
unit area A is:

VA = q(?D)}N/dx = q(2D)Ny/d = q(kT/q}uNy/d feq.2]

where the diffusion constant D = p¥T/q. The factor of two multiplies the diffusion constant in
eq.2 because high performance bipolar devices operate at high injection level (injected minority
carrier density much greater than equilibdum majority carrier density). The inherent stored

charge in the base region _is:
Q/A = Nyd/2 [eq.3]
Therefore, the transit time is:

r = Q/I = d2/[4ukT/q] [eq.4]

The form of equation 4 is exactly the same as that for MOS devices (eq.1., chapter 1.), with the
voltage in the bipolar case being equal to 4kT/q (at room temperature kT/q = 0.025 volts). A

direct comparison of the transit times is shown in Table 2.

Table 2. Transit Time:
+ = (Distance)2/(Mobility X Voltage)

MOSFET: MESFET, JFET: Bipolar:
Distance: channet length channel length base width
Voltage: ~ VDD/2, ~ VDD/2, 4kT/q
many kT/q many kT/q
Mobility: surface mobility, bulk mobility, bulk mobility,
em?/v-sec, (Si)  ~800 ~1300 ~1300

At the smallest dimensions to which devices can be scaled, the base width of bipolar devices and
the channel length of FET devices are limited by the same basic set of physical constraints, and
are therefore similar in dimension. The voltage on the FET devices must be many times kT/q to

achieve the required nonlinearity. Hence at ultimately limiting small dimensions the two types of
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device have roughly equivalent transit times. At these limiting dimensions, choices between
com‘peting technologies will be made primarily on the grounds of the topological properties of
their interconnects, the functional richness of their basic circuits, simplicity of process, and ability
to control dc current per unit area. As supply voltages are scaled down to the 1 volt range, MOS
devices become similar in most respects to other FET type devices, and it is possible that mixed
forms (MOS-JFET, MOS-MESFET, Bipolar--MESFET, etc.) may emerge as the ultimate

integrated system technologies.

We have chosen to illustrate this text with examples drawn from the n-channel silicon gate
depletion mode load technology. The reasons for this choice in 1978 are quite clear. In addition
to meeting the required technical criteria we have described, this technology provides some
important practical advantages to the student and to the teacher. It is the only high density
technology which has achieved universal acceptance across company and product boundaries.
Readers wishing to implement integrated system designs may have wafers fabricated by essentially
any wafer fabrication firm, without fear that slight changes in the process or the vagaries of
relationships with a particular firm will cut off their source of supply. It is also presently the
highest density process available. This certainty of access to fabrication lines, the more generally
widespread knowledge of nMOS technology among members of the technical community, its
density, and its performance similarity with bipolar technology in its ultimate scaling, are all
important factors supporting its choice for this text on VLSI Systems. However, the principles

and techniques developed in this text can be applied to essentially any technology.

{ Ch2.: Sect.2 ] < Conway > newfab2.visi July 1. 1978 3:44 PM



References

1. B. Hoeneisen, C. A. Mead, "Fundamental Limits in Micro-electronics--II. Bipolar
Technology”, Solid-State Electronics, Vol.15, 1972, pp. 891-897.

9. F. M. Klaassen, "Device Physics of Integrated Injection Logic", IEEE Transactions on
Electron Devices, March 1975, pp. 145- , and cited papers by Hart & Siob, and
by Berger & Weidmann,

Reading References

R1. A. S. Grove, "Physics and Technology of Semiconductor Devices”, J. Wiley and
Sons, 1967, is the early classic text on process technology and device physics.

R2. W. G. Oldham, "The Fabrication of Microelectronic Circuits”, Scientific American,
September, 1977, provides an excellent overview of the fabrication process.

R3. 1. E. Sutheriand, C. A. Mead, T. E. Everhart, "Basic Limitéltions in Microcircuit
Fabrication Technology”™, ARPA Report R-1956-ARPA, November, 1976,

contains a quantitative discussion of the many limiting factors in fabrication.

R4. R. S. Muller, T. I. Kamin, "Device Electronics for Integrated Circuits”, Wiley, 1977,
provides insight into the device physics relevant to current integrated circuit

practice.

f Ch2.: Sect.2 | < Conway > newfab2.visi July 1, 1978 3:44 PM






Chapter 3: Data and Control Flow in Systematic Structures
Copyright © 1978, C.Mead, L.Conway

Sections:

Notation - - - Two Phase Clocks - - - The Shift Register - - - Relating Different Levels of
Abstraction - - - Implementing Dynamic Registers - - - Designing a Subsystem - - - Register to
Register Transfer - - - Combinational Logic - - - The Programmable Logic Array - - - Finite State
Machines - - - Towards a Structured Design Methedology

The process of designing a large-scale integrated system is sufficiently complex that only by
adopting some type of regular, structured design methodology can one have hope that the
resulting system will function correctly, and not require a large number of redesign iterations,
However, the methodology used should allow the designer to take full advantage of the
architectural possibilities offered by the underlying technology.

In this chapter we present a number of examples of data and control flow in regularized
structures, and discuss the way in which these structures can be assembled into larger groups to
form subsystems, and then these subsystems assembled to form the overall system. The design
methodology suggested in this chapter is but one of many ways in which integrated system 'design
may be structured. The particular circuit form presented does tend to produce systems of very
simple and regular interconnection topology, and thus tends to minimize the areas required to
implement system functions. Arrays of pass transistor logic in register to register transfer paths
are used wherever possible lo implement system functions. This approach tends to minimize
power dissipated per unit area, and, with levei restoration at appropriate intervals, tends to
minimize the time delay per function. The methodology developed is applied in later chapters t0
the architecture and design of a data processing path and its controller, which together form a

microprogrammed digital computer.

Computer architects, who usually design systems in a rather structured way using commercially
available MSI and LSI circuii modules, are often surprised o discover how unstructured is the
design within those modules. In principle one can use the basic NAND and NOR logic gates
described in Chapter 1 to implement combinational logic, build latches from these pates to
implement data storage registers, and then proceed to design integrated systems using traditional
logic design methodology as applied to discrete devices. Integrated systems are often designed
this way at the present time. However, it is unlikely that such unstructured approaches to system

design can survive as the technology scales down towards maximum density VLSI
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There are historical reasons for the extensive use of random logic within integrated systems. The
first microprocessors produced by the semiconductor industry were fairly direct mappings of early
generation central processor architectures into LSI. A block diagram of the Intel 4004, the
earliest microprocessor to see widespread commercial application, is illustrated in figure la. The
actual chip layout of the 4004 shown in Figure 1b indicates the complexity of the LSI
implementation of this simple central processing unit. Such LSI systems, directly mapping data
paths and control functions appropriate in earlier component technologies, of necessity contained
a great deal of random logic. However, the extensive use of random logic results in chip designs

of very great geometrical and topological complexity, relative to their logical processing power.

To deal with such complexity, system design groups have often stratified the design problem into
architecture, logic design, circuit design, and finally circuit layout, with specialists performing each
of these levels of the design. Such stratification often precludes important simplifications in the

realization of systemn functions.

Switching theory provides formal methods for minimizing the number of gates required to
implement logic functions. Unfortunately, such methods are of little value in VLSI systems, since
the area occupied on the silicon surface by circuitry is far more a function of the topological
properties of the circuit interconnections than it is of the number of logic gates implemented.
The minimum gate implementation of a function often requires much more surface area for its

layout than does an alternative design using more transistors but having simpler interconnection

topology.

There are known ways of structuring integrated circuit designs implemented using traditional logic
design methods. A notable ecxample is the poly.cell1 technique. In this technique, a group of
standard cells corresponding to typical SSI or MSI functions are gathered into a library of
functions. The logic diagram for the system to be implemented is used to specify which cells in
the library are required. The cells are then placed into a chip layout, and interconnections laid
out between them by an automatic interconection routing system. The polycell technique
provides the logic designér having limited knowledge of integrated systems with a means of
implementing modest integrated circuit designs directly from logic equations. However, a heavy
penalty is paid in area, power, and delay time. Such techniques, while valuable expedients, do
not take advantage of the true architectural potential of the technology, and do not provide

insight into directions for further progress.
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Switching theory not only yields the minimum number of gates to implement a logic function,
but it also directly synthesizes the logic circuit design. Unfortunately, at the present time there is
no general theory which provides us with a lower bound on area, power, and delay time for the
implementation of logic functions in integrated systems. Theoretical lower bounds for certain

special structures and algorithms of interest are given in chapter 9.

In the absence of a formal theory, we can at best develop and illustrate alternative design
methodologies which tend to minimize these physical parameters. Proposed design methodologies
should in addition provide means of structuring system designs so as to constrain complexity as
circuit density increases. We hope that the examples and techniques presented in this text will

serve to clarify these issues and stimulate others to join in the search for more definitive results?.

Notation

There are a number of different levels of symbolic representation for MOS circuits and
subsystems used in this text. Figures 2a., 2b,, 2c, and 2d., illustrate a NAND gate at several such
levels. At times it may be necessary to show all the details of a circuit's layout geometry in order
to make some particular point. For example, a clever variation in some detail of 2 circuit’s layout
geometry may lead to a significant compaction of the circuit’s area without violating the design

rules.

Often, however, a diagram of just the topology of the circuit conveys almost as much information
as a detailed layout. Such stick diagrams may be annotated with important circuit parameters if
needed, such as the L/W ratios shown in figure 2b. Many of the important architectural

parameters of circuits and subsystems are a reflection of their interconnection topologies.

Alternative topologies often lead to very different layout areas afler compaction. The discovery of
a clever starting topology for a design usually provides far better results than does the application
of brute force to the compression of final layout geometries. For this reason, many of the
important structural concepts in this chapter and throughout the text will be represented for
clarity by use of colored stick diagrams. The color coding of the stick diagrams is the same as
that of layout geometries, and is as follows: green symbolizes diffusion and transistor channel
region;  yellow symbolizes ion implaniation for depletion mode transistors; red symbolizes

polysilicon; blue symbolizes metal. black symbolizes a contac!.
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Later, through a number of examples in chapter 4, we will present the details of procedures by
which the stick diagrams are transformed into circuit layouts, and then digitized for maskmaking.
Note that if this topological form of representation were formalized, one might consider
"compiling" such descriptions by implementing algorithms which "flesh out and compress” the
stick diagrams into the final layout geometries3, according to the constraints imposed by the

design rules.

When the details of neither geometry nor topology are needed in the representation, we may
revert to the familiar circuit diagrams and logic symbols. At times we may find it convenient ta
mix several levels in one diagram, as shown in figure 2e. A commonly used mixture is: (i) stick
diagrams in portions where topological properties are to be illustrated, (ii) circuit symbols for
pullups, and (iii) logic symbols, or defined higher level symbols, for the remaining portions of the

circuit or system.

We will define logic variables in such a way that a high voltage on a signal path representing that
variable corresponds to that variable being true (logic-1). Conversely, a low voltage on a signal
path representing that legic variable corresponds to the varizble being false (logic-0). Here high
voltage and low voltage mean well above and well below the logic threshold of any logic gates
into which the signal is an input. This convention simplifies certain discussions of logic variables
and the voltages on the signal paths representing them. Thus when we refer to the logic variable
f being high, we indicate simultaneously that f8 is true (logic-1) and is represented on the signal
path named 8 by a high voltage, one well above the logic threshold. In boolean equations and
logic truth tables we use the common notation of 1 and 0 to represent frue and faise respectively,

and by implication high and low voltages on corresponding signal paths.
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Two Phase Clocks

We will often make use of a particular form of “"clocking” scheme to control the movement of
data through MOS circuit and subsystem structures. By clocking scheme we mean a strategy for
defining the times during which data is allowed to move into and through successive processing

stages in a system, and for defining the intervening times during which the stages are isolated

from one another.

Many alternative clocking schemes are possible, and a variety are in current use in different
integrated systems4. The clocking scheme used in an integrated system is closely coupled with
the basic circuit and subsystem structuring, and has major architectural implications. For clarity
and simplicity we have selected one clocking scheme, namely two-phase, non-overlapping clock
signals. This scheme is used consistently throughout the text, and is well matched to the type of

basic structures possible in MOS technology.

The two clock signals ¢:) and ¢ are plotted as a function of time in figure 3. The signais both
switch between zero volts (logic-0) and a voltage near VDD (logic-1), and both have the same
period, T. Note that both signals are non-symmetric, and have non-overlapping high times. The
high times are somewhat shorter than the Jow times. Thus g9 is Jow all during each of those time

intervals from when g1 rises, nears VDD, and then falls back to zero.

We have adopted a compact convention for transistions of clocking signals. The rising transition
of a signal ¢ is symbolized as t¢, and the fall as @, we also have a similar rule for ¢, namely
g1 = 0 all during each time interval from tq4 t0 4. Therefore, at all times the logic AND of
the two signals equals zero: [q1(t)] » [g5(1)] = O, for all t. For convenience, we will often use
the following equivalence in our descriptions: “during ;" is equivalent to “during the time
period when @; is high". In the next section we will illustrate the use of these two clocking
signals to move data( through some simple MOS circuit structures. A more detailed discussion of

clocking requirements is given in chapter 7.
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The Shift. Register

Perhaps the most basic structure for movement of a sequence of data bits is the serial shift
register, shown in circuit diagram form in figure 4a. The shift register is composed of level
restoring inverters coupled by pass transistors, with the movement of data controlled by applying

clock signals @] and ¢4 to the gates of alternate pass transistors in the sequence.

Data is shifted from left to right as follows. Suppose a logic signal X is present on the leftmost
input to the shift register when clock signal ¢ rises. Then, during the time when ¢y is high, this
signal will propagate through thé pass transistor and be stored as charge on the input capacitance
of the first inverter stage. .For example, if the signal X is Jow, then the inverter input gate
capacitance will be discharged towards zero volts during the time when ¢ is high. On the other
hand, if X is high, the inverter input capacitance will charge up towards VDD - Viy, during ¢;.

When the clock signal ¢y fails, the pass transistor becomes an open circuit, isolating the charge
on the input of the inverter. The second clock phase is now initiated by the rise of ¢5. During
the time interval when ¢4 is high the logic signal X, now inverted, will flow ti1rough the second
pass transistor onto the gate of the second inverter. This pattern can be repeated an arbitrary

aumber of times to produce 2 chift register of any length.

Note that since the clock signals do not overlap, the successive pairs of stages of the shift register
are effectively isolated from one another during the transfer of data between inverter pairs. For
example, when 1 is low, and @5 is high, all adjacent inverters connected by the ¢4 controlled
pass transistors are in the process of transferring data from the left to the right members of the
pairs. All these pairs of inverters are isolated from each other by the intervening ¢y controlled

pass transistors which are all open circuits when ¢y is low.

It is also important to note that the shortest period, T, we can use for clocks controlling such data
transfers is determined by the time required to adequately charge or discharge the inverter input
gate capacitance through the pass transistor and the preceding stage pullup or pulldown. To this
time must then be added an increment of time sufficient to insure that the clocks do not overlap.
For more complex systems, the minimum clock period may be estimated as a function of basic

circuit parameters as discussed in Chapter 1.

Figures 4b and 4c illustrate the serial shift register using mixed notations. In figure 4b, each

inverter circuit diagram has been replaced by its logic symbol. In figure 4c, the pass transistor
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circuit symbols have been replaced by their stick diagrams, When visualizing the inverter, as
represented by its logic symbol, in a circuit structure containing mainly stick diagrams, two points

should be kept in mind:

(i) The input to the inverter leads directly to the gate, and thus the gate capacitance, of the
inverter's pulldown transistor, This input may be used to store a data bit by isolating the charge
representing the bit with a pass transistor. Note that the input path will end up on the poly level
within the inverter. A contact cut may thus be required to connect the poly gate and the metai

or diffusion path on which the signal enters the inverter.

(ii) Since the connection between the source and gate of the inverter pullup transistor requires a
connection of all three conducting levels, the inverter output signal may easily be routed out on

any one of the three levels.

Identical serial shift registers can be stacked next to each other and used to move a sequence of
data words, as shown in figure 5a. The simple structure in figure 5a anticipates the elegant
topological simplicity of many important MOS integrated system functions. By connecting the
successive inverter stages with diffusion paths, the pass transistors controlled by the clock signals
are formed by simply running vertical clock lines in vpoly. The structure in figure Sa also
anticipates another important point: topological simplification often results when control signals
flow on lines that are at right angles to the direction of data flow. In this way as many bits as

necessary can be processed in parallel with the same control signals.

The example in figure 5a is so rudimentary it is perhaps difficult to visualize the two clock signals
as actually containing control information. Let us consider a slightly more complex example, the
shift-up register array shown in figure §b. In this structure, each data bit moving from left to
right during ¢ has two alternative pass transistor paths through which it can proceed to the next
stage: a straight through path, and a path which shifts it up to the next higher row. If the control
signal SH is low, then [¢7 » SH'] is high, and the straight through pass transistor paths are used
during @5. At the same time, [g9 « SH] is low, thus preventing data flow through the shift-up
pass transistor paths. On the other hand, if SH is high, the straight through pass transistors are
off and the shift-up pass transistor paths are used during g3, resulting in the entire data word
being shifted vertically as well as horizontally, Here the vertical control lines are run in metal,
and the pass transistors are selectively formed by crossing the appropriate diffusion paths with

short poly lines.
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Relating Different Levels of Abstraction

In the discussions in this chapter, we will not have to make extensive calculations of the detailed
electrical behavior of the devices and circuits involved in order to analyze the general behavior of
digital logic constructed with these devices and circuits. Most of the examples presented in this
chapter, and throughout the text, build upon the use of pass transistors coupling inverting logic
stages as a means of structuring designs. The general results of chapter one provide the solutions
to most device and circuit problems encountered, such as ratio and delay calculations, etc. In
most cases, design concepts can be worked out using stick diagrams, and only at the stage of
transforming the circuit topology into the detailed circuit layout geometry will these calculations

need to be worked out, either by hand or with circuit simulation programs.

It is important to simplify our mental model of integrated circuitry, so as to more quickly and
easily analyze or explain the function of a given circuit, and more easily visualize and invent new
circuit structures without drifting too far away from physically realizable and workable solutions.
Of course, it is a dangerous practice to oversimplify our abstractions of electronic circuit behavier,
and there are some nMOS circuits of deceptively simple appearance which have exceedingly
complex behavior. However, throughout large portions of digital integrated systems, if the circuit
and subsystem design is structured as suggested in this text, an extremely simple mental model of

device and circuit behavior will prove adequate to predict circuit and subsystem behavior.

Figure 6a illustrates a simple way of visualizing the operation of successive inverting logic stages
coupled by pass transistors. Assume for the moment that any pass transistors in the paths
between stages are on. To visualize the time behavior of an inverter, and the effect of the pullup
L/W to pulidown L/W ratio, imagine the flow of current from VDD to GND as the flow of a
fluid, and the inverter's two transistors as valves. The basis for thinking of the transistors in this
manner is the fluid model of their internal behavior, as given in chapter 1. Whether a transistor
is on or off depends upon the voltage, and thus upon the charge, on its control gate, and also on
its threshold voltage. The upper “valve" is always open, since the pullup transistor is always on.
However, the "valve” corfesponding to the pulldown transistor may be either open or closed,

depending on the amount of charge on its gate.

In figure 6a, the input to inverter-A is a logic-0, so the pulldown of inverter-A is off, and the
lower valve is closed. Current is thus diverted to the large charge storage site corresponding to

the gate of the pulldown of inverter-B. At this level of diagram we have reverted to the common
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convention of positive charge flow from VDD to ground, rather than electron flow from ground
to VDD. If sufficient positive charge has flowed onto this gate, corresponding to a high level of
fluid in the tank representing the gate capacitance, then the pulidown of inverter-B is turned on,
and thus the lower valve of inverter-B is opch. If the lower valve in inverter-B is much larger
than the upper one, corresponding to a practical pullup to pulldown size ratio, then the pulldown
of inverter-B can sink all the source current provided by the pullup. Also, if given sufficient time
and if the connecting pass transistor is on, the pulldown can drain off any charge stored on the
succeeding inverter's input gate. Thus we can visualize the sequence of inversions of a logic
signal propagating through successive inverter stages as an alternation between high and low
levels of fluid in the storage tanks. We can also visualize some of the time behavior of the signal
propagation: the larger the gate capacitance, the longer it takes to build up enough charge to
open the next stage, and the longer it takes to drain charge off the next stage to tumn it off.

Figure 6b represents the same physicai circuit modelied in figure 6a, but on successively higher
levels of abstraction. When analyzing circuit or logic diagrams showing successive inverting logic
stages, as in figure 6b, one should keep the model of figure 6a in mind. Whether one is a novice
or an expert in integrated system design, it is very helpful to compress the details of any given
lower level of abstraction, so as to reduce the complexily of the probilems presented at the next

higher level, and enable the mind to span problems of larger scope.

We are now able to visualize a very simple model for the pass transistor: it is in fact like a valve,
or "switch" in the path between an inverter and the next charge storage site, Le. the input gate of
the next inverter. Figure 6c shows two inverters coupled by a pass transistor, with the pass
transistor informally symbolized as a "switch”. In the upper diagram of figure 6c, the pass
transistor input is a logic-1, and so the "switch” is in the on position, resulting in the output Z
being equal to the input X, after a suitable delay time At. Thus during the time the pass
transistor gate input P = 1, the output Z(t) = X(t - At). Here At is some multiple of the

transit time, r, of the inverter pulldown transistor, as discussed in Chapter 1.

In the lower diagram of figure 6c, the pass transistor "switch” is moved to the off position since P
is a logic-0. Therefore, according to our model, the valve in the path between the inverters is
shut, and the charge, or lack of charge, is isolated in the storage site. Thus, once the pass
transistor "valve” is shut, Z remains at a constant value, independent of changes in X. In other
words, if P — 0, att = t; then Z(H) = Z{ty, for t > 5.

[ Ch3.: Sect:1] < Conway > newdefl.visi Iuly 4. 1978 7:14 M



10

These simple visualizations of the inverter and the pass transistor will carry us fairly far into LSI
subsystem design. Several logic circuits in this chapter are drawn first in stick diagram form, and
then informally sketched with pass transistors replaced with ' 'switches", both to clarify the
behavior of the circuits involved, and to further demonstrate the applicability of the model.

Implementing Dynamic Registers

Registers for the storage of data play a key role in digital system design. It is interesting to note
that a group of adjacent inverters, with their gates isolatable by pass transistors, can be considered
a form of temporary storage register. This arrangement is illustrated in figure 7, which shows two
levels of symbolism for this dynamic register. Such a register is very simple in structure. It
consists of only three transistors per bit position: the pass transistor and the two transistors of the
inverter. However, this dynamic form of register will preserve data only as long as charge can be
retained on the inverter input gates. Typically dynamic registers are used in situations where the
input gate updating control signals are applied frequently. They are ideal in a clocked system in

which they are reloaded every clock cycle, as in the shift register.

Suppose we wish (o construct a simple register which can be loaded during the appropriate clock
phase under the control of a load signal, and which will retain its information through an
indefinite number of successive clock periods until it is reloaded using the load signal. A one bit
cell for such a register may be constructed using cross coupled inverters in the configuration
shown in figure 8. This register cell is still dynamic in form, since it uses charge storage on the
gate of the first inverter to preserve its state. However, it need not be loaded on every successive
@1 as was the simple register in figure 7. The pass transistor leading to it from the preceding
stage is switched on only when both ¢ and LD are high. On any following ¢ when LD is low,
the cell updates itself by the feedback path through the second pass transistor. Figure 9
illustrates a selectively loadable register composed of such cells. One important feature of this
type of register is that it provides as output both the true and complemented forms of the stored
data. This feature is often useful when the data is to be processed by a following network of

combinational logic.

While there are more elaborate forms of dynamic and static registers, the above two forms are

sufficient for many of the required data storage applications within integrated systems.
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Designing a Subsystem

The ideas used to construct simple dynamic registers in the preceding section may be applied to
the construction of more sophisticated and interesting subsystems. In this section we will describe
the design of a stack. The methodology we use for this specific example we will find appropriate
for a wide variety of functional subsystems. We first invent a "cell” which implements the most
primitive function of the subsystem. This cell dictates a set of "timing" criteria necessary for its
proper operation. The cell geometry together with the timing requirements dictates the design of
contral “circuits” which will surround an array of the basic cells. Once these control circuits are
attached to the cell array, and the necessary “interconnections” are made, the entire assemblage
constitutes a functional "module” with a well defined “interface” to the next higher level of
design. This interface consists of a functional specification, a geometrical specification, and a set

of timing requirements for the control inputs, data inputs, and data outputs.

The stack subsystem is commonly called a last-in, first-out (LIFQ) stack. It is also known as a
pushdown stack, although we will diagram it horizontally rather than vertically. It is a shift
register array with three basic operations: during each full clock period (1) we can push in a new
data word at one end of the array, pushing all previously entered words one word position further
into the array, or (2) we can leave all words in their current position, or (3) we can pop out a

word from the end of the array, pulling all previously entered words back out by one word

position.

Figure 10a shows the structure of one horizontal row of the stack. Here we have implemented a
shift register which can perform the following three operations: shift data left to right, hold data
in place, or shift data right to left. There are four control signals used, two of them being active
during ¢, and two of them being active during ¢5. The signals ¢ and ¢, are our familiar two

phase, non-overlapping clock signals.

In order for data to be shifted from left to right, the shift right control line (SHR) is driven high
during 7. followed by driving the transfer right control line (TRR) high during ¢4. The bit of
data appearing at the left is thus transferred by this operation onto the gate of the first inverter
during ¢, and thence to the gate of the second inverter during ¢-. In order for data to be held
in place, the signal transfer left (TRL) is driven high during ¢ and transfer right (TRR) is
driven high during ¢4, causing the data to recirculate upon itself without shifting. Note that the

data can be obtained at any time from the output of the first inverter. However, since new data
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may come to the gate of the first inverter during ¢y, the only safe time to take data out to the
left is during ¢,. The transfer of data from right to left is caused by driving the shift left control
(SHL) line high during ¢4, followed by driving transfer left (TRL) high during ¢1.

Figure 10b illustrates a possible topological structure of one horizontal row of the stack. There
are two horizontal pathways on the diffusion level for shifting bits right or left. The two inverters
for one stage of the row are nested between these paths. VDD, GND, and the four control lines
run vertically in metal. The four pass transistors required for controlling the movement of data
are conveniently implemented by short poly lines which cross the horizontal diffusion tracks at
appropriate positions. Note that the entire row is composed of 180° rotations and repetitions of a

basic cell containing one inverter.

In a typical implementation of the complete LIFO stack, a number of such rows run parallel to
each other in the horizontal direction. The number of rows is equal to the width in bits of the
data words involved. The control lines run vertically across the entire stack, perpendicular to the
direction of data flow. For data words of any substantial width, the capacitive loading on the

control signals would be sufficient to warrant use of super-buffer drivers.

The stack as a whele may be controlled with conly two logic signals: one signalling push, and the
other signalling pop. The activation of neither of these two signals causes data to recirculate in-

place, awaiting the next active instruction.

Let us consider how to derive, from push and pop, the control signals for driving the four control
lines SHR, TRR, SHL, TRL. A possible scheme is shown in Fig. 10c. We use random logic for
this purpose since only a few gates are required to control the large, regular array of circuit cells
in the stack. The operation which determines what the stack will do during the subsequent clock
phase is brought in on the path labeled OP. It is important 1o note in the following that only
one signal path (OP) is required to bring in both push and pop logic signals, since these are active

on mutually exclusive clock phases.

The control scheme is summarized in the timing diagrams in figure 10e. Here we see that
holding OP high during ¢4, followed by low during ¢, implements push Holding OP Jow
during both ¢, and ¢, causes the data to recirculate in place. Holding OP high during @1,
followed by low during ¢+, implements pop. Thus, the single signal path, OP, is sufficient to
carry both stack control signals into the stack.
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During ¢y, the OP signal is fed through the upper pass transistor into the inputs of the two NOR
gates g and g). The outputs for these NOR gates are Jow during this period, since @5’ is high.

If the incoming OP signal is high while gy is high, then the lower input of NOR gate gy will be
low. Thus when ¢y falls low, the output of g, will go high, thereby driving SHL high. If the
OP signal is instead kept low while @1 is high, then the output of the NOR gate gy will go high
on the fall of g, thereby driving TRR high during @. '

During the period when ¢ is high and either the shift left (SHL) or the transfer right (TRR)
operation is being executed, the signal on the OP line is being stored on the corresponding input
gates of the lower two NOR gates, g3 and g4. Thus, if OP is high while ¢4 is high, a logic-C is
stored on the input of the NOR gate g4, and during the subsequent ¢ high period, SHR will be
driven high. Conversely, if OP is low while @9 is high, TRL will be driven high during the
following ¢y high period.

This kind of control scheme recognizes that there must be a luil period between any operation
and its next occurrence. Control information is taken in during this period and set up for the
subsequent operation. The scheme takes advantage of these lull periods, when possible, to
perform other operations which can be done without conflict, It ig an example of a fundamental

design technique which can be extended to larger system structures.

When planning the overall architecture of a larger system, it is often useful to represent
subsystems, such as the stack, using a higher level of symbolism. To be truly useful, such
representations should, in addition to a functional definition, include the topological factors
associated with the interconnection points of the subsystem and the geometrical factors of its

shape and relative physical dimensions.

A system level sketch of one particular implementation of the stack is shown in figure 10d.
Identical driver circuitry is placed along the top and bottom edges of the shift register array. The
transfer right and shift left drivers which are set up during ¢ ( and active during ¢5) are placed
along the top of the shift register array. The transfer left and shift right drivers which are set up
during ¢ ( and active during q:l) are placed along the bottom of the array. The OP bit and the
clock signals are required on both the top and the bottom of the shift register array.
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The integration of this subsystem into a larger integrated system design will require that the data
in and out paths be matched to those of subsystems to which the array is connected, and that the
@1, 97, and OP signals be available at either the left or right side of the array. By using system
level representations that reflect as closely as possible the dimensions and locations of critical
signals in all major subsystems, the interactions between topologies and dimensions of the
subsystems can be assessed. The feasibility of an overall system architecture can thus be ensured

prior to detailed design and layout.
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Register to Register Transfer

From an implementation point of view it is often desirable to combine logic steering functions
with the clocking of data into registers, since both require pass transistors as their elementary
functional unit. An example is the shift-up register array shown in figure 6. From the next
higher level system view, however, it is desirable to separate the two functions conceptually. In
Fig. 11a we have shown some combination of inputs, X0 through Xn going through some
combination of pass transistors, which may or may not have logic functions attached, into the input
gates of some inverting logic elements. This combination of function is then abstracted into a
register clocked on the phase during which the input pass transistors are turned on. Any logic
function associated with the input pass transistors is considered part of the preceding
combinational logic module. This viewpoint is an extension of the concept of dynamic register

previously developed in figure 7.

Using this notation, any processing function can be built up using blocks of the form shown in
Fig. 11b. Here we have a clocked input register, a block of striclly combinationat logic with ne
timing attached, and an output register clocked on the opposite phase. In this case the inputs are
stored in the input register during ¢7. They then propagate into and through the combinational
logic {C/L.), with the resulting outputs stored in the output register during g,. Any single data
processing step can be viewed as a transfer from one such register to a second through a

combinational logic block.

A sequence of Such operations can be performed on a data stream by a series of such
combinational blocks separated by registers as shown in Fig. 1lc. Since different sets of data
words in the stream may be operated upon at the same time, but at different locations, this data
path is a type of pipelined processing structure. Such pipelined processing structures offer the
opportunity for improved processing bandwidth by performing many different operations
concurrently. Notice that the throughput rate of such a pipeline system of register to register
transfer operations is limited by the delay time through the slowest of the combinational logic
blacks. If no regisiers had been interposed between the function blocks, and each operand set
separately run through the entire sequence of combinational logic modules, the throughput rate

would be much lower.

In line with the ideas developed earlier in this chapter, the detailed functions performed by the

combinational logic modules may often be implemented in circuit structures of very simple and
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regular topology. Control signals will in general cross the data path at right angles to the
direction of data flow. Figure 11c illustrates sets of such control inputs as nj lines carrying the

control function OPy into the first C/L. module, n9 lines carrying OP2 into the second, ete,

The idea of data being processed while passing through combinational logic interspersed between
register stages in a sequence of register to register transfers is 2 basic and important concept in
the hierarchy of digital system architecture. We have already described the implementation of

registers. The next sections will describe some ways to implement combinational logic functions.

Combinational Logic

Combinational logic modules contain no data storage elements. The outputs of a combinational
logic module are functions only of the inputs to that module, provided that sufficient time has

been allowed for those inputs to propagate through the module’s circuitry.

In integrated systems, combinational logic design problems will typicaily fall within one of three
general classes. The first is when a small amount of simple logic is required, for example to
derive control signals at the periphery of a system module (as in the stack control signal
generation) or to implement a simple function within a single circuit cell (which may then be‘
replicated in a regular array). In these cases, traditional logic design procedures using static
NAND and NOR gates can be applied. Such designs involving a few gates are usuaily rather
simple, and can be produced by inspection rather than by use of formal minimization and
synthesis procedures. Even in these simple cases, the minimum static logic gate implementation
does not necessarily result in either the most regular, the minimum area, the minimum delay, or
the minimum power design. In fact, we often find alternative techniques to the use of static logic
gates, which in specific instances lead to "better” designs by one of these measures than would
minimum pate implementations. For example, figure 12a shows a selector logic circuit (L
Sutherland), in which one of the inputs Sy, S5, S3, 84 is selected for output by the control

variables A, and B according to the function:
Z = SIA'B' + SzAB' + S3A'B + S4AB

This selector circuit is composed simply of poly paths crossing diffusion paths. Where depletion
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mode transistors are placed, the diffusion level path is always connected, thus placing control in
. the selectively located enhancement mode pass transistors, which function as simple switches.
Figure 12c¢ shows the circuit’s paths from inputs to outputs using the "switch" abstraction for each
of the pass transistors. For each possible combination of values of A and B, there is a path
through the selector to Z from only one of the inputs ;. For the specific inputs shown in the
example in figure 12c, the signal S, propagates through to Z since both A and B' are high. Note
that no static power is consumed by the circuit, and the area occupied by the circuit is minimal
since no contact cuts are required within it. In chapler 5 we describe a very general and powerful
arithmetic logic unit (ALU) which uses an array of such selector blocks to control a pass iransistor

carry  network.

The second general class of combinational logic design problems are those rather complex
functions for which clever ways of structuring topologically regular implementations have been
discovered. As an example, consider the implementation of a tally function. This function has n
inputs and n+1 outputs. The k™ output is to be high, and all other oulputs Jow, if k of the

inputs are high. The boolean equations representing this function for the simple case of three

inputs are:

X;Xa'X3'

H
il

Zl = X1X2'X3' + X1'X2X3' + Xl'X2'X3

X1X2X3' + XIXZ'Xg + Xl'X2X3

N
)
]

Z3 = X1XpX3

If this function were designed with random logic consisting of active pullup, static logic gates, it
would result in a topological kludge. Figure 12b shows a topologically regular implementation of
the tally function. A major portion of the function is implemented using a regular array of
identical cells each containing only two pass transistors. The design is based on the shift-up
register idea presented earlier. A high signal propagates through the array from the puilup at the
lower left. Whenever one of the variables X; is high, the propagating high signal moves up to the
next higher horizontal diffusion levcl path. Thus the number of paths it moves up equals the
number of inputs X; which are high. Logic-0 signals propagate through the array from the
ground points to all other outputs.
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Figure 12d shows the paths from inputs to outputs for this tally circuit, using the "switc "
abstraction for the pass transistors. The figure shows a specific example of a set of inputs
controlling the pass transistors of the circuit. Since two of the inputs are high, the logic-1 signal

is shifted up two rows and emerges at Z.

This tally function design can be easily expanded to handle more than three inputs by simply
extending the array structure upwards and to the right. However, remember that the delay
through n pass transistors is proportional to n?. Thus it may be necessary to insert level
restoration prior to such extension. Similar comments apply to the exiension of the selector

circuit previously shown, or other pass transistor logic arrays one might invent.

The electronic logic gates traditionally used in digital design are unilateral elements: they allow a
ldgic signal to propagate in one direction only. It should be noted that the pass transistor is a
bilateral circuit element. It permits the flow of current, and thus the passage of a logic signal, in
either direction when its gate is kigh. While this property of the pass transistor is not necessarily

of fundamental importance in integrated systems, it is an inleresting and occasionally useful one.

Early relay switching logic used switching contacts which were bilateral elements. Interesting
discussions of relay switching logic are contained in both references R4 and RS, The tally array
example just given is a basic symmetric network mapped directly into nMOS from relay switching
logic (see RS, p.241). The mathematics of switching universally used in digital systems today was
proposed by Claude Shannon (R7) in 1938. Shannon demonstrated that the calculus of
propositions, based on the algebra of logic developed by Boole (R38), was directly applicable to

relay switching circuits.

A third combinational logic design situation occurs when a complex function must be
implemented for which no direct mapping into a regular structure is known. Methods for

handling this situation are the subject of the next section.

In the design methodology developed in this text, the combinational logic between stages in the
register to register transfer paths is often done by operations on the charge moving between
stages, using pass transistors to perform these operations. Many researchers at the present time
are searching for alternative structures and techniques for performing elementary logic functions,

including the use of charge transfer devices®.
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The Programmable Logic Array

On many occassions it is convenient to implement the combinational logic interspersed between
register stages with regular structures of pass transistors. However, we will often encounter
important combinational logic functions which do not map well into such regular structures. In
particular, combinational logic used in the feedback paths of finite state machines is often highly
complex and inherently irregular. Also, we may wish to delay binding the details of the logic
functions used in finite state machine sequencing until most of the design is complete. If the
combinational logic were implemented in an irregular structure, such changes could require a

major redesign.

Fortunately, there is a way to map irregular combinational functions onto regular structures, using
programmable logic arrays (PLA’s) as described in this section, This technique of implementing
combinational functions has a great advantage: functions may be significantly changed without

requiring any major design or layout changes of the PLA structure.

One very general and regular way to implement a combinatorial logic function of n-inputs and m-
outputs is to use a memory of 21 words of m-bits each. The n-inputs form an address into the
memory, and the m-outputs are the data contained in that address. Such 2 memory implements
the full truth table for the output functions. Many systems are in fact built using memories as
combinational logic elements. A common form of memory for this purpose is the read-only
memory (ROM) where the data is permanently placed in the memory by a mask pattern, or by
electrically altering the individual bit positions. There is one major difficulty with this approach:
it is often the case that most of the possible input combinations cannot occur, due to the nature
of the specific problem. Stated another way, many combinational logic functions require only a
small fraction of all 2% product minterms for a canonical sum of products implementation. In

such cases, 2a ROM is very wasteful of area.

The programmable logic array (PLA} 1s a structure which has all the generality of a memory for
implementing combinational logic functions. However, any specific PLA structure need contain a
row of circuit elements only for each of those product terms that are actually required to
implement a given logic function (see R4, Ch.4). Since it does not contain entries for all possible
minterms, it is usually far more compact than a ROM implementation of the same function. To
achieve full compaction, the various output functions must be jointly minimized before the PLA

layout pattern can be defined. However, such minimization is not essential. Less than fuil
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compaction increases the independence of the different entries, so that changes in function may

require only local changes in the PLA.

An illustration of the overall structure of a PLA is shown in figure 13a. The diagram includes
the input and output registers, in order to show how easily these are integrated into the PLA
design. The inputs, stored during ¢ in the input register, are run vertically through a matrix of
circuit elements called the AND-plane. The AND-plane generates specific logic combinations of
the inputs and their complements. The outputs of the AND-plane leave at right angles to its
inputs and run horizontally through another matrix called the OR-plane. The outputs of the OR-

plane then run vertically and are stored in the output register during 4.

The circuit diagram of a specific programmable logic array is shown in figure 13b. This diagram
will help to clarify the structure and function of the AND and OR-planes of the PLA. The input
register bit for each input path is formed by a pass transistor clocked on ¢ leading to both
inverting and non-inverting super buffers. These buffers drive two lines running vertically
through the AND-plane, one for the input term and one for its complement. The outputs of the
AND-plane are formed by horizontal lines with pull-up transistors at their lefimost end. The
function of the PLA's AND-plane is then determined by the locations and gate connections of:

pull-down transistors connecting the horizontal lines to ground.

Each output running horizontally from the AND-plane carries the NOR combination of all input
signals which lead to the gates of transistors attached to it. For example, the horizontal row
labelled Ry has three transistors attached to it in the AND-plane, one controlled by A, one by B
and one by C'. If any of these inputs is high, then Ry will be pulled down towards ground and

will be low.
Thus, R3 ={(A + B + Cy = A'B'C. Similarly, Ry = (A + B + Cy = ABC.

The OR-plane matrix of circuit elements is identical in format to the AND-plane matrix, but
rotated 90 degrees. Once again, each of its outputs is the NOR of the signals leading to the gates
of all transistors attached to it. In figure 13b for example. both Ry and Ry lead to the gates of
transistors leading from the output line Z,' to ground. If either Ry or Ry is high, Z,' will be low.
Thus, Z,' = NOR(R3,R4) = (A'B'C + A'BC'Y . Up to this point the PLA implements the
NOR-NOR canonical form of boolean function of its inputs.

The output lines of the OR-plane matrix are run into an output register formed by pass
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transistors (clocked on ¢9) leading into inverting drivers. Note that the output Z4 at this point
is: Zg = ABC + A'BC. This expression illustrates why the two PLA planes, each implementing
the NOR function, are usually referred to as the AND and OR-planes. Following the output
register, the outputs appear directly as the sum of products canonical form of boolean functions of

the PLA inputs, that is, the OR of AND terms. Each horizontal line of the PLA carries one

product term.

Figure 13c shows one possible layout topology for implementing the PLA in nMOS circuitry.
The example is the same circuit itlustrated in figure 13b. The input lines crossing each plane are
run in poly. The output lines from each plane are run in metal. Paths running to ground are
placed between alternate poly lines, on the diffusion level, It is then a simple matter to form the
pulldown transistors connecting the metal output lines to ground. They are selectively located

diffusion lines under the appropriate input poly lines.

Although the PLA may implement a very irregular combinational function, the irregularity is
confined to the irregular locations of pulldown transistors which "program” the function. The
overall structure and topology of the PLA are very regular. Note that its overall shape and size is
a function of the parameters: (i) the number of inputs, (ii) the number of product terms, (iii) the

number of outputs, and (iv} the length unit A.

Finite State Machines

In many cases in the processing of data, it is necessary to know the outcome of the current
processing step before proceeding with the next. Results of the current step may be used as
inputs in the next step. The configuration shown in figure 14a can be used to implement a
processing stage having this requirement. A typical register to register transfer stage has been
modified by simply feeding back some of its outputs to some of its inputs. This structure

implements a form of sequential machine known as a finite state machine.

The feedback signals. form a binary number which may be regarded as identifying the state of the
machine. The value of this number is stored, along with the external inputs, in the first register
during ¢y. These combined inputs then propogate through the combinational logic. The
resulting outputs are stored in the second register during ¢5. The falling edge of ¢ must occur
a sufficient time later to insure that all signals have propagated through the combinational logic.
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Each complete machine cycle, consisting of ¢ followed by gy, results in two new sets of
outputs: (i) the external outputs which are typically used for controlling other units of the system,
and (ii) a new feedback number, which defines the next state of the machine. This process
repeats during each clock period. The number of possible states is determined by the number of
bits in the feedback path, and is finite.

There are a number of ways of abstractly representing the states, the required state transitions,
and the outputs of sequential machines under given input sequences. Possible representations
include state diagrams, transition tables, boolean or numerical difference equations, etc. A large
body of theory has been developed concerning sequential machines. The serious reader will
benefit from a further study of the results of switching theory on this subject (R3, R4).

Implementations of simple finite state machines are used to produce the very lowest level of
system control sequencing, since they can autonomously generate control sequences. The
sequential machine having a finite number of states is a very important element in the hierarchy

of fundamental concepts used in integrated system architecture,

The configuration shown in figure 14a implements a synchronous machine, since the feedback
loop is oniy activated at times determined by the clock signals. In any cleck period k, the output
terms Zj and the next state terms Yy are valid during (k). They are functions of the external’
inputs X; and feedback terms Y which were valid during ¢(k-1).

If a sequential machine contains a feedback loop which is continuously active, then it may begin
a response to a change in inputs or state at any time, rather than just at fixed clock times. Such
a sequential machine is referred to as an asynchronous sequential machine. The analysis of
asynchronous sequential machines and their implementation is far more complex than that of
synchronous ones. Great care must be exercised to avoid any difference in state sequencing'and
outputs under arbitrary differential delays of signals through the circuit paths of such machines
(R3. Ch.5). There will be only a few special cases where we use the asynchronous form of

sequential machine (Chapter 7), and these will be subject to detailed analysis.

Where sequential machines are required within integrated systems, we will generally implement
them in synchronous form. Synchronous machines are rather easy to implement correctly, and fit

naturally into the two phase clocking scheme used for moving data around within our systems.

However, the reader should carefully note that an implementation of a synchronous sequential
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machine functions correctly only if the delays in the circuit paths are sufficiently short compared
to the clock period. If we were to implement many copies of a particular machine, the
probability of correct function for any given copy is thus a function of (i) the clock period used,
and (ii) the distribution of differential delays in that copy’s signal paths. Our estimate that a
particular copy will function correctly is thus based in part on assumptions about the ratio of
likely deviations in circuit delays to the clock period. A discussion of delays in MOS circuits is

given in chapter 1.

There is a very straightforward way to implement simple finite state machines in integrated
systems: we use the PLA form of combinational logic and just feed back some of the outputs to
the inputs, as illustrated in figure 14b. The circuit’s structure is topologically regular, has a
reasonable topological interface as a subsystem, and is of a shape and size that are functions of
the appropriate parameters. The function of this circuit is determined by the “programming” of
its PLA logic. If, for example, early in a design cycle there is some uncertainty in the details of
the desired sequencing of such a circuit, it is easy to provide layout space for extra, unused

inputs, minterms, or outputs as contingencies.

The following simple example will help illustrale the basic concepts of finite state machin.es and
their implementation in nMOS circuitry. A busy highway is intersected by a little used farmroad,
as shown in figure 15a. Detectors are installed which cause the signal C to go high in the
presence of a car or cars on the farmroad at the positions labelled C. We wish to control traffic
lights at the intersection, so that in the absence of any cars wailing to cross or turn lefl on the
highway from the farmroad, the highway lights will remain green. If any cars are detected at
either position C, we wish the highway lights to cycle through caution to red, and the farmroad
lights then to turn green. The farmroad light is to remain green only while the detectors signal
the presence of a car or cars, but never longer than some fraction of a minute. The farmroad light
is then to cycle through caution to red, and the highway light then to turn green. The highway

light is not to be interruptible again by the farmroad traffic until some fraction of a minute has

passed.

A state diagram model of a finite state machine to control the lights is sketched in figure 15b.
This diagram identifies four possible states of the machine, and indicates the input conditions
which cause all possible state transitions. A block diagram of the PLA circuit implementing the
machine is shown in figure 15c. The circuit uses the signal C as an input, and provides outputs

HL and FL which encode the colors of the highway and farmroad lights it controls. Note that a
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timer is used to provide, as controfler inputs, the short and long timeout signals (TS, and TL), at
appropriate times following a start timer (ST) signal output from the controller. This timer could
be implemented as a digital counter in the same nMOS circuitry. Another abstract model
describing the desired function of the controller is given in the state transition table in figure 15d,

which contains similar information to that in the state diagram.

The detailed sequencing of the machine under various input sequences is described by both the
state diagram and transition table models of the controller. Consider starting in the state HG,
where the highway lights are green. The machine remains in state HG as long as either no cars
are detected or the long timeout has not occurrred, in other words as long as (C)AND{TL) = C.
After the long timeout occurs, if any cars are detected, the machine restarts the timer and changes
state to HY, where the highway lights are yellow. It remains in state FY only until the short
timeout occurs, and then restarts the timer and changes to state FG, where the farmroad lights
are green. It remains in state FG until either no cars are detected or the long timeout occurs, 1.e.
(CYOR(TL) = 1. Then it restarts the timer and changes to state FY, where the farmroad light is
yellow. It remains in state HY only until the short timeout occurs. It then restarts the timer and

changes to state HG, the starting state.

The locations of transistors in the PLA light controller circuit can be determined by "hand
assembling" the "program” specified in the "symbolic” transition table in figure 15d, resuiting in
the encoded state transition of figure 15¢. First we assign codes to the states. In the example:
state HG is encoded as (Yp,Yy) = (0.0) HY as (0,1); FG as (1,1); and FY as (1,0). Next, we
assign codes to the output light control signals: green is encoded as (0,0), yellow as (0,1), and red
as (1,0). We now form the encoded state transition table by constructing one row for each
product term implied by the symbolic table of fig. 15d. A row in 15d specifying a state transition
as a function of a single input variable or single product term of input variables produces a single
row in table 15e. A row in table 15d specifying a state transition as a function of a sum or sum

of products of input variables, leads to a corresponding number of rows in table 15e.

Placement of the transistors within the PLA matrices follows directly from the encoded state

transition table:

(i) For each logic-1 in the next state and output columns in the table, we run a diffusion path
from the corresponding next state or output line in the PLA OR-plane, under the corresponding

product term line, to ground. This creates a transistor controlled by the product term line. Then,

[ Ch3.: Sect.2 ] < Conway > newdef2.visi July 4, 1978 7:32 PM



[Ch.3., Sect.2]

Lﬂ . V
Fig. 15a. A Highway Intersection ]
e

road
(Cland(TL)=0
(Cand(TL)=1 AND OR
/ o 1 plane plane
TS=0 (— T8=10 _ .
L ' /, phl ; inreg outreg - ph2
N C+AL=1 21 statg 3 X
TL TS ST
| timer |
+TL=0 c HL FL
Fig. 15b. Light Controlter State Diagram Fig. 15c. Controller Block Diagram
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In Present State: If Inputs are: Next State will be:
HL FL ST
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{Carsjand(TimeoutL) = 1 Highway Yellow Green Red Yes
Highway Yellow TimeoutS = 0 Highway Yellow Yellow Red No
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Fig. 15d. Transition Table for the Light Controller
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Fig.15e. Encoded State Transition Table for the Light Controller
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if that controlling product term line is ever high, the path to the output inverter will be low, and

the output will be high. The output line will be Jow unless some product term line controlling it is

high.

(i) For each logic-1 in the input and present state columns in the table, we run a diffusion path
from the corresponding product term line, under the corresponding inverfed input or state line in
the PLA AND-plane, to ground. The transistor thus created is controlled by the inverted input or
state line. Whenever that controlling line crossing the AND-plane is high, the product term line

will be Jow.

(iii) For each logic-0 ih the input and present state columns in the table, we run a diffusion path
from the corresponding product term line, under the corresponding non-inverted input or state line
in the PLA AND-plane, fo ground. The transistor thus created is controlled by the non-inverted
input or state line. Whenever that controlling line crossing the AND-plane is high, the product

term line will be Jow.

Note that if all lines which control the transistors connecting a given product term line to ground

are low, then that product term line will be high Otherwise it will be low.

The PLA circuit in figure 15f is programmed from the transition table in figure 15e, according to
the rules above, and implements the traffic light controller. Note that this LSI implementation
does not exactly strain itself to meet the time response requirements of the control problem: it
can run at a clock rate at least 107 times as fast as required. Also, note that the PLA controller is
roughly (150)\}2 in area. Using the 1978 value of A = 3um, this controller is (450,um)2 ~ 0.002
cm2 in area. A PLA controller this size may contain over 150 transistors, but occupies only
1/125% of the area of a typical 0.25 cm? silicon chip in 1978. By the late-80's, as A scales down
towards its ultimate limits, such a controller will require only ~ 1/25,000% of the area of such a
chip.

As we will see in later chapters, a data processing machine of any desired complexity can be
created by interconnecting register to register data processing paths constructed along the lines of
that shown in figure 1lc, such paths being controlled by finite state machines implemented as
shown in figure 14b. The data paths form the "highways” for the movement of data, under

control of the finite state machine "traffic controllers”,
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Towards a Structured Design Methodology

The task of designing very complex systems involves managing, in some highly structured way,
the space and time relationships between the various levels of system building blocks so that the
entire system will function as intended when it is finished. The beginnings of a structured design
methodology for VLSI systems can be produced by merging together in a hierarchy the concepts
presented in this chapter. Designs are then done in a "top down" manner, but with a full

understanding by the architect of the successive lower levels of the hierarchy.

To begin, we plan our digital processing systems as combinations of register to register data
transfer paths, controlled by finite state machines. Then the geometric shapes, relative sizes, and
interconnection topologies of all subsystem modules are collectively planned so all modules will
merge together snugly, with a minimum of space and time wasted by random interconnect wiring.
Storage registers are typically constructed by using charge stored on input gates of inverting logic.
The combinational logic in the data paths is typically implemented using steering logic composed
of regular structures of pass transistors. Most of the combinational logic in the finite state
machines is typically implemented using PLA’s. All functioning is sequenced using a two-phase,

non-overlapping clock scheme.

When viewed in its entirety, a system designed in this manner is seen as a hierarchy of building
blocks, from the very lowest level device and circuit constructs, on up to and including the high
level system software and application programs in which the intended functions of the system are
finally expressed. Individuals who understand the key concepts of each level in this hierarchy
will recognize that the boundaries between levels are rather elastic ones. Each level of activity
might best be optimized not on its own as a specialty, but as it fits into an overall systems
picture.  For example, the activity "logic design" in integrated systems might best be
conceptualized as the search for techniques and inventions which best couple the physical,
topological, and geometric properties of integrated devices and circuits with the desired properties
of digital VLSI systems. The search for alternative components for any given design hierarchy,
and the search for alternative hierarchies, will be done best by those who span more than one

specialty.

A particularly uniform view of such a system of nested modules emerges if we view every module
at every level as a finite state machine or data path controiled by a finite state machine. At the

lowest level, elements such as the stack and register cells may be viewed as state machines with
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one feedback term (the output), two external inputs (the control signals), and a one bit state
register. These rudimentary state machines are grouped in a structured manner to form portions
of a state machine, or data path controlled by a state machine, at the next level of the hierarchy.
Structured arrays of identical state machines often provide a mechanism for distributing
processing among memory cellsRﬁ, thus enabling vast increases in processing bandwidth.
Although in some cases the feedback paths are used in rather specialized ways, the state machine
metaphor still provides a precise description of module behavior. The entire system may thus be
viewed as a giant hierarchy of nested machines, each level containing and controlling those below

itt A detailed quantitative treatment of certain hierarchically organized machines is given in

chapter 9.

In chapters 5 and 6 we will apply the design methodology developed in this chapter to the design
of a digital computer system. A one chip implementation of the data path portion of this
computer system is illustrated in the frontispiece. Consistent use of the described design
methodology resulted in a design of great regularity, short delay times, low power consumption,
and high logical processing capability. As we will see in chapter 4, regular designs, with small
numbers of basic circuit cell types replicated: in two dimensions to form subsystems, also have

significant implementation advantages over less structured designs.
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Chapter 4: Implementing Integrated System Designs:

From Circuit Topology to Patterning Geometry to Wafer Fabrication
Copyright ® 1978, C.Mead, L.Conway

Sections:

Patterning and Fabrication - - - Hand Layout and Digitization using a Symbolic Layout
Language - - - An Interactive Layout System - - - The Caltech Intermediate Form for LSI Layout
Description - - - The Multi-Project Chip - - - Examples - - - Patterning and Fabrication in the
Future - - - Fully Integrated, Interactive Design Systems - - - System Simulation, Test Generation,

and Testing

This chapter presents the basic concepts involved in implementing integrated system designs,
from the system designer’s point of view, Tools are described which help the designer produce
the geometrical layout patterns for each layer of an integrated system given the logic, circuit, or
topological level design of the system. Procedures are described for encoding these layout
patterns and then using the encoded layouts in the patterning and fabrication processes to
implement the integrated system. In addition, we discuss how design tools and procedures are
likely to evolve tlowards fully integraled design systems, under the influence of increased

complexity of design and prediciable changes in the technologies of implementation.

To enable groups of readers to actually design moderate sized LSI systems, we've included
descriptions of easily constructed LSI design tools and procedures for organizing and
implementing LS1 multi-project chips. In each case. the tools are described as part of a complete
system of design and implementation procedures, some of which are performed manually while
others are machine assisted. Those experienced in sofiware system design will recognize that
construction of the machine-assisted portions of these systems is fairly straightforward. Contrary
to what many may think, designing your own LSI projects, merging them onto collaborative
multi-project chips, and having these implemented by commercial maskmaking and wafer-
fabrication firms is now well within the computational and financial reach of most industrial R&D

groups and university EE/CS departments.

We are firm believers in learning by doing, and hope that the information provided in this
chapter will help and encourage many groups of readers to try their hand at building LST design
tools and designing LSI systems. Such first-hand experience will lead to a deeper understanding

of the remaining material in this text.
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An overview of the stages of integrated system design, layout, and implementation is given in
figure 1. The designer first transforms the circuit and Lopological level designs into a geometrical
layout of the system, using procedures described later in this chapter. In order to optimize the
layout, perform various design checks, and discover errors, the designer usually iterates several
times between design and layout. The result is a set of design files describing the layout. These
files are in a particular representation called an intermediate form, which efficiently and

unambiguously describes the layout geometry.

The design files are then converted into files for driving the chosen patterning mechanism. At
present, design files are commonly converted into pattern generalor (PG) files, for use by a
maskmaking firm for driving an optical pattern generalor, the first step of maskmaking. By a
sequence of photolithographic steps, the mask house produces a set of masks, which a commercial
wafer fabrication firm may then use to pattern silicon wafers. Each finished wafer contains an
array of system chips. The wafers are then diced into separatc chips, which are packaged and

tested to yield working systems.

From the systemn designer’s point of view, maskmaking and fabrication can be visualized as one
would a film processing service: the designer produces the "artwork” (design files), from which
the mask house makes “negatives” (masks), which are then run on a fab line to produce “prints”
(wafers). The maskmaking and fabrication sequence is function. design, and layout independent
the mask and fab firms do not require detailed information about the intcgraled systems they
fabricate. If the original layouts satisfy the design rules, and satisfy a few constraints imposed by

pattcrning and fabrication, then these processes will yield correctly patterned wafers.

One need not closely bind a system’s design to the detailed processing specifications of particular
mask and fab firms. Various firms will differ somewhat in the minimum value of the length unit
A which they can successfully process. The transit time of the transistors fabricated, and the
resistance per square and capacitance per unit arca of fabricated features will also vary from one
fab line to another. However, well structured and relatively process independent nMOS designs
will function correctly if séaled to a value of A appropriate for the chosen fabrication facilities,

and operated using an appropriate system clock period.

We next examine some of the present implementation procedures a bit more closely, to set the
stage for sections on design and layout. Those later sections will be clearer if one can visualize

how the design files are to be used during patterning and fabrication.
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Patterning and Fabrication

On completion of design and layout, the sysiem design is contained in system layout files in
intermediate form. Prior to fabrication, a final check plot of the layout is usually generated by
converting these design files into files for driving a graphics plotter. Check plots are used for
visually checking for design rule violations and other design errors. Once the designers have
done as much visual checking as they are going to do, the system layout files are converted into
pattern generator (PG) files, to be sent to the maskmaking facility. Figure 2 summarizes the
sequence of patlerning and fabrication procedurcs which then follows, and identifies the artifacts

passed on at each step in the sequence.

Maskmaking begins with pattern generation to produce reticles. Present pattern generators are
projector-like systems containing (i) a precisely movable stage, (ii) an aperture of precisely
variable rectangular size and angular orientation, and (iii) a light source, all program controflable
by a computer system. To produce a reticle, a photographic plate is mounted on the stage, and
the PG file for a particular system layer is used to direct the flashing of a sequence of rectangular
exposures, of particular sizes and orientations, onto a sequence of coordinate locations on the

plate, as illustrated in figure 3.

The PG file contains a sequence of entries, each of which describes a rectang]es. A typical
representation uses five numbers for each rectangle: the xy coordinates of its center, and its
height, width, and angular orientation, as shown in figure 4. One can now visualize the nature of
the conversion from intermediate form to PG files: the layout of cach layer must be decomposed
into its equivalent as a set of rectangles, each having [x,y.h,w.a] values flashable by the particular
pattern generator, and these rectangles must be sorted inlo an efficient flashing sequence for that

pattern generator.

When the flashing sequence is completed, the plate is developed, yielding the reticle. A sketch of
such a reticle is given in figure 5. Each reticle is a photographic master copy much like a photo
negative, of the layout of one system layer, usually at a scale ten times (10x) the final system chip
size. Photo enlargements of reticles, called "blowbacks”, may be obtained from the mask house,
to provide a further level of checking of design layout, PG file conversion, and pattern
generation. At the current value of A = 3 microns, blowbacks at approximately 100 to 150 times
actual chip dimensions have sufficient detail to enable visual checking of the smallest features,

Blowbacks of reticles may also be obtained in the form of color transparancies, to enable
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inspection of superposed overlays of various layers.

Once the 10x reticles have been generated, a /x master mask is made from each reticle using a
photorepeater, often called a step and repeat camera. The photorepeater exposes a photographic
plate held on a moveable stage, as in the pattern generator. In this case, however, each plate
exposure is a 10:1 photo reduction of the reticle pattern. Between exposures the stage is moved
by a precise X,y stepping distance. This process is repeated until a complete array of 1x chip
patterns for one layer of the system has been exposed. The plate is then developed to produce 2

1x master mask. Figure 6 sketches such a mask made from the reticle in figure 5.

Note that when each reticle is inserted in the photorepeater, the position and angular orientation
of the reticle pattern is carefully adjusted by microscopic examination of two fiducial marks on
the reticle. These marks are placed as part of the pattern generalion process, and have the same
precise position relative to the chip pattern origin on each of the system’s reticles, thus assuring

that all mask levels produced with the photorepeater will accurately register with each other.

A succession of contact prints is made from each master mask to yield a number of working
masks, sometimes called working plates, for each system layer. These are the actual masks used
in wafer fabrication. During the contact printing step of the typical wafer fabrication procedure,
the working plates sometimes become worn or damaged, so several are usually made for each

layer,

The wafer fabrication facilily uses the working plates in the sequence of paltcrning and process
steps described in chapter 2, to produce finished wafers. The fab line requires no detailed
information about the design or mask patterns of the integrated system being fabricated.
However, several auxiliary patterns are normally included in the mask patterns, some of which are
replicated on each chip and are examined during wafer fabrication: (i) alignment marks, which
are used to accurately overlay successive masks with previous patlerning steps, (i) line width
testers, somelimes called critical dimensions (C/D’s), which are lines in each mask layer of stated
width that may be examined during maskmaking and fabrication to control dimensional
tolerances, and (iii) a few simple test transistors and their associated probe pads, which may be

electrically tested prior to packaging to verify that the wafer fabrication process was successful.

The finished wafers are divided into chips and packaged by the sequence of steps sketched in

figure 7. The wafers are diced into individual chips by first scribing their surface along the
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boundary lines between chips, called scribe lines, with either a diamond tipped scribe or a
diamond edged saw blade, and then fracturing them along these lines. Each individual chip is
then cemented into the cavity of a package. After fine wires are bonded between the contact
pads on the chip and the leads of the package, and a cover cemented over the cavity, the system

is ready for testing.

From the preceding we see that once a system’s design files have been produced, all the
remaining implementation procedures are design and layout independent, and largely automatic.
However, the many extrancous parameters, paiterns, and constraints involved in maskmaking and
fabrication must be carefully thought through and defined in order to guarantee successful
implementation within a reasonable turnaround time. The PG files must be correctly sorted and
formatted for the pattern generator to be used. The 10x pattern of the chip must fit within the
largest reticle that the pattern generator can produce. The photorepeater used will determine the
shape, size, and location of the fiducial marks on the reticle. The size, surface material, and
photographic polarity, either positive (Le. clear background field, with opague features) or negative
(dark field. with transparent features), of the working plates will be a function of the fabrication
facility to be used. Each fab line also lypically prescribes its own patterns for the alignment

marks and test transistors to be included along with the system in the mask patterns.

While many designs may be scalable and have some longevity, the parameters, patterns, and
constraints of maskmaking and fabrication are changing rapidly as the technologies evolve. This
constant change complicates interactions with mask and fab firms. Later we describe procedures
for implementating moderate sized LSI systems as part of multi-project chips. Such chips are
collaborative efforts of many designers, enabling many projects to be merged into one
maskmaking and wafer fabrication run. In this way the procedural overhead involved may be

shared.
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Hand Layout and Digitization using a Symbolic Layout Language

A simple and common method of producing system layouts is to draw them by hand. This is
typically done on a one lambda grid using the familiar color codes to identify various sysiem
layers. Once the layout has been hand drawn it can then be digitized, or translated into machine
readable form, by encoding it into a symbolic layout language. Hand layout and digitization
using a symbolic layout language is quite a practical method of generating design files for highly
structured system designs. Be warned, however, that implementing irregular structures using

these primitive procedures is a difficult and tedious task.

If a system has only a few céll types which are replicated over and over, and otherwise has little
"random wiring", one need draw only a single copy of each cell type, and then make
reproductions or equivalent sized outlines of these cell drawings. All these cell reproductions may
then be patched together to plan and build up the overall layout. Similarly, only one symbolic
digitization need be made for each cell type. The replication of cells in various orientations and
Jocations in the system layout can then be easily described using the symbolic layoui language.
In a sense, the ease with which a system's layout can be described using a primitive layout
language provides a measure of the regularity of its design. The OM2 Data Chip pictured in the

frontispiece was laid out and digitized in this way, using only the simplest machine aids.

The function of a symbolic layout language, in its simplest form, is similar to that of a macro-
assembler. The user defines symbofls (macros) which describe the layout of basic system cells.
The locations and orientations of instances of these symbols are described in the language, as a
function of appropriate parameters. These symbolic descriptions may then be mechanically
processed in a manner similar to the expansion of a macro assembly language program, to yield
the intermediate form description of the system layout, which is analogous to machine code for
generating output files. An example intermediate form is described in a later section. The
intermediate form files may be processed to yield the PG files: each layer being a machine
encoded collection of rectangles encoded as [x,y.h,w,a] values. The generation of PG files is
analogous to the loading and execution of machine code to produce output files: it is a process of
"unroiling” and fully instantiating all symbol descriptions into a sequence and format suitable for
a particular output device. Definition of simple layout languages and the construction of their
assemblers is fairly straightforward. The reader may define and implement layout languages by
using the macro assembler or higher level language facilities of any commonly available computer
system {R1, R3).
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The following example will clarify the concepts and procedures of hand layout and symbolic
. layout description; We wish to create an array of shift registers consisting of parallel horizontal
rows of inverters coupled by clocked pass transistors, as in figure 5a., chapter 3. Figure 8a
sketches the stick diagram of one row of the array. The entire array can be constructed from one
basic cell containing an inverter, the pass transistor following it, VDD and GND buses crossing
through on metal, and a clock line passing through on poly. Figure 8b shows a hand sketch of
the layout of the basic shift register cell, SRCELL, on a 1\ grid, subject to the design rules given
in Ch.2, Sect.2. Since the inverters are coupled by pass transistors, the inverter pullup/pulldown
ratio is ~ 8:1 (see Ch.l., Sect.2.). Also, while the 4\ wide metal lines could be 1A nadower in
between the contact regions, this would not decrease the cell size. As an exercise, the reader

might check for design rule violations, and also for ways of further shrinking the cell size.

The SRCELL layout shown in figure 8b is composed using only rectangles placed at orientations
which are integer multiples of 90°. The illustrations and descriptions in this section are
considerably simplified by the use of such constrained layout constructions, and yet still illustrate
the general principles involved. Were completely arbitrary shapes used, the SRCELL could be
made somewhat smaller and still satisfy the design rules. Interestingly, experience has shown that
the simple extension of including rectangles at orientations which are integer multiples of 45°
enables most cell layouts to reach within a few percent of the minimum area achievable using
arbitrary shapes. There is a clear tradeoff here: the inclusion of increasingly complex geometrical
objects in a layout will tend to reduce the minimum achievable layout area, but will also increase

the computational complexity of the associated machine aids.

We can informally characterize a simple layout language by examining figure 9, which contains a
description of the layout of an array of SRCELLs using such a language. The language describes
layouts as coliections of BOXes on various layers. BOX statements describe each of these boxes
by specifying their layer, the XY coordinates of their lower left corner and then their length, LX,
in the x direction, and LY, in the y direction. The use of a box comer 1o encode its location
simplifies the encoding task. BOX statements may describe arrays of identical boxes, with the
array's lower left corner origin at XY, by including optional parameters which specify the
number NX and replication interval IX in the x direction, and NY and IY in the y direction.
Dimensions are given in the length unit, \. A SCALE statement defines the value of A for this

particular layout as A = 3.0 microns.

In figure 9, the SRCELL is first described as a macro, or SYMBOL. The reader can verify that
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the collection of BOXes in the definition of the SYMBOL SRCELL, when ORed together,
produces the layout in figure 8b. This SRCELL is then replicated a number of times in various

layout locations according to parameters in several DRAW statements,

Each DRAW statement describes the placement of an array of cells as follows: The cell
described by the named SYMBOL. definition is considered to be drawn at the origin. It is then
mirrored (about the x and/or y axis), and/or rotated (by 0°, 90°, 180°, or 270°) about the origin,
as specified by MIRROR or ANGLE transformations. The cell thus positioned may then be
replicated NX limes at distance intervals IX in the x direction, and that row of cells may then be
replicated NY times at intervals IY in the y direction. The resulting array of cells is then
translated a distance X,Y from the origin, and placed into the layout.

SCALE LAMBDA =3.0MICRON;

SYMBOL  START, SRCELL;

BOX DIFF,X=3Y=0LX=4LY=4NY=2IY=1%

BOX DIFF X =2,Y=31LX=6LY=9;

ROX DIFFX=8Y=81X=3LY=2 INVERTER OUTPUT
BOX DIFF,X=9,Y=10,LX=2LY=];

BOX DIFF X=9,Y=11LX=7LY=2

BOX DIFF X =16,Y=9,LX=4,LY=4;

BOX DIFF X=4,Y=12,LX=2LY="T:

BCX IMPL X 25 Y-05LX=5LY=10; PULLUP IMPLANT
BOX POLY X=0,Y=51X=10LY=2; CELL INPUT

BOX POLY.X=12,Y=0,LX=2LY=26; CLOCKLINE

BOX POLY.X=16Y=5LX=5LY=2: CELL OUTPUT

BOX POLY X=16,Y=7LX=4LY=3;
BOX POLY X=2Y=111X=6LY=T,
BOX CUTS,X=4,Y=11X=2LY=2NY=2IY=19
BOX CUTS.X=17Y=8,LX=2LY=4:
BOX CUTS. X =4,Y=9,LX=2LY=4:
BOX  METLX=0Y=0LX=21,LY=4NY=21Y=19: VDD & GND
BOX METLX=3Y=8LX=4LY=6
BOX METL, X=16,Y=7,LX =4LY=6;
SYMBOL END;

DRAW  SRCELLNX=4NY=2IX=211Y=38X=0Y=0
DRAW  SRCELL MIRRORX NX=4IX=21X=0,Y=42;

END:

Figure 9. Symbolic Description of Shift Register Array
The "program” in figure 9 describes an array of 3 rows and 4 columns of SRCELLSs. After
machine assembly of this program, the resulting design file can be used to generate check plots,

which may be inspected to detect errors made in encoding the layout. A check plot of one
SRCELL is given in figure 10a, and we see that the cell has been correctly digitized. A set of
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stipple patterns is used in this check plot to encode the different system layers, with the coding
specified in figure 10b. If available, color checkplots are much better: color checkplots can be
made denser and still be readable, and association of colors with layers and functions is more
easily made and subject to fewer errors in practice. Note: the implant layer hasn’t been plotted

in fig. 10a, so that the other layers may be more easily seen.

A check plot of the complete 3 by 4 array of cells is given in figure 11 (again the implant layer is
not plotted). Although figure 11 is of insufficient scale to check details within the cells, it enables
us to check for correct refative placement of the SRCELLs. The individual cell outlines are
included in figure 11, to indicate the nature of the placement of the central row of the array. By
mirroring the central row prior to its placement, that row is able to share VDD and GND with
the other two rows, thus reducing the overall array size. There is one column of cells per 21
lambda in the x-dircction, and one row of cells per 19 lambda in the y-direction. It is very
important (o note that the outcome of each DRAW statement is determined by the order in which
any mirror, rotate, replicate, and translate operations occur (see the section on the Caltech
Intermediate Form, and also R2, Ch.6). Any permutation in the order of these operations may

lead to a completely different result,

In chapter 3 we found that the PLA is a useful subsystem structure, often used to implement
fnite state machines and combinatorial logic. We now present a worked out example of a PLA’s
layout, to further clarify symbolic layout description. Chapter 3 contains several stick diagrams of
PLAs (figs. 13c, 15f). An examination of these stick diagrams reveals that the PLA can be
constructed using 6 basic cell types and a slight amount of "random wiring". Once these 6 basic
cells have been layed out by hand and symbolically digitized, it is easy to construct symbolic
descriptions of different sized PLAs having various numbers of inpuls, product-terms, and

outputs.

The digitized layouts of four of these basic cells are check plotted in figure 12. The AND and
OR planes of the PLA are constructed as arrays of the 14A by 14A PLAcellpair cell piotted in
figure 12a, which contains two poly and two metal signal lines, and one ground line on the
diffusion layer. Diffusion paths may be added in any of four locations in such cells to form
transistors, and thus program the PLA. The connection between the AND and OR planes is
made using the PLAconnect cell plotted in figure 12b: these cells change the signal paths from
the metal to the poly layer. The pullup transistors to be placed at the edges of the AND and OR
planes are implemented by the PullupPair cell in figure 12c. The ground return paths, to be
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connected to the diffusion lines crossing the planes, are implemented by the PLAground cell in

ﬁgufc 12d. The PLAground cell is structured so that rows of the cell may be inserted at intervals

within AND planes, and columns of the cell inserted at intervals within OR planes, to provide

proper ground returns in large PLA’s. The two other cell types required are the input drivers

and output inverters: these cell layouts are left as exercises for the reader. The cells in figure 12

have been collectively planned so as to fit on a 14A pitch surrounding the PLA’s planes. Figure

13 contains a symbolic description of each of these cell types, and a description of a moderate

sized PLA constructed from these cells:

Figure 13. Symbelic Description of a S-Input, 10-Pterm, 8-Output PLA

SCALE LAMEDA =3.0MICRON;

1

SYMBOL
BOX
BOX
BOX
BOX
BOX

SYMBOL

SYMBOL
BOX
BOX
BOX
BOX
BOX
BOX
BOX
BOX
BOX
BOX

SYMBOL

SYMBOL
BOX
BOX
BOX
BOX
BOX
BOX
BOX
BOX
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PLA CELL DEFINITIONS:

START PLACELLPAIR;
DIFFX=0Y=1LX=4LY=4NY=2IY=7;
DIFF X=8Y=01X=2LY=14;

POLY X=5Y=0LX=2LY=14 NX=2]1X=6;
CUTSX=1¥=21X=2LY=2NY=2IY=T7;
METLX=0Y=LLX=14LY=4NY=21Y=T;
END;

START PLACONNECT;
DIFFX=0Y=11X=4LY=4NY=2IY="T.
DIFFX=9Y=4LX=4LY=4;
DIFFX=13Y=41X=3LY=2;

POLY X=6Y=11LX=HLY=2NY=21Y=§;
POLY X=31Y=11X=3LY=4NY=21Y=T,;
POLY X=14Y=7LX=2LY=2
CUTSX=1Y=2LX=4LY=2NY=21Y=T;
CUTSX=10.Y=51X=2LY=2:
METLX=9Y=01LX=4LY=14;
METLX=0Y=1LX=6LY=4NY=21Y=7,
END;

START.PULLUPPAIR;
IMPLX=835Y=05LX=11LY=35:
IMPLX=05Y=451LX=5LY=8.
IMPLX=05Y=75LX=%LY=5,
DIFFX=0Y=11LX=4LY=4;
DIFFX=4Y=21X=16LY=2,
DIFFX=2Y=51X=2LlY=4;
DIFFX=2Y=91X=18LY=2;
DIFFX=9Y=8LX=4LY=4;
POLYX=10Y=01LX=8LY=6;
POLY X=18Y=1LX=2LY=4;
POLY X=8Y=8LX=21LY=4;
POLY X=0Y=7LX=8LY=6,
POLY X=0Y=6LX=6LY=1,
CUTSX=1Y=21X=21Y=2NX=2IX=17;

[SEE FIGURE 12A.]

DIFF TO GND

METL TO PULLUPS

[SEE FIGURE 12B]

GND

[SEE FIGURE 12C)
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BOX
BOX
BOX
BOX
SYMBOL

SYMBOL
BOX
BOX
BOX
BOX
BOX
BOX
BOX

SYMBOL

SYMBOL

CUTS.X=8Y=9LX=4LY=2
METLX=0Y=0LX=4LY=14;
METLX=7Y=8LX=6LY=4
METLX=17.Y=1LX=4LY=4;
END;

START.PLAGROUND;
DIFFX=8Y=11X=2LY=9
DIFFX=6Y=3LX=4LY=4;

POLY X=3Y=0LX=2LY=1)

POLY X=5Y=0LX=2LY=INY=2IY=48;
POLY X=11Y=11X=2LY=9;
CUTSX=7Y=41LX=2LY=2
METLX=0Y=3LX=14LY=4;

END;

START,PLAINPUT;

i insert symbol definition: size; 14 wide by ~35 high ]

SYMBOL

SYMBOL

END;

START PLAOUTPUT;

[ inscrt symbol definition; size: 14 wide by ~41 high |

SYMBOL

DRAW
DRAW
DRAW
DRAW
DRAW
DRAW
DRAW
DRAW
DRAW
BOX
BOX
BOX
BOX
BOX
BOX
BOX
BOX
BOX
BOX
BOX
BOX

BOX
BOX
BOX
BOX
BOX
BOX
BOX

END;

LAYOUT S5-INPUT,10-PTERM 8-OUTPUT PLA:
[SEE FIGURE 14}

(SEE FIGURE 12D

GND

PLACELLPAIR NX=5NY=51X=141Y=14X=0Y=Q:

PLACONNECT NY =51Y=14X=70,Y=0:
PULLUPPAIR NY =5IY =14 X=-19,Y=0

PLAGROUND.NX =5 NY=2IX=141Y =79.X=0,Y =-10
PLACELLPAIR ANGLE = 270 NX =4 NY =5IX=14]Y =14, X=86Y =14;
PULLUPPAIR ANGLE =27 NX =4IX=14 X =86.Y =89
PLAGROUND.ANGLE=2 NY=51Y=14X=141Y =14;

PLAINPUT NX =5IX=14X=0Y =44
PLAOUTPUT NX =5IX=14X=86Y=-41
DIFF X=70Y = -15LX=4,LY =4;
CUTS.X=71Y=-141X=2LY=2
METLX=70Y=-15]1.X=4LY=4
METLX=-19Y=70LX=4LY=9:
METLX=-19.Y =T9LX=105.LY =4
METLX=82Y=83LX=4LY=48
METLX=142Y=85LX=9LY =4
METLX=151Y=-40LX =4 LY =129
METLX=142Y=-401LX=9LY=4
METLX=-19¥=-151X=19LY =4
METLX=-19Y=-11LX=4LY=11:
METLX=70Y=71LLX=9LY=4;
METLX=70.Y=-71LX=9LY=4
METLX=70Y=-24LX=9LY=4
METL.X=79.Y=-45LX=4LY=45
METLX=83Y=-211X=3LY=4:
METLX=142Y==211X=2LY=4
METLX=144Y=-211X=4LY =21
POLY X=-4Y=-43LX=4LY=2
POLY X=142Y=-7T1X=15LY=2

YDD
vDD
VDD
vDD
vDD
vDD
vDD
vbD
GND
GND
GND
GND
GND
GND

PH1
PH2
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[ insert the PLA ‘"program”, using BOXes on the diffusion
layer to form tramsistors in the PLAcellpair cells ]

[ insert the PLA’s input, output, clock, and power connections ]

END:

A check plot of the PLA described above is given in figure 14. This check plot has been
simplified to include only the outlines of the basic cells, plus the additional wiring necessary to
complete the PLA. The dimensions and orientations of the cells may be found by comparing
these outlines with the cell detéils in figure 12 Note that in figure 12 some of the connection
points, where paths leave or enter at cell edges or where internal connections may be later
inserted, are tagged with tick marks. Cell placements and orientations in the check plot may be
visualized by locating and identifying the appropriate connection point marks. A comparison of
the check plot with the symbolic description above will clarify the function of the various DRAW
statements. To assist in this comparison, the origin cell of the array of cells produced by each
DRAW statement has been marked in figure 14 with its cell name. Note that this PLA layout
could contain the PLA example of chapter 3, fig, 15f.

Symbolic layout languages are easy to define, and may be primiiive or sophisticated, according to
the requirements of the user. The function of the assembler for such a language is simply to scan
and decode the statements and translate them into design files in intermediate form. Conversion
of design files into check plot or pattern generator output files is straightforward for the above
stmple language, since we have used only boxes with a severe constraint on angular orientations.
MIRROR and ANGLE transformations are easily handled: x and y coordinates of symbols and
boxes are simply replaced by ®x or =y, according to the specific parameters, during the
instantiation of symbols and drawing of boxes prior to their replication and translation into, the

layout output file.

The cffectiveness of the above language could be further increased by constructing an assembler
capable of handling nested symbols. By using nested symbols, system layouts may be described
in a hierarchical manner, leading to very compact descriptions of structured designs. At the
lowest level, one might define symbols for such small but commonly encountered structures as
the various forms of contacts. Boxes and these simple symbols could then be used to construct
cells such as those in the PLA example above. The PLA could be constructed with these cells,

and then defined as a symbol to be used in a larger design. An example of the sort of function
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one might add to create a much more sophisticated language, and language processor, would be
the capability of generating the layout description of a PLA from the collection of basic cells, as a

function of its input, pterm, and output size parameters and logic function parameters.

Figure 15 summarizes the procedures and artifacts of hand layout, and layout description and
digitization using a layout langauge. By studying figure 15, and thinking back over the materjal
and examples of this section, one can visualize a complete, though primitive, sequence of steps
sufficient to prepare a design for implementation. These procedures are entirely adequate for
preparing small LSI projects for implementation. The procedures may also be used for those

large LSI systems which have highly structured designs.

The primary obstacle that these primitive procedures place in the path of the system designer is
the sheer time and effort it takes to get through the loop to a new check plot each time a small
design change is made. The enthusiasm aroused by a sudden insight, such as the conception of a
completely new topological possibility for an important system cell, can be dampened by the
tedious tasks of hand layout and box digitization required before one can really see the full effect

of the idea on the overall system layout.

Thoush ofter supported by large batch mode CAD cystems for contzining, modifying,
checkplotting, and simulating designs, the majority of LSI layout now done in indusiry begins
with hand layout. Digitization is usually simplified by the use of digitizing tables, which are
much like graphics plotters in reverse: a new section of a design, laid out by hand, is placed on
the table and digitized by tapping switches while manually following the outlines of the cell’s
boxes with a pointer. Although this is less tedious than digitization using a layout language, it is

still time-consuming and hardly interactive.

The next section describes an interactive graphics layoul system which enables the system

designer to quickly sketch new layout ideas and see their effect immediately.
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An Interactive Layout System

(Section contributed by Douglas Fairbaim, Xerox PARC, and James Rowson, Caltech]

Computing hardware of sufficient power to support highly interactive graphics has in the past
been quite expensive, and this has inhibited the widespread application of interactive computing
techniques. However, because of expected advances in VLSI technology, we are rapidly
approaching the day when many will have access to personal computers with computing power
rivaling today’s medium to large-scale systems. It will be more difficult to provide effective
software for these sysiems than it will be to build the computers themselves.2 In this section we
describe a highly interactive layout system which runs on a modest personal computer, rather
than on an expensive, limited access, centralized system. This system was developed anticipating
the work environment of the future, in which most "knowledge" workers will have personal

computers as part of their normal office equipment.

ICARUS! (Integrated Circuit ARtwork Utility System) is a sofiware system which enables the
user 1o create and modify an integrated system layout directly on a CRT display screen.
ICARUS was conceived with the idea that the designer would create and edit a layout at the
display, withoul doing any more than a rough sketch or "stick diagram” before beginning work.
Creating and moving items is fast and easy enough so that the designer can truly sketch on the
screen. Once the layout is basically correct, the items can be moved or modified to arrive at the

most compact layout.

The user is required to remember very little about the available commands or their use because
the commands themselves are displayed on the screen and the system prompts the user for
additional information as it is nceded. The system can format and output check plots to matnx
Lype printers or on raster-scan laser printers. ICARUS design files can be used to create standard
pattern generation files from which masks can be made. An overview of design and layout
procedures using the system is given in figure 16. It is instructive to compare this with figure 15,

which presents equivalent steps for hand layout.

All the software to accomplish these various steps runs on a small experimental minicomputer
known as the Alto. This machine was designed by researchers at Xerox PARC as a general
purpose personal computer suitable for both text and graphics applicationsz. No additional,
special hardware is used by ICARUS. The ICARUS system is programmed in BCPL, an
ALGOL-like high level language. There are about 30K words of compiled code in the system of
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which half is in memory at any given time. At minimum, the Alto memory has 64K 16 bit
words. A 2.5 Mbyte cartridge disk drive is an integral part of the system. The user interacts with
the system through an unencoded keyboard (software definable keys) and with a pointing device
called a mouse (R2, pl73). A cursor is controlled on the screen by moving the mouse around on
a small area of the user's desk. A bit map display with a resolution of 600x800 dots is used for

output, and printers for doing check plots are available through an in-house computer network.

The ICARUS display features two windows which provide a flexible working view of the layout,
as shown in figure 17. The upper window is normaily used for viewing a large piece of the
layout at small magnification, and the lower window used for looking at a smaller section in more

detail. The magnifications of the windows may be set independently.

In addition to the two windows there are various menus and status lines presented in the display.
The menu on the left is the command menu. The menu under the upper window is the
parameter menu. Under the parameter menu is the stipple menu, containing the mask level codes.
Rectangles at a given level are stippled with the pattern for that level. The patterns were chosen
so that, where necessary, one pattern could be seen through the other Lo verify that appropriate
layers are overlapping properly. Current drawing coordinates and the status of system memory

space are displayed to the right of the stipple menu.

The user interface is implemented principally through the display, the mouse and five
conveniently located keys on the keyboard. Frequently used commands are given using only one
or two simple hand operations, and can be done without glancing away from the display. These

characteristics, coupled with rapid display redrawing, enhance the system’s interactiveness.

The internal data representation in ICARUS is based on three types of items: rectangles, symbols,
and text strings. The organization of these items into memory data structures, and the typical

run-time memory space allocation is illustrated in figure 18.

Rectangles are created with the aid of the mouse. They may have angular orientations which are
integer multiples of 45°. They can be moved, copied, or deleted using the mouse and one key.
As items are created, they are added to an item list in main memory. Each rectangle is stored as
6 words in memory: the first word is the pointer to the next item, the second specifies what layer
it is on, what type of item it is, etc. The third through sixth words specify the minimum and

maximum x and y coordinates. The items are kept in order of increasing values of minimum X
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coordinate, so that the display may be quickly redrawn,

When a symbol is defined by the user, the items which are contained within it are stored on the
disk, while a pointer, the name and the bounding box for the symbol are placed in main memory.
Symbols can be nested to any level. Once a symbo! definition has been created, one is free to
define symbol instances which are references to that definition. The symbol instance may be a
command to draw one copy of the symbol at a certain location, or a whole array. The size of the
symbol instance, which resides in main memory, is the same in both cases. The use of symbols
wherever possible tends to preserve main memory space. Rather large systems can be designed
using ICARUS, if the systems are well structured and make extensive use of symbols. This is

true even when using a minimum sized 64K memory, which leaves little space for layout data.

Text is used for identifying data and control lines and is merely a memory aid to the user. There
is no attempt to make use of the text or other information in the drawing for connectivity or

other types of checking.

Operations more complex than those such as draw and move are implemented through the use of
menus as shown in figure 17. The desired command is chosen by pointing at it with the cursor
and clicking a mouse butten. The selected command is then inverted te white on black video to
identify its selection, which the user then confirms with a key on the keyboard. At this point, the
system prompts the user with instructions presented in the display area normally holding the
stipple menu. The instructions lead the user through the individual steps required, for example,

to mirror or rotate a group of items.

Operations on symbols are defined in a secondary menu which can be reached by selecting the
command "symbols" on the primary menu. The secondary menu offers commands such as define
symbol, draw symbol, list the names of the symbols in the symbol library, or expand symbol.
This last command is used to modify a symbol which is already defined, the modified symbol

definition immediately updating all symbol instances which point to it.

Various system parameters are displayed in the parameter line directly below the top window,
Values such as the default line width for the currently selected layer, the magnification of the top
and bottom windows, and the spacing of the tick marks are all displayed. The parameter values
can be changed at any time by selecting the desired one and typing the new parameter value on

the keyboard. The X,Y layout coordinates of the point last clicked with the mouse are displayed
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at the right of the screen. The DX,DY distances between the last two clicks are also displayed.

This feature provides a convenient "ruler” for measuring distances on the layout.

The construction of an interactive layout system such as ICARUS is a relatively straightforward
task for one who is experienced in interactive computer graphics (R2), given a display oriented
minicomputer system and effective systems building software. A first version of ICARUS was

constructed in 3 man-months, and a mature version produced in an additional 5 man-months.

ICARUS has been used internally in Xerox to lay out many integrated system projects, and to
organize a number of multi project chips. Among the users were a number of individuals
previously unfamiliar with integrated circuit layout, who nevertheless successfully completed LSI
projects with up to 10,000 transistors. We find that the interactive nature of such a system not
only aids the experienced designer, but also enhances the learming process for the novice. We
believe that such interactive, personal design systems greatly enhance the creative ability of the
designer by enabling easy generation and examination of many more design alternalives per unit

time than would be the case with centralized, non-interactive design systems.

However. there is more to integrated system design than circuit layout. Design rules must be
checked, logic transfer functions tested, and, in certain cases, circuit transfer functions computed
to determine delays and predict system performance. We believe lhal- the direction in which to
search for further improvements in design tools is in the replacement of the primitive ICARUS
type of data structure with one which allows design functions other than just layout to also
interactively opefate upon the same data base. This is the subject of the later section on fully

integrated design systems.
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The.Caltech Intermediate Form for LSI Layout Description
[Section Contributed by Robert F. Sproull, Camnegie-Mellon University, and Richard F. Lyon, Xerox PARC]

The Caltech Intermediate Form (CIF Version 2.0) is a means of describing graphic items (mask
features) of interest to LSI circuit and system designers. Its purpose is to serve as a standard
machine readable representation from which other forms can be constructed for specific output
devices such as plotters, video displays, and pattern-generation machines. The intermediate form
is not intended as a symbolic layout language: CIF files will usually be created by computer
programs from other representations, such as a symbolic layout language or an interactive design
program. Nevertheless, the form is a fairly readable text file, in order to simplify combining files

and tracing difficulties.

The basic idea of the form is to specify literally every geometric object in the design using ample
precision. Use of this form provides participating design groups easy access to output devices
other than their own, enables sharing designs with others, allows combining several designs to
form a larger chip, and the like. It is not necessary for all participating groups to implement the
entire set of features of CIF, as long as their programs and documents contain warnings about
unimplemented functions; nevertheless, the syntax must be correctly interpreted by all programs

that read CIF, to assure a reasonable result.

CIF thus serves as the common denominator in the descriptions of various integrated system
projects. No matter what the original input methods are (hand layout and coding, or a design
system), the designs will be translated to CIF as an intermediate, before being translated again to

a variety of formats for output devices or other design aids.

The original CIF was conceived by Ivan Sutherland and Ron Ayers in 1976, Subsequent

improvements were contributed by Carlo Sequin, Douglas Fairbairn, and Stephen Trimberger.
This specification is divided into four parts: a description of the syntax of the form, a description

of the semantics, an explanation of the transformations used, and a discussion of the conversion

of wires to boxes.
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Syntax

A CIF file is composed of a sequence of characters in a limited character set. The file contains a
list of commands, followed by an end marker; the commands are separated with semicolons.

Commands are:

Command Form

Polygon with a path P path

Box with length, width, center, and direction B integer integer point point
{direction defaufts to (1,0) if omitted)

Round flash with diameter and center R integer point

Wire with width and path W integer path

Layer specification L shortname

Start symbal definition with index, a, b DS integer integer integer
{(a and b both default to 1 if omitted)

Finish symbol definition DF

Delete symboi definitions DD integer

Call symbol C integer transtormation

User extension digit userText

Comments with arbitrary text { commentText )

End marker E

A more formal definition of the syntax is given below. The standard notation proposed by
Niklaus Wirth}? is used: production rules use eguals = to relate identifiers to expressions,
vertical bar | for or, and double quotes " " around terminal characters; curly brackets { } indicate
repetition any number of times including zero; square brackets [ ] indicate optional factors (i. e.
zero or one repetition); parentheses ( ) are used for grouping: rules are terminated by period.
Note that the syntax allows blanks before and after commands, and blanks or other kinds of

separators (almost any character) before integers, etc. The syntax reflects the fact that symbol

definitions may not nest.

cifFile = { { blank } [ command ] semi } endCommand { blank }.
command = primCommand | defDeleteCommand |

defStartCommand semi { { blank } [ primCommand ] semi } detFinishCommand.
primCommand = polygonCommand | boxCommand | roundFlashCommand | wireComenand |

layerCommand | callCommand | userExtensionCommand | commentCommand.

"P" path.

“B" integer sep integer sep point [ sep point ]-
"R" integer sep point.

“W" integer sep path.

polygonCommand
boxCommand
roundFlashCommand
wireCommand

layerCommand “L" { blank } shortname.

defStartCommand "D" { blank } "S" integer [ sep integer sep integer ].
defFinishCommand "D" { blank } "F".

detDeleteCommand *D" { blank } "D" integer.
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"C" integer transformation.
digit userfext.

callCommand
userExtensionCommand

Hawn

commentCommand “{" commentText ")".
endCommand "E".
transformation = { {blank } ( "T" point { "M" { blank } "X" | "M" { biank } "Y" | "R" point } }.
path = paint { sep point }.
point = sinteger sep sinteger.
sinteger = {sep}["="1] integerD.
integer = { sep } integerD.
integerD = digit { digit }.
shortname =¢lellel{cl
c = digit | upperChar.
userText = { userChar }.
commeniText .= { commentChar } | commentText "(" commentText ")" commentText.
semi = { biank } ";" { blank }.
sep = upperChar | blank.
digit = IIOIO | "1“ i "2" | "3" I ll4" ‘ "51! l "6" I Il7“ I "B" [ “9".
uppEI‘Char = "A" I nBu l ncn I . I "Z".
blank = any ASCIt character except digit, upperChar, "~", ", M or .
userChar = any ASCII character except ";".
commentChar = any ASCII character except "{" or ")".
Semantics

The fundamental idea of the intermediate form is to describe unambiguously the geometry of
patterns for LSI circuits and systems. Consequently, it is important that all readers and writers of
files in this form have exactly the same understanding of how the file is to be interpreted. Many
of the decisions in designing the file format were made lo avoid ambiguity or smalt but
troublesome errors: floating point numbers arc avoided; there are no iterative constructs, though

there may be in future additions to CIF.

A simple file format might include only primilive geometric constructs, such as polygons, boxes,
flashes and wires. Unfortunately, the geometric description of a chip with hundreds of thousands
of rectangles on it would require an immense file of this sort. Consequently, we have made

provision for defining and calling symbols: this should reduce the size of the file substantially,
It is important that programs processing CIF files operate cautiously, maintaining a constant

vigilance for mistakes or entries that will not be processed properly. The description below

mentions implementation suggestions or cause for caution inside brackets [ ] .
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Measurements. The intermediate form uses a right-handed coordinate system shown in Figure
19a, with x increasing to the right and y increasing upward. (Directions and distances are always
interpreted in terms of the front surface of the finished chip, not in terms of the various sizes and
mirrorings of the intermediate artifacts.) The units of distance measurement are hundredths of a
micron (pm); there is no limit on the size of a number. [Programs reading numbers from CIF files should
check carefully to be sure that the number does not overflow the number of bits in the internal representation used,

and should specify their own limits, if any.]

Directions. Rather than measure rotation by angles, CIF uses a pair of integers to épecify a
"direction vector.” (This eliminates the need for trigonometric functions in many applications, and
avoids the problem of choosing units of angular measure,) The first integer is the component of
the direction vector along the x axis; the second integer along the y axis. Thus a direction vector
pointing to the right (the +x axis) coulci be represented as direction (1 0), or equivalently as
direction (17 0); in fact, the first number can be any positive integer as long as the second is zero,
A direction vector pointing NorthEast (ie., rotated 45 degrees counterclockwise from the x axis)
would have direction (1 1), or equivalently (3 3), and so on. [A (0 0) direction vector may be defaulted

to mean the +x axis: a warning should be generated).

Geometric primitives. The various primitives that specify geometric objects are not intended to be
mutually exclusive or exhaustive. CIF may be extended occasionally to accommodate more exotic
geometries. At the same time, it is not necessary to use a primitive just because it is provided.
Notice in the examples below that lower case comments and other characters within a command

are treated as blanks, and that blanks and upper case characters are acceptable separators.

Boxes: Box Width 60 Length 25 Center 80,40 Direction ~20,20; {or B60 25 80 40 -20 20;)

The fields which define a box are shown graphically in Figure 19a. Center and direction
(optional, defaults to +x axis) specify the position and orientation of the box, respectively.
Length is the dimension of the box parellel to the direction, and Width is the dimension

perpendicular to the direction.

Polygons: Polygon A 0,0 B 10,20 C -30,40; {or PO 0 10 20 ~30 40;)
A polygon is an enclosed region determined by the vertices given in the path, in order. For a
polygon with n sides, n vertices are specified in the path (the edge connecting the last vertex with

the first is implied; see Figure 19b). [Programs that try to interpret polygons may place various restrictions on
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theit paths: no set of consiraints has been generally accepted, and no program cutrently exists for converting

completely general polygons to pattern generator output]

Flashes: RoundFlash Diam 200 Center ~500,800; {or R200 -500 800;)
The diameter of a flash is sufficient to specify its shape, and the center specifies its position. (see

Figure 19b). [Some programs may substitute octagons, or other approximations, for round flashes.]

Wires: wire Width 50 A 0,0 B 10,20 C -3040; (or W50 0 0 10 20 -30 40))

It is sometimes convenient to describe a long, uniform width run by the path along its centerline.
We call this construct a wire (see Figure 19b). An ideal wire is the Jocus of points within one
half-width of the given path. Each segment of the ideal wire therefore includes semicircular caps -
on both ends. Connecting segments of the wire is a transparent operation, as is connecting new
wires t0 an existing one: the semicircular overlap ensures a smooth connection between segments
in a wire and between touching wires. [For output devices that have a hard time constructing circles, we
approximate the ideal wire with squared-off ends. Notice that squared-off ends work nicely for segments meeting at
right angles, but cause problems if wires or wire segments are connected at arbitrary angles. A way to circumvent this
problem is to convert, prior to output, any wires in a file into connected sets of boxes of appropriate length, width,
angle and center position (Figure 19¢). The width of each box is the same as the width of the wire. The length of
the boxes must be adjusted to minimize unfilled wedges and overlapping "ears”. An algorithm for constructing boxes
from a wire description is given in a later subsection, If the wire is specified within a symbol definiton, the

approximation need be computed only once, and can then be used each time the symbol is instantiated)

Layer specification: Layer ND nmos diffusion; (or LND))

Each primitive geometry element (pongon, box, flash, or wire) must be labeled with the exact
name of a fabrication mask on which it belongs. Rather than cite the name of the layer for each
primitive scparately, the layer is specified as a "mode” that applies to all subsequent primitives,

until the layer is set again (layer mode is preserved across symbol calls, which are discussed later).

The argument to the layer specification is a short name of the layer. Names are used to improve
the legibility of the file, and to avoid interfering with the various biases of designers and
fabricators about numbers {one person's "first layer” is another’s "last”). (The intention of the layer
specification command is to iabel locally the layer for a particular geometry. It is therefore senseless to specify a box,
wire. polygon or flash if no layer has been specified. In order to detect this error, the command LZZZZ is implicitly
inserted at the beginning of the file, and as the first command of a symbol definition (DS; see below). Any attempt

to generate geometric output on layer ZZZZ will result in an error.]
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It is important that layer names be unique, so that combining several files in intermediate form
will not generate conflicts. The general idea is that the first character of the name denotes the
technology, and the remainder is mnemonic for the layer. At present, the following layers are
defined:

ND NMOS Diffusion

NP NMQS Polysilicon

NG NMOS Contact cut

NM NMOS Metal

NI NMQS depietion mode Implant
NB NMOS Buried contact

NG NMOS . overGlass openings

New layer names will be defined as needed.

{Programs that tead CIF will want to check to be sure that layer names used do in fact correspond to fabrication

masks being constructed. However, the file may cite layer names not used in a particular pass over the CIF file. It

would be helpful for the program to provide a list of the layer names that it ignored.]

Symbols. Because many LSI layouts include items that are often repeated, it is helpful to define
often-used items as "symbols.” This facility, together with the ability to "call” for an instance of
the symbol to be generated at a specific position, greatly reduces the bulk of the intermediate

form.

The symbol facilities are deliberately limited, in order to avoid mushrooming difficulties of
implementing programs that process CIF files. For example, symbols have no parameters; calling
a symbol does not allow the symbol geometry to be scaled up or down; there are no direct
facilities for iteration. The main reason for symbol facilities is 1o limit the file size; if the symbol
mechanism is not adequate for some application, the desired geometry can still be achieved with
less use of symbols, and more use of explicit geometrical primitives. [Symbols need not be used at alk;
this eliminates the need for intermediate storage for symbol definitions, but results in larger design files. Machines
which must process a fully-instantiated representation of a layer (such as pattern generators} might only accept CIF

files without symbol definitions, to reduce the cost of implementation. Therefore, it would be useful to have a

program that would convert general CIF files to fully instantiated CIF files, and maybe to sort by layer, location, or

whatever.]

The ability to call for iterations (arrays) of symbols is not provided in CIF Version 2.0. This is
primarily due to the difficulty of defining a standard method of specifying iterations, without

Fm i e LML T UL Ol 0. T oice 1 o Flemceenss % mamrimaed alni Tl T 10770 R:NG DAL



24

introducing machine-dependent computation problems. It is still possible to achieve a great deal
of file compaction by defining several layers of symbols (e.g. cell, row, double-row, array, etc.).
However, the ability to iterate symbotl calls is a likely prospect for a future addition to CIF.

Defining symbols: Definition Start #57 A/B = 100/1; ... ; Definition Finish; (or DSS7 100 1; ... ;DF3)
A symbol is defined by preceding the symbol geometry with the DS command, and following it
with the DE command. The first argument of the DS command is an identifying symbol number

(unrelated to the order of listing of symbol definitions in the file).

The mechanism for symbol definition includes a convenient way to scale distance measurements.
The second and third arguments to the DS command are called a and b respectively. As the
intermediate form is read, each distance (position or size) measurement cited in the various
commands (polygons, boxes, flashes, wires and calls) in the symbol definition is scaled to
(a*distance)/b. For example, if the designer uses a grid of 1 micron, the symbol definition might
cite all distances in microns, and specify a=100, b=1. Or the designer might choose lambda
(characteristic fabrication dimension) as a convenient unit. This mechanism reduces the number
of characters in the file by shrinking the integers that specify dimensions and may improve the
legibility of the file (it does not provide scaling, or the ability to change the size of a symbol

called within the definition).

Definitions may not nest. That is, after a DS command is specified, the terminating DF must
come before the next DS. The definition may, however, contain calls to other symbols, which

may in turn call other symbols.

There is only one restriction on the placement of symbol definitions in the file: a symbol must be
defined before its instantiation becomes necessary. This constraint can be satisfied by placing all
symbol definitions first in the file, and then calls on the symbols. In fact, it is often convenient
to have the file consist exclusively of symbol definitions and ONE call on a symbol. This call
will be the last command in the file before the end command. {If a definition redefines a symbol that
already exists, the previous definition is discarded: a warning message should be generated. When several pecple

contribute to a design, some symbol management is therefore necessary; see Deleting symbol definitions below.]

Calling symbols. Call Symbol #57 Mirrored in X Rotated to =1,1 then Translated to 10,20;

The C command is used to call a specified symbol and to specify a transformation that should be



applied to all the geometry contained in the symbol definition. The call command identifies the
symbol to be called with its "symbol index,” established when the symbol was defined.

The transformation to be applied to the symbol is specified by a list of primitive transformations

given in the call command. The primitive transformations are:

T point Translate the current symbol crigin to this point,
M X Mirror in X, i.e., multiply X coordinate by =1.
MY Mirror in Y, i.e., mulliply Y coordinate by =1.

R point Rotate symbol's x axis to this direction.

Intuitively, each coordinate given in the symbol is transformed according to the first primitive
tranformation in the call command, then according to the second, etc. Thus "C1 T500 0 MX"
will first add 500 to each x coordinate from symbol 1, then multiply the x coordinate by -1.
However, "C1 MX T500 0" will first multiply the x coordinate by -1, and then add 500 to it: the
order of application of the transformations is therefore important. In order to implement the
(ransformations, it is not necessary to perform each primitive operation separately; the several

operations can be combined into one matrix multiplication {see the subsection on

transformations).

Symbol calls may nest; that is, a symbol definition may contain a call to another symbol. When
calls nest. it is necessary to "concatenate” the effects of the transformations specified in the
various calls (see the subsection on transformations). {There is no sensible way in which a symbol may be
invoked recursively (i.e., call itself. either directly or indirectly). Programs that read the intermediatz form should
check that no recursion occurs. This can be achieved by rctaining a single flag with each symbol to indicate whether
the symbol is currently being instantiated: the flags are initialized to “false” When a symbol is about to be
instantiated, we check the flag; if it is "true,” we have detected recursion. print an error message and do not perform

the call. Otherwise, we mark the flag "true” instantiate the symbol as specified, and mark the flag “false” when the

instantiation is complete.]

Layer settings are preserved across symbol calls and definitions. Thus, in the sequence:

LNM;

56 20 O;

C 57 T45 13;
DS 114.;
DF;

LNM;
S300;
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the second LNM is not necessary, regardless of the specification of symbols 57 and 114.

Deleting symbal definitions: Delete Definitions greater than or equal to 100; (or DD100;)

The DD command signals the program reading the file that all symbols with indices greater than
or equal to the argument to DD can be "forgotten” -- they will not be instantiated again. This
feature is included so that several intermediate form files can be appended and processed as one.
In such a case, it is essential to delete symbol definitions used in the first part of the file both
because the definitions may conflict with definitions made later and because a great deal of

storage can usuaily be saved by discarding the old definitions.

The argument to DD that allows some definitions to be kept and some deleted is intended to be
used in conjunction with a standard “library” of definitions that a group may develop. For
example, suppose we use symbol indices in the range 0 to 99 for standard symbols (pullup
transistors, contacts, etc.) and want to design a chip that has 2 student projects on it. Each project

defines symbols with indices 100 or greater. The CIF file will look like:

/Definitions of library symbals;
DSO 100 1;

/ ...definition of symbol O in library,;
DF;

DS 1100 1;

/ ...definition of symbol 1;

DF;

/ ..remainder of library;

/Begin project 1;

DS1060 100 1;

/ ..first student's first symbol definition;
DF;

DS108 100 1;

/ .. first student’s main symbo! definition;

DF;

C109 T403 -110;/ calt on first student’s main symbol;

DD100:/Preserve only symbols § to 99;

/Begin project 2;

DS100 100 1;

/ ..second student’s first symbol definition;
DF;

DS113 100 1;

/ ..second student’s main symbol definition;

C1 T-3 45;/Calt on library symbol, still available;

OF;

C113 T401 0:/ call on second student's main symbol;

E



User expansion. 3SYMBOL.LIBRARY'; S:NONSTANDARD DESIGN RULES: LAMBDA = 4.0,

Several command formats (any command starting with a digit) are reserved for expansion by
individual users: the authors of the intermediate form agree never to use these formats in future
expansions of the standard format. For example, private expansions might provide for (1)
requesting that another file be "inserted” at this point in the processing, thus simplifying the use
of symbol libraries; (2) inserting instructions to a preprocessor that will be ignored by any
program reading only standard intermediate form constructs; or (3) recording ancillary
information or data structures (e.g., circuit diagrams, design-rule check results) that are to be

maintained in parailel with the geometry specified in the style of the intermediate form.

Comments. (HISTORY OF THIS DESIGN:);
The comment facility is provided simply to make the file easier to read. [t is possible to deactivate
any number of commands by simply enclosing them within a pair of parentheses, even if they already include

balanced parentheses.]
End Command: End of file.

The final E signals the end of the CIF file. [Programs that read CIF shouid gave an error message if the file

ends without an End Command. or a wamning if more text other than blanks follows the E]
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Transformations (see also reference R2)

When we are expanding a symbol, we need to apply a transformation to the specification of an
item in the symbol definition to get the specification into the coordinate system of the chip.
There are three sorts of measurements that must be transformed: distances (for widths, lengths),

absolute coordinates (for "points” in atl primitives) and directions (for boxes).

Distances are never changed by a symbol call, because we allow no scaling in the call. Thus a

distance requires no transformation.

A point (x.y) given in the symbol is transformed to a point (x',y") in the chip coordinate system

by a 3x3 transformation matrix T:

x v 11 = [xy 11T

(It is a good idea to check either the last column of T, or the 1 at the end of the transformed vector, even though

they never need to be computed.]

T is itsclf the product of primitive iransformations specified in the call: T = T1 T2 T3, where T1
is a primitive transformation matrix obtained from the first transformation primitive given in the
call, T2 from the second, and T3 from the third (of course, there may be fewer or more than 3
primitive transformations specified in the call). These matrices are obtained using the following

templates for each kind of primitive transformation:

Tab. Tn = 1 0 0
o 1 0
a b 1
M X Tn = -1 0
o 1 0
0 0 1
MY. Tn = 1 0 0
0 -4 0
c 0 1
Rab. Tn = a‘c b/¢c 0
-b/c  alc 0  wherec = Sartta®+b9)
o o 1

Transformation of direction vectors (x y) is slightly different than the transformation of
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coordinates. We form the vector [x y 0], and transform it by T into the new vector [x' y' 0]. The

transformed direction vector is simply (x' y'). [Note that some output devices may require rotations to be
specified by angles, rather than direction vectors. Conversion into this form may be delayed until necessary to

generate the output file. Then we calculate the angle as ArcTan(y/x), applying care when x=0]

Nested calls require that we combine the transformations already in effect with those specified in
the new call. Suppose we are expanding a symbol a, as described above, transforming each
coordinate in the symbol to a coordinate on the chip by applying matrix Tac. Now we
encounter, in a's definition, a call to b. What is to happen to coordinates specified in b? Clearly,
the transformations specified in the call will yield a matrix Tba that will transform coordinates
specified in symbol b to the coordinate system used in symbol a. Now these must be
transformed by Tac to convert from the system of symbol a to that of the chip. Thus, the full

transformation becomes
[x vy 1] = [x y 1] Tha Tac

The two matrices may be multiplied together to form one transformation Tbc = (Tba Tac) that
can be applied to convert directly from the coordinates in symbol b to the chip. This procedure

can be carried to an arbitrary depth of nesting.

To implement transformations, we proceed as follows: we maintain a “current transformation
matrix” T, which is initialized to the identity matrix. We use this matrix to transform all

coordinates. When we encounter a symbol call, we:

1. "Push” the current transformation and layer name on a stack.

2. Set layer name to ZZZZ. _

3. Collect the individual primitive transformations specified in the call into the
matrices T1, T2, T3 etc.

4. Replace the current transformation T with T1 T2 T4 .. T; ie., premultiply
the existing transformation by the new primitive transformations, in order).

5. Now process the symbol, using the new T matrix.

6. When we have completed the symbol expansion, "pop” the saved matrix and
layer name from the stack. This restores the transformation to its state

immediately before the call,
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Decomposing Wires Into Boxes

The following algorithm for decomposing wires into boxes was developed by Carver Mead, and
first implemented at Caltech by Ron Ayers; it was was further modified to be consistent with the
use of direction vectors, to allow more general path lengths, and to avoid use of trigonometric
functions. [Note that this decomposition covers more area than the locus of points within w/2 of the path for small

angles of bend, but less area for sufficiently sharp bends; in particular, if a path bends by 180 degrees (reverses) it

will have no extension past the point of reversal (it is missing a full semicircle). Other decompositions are possible,

and may better approximate the correct shape.]

Let the wire consist of a path of n points py,....p,.
Let w represent the width of the wire,
"Initialization:"”
IF n = 0 THEN DONE; "no path”
IFn = 1 THEN
{MAKEFLASK[Diameter « w, Center « p,]; "single-point gets a flash™;
DONE;};
i+ 1;
OldEntension « w/2; "initial end of wire"
Segment « p, - p;. "p, and p, are points in path, Segment is a vector {a point)”
"LoopConditions:”
FOR P, P, in path UNTIL B ¢ is last DO
"calculate the box for the segment from p; to p;, 1t"
IF p,,  is last THEN { Entension « w/2; "final end of wire” }
ELSE
{ "compute Entension for intermediate point:”
NextSegment « p,, 5 - P;,1i Next vector in path”
T « MATRIX[ X[Segment], -Y[Segment],
Y[Segment],  X[Segment] ;
"T transforms Segment to +x axis.”
Bend « MULTIPLY[ NextSegment, T J; "relative direction vector”
"if Bend is (0 0), delete p, . reduce n, and start over”
Entension « w/2 * ( ABS[Y[Bend]] /
( LENGTH[Bend] + aBS[x{Bend]] ) );
h
MAKEBGX [ { Length « LENGTH[Segment] + Entension + OldEntension; },
{ Width - w; },
{ Center « (p, + p;, /2 + ( Segment / LENGTH[Segment] ) *
(Entension - OldEntension)/2; },
{ Direction + Segment; “careful, may be zero vector” j R K
iei+1;
OldEntension « Entension;
Segment + NextSegment; "next vector in path”
ENDLOOP;
DONE;
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Fig. 19b. Other items in the intermediate Form

T transforms Segment to the +X axis

AB = Segment * T Simitar triangles BCD. EFG, BFH
BC = NexiSegment * T //\\ BC.CD:DB : EF.FG:GE : BF:FH:HB
Bend = Vector BC /' \‘ FG = FB + BG
Extension = BG = BH ’f/ . C \-\} = BH * (BC/DBY + BG
- e // = (1 + BC/DB) * BG
{ 1% - BG = FG / (1 + BC/DB)
T F}\ﬁ; G D = GE * (BC/DB) / (1 + BC/DB)
N = GE * (CD / (DB + BOY)

or Extension = w/2 * Y[Bend] / (LENGFH[Bend] + X[ Bend])

fig. 19¢. Converting Wires 1o Boxes
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The Multi-Project Chip

Insight into integrated system design is most quickly gained by actually carrying through to
completion several LSI design projects, each of increasing scope. A large, complex VLSI system
could be quickly and successfully developed by designers able to easily implement and test
prototypes of its subsystems. The separate subsystems can be implemented, tested, debugged, and
then merged together to produce the overall system layout. However, such activities are only
practical if a scheme exists for carrying out implementation with minimum turnaround time and

low procedural overhead per project.

In this section we describe procedures for organizing and implementating many small projects by
merging their layouts onto one multi-project chip. Then each designer of a small project or
subsystem need not carry the entire procedural burden involved in maskmaking and fabrication.
We also include a collection of practical tips and hints that may prove useful lo those undertaking
their first projects or organizing their first multi project chips. While the details in this section
are specific to present maskmaking and fabrication technology, they nevertheless give a feeling for
the sort of things that must be done to implement projects in general. In a later section we

discuss how muitiple project implementation might be done in the future.

Figure 20 contains a photomicrograph of a Caltech class project ch-ip containing 15 separate
student projects. The individual projects were simply merged together onto one typically sized
chip layout, approximately 3 mm by 4 mm, and implemented simultaneously as one chip type.
Most of these projects are prototypes of digital subsystems designed using the methodology of
this text. By implementing a smail "slice” of a prototype subsystem array, one can verify that its
design, layout, and implementation arc correct, and measure its power and delay characteristics as
yielded by the particular fabrication process, thus gaining almost as much information as would

be obtained by implementing the full array.

Following fabrication, the wafers containing such multi project chips are scribed, diced, and then
divided up among the participants. The typical minimum fabrication run is about 10 wafers, each
~75 to 10 cm in diameter. Thus even a minimum run provides a few thousand chips, and each
participant ends up with many chips. Participants may then each package their chips, bonding
the package leads to the contact pads of their individual projéct. Since most such projects are
relatively small in area, vields are unusually high: if a project’s design and layout have been done

correctly, most of the corresponding chips will work.
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Organizing a multi-project chip involves: (i) creating the layout of a starting frame, into which
the various projects are to be merged, (ii) gathering, relocating, and merging the project layouts
into the starting frame to create one design file and generating from this the PG files for the
overall project chip, and (iii) documenting various parameters and specifications to be used during

maskmaking and fabrication.

The starting frame contains all the auxiliary portions of the chip layout: scribe lines, alignment
marks, line width testers (critical dimension marks), and test patterns. The starting frame may
contain fiducial marks on each mask level if these are not to be placed by the mask house, and in
some cases may contain a parity mark on each level to mark the appropriate reticle side and
orientation during step and repeat reduction. A tip: placing a mask level name or symbol
somewhere within the chip’s scribe line boundary on each level helps prevent the fatal error of

level interchange at some time during project merging, maskmaking, or fabrication.

The contents of this starting frame must be carefully worked out to meet the requirements and
constraints of the chosen mask house and fab line. The important factor of turnaround time for
the entire mask and fab sequence may be reduced to some extent by repeatedly using a relatively
standard starting frame which then becomes familiar to ail those involved. Some typical values
for the time involved: 3 to 5 weeks for maskmaking, and then 3 to 4 weeks for fabrication, longer

if large work queues exist at the mask or fab firms.

When a multi-project chip is scheduled, a tentative chip partition for each project can be
negotiated among the participants. Project design and layout can then proceed, with iterations on
the space allocation being done right up till the final merging. The gathering and merging of
project layout files into one design file is simplified if they are in a common intermediate form.
Projects may then be relocated to their respective partitions of the chip, displayed, plotted, or
otherwise checked, using minimum and consistent software operating upon manageable sized files.
When the project chip appears correctly organized, pattern generator (PG) files are produced and

wrilten on a mag tape to be sent to the mask house.

An alternative to the merging of projects at the intermediate form level, is the relocation and
merging of their PG files. However, the PG files for major designs, containing fully instantiated
artwork, become unwieldy in size even at today's complexity. The PG file merging scheme is
workable for projects of small to moderate size, and does provide a contingency plan for

including projects having alien intermediate forms. If designs are relocated and merged at the
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PG level, additional software should be provided for displaying or plotting the chip at that level,
so that merging errors may be spotted. A tip: it is a good idea in any case to have some bounds

checking to prevent stray items of one project from clobbering another,

A thought: the interface between design groups and mask houses would be cleaner if design files
in a common intermediate form, such as CIF, rather than PG files were used to transmit designs
to the patterning process. Files would be much smaller. The use of data links would be eased.
The process to convert and sort design files into PG files, involving patterning mechanism
dependent optimization, would be appropriately located: in association with the particular

patterning mechanism.

Examples of Muiti-Project Chips:

The above concepts and some further possibilities may be clarified by examining the details of
some specific examples. Figure 21 illustrates a collaborative Xerox PARC/Caitech multi-project
chip set [organized by D. Fairbaim, D. Johannsen, R. Lyon, J. Rowson. 5. Trimberger]. The figure was
produced as a software blowback from the PG file, of the metal level of this chip set. Projects in
the set ranged in scope from the test of a few cells of an experimental, Jow power shift register [C.

Sequin, U. C. Berkeley, and R. Lyon. Xerox PARC], up !0 a complete content addressible cache memory

system [D. Fairbairn].

Although several of the projects in the set are fairly large, all were individually designed to yield
chip sizes packagable in standard 40 pin packages, which can hold chips up to ~ 7 mm square.
The pattern generator at the intended mask house was a GCA/D.W.Mann 3600, and the
photorepeater was a Mann 3696. Together, these can produce 10x reticles having field sizes as
large as 10 cm square, and can reduce, step, and repeat these at a maximum of 10mm x.y
intervals onto masks. Therefore, the 3600/3696 can provide masks for square chips up to 10 mm
(10,0001) on a side. A 10mm square chip can hold the patterns of several normally sized chips.
By including inferior scribe lines in the starting frame, as indicated in figure 21, one reticle set can
be patterned on the Mann 3600 to contain a number of different chips, each of which may
contain more than one project. When masks are made, each reticle is photorepeated at intervals
in x,y corresponding to its outer dimensions minus some scribe line overlap. In the example in

figure 21, the x,y stepping distances were both ~9700 microns. Fabricated wafers are scribed and
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diced on all scribe lines, including the interior ones, to yield chips of typical sizes. One of the
projects, on the lower left chip in figure 21, is an experimental charge coupled device array [R.
Daviesj. The CCDs rode along on this chip set to obtain working masks for use in a completely

different process technology (triple poly) from the standard nMOS the other projects used.

Figure 22 provides a higher magnification PG file software blowback of the region near the
center of the left scribe line of the chip set. Alignment marks and line width testers (C/D’s) were
placed in this region, as noted in the figure. Software blowbacks of individual mask levels, more
closely resembling the reticles and masks than would a composile design checkplot of all levels,
are useful in conveying such location information to the mask and fab houses. Parity marks were
not needed on the reticles for this project chip set. Fiducial marks were placed on the reticles by
the mask house. Since the software converting the design files to PG files had just been
constructed prior to organizing this chip set, reticle blowbacks were requested before proceeding
further with maskmaking to verify that everything through pattern generation had worked

correctly.

Some other practical details: Participants in the chip set shared some of the commonly used
layoul items normally required in any project. Examples were input contact pads with attached
"lightning arrestor” circuils to protect the input MOSFET gates, and output drivers snaked
around and attached to output pads. - Even at current device sizes, pads occupy a large fraction of
the chip area for large collections of projects, and participants tend to make the pads as small as
their bonding skill allows. A square pad ~75pm on a side is a rather small bonding target, and
125um on a side is casier for the novice o hit. Perhaps ~100pm square pads separated by
~75um is a good compromise, and these should be at least 25um from any other metal lines to

avoid shorting the lines when bonding.

The scribe lines on this chip set were laid out as 140pm wide cuts down to 160um wide paths on
the diffusion level, to provide lanes free of oxide for scribing or sawing. Metal paths 30pm wide
were then laid out straddling the boundaries of these scribe lines, to provide electrical contact
from the substrate to the rhetal during the etching of the metal layer. Since all the projects on
this chip set were prototype designs, and were not intended to be placed in extended use, the
chips were not overglassed. Eliminating the overglassing meant that a mask level for defining
cuts through overglassing over the contact pads and scribe lines was not needed, reducing
maskmaking costs. On the other hand, the chip set included a mask level to pattern the thin gate

oxide, to provide buried contacts between diffusion and poly that do not require metal coverage
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as does the butting contact. Such buried contacts enable more compact layouts, but are subject to

a rather complex set of design rules, require an extra mask level, and sometimes reduce yield and

reliability.

Deleting the overglassing process step also made it possible to electrically probe interior points on
the chips during testing, probing small metal test pads included in the layouts. Such pads must
be placed with care, however, because they hang relatively large capacitances onto circuitry and
slow it down. Note that test pad probing requires special jigs and a stereo microscope, and that it
is only possible to directly probe the metal layer. Testing uncovercd chips may also require
reduced light levels. The operation of dynamic circuits, i.e. those which use a pass transistor
input into a gate having no other electrical connection, can be severely affected by light. Light
induces leakage currents in the n-p junction between source and drain regions and the substrate,
At room temperature, charge stored on dynamic nodes can be retained for many milliseconds in
the absence of light. However, in normal room light the retention time is reduced to tens of
microseconds. Thus care should be taken to avoid high light levels when long clocking periods

are used. Dynamic memory chips are packaged in opaque black packages because of this effect.

A software blowback of the metal mask PG file of another project set, organized at Caltech, is
shown in figure 23. The total area of this multi-project chip set is ~ 1 cm?. It is subdivided into
four major sections: The lower right quadrant contains the OM2 Data Path Chip described in
Chapter 5, layed out using A = 2.5upm. The upper right quadrant contains a 16 by 16 hit
multiplicr with on-board accumulator [by Rod Masumoto, Caltech), also using A = 2.5um. The lower
left quadrant contains a subsystem, laid out using A = 2.9um, which converts output from one
port of a compuler memory into the red, green, and blue analog signals for driving a color TV
monitor. The upper left quadrant contains 28 projects, mostly from students in an LSI Systems
course at Caltech. Other small projects are located along the left edge of the multiplier, and in
the unused area within the TV subsystem project. The source material for this project chip set
was generated on three different computer systems, in two different languages. Check plotting
and viewing were done on three other systems. In addition to the Caltech projects, this chip set
contains projects from Carnegie-Mellon University, Washington University (St. Louis), University
of California, Irvine, and the Jet Propulsion Laboratory. Approximately 500,000 pattern
generator rectangles were required to pattern the reticles for the five mask levels used in this

project set. Conversion from intermediate form to PG files required ~10 CPU hours on the

Caltech DECsystem 20.
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The masks for the multi-project chip sets shown in figures 21 and 23 were produced by Silicon
Valley mask houses from PG tapes, accompanied by PG file software blowbacks showing the
locations of auxiliary layout items used during implementation, and by spec sheets containing a

list of mask and fab specs and parameters. These spec sheets contain two types of information:

(i) that which the mask house will need for reading the PG tape, generating the reticles, and
stepping the master masks. This includes whether dimensions are in Metric or English units,
whether fiducials and parity marks have been laid out or are to be placed by the mask house,
desired reticle magnification (usually 10X, sometimes 3X), the x,y step and repeat distances, the
type and magnification of reticle blowbacks desired, and whether maskmaking beyond reticle
generation is to be contingent upon blowback inspection. This information is independent of the

chosen fab line.

(i) that which is specific to the fab line, or lines, on which the wafers will be fabricated.
Examples here are the number, size, and type of working plates desired, and the photographic
polarity of the working plates, i.e. whether they are a positive or negative image of the PG
pattern. The polarity of the working piates depends on the process step and on whether positive
or negative resist is used. In addition, it is cusiomary to specify how much, if any, the lines in-
the image will be expanded or contracted to compensate for growth or shrinkage of regions due
to the process. This so-called "pulling” of line widths in maskmaking may begin as far back as at
pattern generation. Thus, while the patterning and fabrication processes are design and layout
independent, they are usually coupled, and masks made for a run on one fab line are not

necessarily useable elsewhere,

Maskmaking and patterning technology will remain in a state of transition for years to come.
The present shift is from contact printing with working plates to projection alignment using
original master masks. These two alternatives are illustrated in figure 24. From the system
designer’s point of view, at the interface to the mask and fab firms, they present no essential
differences, requiring perhaps slightly different specs, and yielding different intermediate artifacts,
In the next section we discuss the future evolution of these technologies, presenting several
implementation schemes likely to become commonplace over the next decade. These schemes
will enable fabrication of systems much denser and faster than present ones. However, the basic
concepts of the design methodology will still apply. Remembering our film processing analogy,
we will have "finer grain" and "faster” film available as time passes. However, the basic art of

photography remains.
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Pattemming and Fabrication in the Future

As \ is scaled down toward its minimum value, ultimately limited by the physics of
semiconductors to about 0.lpm, it will become feasible to implement single chip, maximum
density VLSI systems of enormous functional power. Patterning and fabrication at such small
values of A requires that certain fundamental problems be overcome3'4. In this section we will
discuss alternative solutions to two of the major problems: At values of A of ~2 pm, a problem
of runout is encountered, causing successive patterning steps to misalign over large regions of the
wafers. This problem is solved by using less than full wafer exposure. At values of A under 0.5
pm, the wave length of light used in photolithography is too long to allow sufficient patterning
resolution. This problem is solved by using non-optical lithography, exposing the resist with

electron beams or x-rays.

Historically, silicon wafers have been patterned using full wafer exposure, i.e. using masks which
covered the entire surface of the wafer. The pattern for one layer of one chip is stepped and
repeated during the fabrication of the mask itself, so that the mask contains the patterns for a
large array of chips. During the fabrication of each successive layer on the wafer, that layer’s
mask is aligned at two points with the pattern already on the wafer, and the entire wafer then
exposed through the mask. In the future, as feature sizes are scaled down, full wafer exposure

will not likely be possible for reasons developed in this section.

The earliest integrated circuits, circa 1960, were fabricated using wafers of 2.5 cm diameter, and
typical chips were 1 to 2 mm, with a minimum feature size of ~25um. In 1978, production
wafers are 7.5 to 10 ¢m, typical commercially manufactured LSI chips are 5 mm, and minimum
feature size is ~5p. The concurrent development of ever finer features sizes and larger wafer
sizes has placed an increasingly severe strain on the process of full wafer exposure. The reasons

lie in the physics of wafer distortion.

When a wafer is heated to a high temperature, it expands by an amount determined by the
thermal coefficient of expansion of silicon. A bare wafer will contract exactly the same amount
upon cooling, and will therefore remain exactly the same size. Suppose, however, that a layer of
§i0, is grown on the wafer when it is at the high temperature. The thermal coefficient of
expansion of Si0, is approximately 1/10 that of silicon. As the wafer is cooled, the silicon will

shrink at a rate much greater than that of the Si05. Normally the resulting wafer will not be flat,
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but convex on the Si0y side. If the wafer is cooled slowly enough, it is possible to "relieve” the
stress induced by the difference in thermal contraction. Wafers in which such stress relief has
been achieved are nearly flat but are, of necessity, a different size than they were originally6’7.
It might seem that subsequent masks could be scaled to just match the wafer distortion
introduced up to the appropriate point in the process. Unfortunately no such correction can be
introduced without a knowledge of the pattern of Si05 on the wafer. During cooling, dislocations
are induced in the underlying silicon crystal at the edges of openings in the oxide pattern.
Hence, the magnitude and direction of wafer distortion is dependent in complex ways upon the
thickness and distribution of Si0y on the surface and upon the details of the thermal cycle. While
it is in principle possible to compute a geometric correction for each paitern to be produced, it is
clearly not possible to apply one correction for all possible patterns. Misalignment between
subscquent layers due to distortion of this type is often referred to as runout. Runout due to
wafer distortion is today the largest single contributor to misalignment between masking steps.
Attempts to use finer feature sizes, which require more precise alignment, on larger wafer sizes,

which induce larger distortions, seem doomed to failure unless full wafer exposure is abandoned.

Two altraclive alternatives to full wafer exposure are now being explored: (i) electron beam

exposure, and (ii) exposure using step and repeat of the chip pattern directly on the wafer.

A scanning clectron beam system can be used to expose resist material, and is also capable of
sensing a previous pattern on the surface of a wafer. The beam can initially scan an area
covering the alignment marks of a particular chip. Information gained from this sensing
operation can be used to compute the local distortion, and the chip can be exposed in nearly
perfect alignment using these computed values. The process can be repeated for each chip on the

wafer, until all have been exposed.

This technique has several virtues. No masks are required. A digital description of the chip can
be exposed directly onto a silicon wafer. A different chip can be placed at each chip location,
and this opens up the possibility of greatly extending the multi-project chip concept. However
there are also limitations. Data is transferred serially. Even at the highest data rates which can
be conveniently generated, a long time is required to expose each chip. More fundamentaily, the
physics of electron beam interactions places severe restrictions on the minimum practical feature
size attainable. When a beam of electrons enters a resist-coated wafer, scattering occurs both in

the resist and in the wafer. This backscattering contributes a partial exposure at points up to a
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few microns away from the original point of beam impingement, and has a number of

implications:

(i) The exposure, or spatial distribution of energy dissipation, varies with depth in the resist.

Thus resist cross section is not readily controllable.

(i) Exposure at any particular point depends on all patterns exposed within a few microns. This
is known as the "cooperative exposure” or "proximity” effect and necessitates pattern-dependent

exposure corrections®,

(iiiy Exposure latitude becomes narrower as the spatial period of a pattern is reduced. This is
illustrated in figure 25, which shows the rise in background level exposure as a function of lateral
distance for four different spatial periods: (a) 2um, (b) lpm, (¢} 0.5um, (d) 0.3pm. The beam
diameter is 250 angstrom units, the energy 10keV, the resist thickness 0.4um. The consequences
of this background rise are particularly troublesome for high-speed, low-contrast resists.

Experimental results show somewhat greater line broadening than predicled by the modelg.

For the above reasons, the writing time and the difficulty of exposing desired geometries increase

rapidly for linewidths below about 0.5 micron?,

An immediate prospect for achieving feature sizes of 1-2um with large wafers is offered by
stepping the chip pattern directly on the wafer rather than on a mask. This technique avoids the
serial nature of the electron beam writing by exposing an entire chip at once. Using good optical
systems it has been possible for many years to produce patterns with feature sizes in the range 1
to 2um. Recent progress in the design of optical projection syétems may even make 1/2 to 3/4
micron line width patterns over several millimeter diameter areas practicalm. Techniques are
known for using light to achieve alignments to a small fraction of a wavelength. Recently, an
interferometric optical alignment technique has demonstrated an alignment precision of 0.02
micron and should be capable of a reregistration uncertainty less than 0.01 micron!l, It would
seem that devices of ultimately small dimensions (0.25pm) could be fabricated using optical
alignment. It must be stressed that a realignment to the underlying pattern must be done at each

chip location to achieve the real potential of the technique,

The step-and-align technique can be extended to ultimately small dimensions by substituting an
x-ray source for the optical one, while retaining the automatic optical alignment system. X-rays

require a very thin mask support, e.g. Mylar, upon which a heavy material such as gold or
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tungsten is used as the opaque pattern. Interactions of x-rays with matter tend to be isolated,
local events. No back-scattering of the x-rays occurs, and electrons produced when an x-ray is
absorbed are sufficiently low in energy that their range is limited to a small fraction of a micron.
For this reason, patterns formed by x-rays in resist materials on silicon wafers are much cleaner
and better defined than those attainable by any other known technique (see figure 26). X-rays of
very high intensity can be efficiently obtained from the synchrotron radiation of an electron
storage ring. The time required for exposing a chip with such a source is no more than that
required at present using optical exposures. Both optical and x-ray lechniques have the property
that the total exposure time per wafer can be made independant of how much of the wafer is
exposed at a step. Therefore, the only penalty in a step and align process is the time required for

mechanical motion and alignment.

It appears that we have in hand all of the techniques for ultra fine line lithography, even on
larger silicon wafers. Both electron beam and optical stepping work must, however, focus on local

alignment as the crucial step in achieving high density, high performance LSL

We now describe a production lithography system for ultimately small dimensions. A major
component of the system is a 500 to 700 MeV electron storage ring, approximately 5 meters in
diameter, shaped in the form of a many sided polygon. The electron beam. within this storage
ring is deflected at each vertex by a superconducting magnet. This deflection results in a
centripetal acceleration of the electrons, and hence in an intensc tangential emission of
synchrotron radiation. The most important component of such radiation is soft x-rays in the 280
to 1000 eV quantum energy range (wavelengths of 0.004 o 0.001 pum). Such x-rays are ideal for
exposing resist materials with line widths in the 0.1pm rangelz-ls.

One exposure station is fitted to each vertex of the storage ring. Each exposure station has an
automatic optical alignment system for individual alignment of each chipu. Coarse alignment is
controlled by a laser interferometer and the wafer brought into position by ordinary lead screws
moving a conventional stepping stage such as those in current photorepeaters.  Auxiliary
alignment features are plaéed on each mask level within each chip. Misalignment of two such
patterns on the wafer relative to those in the mask produces Moire patterns which are detected by
photosensors and fed to a computer system. Piezoelectric transducers driven by the computer
system bring the wafer into final alignment under the mask. Each exposure station in such a
system is capable of aligning and exposing one layer of one chip every few seconds. Each chip

may contain of the order of 107 devices, which is the equivalent of several wafers at today's scale.
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An overview of the possible routes from design files to finished chips with sub-micron layout
geometries is shown in figure 27. In the immediate future, alignments much better than those
achievable today will be possible with the optical step and align technique (lefimost path in figure
27). In addition, this scheme eliminates the step and repeat process in mask making, enabling
considerably shorter turnaround time. The rightmost path, direct electron beam writing on the
wafer, promises the ultimate in short turnaround time. It can be viewed as using the fab area as
a computer output device. For high volume manufacturing, at ultimately small dimensions, the

center path as described above will most likely become the workhorse of the industry.

Fully Integrated, Interactive Design Systems
{ in preparation }

- - - creating a data structure which allows the various levels of interactive processes to operale on

the same data base - - - nodes, transistors, cells, and instances - - - operations on the data base - - -
interactive logic transfer function tests - - - interactive circuit transfer function lests - - - interactive
design rule checking - - - the filing problem - - -

System Simulation, Test Generation, and Testing

{ in preparation }

- - - system-level/register-transfer-level design description and simulation - - - lesting the system
design - - - practical strategies for structured VLSI system development - - - designing for
testability - - - generation of lest sequences - - - lesting the chips - - -
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Chapter 5: Overview of an LSI Computer System,

and the Design of the OM2 Data Path Chip
Copyright @ 1978, C.Mead, L.Conway

Sections:

The OM Project at Caltech - - - System Overview - - - The Overall Structure of the Data
Path - - - The Arithmetic Logic Unit - - - ALU Registers - - - Buses - - - Barrel Shifter - - -
Register Array - - - Communication with the Outside World - - - Data Path Operation

Encoding - - - Functional Specification of the OM2 Data Path Chip

Up to this point, we have chosen simple examples o illustrate the fundamental properties of
integrated systems, and have presented a design methodology which can be used to build
hierarchically organized, complex systems. To more fully clarify these concepts, we now present
examples drawn from the design of an LSI computer system. In this chapter, we provide a brief
overview of this computer system, and then describe in detail one of its major components, the
data path chip. Much of the detail in this chapter is intended to provide the reader with a source
of examples of the implementation of digital logic subsystems into 1.81 circuit layout structures,
under the constraints imposed both by the design methodology and by the architectural
requirements of a real computer system. Chapter 6 similarly describes .the controller chip of this

computer system, and provides additional information on the sequencing of the overall system.

In this chapter we assume that the reader is familiar with the structure and function of the
classical stored program digital computer, and with the concept, and computer design
implications, of microprogrammed control. An informal review of these basic concepts is given in
the introductory portions of chapter 6, so that the mapping of the required controller subsystems
into silicon can be examined. The less experienced reader may benefit from a study of that

material in parallel with reading this chapter.

It is important to note that the computer system discussed in chapters 5 and 6, while composed of
structured LSI subsystems, is nevertheless of classical von Neumann form. The architectural
possibilities of VLSI are just now beginning to be explored. Future lower cost, higher density,
higher speed devices, combined with major reductions in integrated system implementation time,
may make completely new forms of computing machines, and new notions of programming, not

only feasible but also practical. Some of these issues will be discussed in chapter 8.
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The OM Project at Caltech

The design of this computer system was undertaken as a university project in experimental
computer architecture, The "Our Machine” (OM) project, as it has come to be known, was
started by Carver Mead in 1976, as part of the LSI Systems course at Caitech. The project

involves the design of a number of LSI chips, as described in the system overview section.

The initial focus of the project was the architecture and design of the system's primary data
processing module, the data path chip. Early contributions to this effort were made by Mike
Tolle |Litton Industries], while atlehding the LSI systems course. Other participants were Caltech
students Dave Johannsen aﬁd Chris Carroll, with much inspiration from Ivan Sutherland. By
December 1976, the first design (OMy) of the data path chip was nearly completed. The
participants decided at that time that the design had become "baroque” and ugly, and it was
scrapped. A new data path design (OML) was completed by March 1977 by Dave Johannsen,
Chris Carroll, and Rod Masumoto. Fabricated chips were received in June 1977. It was this chip
which appeared in the September 1977 Scientific American article by Sutherland and Mead. The
chip was fully functional except for a timing bug in the dynamic register array, which had been

designed in departure from the structured design methodology developed in this text

A complete redesign of the data path chip was undertaken in June 1977, by Dave Johannsen. By -
September 1977, a complete set of new cells had been constructed. The design was completed by
December, and chips fabricated by April 1978, The redesign included improvements in the
encoding of the microcode control word, and rigorously applied the structured design
methodology. Certain cells from the OM2 data path chip, and from its companion controller

chip, were used as examples in chapter 3.

During 1977, the controller chip was designed as one of 4 class projects in the Caltech LSI
systems course. Il was finished in the summer of 1977, and fabricated chips were received in
early 1978.

During 1978, the architecture of an overall system was planned. Design has begun of the three
remaining chips in the OM computer system: the system bus interface chip, the memory manager

chip, and the clock chip.

All of the detailed LSI design on the OM project has been done by students. Throughout most

of the project's history only rather limited design aids were available, notably a simple symbolic
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layout language and graphic plotters for checkplotting. The efforts of students to quickly create
large integrated systems, using only primitive designs aids, helped to motivate the development

and refinement of the structured design techniques described in this text.

The OM project has also required the implementation of many prototype designs and complete
chip designs. Since early in the project, the Caltech group collaborated with researchers in
industry, who were similarly completing many prototype LSI system designs, on the development
of practical methods for simplifying and speeding up prototype project implementation. This led
to the formulation and debugging of the standard starting frame for conveying mulli-project chips

through maskmaking and wafer fabrication, as described in chapter 4.

System Overview

An informal block diagram of one OM processor is shown in figure 1a. Such a processor is a
complete stored program, general purpose computer. Input/output devices are usually interfaced
via the external data bus and control lines, located lo the left in figure la. Several such
processors may be interconnected via the system bus to augment one user's compuler sysiem.
Tasks may then be distributed among the processors, improving system performance, for ex;ample
by using difterent processors to independently control different input/output devices. Groups of

different user systems may also share the system bus.

Each OM processor is composed of five LSI chips, along with some standard memory chips and a
few MSI chips. A brief description follows of the five LSI chips being designed as part of this

project. For a more detailed description of these chips and the overall system, see reference 1.

The data path chip performs most of the data manipulation functions for the processor. These
operations are performed as directed by sequences of control microinstructions, which are fetched
from a microcode memory using addresses generated by the controller chip. The main
subsystems of the data path chip are a register file, a barrel shifler, and an arithmetic logic unit
(ALU). Two buses connect these subsystems together. This chip’s internal structure is described

in detail later in this chapter.

The controller chip contains the microprogram counter (3PC) which stores the microcode memory
address, and a counter for the control of microprogram loops. This chip also contains stacks for

both the microprogram counter a_nd loop control counter values. The concepts of controller
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structure and function are fundamental in computer architecture. Chapter 6 provides an

introduction to these ideas, and then describes the organization and layout of the controller chip.

The memory manager chip provides addresses for the data memory, and directs the
communication between chips on the data bus. It also implements some simple data structures in
the data memory. The manager can divide the memory into separate partitions, and implement a
different data structure in each partition. Four basic data structures are implemented: stacks,
queues, linked lists, and arrays. When accessing 2 stack partition for example, the microcode
need only ask the manager to push or pop data off the stack, and the manager does the rest,

maintaining stack poinlers, performing bounds checking to see if the stack is full or empty, etc.

The system bus interface chip provides asynchronous communication with other OM processors via
the system bus. There are a whole host of subtleties associated with interfacing asynchronous
buses. These issues are discussed in detail in chapter 7, along with the details of the organization

and design of the interface chip.

The clock chip gencrates the two phase clock signals needed by the system. The clock can be
stopped to allow for the synchronization of asynchronous signals. Some chips in the system have

a single ¢1 clock input, and generate the other clock phase signal on-chip.

A few words about timing may be helpful: In general, during ¢1 data is transferred from one
subsystem to another on the same chip, while during ¢2 data is transferred from one chip to
another. The data chip’s ALU, and other data modification units, operate during ¢2. Microcode
is available on both phases, and is pipelined by one phase. Thus, the opcodes that control the
ALU enter the data chip during ¢:1. The microprogram address is generated by the controller
chip during ¢2, gets driven off chip into the data chip’s microcode latches during ¢1, and is used
to look up the next opcode on the following ¢2. Because of these timing requirements, all jumps

in the microcode are pipelined by one clock cycle.

The remainder of this chapter describes the data path chip, and is presented in two distinct parts.
The first part outlines the architectural requirements for the data path chip, and then illustrates,
via the detailed design and layout of the chip's subsystems and cclls, how the design methodology
was applied to satisfy these requirements. The second part is an external functional description of
the data path chip, intended as a user manual for those who microprogram the computer system,

and for reference during the study of the OM2 controller chip in chapter 6.
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The Overall Structure of the Data Path

The basic requirements initially established for the data path chip were (i) that it be gracefully
interconnectable into multiprocessor configurations, (i) that it effectively support a
microprogrammed control structure, thus enabling machine instruction sets to0 be configured to
the application at hand, (iii) that it be able to do variable field operations for emulation
instruction decoding, assembly of bit-maps for graphics, etc., and (iv) that its performance be as

fast as possible.

In order to satisfy the ﬁrﬁt requirement, the data path chip was designed with two ports: one
port to be used for a system interconnection, and the other for connection to local memory,
input-output devices, etc. In many systems time is lost in assembling the two operands required
for many operations. Therefore, the data path has two internal buses, and all registers on the
chip are two-port registers. The requirement for gracefully handling variable length words
required a shifler at least sixteen bits long. The performance requirement dictated an arithmetic
logic unit having considcrable flexibility without sacrificing speed. In order to avoid extensive
random wiring for connecting the major subsystems on the chip, the following strategy was
adopted al the outset: two system buses would run through the entire processing array, from one
end of the chip to the other. One port was to be located at the left end of the chip, and the
other port at the right end, and the two system buses were to run the full length of the chip

between the two ports through the register and the data processing array.

The three main functional blocks on the chip are the register array, the shifter, and the arithmetic
logic unit. These blocks are placed next to each other in the center of the chip, between the two
ports. The arrangement of the major subsystems is shown in figure 1b. The systern buses run
horizontally, on the polysilicon level, through these functional blocks. The major control lines
run vertically across these blocks, on the metal level. The power, ground, and clock lines are run
parallel to the control signal lines. The details of these functional blocks will be described in
subsequent sections of this chapter. Included are descriptions of peripheral circuits needed to
interface subsystemns with cach other and to the outside world. Delailed layouts of certain cells in
the system are also included. Some of the layouts shown are earlier versions than those actually
included in the final data chip. Nevertheless, they convey the basic ideas involved in laying out

those cells. The overall layout of the data chip is shown in the frontispiece.
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The Arithmetic Logic Unit

The carry chain of the ALU, and its associated logic, was the first functional block to be designed
in detail, since it was believed that the carry chain would limit the performance of the system.
Simulations of several look-ahead schemes indicated that they added a great deal of complexity to
the system without much gain in performance. For this reason a decision was made early in the
project to implement the fastest possible Manchester type carry chain ( reference 4, chapter 1),
having a carry propogation circuit similar to that shown in figure 11, chapter 1. The carry chain
and ils associaled logic were allowed to dictate the repeat distance of the cells in the vertical
direction. In MOS technology, a Manchester carry chain is particularly limited in its ability to
propagate a high carry signal. However, it can quite rapidly propagate a low carry signal.

In any arithmetic logic unit there will be a null period when the OP code for the next operation
is being brought in. Advantage can be taken of this null period to precharge the carry chain and
other sections of the data path where timing is particularly crucial. In this way, it is not necessary
to propagate high signals through pass transistors where the rise transicnt would be particularly

slow. This strategy was applied in OM’s ALU, and the resulting carry chain is shown in figure 2.

The main carry chain runs through the pass transistor from carry-in to carry-out. The carry-in
signal is detccted by the gate of an inverter which feeds the signal into the subsequent logic of
the ALU. Three transistors are used to control the state of the carry-out of each stage. The first
one merely precharges the node associated with carry-out during the null period of the ALU.
The second is the carry-kill signal which is derived from the inputs to the ALU, and simply
grounds the carry-out through a single transistor. The third is a pass transistor which causes
carry-oul to be equal to carry-in. These last two signals associated with the carry chain in each
stage, carry-kill and carry-propagate, are generated by two NOR gates which have kill-bar and
propagate-bar as one input and precharge as the second input. Hence, it is assured that the kill

signal and propagate signal are disabled during the null period when the precharging takes place.

After some analysis, we found that nearly all interesting combinations of carry-in and the input
signals could be generated using propagate and carry-in from each stage. Thus, as in fig.3, the
carry-chain may be seen as a logic block with 2 inputs, carry-kill' and carry-propagate’, 2 outputs,

propagate and carry-in, a vertical signal, carry-in and carry-out, and one control wire, precharge.

The task of designing the balance of the ALU is now reduced to that of designing functional
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blocks to:; (a) combine the two input variables to form a propagate bar and kill bar, (b) combine
carry bar and propagate o form the output signal, and (c) drivers for controlling the logical

function blocks and deriving a timing for precharge.

A number of random logic implementations of function blocks for deriving kill, propagate, and
the output were attempted. All seemed to be at variance with the horizontally microprogrammed
architecture of the data path, and required a large amount of area and power. For this reason it
was decided to use the general logical function block illustrated in chapter 3, figure 12a. Recall
that the depletion mode transistors, i.e. those covered by ion implanted regions represented by
yellow, are always on. Such logic function blocks are used to generate carry-bar, propagate-bar,
and for combining carry-bar in and propagate to form the output. The circuit, shown in figure 4,
implements sixteen logic functions of two input variables. It consists of a set of transistors which
fully decode the input combination of A and B, and connect one and only one of the vertical
control lines to the output, depending on this input combination. For example, when A and B
inputs are both low, the vertical control wire labetled G, is connected to the output. The truth
table entries for the desired logic function are placed on the G vertical control wires, and the
output is then the desired logic function of the two input variables. For example, if the
Exclusive-OR of A and B is desired, a logic-0 will be applied to the control wires 0 and 3, and
logic-1 will be applied to control wires 1 and 2. Since it is desired to implement the same logic
function on all bits of the word, the control variables G, through G; need not be generated in
every bit slice, but may be generated once at either the top or bottom of the array. The

functional abstraction of the circuit of Fig. 4 is shown in figure 5.

The block diagram for a compléte arithmetic logic unit is shown in figure 6. The functional
dependence of the output on the two inputs and the state of the carry is determined by a 12-bit
number: P, through Py K, through K, and Ry through R,, logether with the carry-in to the
least significant bit of the ALU. The ALU is quite general, and its detailed operation set may be

feft unbound until the control structure of the computer system is designed at a later time.

There are two general principles illustrated by this design. First, it is often less expensive in area,
time, and power to implement a general function than to implement a specific one. Secondly, if
a general function can be implemented, the details of its operation can be left unbound until
later, and hence, provide a much cleaner interface to the next level of design. The detailed
choices of which functional entities to leave unbound and which to bind early requires a

considerable amount of judgment, and is where much of the skill in integrated system design lies.
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Two details need to be dealt with before the arithmetic logic unit function block is complete.
Drivers are needed for the PO - - P3, KO - - Ky, and RO --R 3 control lines which will generate
signals with the appropriate timing. In addition, inverters must be interposed in the carry chain
occasionally to minimize the propagation delay through the entire carry chain. The way we have
chosen to implement the interposition of inverters is to recognize that each carry chain function
block contains two inverters which produce at their output the carry-in, having been twice
inverted from the actual carry-in signal. If we merely substitute this signal for the carry-out
signal from the pass transistor, we have doubly inverted our carry-in and buffered it to minimize
the propagation delay. This approach avoids putting spaces between the carry function blocks for
inverters. It is illustrated by the dotted connection lines in figure 2. In the actual

implementation, the connection through the inverters was made in every fourth stage.

Drivers for the P, K, and R control lines have the following function: At some time during the
null period of the ALU (which we shall call ¢/}), an OP code specifying the state of each control
line arrives at the drivers. It must be latched while the ALU itself is being precharged, and then
it must be applied to the P, K, and R control lines as soon as the ALU is activated. The P, K,
and R function blocks are themselves composed of pass Lransistors, and their outputs are more
effectively driven low than high. For this reason, we will precharge the outputs of the P, K, and
R function blocks as well as the carry chain itself. This is most conveniently done by requiring .
that ail of the P, K, and R control signals be high during the null period of the ALU. Then,
independent of the states of A and B inputs, the outputs will be charged high by the time the

ALU active period commences. The control buffer implementing this function is shown in Fig. 7.

The OP code is latched through a pass transister whose gate is connected t0 ¢, and the OP code
runs into a NOR gate, the other input of which is also 1. Thus, the output of the NOR gate is
guaranteed (o be low during the ¢ period. The NOR gate output is then run through an
inverting super-buffer, so that during ¢ the output is guaranteed to be high. At the end of g3,
the OP code are driven onto the P, K, and R control lines. The only interface specification for
the ALU which must be passed to the next level of system design is that the P, K, and R control
signals be valid before the end of ¢, and that the A and B inputs likewise be valid by the end
of g and be stable throughout g, the active period of the ALU. We are then guaranteed that
afier enough time has passed to allow the carry to propagate, the output of the R function block
will accurately reflect the specified function of the ALU and may be latched at the end of @-.
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ALU Registers

In order for the arithmetic logic unit described in the last section to be useful, it must be
equipped with a set of registers both for its input variables and for its output. Let us consider
the input registers first. Inputs to the ALU may be derived from either the shifter, the buses, or
other sources. They may be latched and lefl unchanged during any @1 - ¢; machine cycle or set
of machine cycles. This is one of the situations in which combining the multiplexing function
with the laiching function simplifies the design and achieves better performance. A register

operating in (his manner is shown in figure 8.

The input to the first inverter can be derived from four sources: three internal sources such as
shifter output, bus, elc., and a fourth, the output of the second inverter. When it is desired to
latch a new signal into the register, one of the source pass lransistors is driven high during ¢;.
The feedﬁack transistor around the two inverters is always activaled during ¢. Thus, with three
vertical control wires plus the ¢ liming signal, it is possible to select one of three sources into
the register, or none of the three sources, thereby leaving the previous value of the register stored
on the gate of the first inverter during the ¢ period. Since il is necessary 1o have two inverters
to form the stable pair when the feedback transistor is on, both the input and its complcmént are
available as required by the P and K function blocks of the arithmetic logic unit. The OP code
signal which selects which source will be applied to the ALU input register during ¢ must come
in during the previous ¢. Each of the select signals must be low during ¢, and at most one of
them may come high during the following ¢ . A driver appropriate for these control signals is
shown in figure 9. The control OP code is latched during 5, during which time the NOR gate
shown disables Lthe output driver. Since the output driver in this case is non-inverting, the output
select line is held low during all of 9. At the end of ¢, the OP code signal is latched and the
particular select line t0 be enabled that cycle is allowed to go high. '

Note that this timing allows two incoming OP code bits per external wire per machine cycle. In
particular, if it were desirable to share a microcode bit between the ALU function and the ALU
selector inputs, this could be done by bringing the ALU OP code in during ¢ and the ALU
input selection code in during ¢, as shown in figure 10. This technique was suggested by Ivan
Sutherland.

The ALU output register is similar to the ALU input register, except the timing is reversed. The
result of the ALU operation is available at the end of 5.
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An OP code bit will, if desired, enable the latch signal to go high during ¢9. The feedback
transistor is always enabled during ¢y, and thus the laich is effectively static even though in the
absence of a latching signal the data is stored dynamically on the gate of the first inverter
through the ¢4 period. Once again, both the output and its complement are available if desired.

Buses

An early design decision was made to have data flow through the data path chip on two buses
which communicate with all of the major blocks of the system. We have already seen that the
ALU performs its operation during the ¢ period and does not have valid data to place into its
output register until the end of g. If data are to be transferred from the output register of the
ALU to its input register, this must be done during the ¢} period. If we adopt a standard timing
scheme in which all transfers on the buses occur during ¢y, we can make use of the ¢ period
when the ALU is performing its operation to precharge the buses in the same manner that the
carry chain was precharged during the ¢ period. In this way we solve one of the knotty
problems associated with a technology designed for ratio logic. If we had insisted that the tristate
drivers associaled with various sources of data for a bus be able to drive up as well as down, we
would have required both a sourcing and sinking transistor, together with 2 method for disabling
both transistors. While it is perfectly possible to build such a driver (we ;;hall undertake the
exercise as part of the design of the output ports), it is a space-consuming matter to use such a
driver at every point where we wish to source data onto an internal bus. By using the bus

precharge scheme, our tristate drivers become simply two series transistors as shown in figure 11.

Here the data from one source, for example the ALU output register, is placed on the gate of one
of the serics transistors. An cnable signal which may come high during ¢ is placed on the other
series lransistor. If one and only one of the enable signals is allowed ld come high during any
one ¢ period, the bus can be driven from as many sources as necessary. The performance of
such a bus is limited only by the pull-down capability of the two series transistors. We shall
adopt this philosophy for the processor chip we are designing, and attach such a tristate driver to

each of the output registers for the ALU.
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Barrel Shifter

Since shifting is basically a simple multiplexing function, it might be thought that a shifter could
be combined with the input multiplexer to the ALU. A simple 1-bit, right-left shifter

implemented in this manner is shown in figure 12.

It is identical with the three-input ALU register, and the three inputs have been used to select
between the bus, the bus shifted leR by one, and the bus shifted right by one. To support the
multibit shifts necessary for field extraction and building up odd bit arrays, something more is
required. One is tempted initially to build up a multibit shift out of a number of single shifts.
However, for word ]ehgths of practical interest, the n? delay problem mentioned in Chapter 1

makes such an approach unworkable.

The basic topology of a multibit shift dictates that any bus bit be available at any output position.
Therefore, data paths must run vertically at right angles to the normal bus data flow. Once this
simpte fact is squarely faced, a multibit shifter is scen as no more difficult than a single bit
shifter. A circuit enabling any bit to be connected to any output position is shown in figure 13a.
It is basically a crossbar switch with individual MOS transistors acting as the crossbar points, the
basic idea being that each switch Scij connects bus; 1o outputj. In priaciple this structure can be
set 1o interchange bits as well as shift them, and is completely general in the way in which it can
scramble outpul bits from any input position. In order to maintain this complete generality, the
control of the crossbar swilch requires n? control bits. In some applications, this n? bits may not
be excessive. but for most applications a simple shift would be adequate. The gate connections
necessary to perform a simple barrel shift are shown in figure 13b. The shift constant is
presented on n wires, one and only one of which is high during the period the shift is occurring.
If the shifler's output lines are precharged in the same manner as the bus, the pass transistors
forming the shift array are only required to pull down the shifier’s outputs when the appropriate
bus is pulled low by its tristate drivers. Thus, the delay through the entire shift network is

minimized and effective use is made of the technology.

A second topological observation is that in every computing machine, it is necessary to introduce
literals from the control path into the data path. However, our data path has been designed in
such a way that the data bits flow horizontally while the control bits from the program store flow
vertically. In order to introduce literals, some connection between the horizontal and vertical flow

must occur. It is immediately obvious in figure 13b that the bus is available running vertically
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through the shift array. It is then the obvious place to introduce literals into the data path or to
return values from the data path to the controller.

At the next higher level of system architecture, the shift array bit slice may be viewed as a system
element with horizontal paths consisting of the bus, the shifter output, and if necessary, the shift
constant since it appears at both edges of the array. The literal port is available into or out of the
top edge of the bit slice, and the shift constant is available at the bottom of the bit slice. These

slices, of course, are stacked to form a shift array as wide as the word of the machine being built.

One more observation concerning the multibit shifter is in order. We stated earlier that our data
path was to have two buses. Therefore, in our data path, any bit slice of a shifter such as the one
shown in figure 13b will of necessity have two buses running through it rather than one. We
chose to show only one for the sake of simplicity. There remains the question of how the two
buses are to be integrated with the shifter. Since we are constructing a two-bus data path, we
have two full words available, and a good field extraction shifter would allow us to extract a word
which gracefully crosses the boundary between two data path words. The arrangement shown in
figure 13b performs 2 barrel shift on the word formed by one bus. Using the same number of
control lines and pass transistors, and adding only the bus lines which are required for the-
balance of the data path anyway, we may construct a shifter which places the words formed by
the two buses end to end and extracts a full-width word which is continuous across the word
boundary between the A and B buses. This function is accomplished in as compact a form as
just described with a circuit shown in figure 14. Notice that the vertical wires have a split in
them. The portion of the wire above the corresponding shift output being connected to the A
bus, and that below the corresponding shift output to the B bus.

It can be seen by inspection that this circuit performs the function shown in figure 15 which is
just what is required for doing field extractions and variable word length manipulations. The
literal port is connected directly to the A bus and may be run backwards in order to discharge the
bus when a literal is brought in from the control port. A block diagram which represents the

shifter at the next level of abstraction is shown in figure 16.

In order to complete the shifter functional block, it is necessary to define the drivers on the top
and bottom which interface with the system at the next higher level. Let us assume that the
literal bus from outside the chip will contain data which are valid on the opposite phase of the

clock from that of the internal buses. In. that case, a very simple interface between the two buses
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which will operate in either direction is shown in figure 17

The internal shifter output is precharged during ¢, and active during ¢j. It may be sourced
either from the literal bus or from the shifted combination of the A and B buses through the shift
array, shown in figure 15. The external literal bus itself may be sourced either from the opposite

end (the external paths from the program source) or from the end attached to the A-Bus in the

shift array shown,

The bus to the exiernal literal path is precharged during ¢4, and data bits from the literal port of
the shifter are enabled onto it by a signal active during g9, as shown in Fig. 17. The two signals,
g1 * IN, and ¢ * OUT, are derived from buffers identical to those shown earlier. The shift
constant itself is represented by one line out of n, which is high, the others remaining low.

Buffers for these lines are identical to those shown in figure 9.

There is one more observation concerning the n-bit shift constant. It is represented most
compacily by a log n bit binary number. However, in order to gencrate from such a form a signal
that can be used in the actual data path, a decoder is required 10 convert the binary number into
a one-of-n signal suitable for feeding the buffers. Decoders can be made in a number of ways in
the ratio technology we are discussing. The most commen form is the NOR form, which is the
fully decoded equivalent of the AND-plane in the programmable logi;: array, Chapter 3. It is
shown in figure 18. Notice that the output is a high-going one-of-n pattern.

Decoders can also be made in other forms. For small values of n, the NAND form shown in
figure 19 is oflen convenient. We used a variant of this form for the ALU function block
described earlier. Notice that the output of this form, when used as a decoder, is a Jowgoing one-
of-n pattern. There is also a complementary form of decoder which can be built with ratio
technotogy, and was suggested by Ivan Sutherland. It takes advantage of the fact that in any
decoder both the input term and its complement must be present. In this case, the input term
can be used to activate pull-up transistors in series, while the complement can be used to activate
puli-down transistors in paraliel. This logic form is similar in principle to that used with fully
complementary technologies, and has similar benefits. It can generate either a highgoing or a
lowgoing one-of-n number, and dissipates no static power. A decoder of this sort is shown in
figure 20. Once we have added the appropriate buffers and decoders to our shift array, we have
a fully synchronized function block ready to be integrated with the system at the next level up.

The properties of this block are shown in figure 21.
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Register Array

In any microprogrammed processor designed for emulating an instruction set at a higher level, it
is convenient to have a number of miscellaneous registers available, both for working storage
during computations and for storing pointers of specific significance in the machine being
emulated: stack pointers, base registers, program counters, etc. Since the data path has two
buses, and the ALU is a two-operand subsystem, it is convenient if the registers in data path are
two-port registers. Using the design philosophy we have been discussing, a typical two-port
register cell is shown in figure 22. This register is a simple combination of the input muitiplexer
described earlier, the ¢ fedback transistor, and two tristate output drivers, one for each bus.
The registers can be combined into an array m bits long and n bits wide, the buses passing
through the array. Each cell of the array is defined at the next level up, as shown in figure 23.
Drivers for the load inputs and the read outputs are identical to those shown in figure 9. While
we could immediately encode the load and read inputs to the registers into log n bits, we shall
delay doing so until the next level of system design. There are a number of sources for the A

bus besides the registers, and we will conserve microcode bits by encoding them together.

Before we proceed, there is one mundane detail which must be taken care of in the overall
topological strategy. The routing of VDD and ground must generally be done in metal, except
for the very last runs within the cells themselves. Ofien the metal must be quite wide, since A
metal migration tends to shorten the life of conductors if they operate at current densities much
in excess of 1 milliampere per square micron cross-section. Thus, it is important to have a
strategy for routing ground and VDD to all the cells in the chip before duing the detailed layout
of any of the major functional blocks. Otherwise, one is apt to be faced with topological
impossibilities because certain conductors placed for other reasons interfere with the routing of
the VDD and ground. A possible strategy for the overall routing of VDD and ground paths is

shown in figure 24.

Notice that the VDD and ground paths form a set of interdigitated combs, so that both
conductors can be run to any cell in the chip. Any strategy will do, but it must be consistent,
thoroughly thought through at the beginning, and rigidly adhered to during the execution of the

project.
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Communication with the Outside World

Although in particular applications the interface from a port of the data path to the outside world
may be a point to point communication, the ports will often connect (o a bus. Thus it is
desirabie to use port drivers which may be set in a high impedance state. Drivers which can
either drive the output high, drive the output low, or appear as a high impedance to the output
are known as tristate drivers, Such drivers allow as many potential senders on the bus as

necessary. Figure 25 shows the circuit for a tristate interface to a contact pad.

Here, either bus A or bus B can be latched into the input of a tristate driver during ¢.
Likewise the pad may be latched into an incoming register at any time independent of the
clocking of the chip. Standard tristate drivers are enabled on bus A and B. The only remaining
chore is the design of the tristated buffer- which drives the pad directly. Details of the tristate

driver are shown in figure 26.

The terms out and outbar are fed to a series of buffer stages which provide both true and
complement signals as their outputs, and are disabled by a DISABLE signal. Note that this
DISABLE signal does not cause all current to cease flowing in the drivers, since the pull-up
transistors are depletion type, but reduces the current to a value where it can be handled by the
disable transistor of the following buffer stage. In general there will be a number of super buffer
stages of this sort. The very last stage of the driver is shown in Fig. 26b. It is not a super buffer
but employs enhancement mode transistors for both pull-up and pull-down. These transistors are
very large in order to drive the large external capacitance associated with the wiring attached to
the pad. They are disabled in the same manner as the super buffers, except that when the gates
of both transistors are low, the output pad is truly tristated. Once again the two output

transistors are a factor of approximately e larger than the last super buffer in the buffer string.

As we have seen, the inverter string necessary lo transform the impedance from that of the
internal circuits on chip to that sufficient for driving a pad attached to wiring in the outside world
is quite large, and imposes a delay of some factor times a logarithm of this impedance ratioc upon
communications between the chip and the outside world. Any help which can be obtained in
making this transformation is of great value. For example, the latch and buffers associated with
the input bus circuit to the pad drivers can themselves be graded in impedance level, so that by
the time the out and outbar signals are derived, they are at a considerably higher current drive

capability than the buses. Note that the buses are a considerably larger capacitance than
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minimum nodes on the chip, and thus the initial latch buffers can be larger than typical inverters
on the chip. All such tricks help to minimize the number of stages between the bus and the

outside pad, and thus the total delay in going off chip.

Data Path Control Operation Encoding

By now we have defined a complete functional data path with ports on each end and functional
blocks through the center, as shown in figure 27. The data path operation code bits required to
control the data path and the phase of the clock on which they are latched are shown. There are
forty-nine such bits together with the four asynchronous bits for latching and driving the pad to
the external world. In addition, there are the carry-out wire and the sixteen literal wires. These
sixty-six wires together with the thirty-two from the lefi and right port must go to and come from
somewhere. Schemes for encoding internal data path operations into microinstructions of various
lengths are discussed in chapter 6. At one extreme all the data path control wires can be brought
out to a microcode memory driven by a micro program counter and controller, in which case zll
operations which can be done by the data path may be done in parallel. The opposite extreme is
to very lightly encode the operations of the data path into a predefined microinstruction set. In
the present system, this encoding would be most conveniently done by placing a programmable
logic array or set of programmable logic arrays along the top and the bottom of the data path. A
condensed microinstruction could then be fed to the programmable logic arrays which would then

decode the compact microinstruction into the data path operation code bits.

The important point of the design strategy we have chosen is that we can orthogonalize the
design of the data path and the design of the microinstruction set in such a way that the interface
between the two designs is very well defined, very clean, and can be described precisely, in a way
that system designers at the next higher level can understand and work with comfortably. The
data path can then be viewed as a component in the next level system design. As time progresses
and it is possible to construct chips with larger and larger functional density, blocks of the sort
shown will form components in even larger geometrical arrangements which will form even larger
components and a whole hierarchy will emerge which will implement a system function at a
much higher level than contemplated here. However, if the design strategy we have described is
followed, it is possible to construct arbitrarily large and complex systems which are guaranteed to
work if the individual component blocks are correct, and given the clocking period is sufficient to

allow the slowest functional unit to perform its function.
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Using the approximate capacitance values given at the end of Chapter 2, an estimate can be made
of the minimum clock period for sequencing the data path. The Phase 1 time of the data path is
~507. the same as the general estimate given in the section "Transit Times and Clock Periods"” in
chapter 1. However, the Phase 2 time of the data path is limited by the carry chain, as discussed
earlier in this chapter. The relative areas of metal, diffusion, and gate can be estimated from the
ALU layout shown in Figure 6a. The metal and diffusion occupy ~15 and ~8 times the area of
the propagale pass transistor gate, respeclively. Metal is ~0.1 and diffusion is typically 0.2 times
the gate capacitance per unit area. Thus the lotal capacitance of cach stage of the carry chain is
~4.5 (imes that of the pass transistor gate.- The effective delay time is correspondingly longer
than the transit time = of the transistor itself. The effective delay through n stages of such pass
transistor logic s ~ rn2. In the OM2, n=4 and the effective delay for 4 bits of carry chain is
~45*%16r = 72r. To this must be added the delay of the doubly inverting buffers at the end of
every 4 bits of straight Manchester logic. This delay is (1+k) times the transit time of the
inverter pulldown, properly corrected for stray capacitance in the inverter. Here the inverter ratio
k is ~ 8, since its input is driven through the pass transistors. Conservatively, strays in such a
circuit are always several limes greater than the basic gate capacitance, and we may estimate the
inverter delays at ~307. The total carry time is thus ~100 times the transit time for each block
of 4 ALU stages. The total Phase 2 time should then be ~400-. In 1978, the fastest commercial
nMOS processes yield a transit time 7 of approximately 0.3 ns, and we would expect a minimum

total clock period of ~4507, or ~135 ns.
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The Second Half of this Chapter contains a functional specification of the OM2 data path
chip, by Dave Johannsen of Caltech. This specification was originally documented in
Display File #1111, by Dave Johannsen and Carver Mead of the Caltech Computer
Science Department, and copyrighted by Caltech. The specification is reprinted here with
the permission of the California Institute of Technology.
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Functional Specification of the OM2 Data Path Chip

{Section contributed by David L. Johannsen, Caltech]

introduction

This specification describes a 16-bit data path chip referred to as OM2 [ # 986]. The OM2
contains 16 registers, an ALU, and a 32-bit shifter, and is designed as part of a micro-
programmed writeable-controi-store digital computer. The companion chip is the
Controller chip, which contains the program counter, stacks, and so0 on. The Controller is
described in Chapter 6. The entire system is designed to run on a single 5 volt supply.

The OM2 Datachip has two data ports for communication with the external system and a
communication path to the Controller chip. The data ports are tri-state with either internal
or external control. Communication with the Controller consists of a 16-bit literal port and
a single flag bit. Seven control bits come directly from the microcode memory.

The system runs on a single clock, génerating ¢t and @2 internally. When the clock is
high, the internal buses transfer data: when the clock is low, the ALU is performing its
operation. Microcode bits enter the Datachip the phase before that code is to be
executed. Therefore, the bus transfer code enters the Datachip when the clock is low,
and the ALU code enters when the clock is high. Figure 1 sketches a possible OM
system. For a more detailed description of system configurations, see reference 1.

Throughout this section a positive logic convention is used. A "1" refersto a high voltage

level, while a "0" refers to a low voltage level.
Datapaths

A block diagram of OM2 is shown in figure 2. There are two buses which connect the
various elements of the chip together. These buses transfer data while the clock is high,
the period referred to as ¢1. During ¢2, when the clock is low, the buses are precharged.
Each bus can only get data from one source, and give data to one destination during any

one cycle.

The Left and Right Ports communicate between the datachip and the outside world. The
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Right Port has been traditionally known as the memory bus port while the Left Port has
been the system bus port, but sincé the fwo ports are identical, this is an arbitrary
convention. Each port has both an input latch and an output latch to provide facilities for
synchronizing the datachip to the outside buses. Under program control either of the two
buses can load the output latch-during ¢:1. There are three modes of driving data from
the output latch to the pins, two of which are under program control and one of which is
under hardware control. The first method is to output the data as soon as it comes from
the bus, during the same ¢:1. The second methad is to latch the data from the bus during
¢'1 and drive it out during the following ¢2. The final method is to latch the data from the
bus during ¢1, but output the data when an enable pin is pulled low. The enabie pin
would be controlied by a bus manager, and can be asynchronous with respect to the
datachip. Inputting from the port is similar. By pulling down on another enable pin, data
from the external bus is loaded into the input latch, which can be read later under
program control. Alternatively, the microcode can force the data currently on the external
bus into the internal bus during the current ¢1. With this scheme, many types of
synchronous and asynchronous buses may be interfaced to OM2s. For internal control

only, the external enable bins can be left floating.
Registers

The registers are static and dual port. Any one of the 16 registers may source either or
both of the buses, while any one of the 16 may be the destination for either bus, but not
both. There are only two restrictions to the use of the registers:
1. One register may not be the destination for both buses on the
same cycle, and
2. One register may not be both the source for one bus and

the destination for the other bus on the same cycle.
Shifter

The shifter concatenates the two buses, resulting in a 32-bit word, with the A bus being
the more significant half. The shift constant then selects the bit position where the 16-bit

output window starts. The shift constant specifies the number of bits from the B bus

“present in the output {ie. a shift constant of 0 returns the A bus. while a shift constant of

15 returns the LSB of the A bus in the MSB of the output, foliowed by all but the LSB of

| ChA.: Sect 7| < Conway > newdom? vist July BO1978 1118 'M



[Ch.5., Sect2]

System
Bus
Microcode
fem—————— Controller Memory
I . -
170
Bus
5| OM2 Datachip
Main
Memory
Memory
Bus

Figure 1. One Possible OM2 System Configuration

{tig1 .sil}






[Ch.5., Sect.2]

Literal Port Flags
WL Bus A
I~ AT
n Qut
Left . T 7 . T Right
r ALU
Port Memory Shifte 1 5 Port
. o T n — Out I~ AN
b &4 s g A
Bus B

Figure 2. Block Diagram of OM2

Shift Constant
1 2 3 456 7 8 9101112131415

o

MsB

Bus A

I T T N T S S N N Y e
T 1T T 08 1T 5T rryrrr
| Y T N O N I Y O T Y S |

LB L L L B L

i

1

MS8 i 1 _'I:_ i_ T
1 iii T
1 EE Qutput
Bus B T T
EE _’LLSB
LSB

Figure 3. Shifter Operation.

(Fig2 -3.sil}






the B bus in the rest of the word). A conceptual picture of the shifter is shown in figure 3.
The ALU can select as inputs either the bus, the shift output, or shift control. If shift
control is selected, the entire word is O except where the LSB of the A bus appears in the

shift output. The shifter operates on ¢1: it may be viewed as an extension of the buses.

ALU

A block diagram of a single bit of the ALU is shown in figu're 4. The ALU operates on the
data which is contained in its two input latches. Input latch A may be loaded from the A
bus, the shifter output, or the shift controf, while the input latch B may be loaded from the

B bus, the shifter output, or the shift control.

The outputs of the two latches become the inputs to two function blocks which determine
what will happen on the carry chain. Function block P determines whether the carry chain
propagates, while K decides if it is to kiil the carry. |If neither are true, the carry chain
generates a carry. Each function block has four control inputs, which, for the Propagate
function block, are referred to as PFF, PFT, PTF, and PTT. If PFF is enabled, the P block
output is high if both input latches are false (contain 0). Enabling PFT activates the output
if input A is false and input B is true, and so on. If, for example, both PFF and PFT are
enabled, the output is active if input A is false, regardless of the state of input B. To
further illustrate the operation of the function blocks, consider addition. If both inputs
contain a 1, the carry is to be generated, while if both inputs are 0, the carry is killed. If
the two inputs‘ are different, the carry is to be propagated (carry out«-carry in). To do this
operation, the kill output should be active if both inputs are false, so KFF is enabied. Both
PFT and PTF should be enébied to propagate properly. Therefore, K=(KFF, KFT, KTF,
KTT)=(1,0,0,0), and P =(PFF, PFT, PTF, PTT)=(0,1,1,0).

The result of the ALU is produced by the R function block, which has as inputs P block
out and Carry in. For the addition example above, the output should be the exclusive-or of
P and Cin, so R=(0,1,1,0). P, K, and R values for common ALU operations are listed in

the programming section.

Two ALU output latches (A and B) can be loaded from the R block output; either one may

later be used to source either bus.
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Flags

The carry input to the LSB of the ALU is a logical combination of a flag bit and two control
inputs. The two control inputs can force the carry in to be either 1 or 0, or they can select

either flag or flag bar as the input.

There is also a method for doing conditional ALU operations under the contro! of a two-bit
conditional OP field. A conditionai operation performed by the ALU is not only a function
of the control inputs, but also of the flag bit. The conditional operation control forces
some of the control inputs low, regardless of what the P, K, and R miérocode says. The
coding for conditional operations allows the use of operations like multiply step and divide
step without the necessity for branching in the microcode.

There is a 16-bit flag register which can also be a source or destination of the A bus. This
register can aiso be loaded with the ALU flags during ¢2. The ALU flags include carry
out, overflow, carry in to the MS8B, zero, MSB, LSB, Less than, Less than or equal to, and
Higher (in unsigned value). The last three flags are comparison fags used after a
subtaction. For exampie, after subtracting ALU input latch B from latch A, the "less than”
flag is true if the value in ALU input latch B was larger than the value in ALU input iatch
A.The MSB of the flag register is called the flag bit, and this bit may be modified every ¢l
by loading it with the value of one of the other bits of the flag register. The flag bit is used
in the calculation of carry in and modification of conditional ALU Ops. This bit is also sent
to the controller chib to be used for conditional branching, etc.

Literal

The one remaining datapath is the literal port. It is used to send data from the datachip to
the controller, and vice versa. it is a source or destination for the A bus. When the literal
port is being used, standard bus operations are suspended for that cycle.

Programming

The Datachip requires 23 bits of microcode on each phase of the clock. This section of
the memo specifies the encoding of the fields within that microcode. Figure 5 shows the
arrangement of the microcode word.
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Bus Transfer

The bus transfer control bits enter tﬁe datachip during ¢2 and are used during the
following ¢1. There are two buses, the A bus and the B bus, which interconnect the
modules of the Datachip. These two buses are similar in many respects; however, there
are a few asymmetries as to sources and destinations. Also, when a literal is being
transferred, the only bus transfer field which is active is the A bus destination, which

stores the literal entered on the A bus. A listing of bus sources and destinations follows:

A Bus Source A Bus Destination
onnnn Register n Onnnn Register n
10000 Right port pins 10000 Left port, drive now
10001 Right port latch 10001 Left port, drive ¢2
10010 Left port pins 1001x Left port, no drive
10011 Left port latch 10100 Right port, drive now
10100 ALU output latch A 10101 Right port, drive ¢2
10101 ALU output tatch B 1011x Right port, no drive
10110 Flag register 11000 ALU input latch A
11001 ALU input latch A gets shift out
11010 ALU input latch A gets shift ctl.
11011 Flag Register
B Bus Source 8 Bus Destination
Onnnn Register n 00nnnn Register n
10000 Right port pins 010000 Left port, drive now
10001 Right port latch 010001 Left port, drive ¢2
10010 Left port pins 01001tx Left port, no drive
10011 Left port latch 010100 Right port, drive now
10100 ALU output latch A 010101 Right port, drive @2
10101 ALU output latch B 01011x Right port, no drive
0110xx ALU input latch B
10nnnn ALU input latch B gets shift
output, shift const.=n
11nnnn ALU input latch B gets shift

control, shift const.=n

ALU Input Selection

The two ALU input latches are destinations for the two buses, as shown in the Bus
Transfer section above. In addition to being loaded directly from the buses, these two
latches can be loaded from the outputs of the shift array. The shift constant always comes

from the 4 least significant bits of the B Bus Destination fietd, even though the destination
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of the B Bus is not the ALU input latch B. For example, the B Bus may be transferring the
contents of register 3 into register 5 while the A Bus is transferring the contents of register
4 to the ALU input latch A through the shifter. In this case, the shift constant would be
"5", because the 4 least significant bits of the B Bus Destination field contain "0101".

ALU QOperations

The following table shows coding for ALU operations that are commonly found useful.
The user is encouraged to enco.de other operations if these are not suitable.The numbers
given are the decimal representation of the 4 bit control word. For P and K,
AB =1AB=2AB" =4AB=8. For R, PC'=1PC=2PC' =4PC=8. Cin is the cary in
select, and Cond is the conditional OP select.

K P R Cin Cond
A+B 1 6 8 0 0 Add
A+B+Cin 1 6 6 1 0 Add with carry
A-B 2 9 6 2 0 Subtract
B-A 4 9 6 2 0 Subtract reverse
A-B-Cin 2 9 6 1 0 Subtract with borrow
B-A-Cin 4 9 6 1 0 Subtract rev. w/borrow
-A 12 3 6 2 0 Negative A
-B 10 5 6 2 0 Negative B
A+1 3 12 6 2 0 Increment A
B+1 s 10 8 2 0 Increment B
A-1 12 3 9 2 0 Decrement A
B-1 10 5 9 2 o Decrement B
AAB 0 8 12 0 0 Logical And
AVB 0 14 12 0 0 Logical Or
ADB 0 6 12 0 0 Logical Exor
—A 0 3 12 0 8] Not A
-B 0] 5 12 0 0 Not B
A 0 12 12 0 0 A
B 0 10 12 0 0] B
Mul 1 14 14 0 1 Multiply step
Div 3 15 15 0 2 Divide step
A/Q 0 14 12 9; 3 Conditionat And/Or
Mask 10 5 8 2 0 Generate mask

Carry In Select

The Carry in select field determines what the carry into the LSB of the ALU will be,
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according to the following table:

og o

o1 Flag bit

10 1

11 . Flag bit complemented

Conditional Op Select

The conditional op select field is used to generate 3 basic conditional type operations:
Muiltiply, Divide, and And/Cr step. In a great many cases, the conditional op allows
functions dependant on a flag to be perfarmed in one cycle, rather than sending the flag
to the controller and branching to two separate instructions depending upon that flag.
When a conditional OP is selected, certain ALU control bits are forced to zero. Which bits
are zeroed depends on the conditional OP selectand the flag bit, as follows:

Select Flag bit K P R
0 x ----  Unconditional
1 0 -0 --0- --0-  Multiply step
1 0--- 0---
2 0 0--0 00 -00- Divide step
1 -00- 0--0 0--0
3 0 - And/Or
1 -00-
Flags

The flag select field determines which of the ALU flags becomes the new flag bit. The

following table lists the selection options.

Select New Flag Bit
0 Old flag bit
Carry out
MSB
Zero
Less than
Less than or equal
Higher (in absolute value)
Overflow

~N ;WU h W~
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The ALU flags are loaded into the flag register under the control of the latching field, bit 3.

They are loaded into the following posi‘tions:

Bit . Flag

Not changed

Not changed:

Not changed

Not changed

Not changed

Previous value of Flag bit
- Carry into MSB stage
Less than or equal
Higher (in absolute value)
Less than
LSB
Zero
MSB
Overflow
Carry out
Current Flag bit

t et DO ONODO AN = O
AP LN O w
i J 1 1

Latching Field

The latching field specifies which of four registers should be loaded, as shown in the

following table:
Latching Field Register Loaded

1xxx Flag register loaded with current AL flags

x1xx ALU output latch A loaded with the ALU output

xx1x ALU output iatch B loaded with the ALU output

xxx1 The Literal field during the next ¢2 is loaded with
the contents of the A Bus during the last ¢2

0000 None of these registers are affected
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Literals

The two bit literal field specifies when a literal is to be used and which direction it goes. If
both bits are 0, no literal transaction will occur. If the first bit is 1, a literal will be
transfered. If the second bit is 1, the literal goes off chip, while if the bit is 0, the literai

comes on chip.

Programming Examples

This section of the memo contains 3 programming examples which should provide a better

understanding of the various datapaths within OM2.

The first example is 16-bit integer muitiplication. The two inputs, X and Y, are multiplied to
produce the result, Z. in the multiply loop, the number X is shifted left and the MSB is
stripped off. Z is shifted left, then Y is added to the new Z if the MSB of X was a 1. The
sequence of instructions is repeated 16 times, using the counter in the controller to signal
when the 16 iterations have been performed. Figure 6 illustrates each step of the loop,
which is listed here:

@2 ALU.Qut. A«ALU(Shift left)«ALU.In.A;
Latch Flags;
p1:  ALU.In.A«Shift.out, Bus.A«ALU.Qut.B;

Bus.B<Rf1]; ~This gives a shift constant of 1.
2 ALU.Out.B<ALUMultiply Step); «conditionally add.
FlageCout; -

el ALU.In.A«Bus. A«ALU.Qut.A

The second example will be to generate a parity flag, which is not directly available from
the ALU. Parity is generated by exclusive-oring all of the bits of the data together. If the
data are loaded into both ALU inputs, with the B input rotated by 1, performing an
exclusive-or operation will give an output that is the exclusive-or of adjacent bits; bit / of
the output will be bit i of the input @ bit /-7 of the same input. If this same operation is
performed, this time rotating the B input by 2, bit / becomes i & /-1 & i-2 @ i-3. By
doing this 2 more times, rotating B first by 4 and then by 8, every bit of the output is equal
to the parity: the exor of all of the bits. The MSB flag is the Parity Odd flag, while the Zero
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fiag is the Parity Even flag. The program is listed here, and illustrated in figure 7:

gl ALU.In.A«Bus.A «R{0}; ~generate the parity of register 0.
ALU.In.B«§hift.out(1); Bus.B+R[0];

92 ALU.Out.A«ALU(Exor);

pl: ALU.In.A«Bus.A«ALU.QuLA;
ALU.In.B «Shift.out(2); Bus.B+ALU.OutLA;

¢2:  ALU.OQut.A«ALUWUExor);

@l:  ALU.InA«Bus.A<ALU.OQuLA;
ALU.In.B«Shift.out{4); Bus.B+ALU.QuLA;

¢2:  ALU.Out.A«ALU(Exor);

@l:  ALU.In.A«Bus.A<ALU.Out.A;
ALU.In.B+Shift.out(8); Bus.B+ALU.Out.A;

2 ALU(Exor); '

The third example adds all of the registers to what is in ALU.Out.A. By executing and
modifying a literal, the registers can be indirectly accessed, which makes this routine
possibie. Figure 8 illustrates the operation of the following code:

@1:  ALU.nAeLiteral "Bus.A«R(1]; ALU.In.B+Bus.B«ALU.Out.B";
@2:  ALU.Qut.B+ALU*ALU.InA; -
el ALU.in.A«Bus.A+R[0];

P ALU Qut.B«ALU~ALU.IN.A; «This is just setup, now the loopl
pl:  Bus.AcALU.OuLB;
ALU.In.B+Bus.B+ALU.Out.A;

@2 ALU.Out.A«ALU{add});
Execute Literal;
gl ALUW.In.A«A Bus; «The rest of this instruction is the literall
@2:  ALU.Out.B«ALUfincrement)«ALU.In.8; «point to next register.
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Figure 6a. Shift X in the ALU, putting the Cout flag into Flagbit. {Phi 2)
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Figure 6b. Put Z on Bus A, and shift 1 left in shifter. {Phi 1)
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Figure 6c. Conditionally add Z and Y. (Phi 2)
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Figure 7a. Shifting by 1: Result is Exclusive-Or of Adjacent Bits.
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Figure 7b. Shifting by 2: Result is Exclusive-Or of 4 Adjacent Bits
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Figure 7¢. Shifting by 4: Result is Exclusive-Or of 8 Adjacent Bits.
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Figure 7d. Shifting by 8. Result Has All Bits identically the Parity Flag.
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ISP Description of the OM2 Datachip®

Pin States
Ip<0O:17>
pL 017>
new.code < 0:22 >
Hag.pin <0 >
power < :3>

Pin Formats
left.port.data < 0:15>
left.out.async <0 >
feft.in.async <Q>
right.port.data<0:15>
right.out.async < 0>
right.in.async <0 >
literat < 0:15>
clock <0>

Mp State
reg[0:15] < 0:15>
abus<0:16>
a.bus.old<:15>
b.bus<G:15>
left.out< 0:15>
left.in < 0:15>
right.out<0:15>
right.in{0:15>
left.out.later <>
right.out.later<0>
aly.in.a<0:15>
alu.in.b<>®:15>
aly.out.a< ;15>
alu.out.b<x15>
old.code <(:22>
flags < 0:15>

instruction format
asource<0:4>
b.source < 0:4>
a.destination < 0:4 >
b.destination <0:5>
fiteral.in< 0>
old.literal <0115 >
alu.p.op<Q:3>
alu.k.op< 03>
alu.rop<9:3>
alu.conditional < 0:1 >
flag.select<0:2>
carry.in.select<O:1 >
latch.flags < 0>
latch.alu.out.a<0>
latch.alu.out.b <Q >
literal.controt <0 >
reg.select.1 <0:3>
reg.select.2<2:3>
reg.select.3<0:3>

i u

L T T | | S | { T ¢ I | A | A (Y O I | I

feft port

right port

microcode

flag to controfler

power, ground, clock, substrate

lp<2:155
Ip<16>

ip<17>

p <015
m<16>

17>
new.code < 5:20 >
power<3>

registers

bus a

bus a latched for a literal

bus b

left pad output latch

lfeft pad input latch

right pad output latch

right pad input latch

for output during @2 operations
for output during g2 for right port
alu input latch a

alu input latch b

alu output latch a

afu output latch b

microcode that came in last phase
flag register

old.code <{5:9>
oid.code < 16:20>
old.code <0:4 >
pid.code < 10:15>
old.code<22> :
old.code < 5:20 >
old.code < 19:22 >
old.code < 15:18 >
old.code<11:14>
old.code {$:10>
new.code < 6:8>
old.code< 45>
old.code<3>
old.code<2>
old.code<1>
old.code<{0>
a.source < 0:3>
a.destination <0:3 >
b.source<0:3>
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reg.select.4<0:3> b.destination < 0:3>
select.1<0> a.source<4>
select.2{0> a.destination<4>
select.3<0 > b.source<4>

b.destination < 4:5>
b.destination <0:3>
b.bus <0:15> Oa.bus {O:15>

select.4<0:1>
shift.constant < 0:3>
sharay < (:31>

0dannhon#

Temporary State
kill.control < 0:3>
propagate.control < 0:3>
result.control < 0:3 >
kill<0:15>
propagate < 0:15>
carry <O:16 >
alu.out <0:15>

instruction Execution
Instruction.execution: ={ -
left.out.async = 0=>{left.port.data«~left.out);next
left.in.async = 0=>(left.in~left.port.data);next
right.out.async = 0=>(right.port.data«right.out);next
right.in.async = 0=(right.in~right.port.data);next
phil(; = clock = 1)=>(
left.out.later+Q;next
right.out.later+Q;next
literal.in = 1=>{a.bus +old.literal};next
literal.in = 0=>(
select.1 = 0=>(a.bus-reg{reg.select.1});
select.1 = 1={
reg.select.1 = 0=>(a.bus+right.in+right.port.data),
reg.select.1 = 1=e{a.bus+right.in};
reg.select.1 = 2=>(a.bus+left.in+left.port.data);
reg.select.1 = 3=>(a.bus«+left.in);
reg.select.1 = 4= (a.bus+alu.out.a);
reg.select.1 =5=>(a.bus+alu.out.b);
reg.select.1 = 6=+(a.bus+flags);next);next
select.3 = 0==(b.bus+reg[req.select.l]);
select.3=1=>(
reg.select.3 =0=>(b.bus+right.in«right.port.data);
reg.select.3 = 1=(b.bus«right.in);
reg.select.3 = 2= (b.bus +left.in~left.port.data);
reg.select.3 = 3=>(b.bus+ieft.in),
reg.select.3 = 4=>(b.bus+alu.out.a);
reg.select.3 = 5= (b.bus«alu.out.b);next);next
select.4 = 0=*(reg[reg.select.4}+ b.bus);
select.4 = 1=%(
reg.select.4 = 0= (left.port.data+left.out b .bus);
reg.select.4 = 1=
left.out+b.bus;next
left.out.later+ t;next);
reg.select. 4 = 2==(left.out+b.bus);
reg.select.4 = 3=>(left.out+b.bus);
reg.select.4 = 4=>(right.port.data«right.out«b.bus);
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)

reg.select.d = 5=
right.out«b.bus;next
right.out.later« 1;next);
reg.select.4 = == (right.out<b.bus);
reg.select.4 = 7=> (right.out+b.bus});
reg.select.4€{8,9,10,11}=>(alu.in.b «b.bus);next);
select.4 = 2= (alu.in.b < 0:15 > +sharay < 16-shift.constant:31-shift.constant > };
select.4 = 3=>(aiu.in.b«2tshift.canstant);next);next
select.2 = 0=>(reg[reg.select.2] <a.bus);
select.2 = 1=>(
reg.select.2 = 0=>(left.port.dataleft.out~a.bus);
reg.select.2 = 1=>(
left.outea.bus;next
left.out.later+ 1;next);
reg.select.2 = 2=>(left.out+a.bus}
reg.select.2 = 3=>(left.out+~a.bus);
reg.select.2 = 4=>{right.port.data<right.out+a.bus);
reg.select.2 = 5=>(
right.out+a.bus;next
right.out.later+ 1;next);
reg.select.2 = 6=+ (right.cut+~a.bus);
reg.select.2 = 7=>(right.out+a.bus);
reg.select.2 = 8=>(alu.in.a+a.bus);
reg.select.2 = 8=>(alu.in.a < 0:15 > «sharay < 16-shift.constant:31 -shift.constant > );
reg.select.2 = 10==(alu.in.a« 2tshift.constant);
reg.select.2 = 11=>{flags~a.bus);next);next
flag.select = 1=>(flags < 15 > «flags < 14 >);
flag.select = 2=>{Hlags < 15> «flags <12>);
flag.select = 3=>(flags { 15> «flags < 11 >);
flag.select = 4= (flags { 15> «flags <9 >);
flag.select = 5=>(flags (15> «flags <7 > );
flag.select = 6=>(flags {15 > +flags < 8> );
flag.select = 7=>(flags < 15 > +flags < 13 > );next

phi2(: = clock = 0)=>(
ieft.out.later = 1=>(left.port.data«left.out);next
right.out.later = 1 ==(right.port.data+ right.out};next
kiil.control + alu.kK.op;next
propagate.control € alu.p.op;next
resuit.controlealu.r.op;next
alu.conditional = 1=>(
flags< 18> = 1=>(
propagate.control <G> «Q;next
result.control < 0 > «0O;next);
flags < 15> =0=>{
kill.control < 3 > «0;next
propagate.control < 2 > «0;next
result.control € 2 > «0;next);next);
alu.conditional = 2=»(
flags <152 =1=(
kill.control € 2 > «O;next
kitl.control <1 > «0:next
propagate.control < 3> «0;next
propagate.control < 0 > «0O;next
result.control <3 > «0;next
result.control <0 > «0;next);
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flags < 15> = 0=>(
Kill.control < 3 > +0;next
kili.control < 0 > +0;next
propagate.control < 2 > +0;next
propagate.control < 1> «+U;next
result.control < 2 > «0;next
result.control < 1> «0;next);next);
alu.conditional = 3=
flags < 15> =1=(
propagate.control < 2 > «0;next
propagate.control < 1 > «0;next};next);next
kill <Q:15 >
kill.control < 3> A(alu.in.a < 0:15 > )A(Taluin.b <G:15>}V
kill.control < 2> A(alu.in.a<0:15>)Aalu.in.b <15 >V
kill.control < 1 > Aalu.in.a < 0:15 > A(—aluinb <0:15>)V
kill.control <0 > Aalu.in.a< 0:15 > Aalu.in.b < 0:15 > );next
propagate < ;15> «{
propagate.control < 3> A(—alu.in.a<0:15 > 1A (Malu.inb <0:1
propagate.control < 2 > A{—alu.in.a <0:15 >)Aalu.in.b <0:15 >
propagate.control < 1> Aalu.in.a < 0:15> A{™alu.inb <0:15>)
propagate.control < 0> Aalu.in.a < 0:15 > Aalu.in.b <0:15 > );next
carry <0 > «carry.in.select <1 > @(carry.in.select <0 > Aflags < 15 > ):next
for k=1 step 1 until 16 do:
(carry <k > « —(kill Ck-1> + propagate < k-1> *—carry Ck-1>) + kil <k-1>*
propagate < k-1 > *x);next in OM2, x is undefined
It kill(i) and propagatefi) are both high, the carry chain does funny things.
We represent that here by use of the "x" in the carry tunction.
alu.out <0:15 > «{
result.control < 3 > A(—propagate < 0:15 > )A(—carry <0:15> )V
result.control < 2> A(—propagate <0:15 > )Acarry <0:15> V
resuit.control < 1> Apropagate <0:15> A(—carry <:15>)V
result.control < 0 > Apropagate < 0:15 > Acarry <0:15 > };next
latch.alu.out.a = 1=>(alu.out.a+alu.out);next
latch.alu.out.b = 1 =>{alu.out.b+alu.out);next
literal.control = 1=*(iiteral + bus.a.old);next
latch.flags = 1=*(
flags < 5> «flags < 15 > ;next
flags < 6> «carry < 15> ;next
flags < 10 > «alu.ocut< 0 > ;next
flags < 11 > «(Q;next
alu.out = 0=*>(flags < 11 > «1};next
flags < 12 > +alu.out < 15> ;next
flags < 14 > «carry <16 > ;next
flags < 13> +flags < 14 > Dflags <6 > ;next
flags <9 > «flags < 12 > Bflags < 13 > jnext
flags < 7 > «flags < 11 > Viiags <9 > ;next
flags < 8 > «=(flags < 14> VHags < 11> );next);next);next
) end of instruction execution

5>V
v
v

References:

1. D. L. Johannsen, "Qur Machine: A Microcoded LSI Processor”, Display File #1826,
July 1978, Dept. of Computer Science, California Institute of Technology.

2 C. G. Bell, A. Newell, "Computer Structures: Readings and Examples”, Chapter 2,
McGraw-Hill, 1971.
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13 12
14 11
15 10
16 ' 9
17 8
18 : 7
19 6
20 I ' | -5

=< 1t OOt o /4 el

LP15 ]+ az [l Flag
LP14 (] JRP15
P13 [ TRP14
P12 1RP13
P11 1RP12
LP1c L 1RP11
tP9 [ 1RP10Q
tr8 [ {1RPY
Lp7 [ 1RP8
LP6 (] . " [QRP7
Lps O - [1RP6
LPa {1 [1RP5
LP3 L RP4
P2 RP3
Pt [ 1RP2
LPO Eﬂ 16 PRP1

T e = T d T L

LP Out - — RPO
LP in ——J l I RP Out
' RP in

CLK
Gnd vdd
21 4
22 3
Substrate 2
Q 1

Figure S. Pinout of the OM2 Datachip
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Summary of Commands

{Ch.5., Sect2]

OoM2

Transfer Phase: PHI 1

Literal Bus B Source Bus B Destination Bus A Soqurce Bus A Destination

Controt
Bus A Source Literal Control Bus B Source
Gnnnn Register n 000 Microcode In Onnnn Register n
10000 Right - Port Pins Qo1 lHegal 10000 Right Port Fina
10001 Right Port Latch [oh{+] Literai In 10001 Right Port Latch
10010 Lett Port Pins Qi1 l=gal 10010 Left Port Pina
10011 Left Port Latch 100 Execute old A Bus 10011 Left Port Latch
10100 ALU Oulput Latch A 101 lNlegal 10100 ALY Output Lateh A
10101 ALU Output Latch 8 110 A Bus gets old A Bus 10103 ALU Qutput Latch B
10110  Flag Register 111 Literal Qut other - No Source
------- Literal {see Literal Control)
other No Source LSB of the Latching Field

Bus A Destination

during fast PHI 2.

Bus B Destination

Onnnn Register n QGnann Register n
10000 Leit Port, drive now 010000  Left Port, drive now
10001 Left Port, drive PHI 2 Q10001 Left Port, drive PHI 2
1001x Left Port, no drive 01001x  Left Port, no drive
10100  Right Port, drive now Q10100  HAight Port, drive now
10101 Right Port, drive PH 2 410101 Right Port, drive PHI 2
1011x Right Port, no drive o1011x Right Port, no dirve
11000 ALY lnput Latch A 0110xx ALU Input Latch B
11001 ALU tnput Latch A gets Shift Out Ot1ixx No Destination
11010 ALU Input Latch A gets Shift Control 10nnnn ALU Input Latch B gets shift
11011 Flag Register output, shift constantsn
other Do DCeslination 11nnnn ALU Inpul Latch B gets shift
control, shift constantan
Operation Phase: PHI 2
ALL Operation Flag Select Carry In Latching
Select Fieid
ALU Operation Carry In Select
1000 Ot10 0110 00 00 Add 00 )
1000 0110 0110 00 01 Add with Carry o1 Flagbit
0100 1001 0110 00 10 Subtract 10 1
0010 1001 0110 00 10 Subtract Reversed 11 Flaghit Complimented
0100 1001 0110 00 Q1 Subtract with Borrow
0010 100t 0110 00 01 Subtract Reversed with Borrow
0011 1100 0110 00 -10 Negative A Flag Select
0101 1010 0110 00 10 Negative B
1100 0011 0110 00 10 Increment A Qo0 Old Flagbit
1010 01C1 Q110 00 10 Increment 8 Q01 Carry Out
0011 1100 1001 00 10 Decrement A 010 MSB
0101 1010 1001 QO 10 Decrement B o111 Zero
0000 0001 O00t1 0C Q0 Logicai AND 100 Less than flag
0000 0111 0011 00 00 Logical OR 101 Less than or equal flag
0000 0110 0011 00 00 Logicat Exclusive Or 110 Higher flag
Q000 1100 0011 Q0 00 Not A 111 Overtlow
0000 1010 0011 00 QO NotB
Q000 0011 0011 Q0 Q0 A . .
0000 ©101 001t 00 00 B Latching Field
1000 0111 0717 91 90 My Seo
0000 0111 0011 11 00 Conditional AND/OR xlxcLoad AL e L 8
0101 1010 0001 00 10 Generate Mack xxix  Loud ALU Output Lot
’ xxx1 Literal bits get old A Bus next PHI 1
uuuL ULy Ul w  uy  User Defined Op 0000 Nop

Carry'In Select Field
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Chapter 6: Architecture and Design of System Controllers,

and the Design of the OM2 Controller Chip
Copyright ©® 1978, C.Mead, L.Conway

Sections:
Alternative Control Structures - - - The Stored Program Machine - - - Microprogrammed
Control - - - Design of the OM2 Controller Chip - - - Examples of Controller Operation - - -

Some Reflections on the Classical Stored Program Machine

This chapter presents alternative structures for controlling a data path of the type described in
chapter 5. It contains a review of the basic concepts of the stored program computer, and how
such computers are constructed from a combination of (i) a data processing path, (i) a controller,
and (iii) a memory to hold programs and data. A description is given of some of the ideas
behind the architecture of a specific controller chip, designed at Caltech, for use with the OM2

data chip. Several exampies of controller operations are provided.

We have previously used the OM2 data path chip as a source of illustrative examples, primarily
at the circuit layout level, (o help the reader span the range of concepts from devices, to circuit
tavout, to LST subsystems. Tn this chapter, the controller chip is used as a source of examples one
level higher, at the subsystem level, to help the reader span the range from digital logic circuits, to
LSI subsystems, to arrangements of subsystems for constructing [ SI computer systems. The
computer system one can construct using the OM2 data chip, the OM?2 controller chip, and some
memory chips, contains rather simple, regular layout structures. Yet the system is functionally

quite powerful, comparing well with other classical, general-purpose, stored program computers.

All present general-purpose computers are designed starting with the stored program, sequential
instruction fetch-exccute concepts described in this chapter. These concepts are important not

only for understanding present machines, but also for understanding their limitations.

As we look into the future and anticipate the dimensional scaling of the technology, we must
recognize that it will ultimately be possible to place very large numbers of simple machines on a
single chip. When mapped onto silicon, classical stored program machines make heavy use of a
scarce resource: communication bandwidth. They make little use of the most plentiful resource:
multiple, concurrent, local processing elements. What might be the alternatives? We will reflect

on some of these issues at the end of this chapter, and examine them in detail in chapter 8.
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Alternative Control Structures

In this section we will clarify the distinction between the data processing and control functions in

a digital computer system, and then examine several alternative forms of control structures.

The data processing path described in chapter 5 is capable of performing a rich set of operations
on a stream of data supplied from its internal registers or from its input/output ports. How is it
that a structure having such a static and regular appearance as the OM Data Path can mechanize
such a rich sct of operations? An analogy may help in visualizing the data path in operation.
Imagine the data path as like a piano, with the interior regions of the chip visualized as the array
of piano wires, and the control inputs along the edge of the chip as the keys. Under the external
control of the controller chip, now visualized as the piano player, a sequence of keys are struck.
During some cycles, many keys are struck together simultaneously, forming a chord. A complex
function may thus be performed over a period of time by the data path, just as the static-
appearing array of piano wires may produce a complex and abstract piece of music when a series

of notes and chords are struck in a particular order.

We see from this analogy, however, that the data path in itself is not a complete system. A
mechanism is required to supply, during each machine cycle, the control bits which dstermine the
function of the path during that cycle. The over: !l operations performed on data within the data

path are determined by sequences of control bit patterns supplied by the system controller.

Mechanisms for supplying these sequences of control inputs to a data path can either be very
simple or highly complex. There are many aiternative sorts of control structures. The detailed
nature of the controller has many important effects on the structure, programming, and
performance of the computer system. Let us begin with the description of the simplest form of
finite state machine controller. Then, through a sequence of augmentations of this controller, we

will build up to the concepts of the stored program computer and microprogramming.

Simple block diagrams, such as figures 1, 2, and 3, are used in this chapter to convey the essential
distinctions between various classes of controllers without requiring the diagramming of the
internal details of any particular controiler. Although the detailed internal logic of any particular
controller may be rather complex, there are only a smail set of key ideas involved in the

hierarchy of controller structures presented by the sequence of block diagrams.

If you closely examine the controllers of typical computers, you will find that every one either is,
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<
OR-Plane <41 AND-Plane
pe—
ph1  ——— outreg inreg f&——— ph2
controlinputs
data €—> DATA PATH &> data

Fig.1. Finite state machine controllingthe Data Path

in this case, perigdically cyclingthru a fixed sequence of states

data

<
OR-Plane e AND-Plane
<
R
flags
controlinputs
DATA PATH p&e————>» data

Fig.2. Finite state machine controlling the Data Path

fn this case, the next statecan be a function of the previous operation’s outcome

daty 2>

<

OR-Plane ey AND-Plane
<—

flags
load Hags

» lag-req
controlinputs
DATA PATH [ oe—nsn data

Fig.3. Finite state machine controiling the Data Path

Inthis case, adatapath operation resultmay controi

machine sequencing 1or a number of 1atercycles
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or contains within it, a finite state machine such as those described in Chapter 3. The very
simplest form of controller for the data path is a finite state machine having no inputs other than
state feedback lines, as shown in figure 1. The operations performed by the data path are
determined by the sequencing of the state machine. Each clock cycle, the output of the OR
plane is fed back into the AND plane and determines the next state of the state machine, which
periodically cycles through a fixed sequence of states. The data path is clocked in synchronism
with the controller, although for simplicity we haven't shown clock inputs to the data path in the
figures. Thus a fixed algorithm implemented in the code of the state machine operates on the

data in the data path.

Such a control structure could be used with the data path to implement a function such as a
digital filter, in which data is taken in from the left port of the data path, a fixed set of operations
performed on the data, and a result output at the right port of the data path. However, this
elementary control structure provides no way to perform operations which depend on the

outcome of a previous operation or upon the data itself.

A simple augmentation, shown in figure 2, enables the control sequencing to be a function of the
outcome of the previous operation. In figure 2, some of the data, or some logical functions of the
data, called flags, are fed into the AND plane inputs of the state machine along with the next
state information. Some typical flags are: whether or not the ALU output is zero, is positive, or
whether or not one ALU input is numerically equal to the other. The next state can thus be a
function of flags generated during the preceding operation. To simplify figure 2, we have not
shown the clock inputs to the PLA. However, assume that all subsystem structures shown in the
figure, and throughout this chapter, are appropriately operated in a synchronous manner using

our normal two phase clock scheme and proper design methodology.

While in principle the figure 2 structure is quite general, improvements are possible which allow
greater flexibility and compactness of representation of the algorithm in the state machine. One
of these improvements is shown in figure 3. Here an additional output from the OR plane of the
state machine is used to control the loading of the flag outputs of the data path into a flag
register. The flag register is used as an input into the AND plane of the stale machine. This
enables flags generated by a particular operation to be used as contro! inputs for the state
machine for a number of later operations. The stored flag values are replaced by a new set only
when the flag load signal is raised. One difficulty inherent in this structure is the limited amount
of information provided by the few flags generated by the data path’s ALU.
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The Stored Program Machine

A very general and powerful arrangement is shown in figure 4a. This structure is similar to the
one discussed in the last section. In this case the state machine sequencing is controlled not only
by the last state and flags, but also by the data coming from some memory attached to the
machine. The memory contains not only the data upon which the data path is operating, but also

contains encoded information for influencing the sequencing of the state machine.

This scheme gets around the limitation of the structure in figure 3, and also provides a complete
new dimension of possibilities. The basic idea is to design the state machine controlier so that it
may perform any of a set of different predefined operations, called the machine instruction set,
rather than just perform one dedicated, predefined operation. This machine instruction set is
carefully defined so as to enable the system composed of the data path, controller, and memory
to mechanize any of a number of different algorithms of interest to a number of different users.
These algorithms are implemented as programs composed as sequences of machine instructions

loaded into the memory. These programs operate upon data also conlained in the memory.

It is possible to show that this arrangement is perfectly general and can implement any digital
data processing function. John von Neumnann! is generally credited with originating this idea of
a stored program machine, and such machines are often called von Neumann machines. The
abstract notion of the most basic form of stored program machine was pr: posed by Turing2 in
1936, for application in the development of the theory of algorithms. The abstract Turing
Machine is important not only for historical reasons, but aiso because of its present use in the

development of the theory of computational complexity of sequential algorithms.

The way in which the stored program machine operates is as follows. One of the internal
registers of the data path is selected to hold a pointer into the program stored in the memory.
This register is commonly called the program counter (PC), or alternatively, the instruction address
register. In one particular state of the controlling state machine, which we will call the fetch next
instruction (FNT) state, the program counter is caused by the state machine to output its data as
an address to the memory, and the state machine initiates a memory read from this address. The
data from this memory read operation is taken into the AND plane of the state machine, placing
the state machine into a state which is the first of the sequence of states which mechanize the
machine instruction corresponding o the code just read from the memory. The state machine

then sequences the data path through a number of specific operations sufficient to perform the
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function defined by that instruction. At some point during instruction execution the next PC

value is calculated, usually by simply incrementing the current PC value,

When the state machine has completed the interpretation, or execution, of the machine
instruction, it returns to the FNI state. The instruction fetch is then repeated, sending a new
program counter value to the memory as an address, reading the next instruction from the
memory, and beginning its interpretation. The system can thus perform any set of required

operations on data stored in memory, as specified by encoded instructions stored in memory.

There is a problem with the organization of the controller in figure 4a. Most of the steps of an
instruction execution sequence need as input the encoding of the insiruction which initiated the
sequence. In figure 4a, this information must be duplicated each cycle by the next state
information. The number of bits in the feedback path for this information can be reduced by the
arrangement shown in figure 4b. Here the incoming instruction is stored in a register, called the
instruction register (IR), which is loaded under the control of an output from the state machine.
It stays in the instruction register, and is available for state machine input during the entire
period that particular instruction is being interpreted by the machine. This new arrangement is
not fundamentally different from the preceding one, but is more efficient in its use of the PLAs.

The separation and naming of the instructin register also enables us to take another step in the
structuring of the state machine controller’s operations: the conception and naming of stages of
the intcrpretation of instructions fetched and held in the IR.

Suppose we have defined a machine instruction set which, for example, includes arithmetic-logic
instructions, memory instructions, and branch instructions. Suppose we also have a data path
such as the OM data chip, or any other typical data path containing registers, an ALU, buses for
moving data around, and inputs for control signals to control the movement of data and the ALU
operations. What functions must a control unit, such as that shown in figure 4b, perform in order
to fetch and execute machine instructions? We find that in most stored program machines, the
execution or interpretation of each machine instruction is typically broken down into the
following six basic stages. Note that some instruction types may skip one or more of the stages,

and that each of the stages may require sequencing through several controller states:

(1) Fetch next instruction: This is the starting point of the fetch-execute sequence. The machine

instruction at the address contained in the PC is fetched from the memory into the IR.
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(2) Decode Instruction: As a function of the fetched machine instruction’s type, encoded in its
OP code field, the controller must "branch” to the proper next control state o begin

execution of the operations specific to that particular instruction type.

(3) Fetch instruction operands: Instructions may specify operands such as the contents of registers
or of memory locations. During this execution stage, the controller cycles through a
sequence of states outputting control sequences 0 fetch the specified operands into specified

locations, for example into the input registers of the ALU.
(4) Perform Operation: The operation specified by the OP code is performed upon the operands,

(5) Store Resuli(s): The results of the operation are stored in destinations, such as in registers,

memory locations, flags, etc..

(6) Set up next address, and return to FNI: Most instructions increment the PC by one and
return to the FNI state (1). Branch instructions may modify the PC, perhaps as a function of

flags, by replacing its contents with a literal value, fetched value, or computed value.

Now, how would we go about designing such a controller? We can construct the state diagram
for the controller just as we did for the traffic light controller example in chapter 3. Then we
proceed to build up the detailed state transition table, and finally derive the AND and OR plane
code for the PLA. However, in this case the state diagram will be rather more complex than that
in our earlier example. One hundred or more states may be required to implement the controller
for a simple machine instruction set. How do we even begin constructing the state diagram? The
above list of stages of instruction execution provides a simple means of structuring the diagram.
Figure 5 contains part of the controller state diagram for a typical stored program machine, The
diagram is structured as a matrix of regions, where the instruction execution stages proceed from
top to bottom, and the columns contain specific state sequences for each instruction type. The
FNI state is placed at the top of the diagram, followed by the states léading to the decode. The
decode results in a many-way branch, each path leading to a sequence for execuling a particular
instruction type. The figure contains some (informal) details indicating the sorts of specific
control operations performed at each stage of the instruction execution or interpretation. One
will encounter many variations on the simple state diagram structure shown. These are usually
easily understood elaborations. For example, groups of machine instructions may share common
subsequences of control operations. To reduce the number of states, we might have another level

of decoding, first decoding to groups of instructions and performing shared operations, then
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decoding to individual instruction types. In any event, the generation of the state diagram and
eventually the PLA code is just a matter of grinding out the details. The generation of these

details is another activity which is made more tractable by following a structured approach.

Some examples follow which will clarify how a machine instruction’s execution can be divided
into parts, and how the parts interact with each other. Instead of using the graphical notation of
figure 5, an informal tabular form is used, containing a list of statements that are normally
performed sequentially, as encountered. In these examples, the unbracketed statements under
"control [& state] sequence” indicate control actions. However, some staiements explicitly set the
next state Y'. These statements are bracketed, "[ ], and indicale a more complex state transition

than simple state-to-state progression (shown in figure 5 by a single arrow between circles).

ALU Example: Suppose that an arithmetic/logic instruction in our machine instruction set has
the general form: { ALUOP, REGA, REGB, REGC }, specifying that ALUOP be performed on
operands REGA and REGB, and the result stored in REGC. Then the instruction { ADD. R7, R2, RS }
might be executed by the following control sequence. Note that certain of the individual control
steps may occur in the same machine cycle ( for example: A<R7, B«R2 ), as a function of the
capabilities of the data path; the more the data path can do in parallel, the fewer machine cycles

it will require to complete an instruction:

Function of sub-sequence: Comirol [& State] sequence:  Commenis:
Fetch Next Inst: RPORT « PC Place next instr. address in right port.
read memory Raise control line to initiate memory read,
PC « PC+1 Increment PC, overlapping incr. with fetch.
[Y'=fcn(memop complete)] Loop here ull memory read completes,
IR « mem data Load IR with inst. when read completed.
Decode Instruction: [Y = fen(IRY] Set machine state as fen of instruction.
Fetch Operands: A « R7 Load ALU input registers with operands.
B+« R2
Perform Operation: ALUoutreg « A+B Add A and B, store in output register.
Store Result: RS « ALUoutreg Send result address to RS,
[Y' = FNI] Inst. not a branch, so simply return to FNI state

The example assumes there is some sort of shared access to the memory, and thus the time for
completion of memory accesses is not predictable. That is why we wait, testing for the presence
of a completion signal before proceeding. In some computer systems, such memory accesses
might proceed in lockstep with the controller sequencing, and the data taken from, or placed on,

the memory bus at some fixed number of cycles following initiation of the memory operation.
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Normally, most machine instructions are not branches, so we usually just have to increment the
PC sometime during instruction execution. This incrementing can often be overlapped with other
control operations: In the example, the incrementing of the PC is done during the FNI stage,

while waiting for the completion of the instruction-fetch memory operation,

Memory Example: A memory instruction in our set might have the general form { MEMOP,
REGA, ADDRESS } , specifying the loading or storing, according to MEMOP, of the contents of
register REGA to or from the memory address ADDRESS. The instruction { STORE, R3. ADDRESS }

might then be executed by the following control sequence:

Funcrion of sub-sequence: Control [& State] sequence: Commenis:

Fetch Next Inst: RPORT « PC Place next instr. address in right port.

read memory Raise comtrol line to initiate memory read.

PC « PC+1 Increment PC.

[Y'=fcn(memop complete)] Loop here tll memory read completes.

IR « mem data Load IR with inst, when read completed.
Decode Instruction: [Y' = fen(IR)] Set machine state as fen of instruction
Perform Operation: RPORT « IR(ADDRESS) Send the address of the result to the memory,

write memory Raise write control line to init memory write,
Store Result: RPORT « R3 Place result in right output port.

[Y'=fentmemop complete)] Loop here till memory write completes.

iY' = FNI} Inst not a branch, so simpiy return to FNI state

Branch Example: Suppose that branch instructions have the form: { BR. COND, ADDRESS },
specifying that if the condition COND is true according to the flags, then the PC is to be loaded
from memory address ADDRESS. The branch instruction { BR. LT. ADDRESS } might then be

executed by the following control sequence:

Function of sub-sequence: Control {& State] sequence:  Comments;
Fetch Next Inst: RPORT « PC Place next instr, address in right port
read memory Raise control line to initiate memory read
PC « PC+1 Increment PC.
[Y' = fen(memop complete)] Loop here till memory read completes.
IR + mem data Load IR with inst, when read completed.
Decode Instruction: {Y' = fen(IR) Sect machine state as fen of instruction.
Perform Operation: {Y' = fen(LTflag)] Set machine state as fcn ALU LTflag. Set to FNI
if notL.T. Else contnute and generate new address.
Next Address: PC « IR(ADDRESS) Generate new next address.
[Y' = FNI| Retumn to the FNI state.
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Now, how are the next higher level system software control functions mapped onto this basic
machine structure?  Higher-level functions common to all machine instructions are often
performed within the FNI stage of instruction execution. After return to the FNI state, but prior
to the decode state, one machine instruction has been completely executed but no action has yet
been taken to execute the next instruction. Therefore, that is a natural place to check for
interrupts from 1/O devices, to test the priorities for task switching in a multiprogramming
environment, and so forth. The testing of these logical signals, which are input to the state
machine, can often be overlapped with other FNI activity, Multiple tasks may then be

implemented by having the controller manipulate multiple program-counters.

In summary, once both a machine instruction set and a data path have been defined, then the
control sequences required lo interpret the machine instructions can be "programmed”, the
overall controller state diagram consiructed, the "code” for the AN and OR scctions of the state
machine can be generated, and software systems can be built upon (he resulling stored program
machine.  Interestingly, the control sequences in the above cxamples look somewhat like
"programs" written in a very primitive machine language. This observation anticipates the

concept of microprogrammed control, which is described in the next section.

For more information on this material, including the various trade-offs involved in the definition
and encoding of instructions, see the many cxamples in Bell and Newell®. Sce also Dietmeye 7,
which works out an exampie all the way from state diagram through the design of the controls of
an elementary digital computer. Formal methods for describing state machine algorithms are
given in reference 7, and in the reference R4 of chapter 3: an interesting alternative method
based on ideas of T. E. Osborne, is presented along with practical examples in Clared.

The abstract concepts behind the arrangement shown in figure 4b are used in almost ail stored
program digital computers manufactured today. A computer having any sort of machine
instruction set can be implemented with the arrangement shown. In many cases, the state
machine is implemented in random logic and therefore is not easily recognizable as one of the
forms shown. However, the opcrations performed are equivalent to those described here. Note
that any performance contraints imposed by limited functionalily in the data path simply trade off

against the number of machine cycles required to mechanize particular algorithms.
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Microprogrammed Control

Sometimes the complete machine instruction set is not definable at the time a compuier is being
designed. This contingency often arises when certain operations, defined by some later user, must
be executed at very high speed. Perhaps the data path is inherently capable of satisfying the
required performance constraints, but not when operated under the control of any sequence
composed of standard machine instructions. In such cases, special new machine instructions

would have to be defined and then implemented in the state machine control logic.

Another common situation is the need to execute the instruction set of another computer system
for which the user has existing programs. While such instructions could be executed by
simulation, i.e. by interpreting them via a program written in the original machine instruction set,
such simulations usually pay a high performance penalty. It would be much better if the
machine could execute them directly. However, a substantial augmentation and/or medification

of the controller’s logic would have to be made, for such direct execution to be possible.

In both of these situations it would be desirable if the state machine were implemented in some
writeable medium, rather than in the fixed code of a standard programmable logic array and thus
patterned permanently in the silicon. While it is quite possible to build writeable programmable
logic arrays, none are currently in use. Instead, machine designers have invented many clever

ways of using standard writeable memories to hold the feedback logic «f the state machine.

The simplest such arrangement is shown in figure 6. Here the state machine is implemented
using a set of memory chips. Collectively, this set of memory chips functions externally exactly
as the programmable logic array shown earlier. However, this very clementary structure has a
problem in supporting wide machine instruction words, since the decoder must exhaustively
decode all combinations of the input variables. Thus, if fis the number of flag bits, and » is the
number of next state lines, then the memory must have 2ﬁ+f +1) words to be of sufficient size
to allow emulation of any machine having instructions / bits wide. For this reason designers have
taken io inserting more complex logic than just a simple instruction register into the path between

the data source and the memory decoder section of state machines of this form,

A systemn using a logic path between the memory bus, or source of instructions, and the memory
decoder section of the stale machine is shown in Figure 7. Here a logic block we have termed

the micro program-counter path is inserted between the source of machine instructions and the
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inputs to the decoder. This type of control, using either writeable or read-only memories, is
generally referred to as microprogrammed control. Notice in figure 7 that the flags and the
machine instruction fetched from the memory both act as input data to the small micro program-
counter data path, and the outputs of this data path are the microcode memory address lines.
The arrangements shown is very powerful and general, and capable of emulating any instructions

set for which there is sufficient microcode memory.

In a microprogrammed controller, the design of the control logic is reduced to encoding
sequences of control bit patterns to be stored, along with control memory address sequencing
information, in the microcode memory. The encoded control bit patterns for each clock cycle or
machine cycle are visualized, as in the examples in the past section, as a primitive form of
“instruction” and are called microinstructions. Rather than creating a "circles and arrows™ state
diagram and "assembling” PLA code, we write a symbolic microprogram and assembie it in the

same manner as we would a symbolic machine language program,

The micro program-counter data path (pPC) is similar to the main data path: it is controlled by a
number of outpuls from the microcode memory section of the state machine. Its main purpose is
to decrease the amount of microcode memory required to emulate the particular machine
instruction set being implemented. This is done in two ways: First, the pPC maps the f+n bits
of state into a smailer number of bits whicli are then decoded to address the microcode memory.
Secondly, it reduces n by allowing complex operations within the pPC to be specified with only a
few bits of control information. The controller chip described in the later sections of this chapter

is the microprogram counter path portion of a microprogrammed controller for OM2.

The concept of microprogramming was originated by M. V, Wilkes>4 in 1951. In those days
when controller logic functions were implemented using gates constructed out of vacuum tubes,
switching hardware was very expensive compared to wires, and great efforts were expended
towards gate minimization. This inevitably led to rather intertwined connections in the controller
logic, and any change in function might require a complete redesign. Wilkes presented the
notion of microprogrammed conlrol using a read-only memory to hold the control sequences, as a
means of bringing regularity and structure to the design of system controllers and thus
simplifying their design and redesign. There is a large body of knowledge associated with the
architectural implications of microprogrammed control, and the serious reader will benefit from a

study of the literature>-87,
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Today, although we can easily implement control logic in a structured way using a PLA, we still
often use microprogrammed control in order to obtain the advantages offered by writeable control
logic. An additional present advantage of microprogrammed control is that the detailed
design/redesign of control logic is extended into the wide arena of those familiar with linear
sequential programming concepts. In the future as the "programming” of structures into silicon
becomes easier, as the time to implement designs becomes much shorter, and as state machine
“coding” becomes more widely understood, we may find that these activities will become viewed

as a natural extension of microprogramming.

There is an alternative way of viewing the machine shown in figure 7. Examine carefully the
loop formed by the micro program-counter data path, the decoder section of the microcode
memory, and the outputs of the microcode memory which are used to control the micro program-
counter. We can view the microcode memory address as an instruction address and the wires

coming from the microcode memory to control the micro program-counter path as an instruction.

This alternative view is illustrated in figure 8. Observe that we have constructed another stored
programmed machine of the same form as that shown in figure 4b. We have come full circle in
our machine design: in our zeal to put as much capability as possible in the path between the
machine instruction and the decoder of the state machine, we have in fact created a stored
programmed machine within a stored programmed machine. This phenomenon is referred to by
Ivan Sutherland as the "great wheei of reincarnation".‘ Computers often have many such levels of
machine within them, each a general purpose stored program machine in its own right. We thus
find that elaborate computing machines are often only simple machines, nested and connected

together in complex ways.
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Design of the OM2 Controller Chip

We now describe some of the ideas behind the design of one particular micro program-counier
path used for controlling the OM data chip in the system conﬁgurati0n9 described in chapter 5.
The design of the controller chip will be examined at several stages in its actual development.
This material illustrates the mapping into LS, and the topological/geometrical planning in LSI of
various subsystems such as stacks, incrementers/decrementers, multiplexers, etc., which are useful

in constructing controllers.

Even at the 1978 value of A = 3 microns, the OM2 data path and certain forms of controller
could be integrated onto a single chip. The separation of these modules onto two chips was
primarily for research and (utorial purposes in the university environment: so that different
controllers could be used with the OM?2 data chip and vice-versa. The fact that data path and
controller are on scparale chips does, however, lead lo detailed sysiem partitioning decisions
aimed at minimizing interchip communication. These decisions might be made differently were
data path and controller integrated onto the same chip. Nevertheless the issuc of minimization of

interchip communication would stiil be involved at the next system level, and is worthy of study.

The basic function of the micro program-counter path, which we call the controller for short, is to
provide microprogram memory addresses. The microprogram memory addresses are stored in a
latch which is called the micr:> program-counter, or uPC. The uPC should be distinguished from
the program-counter, or PC, which stores the main memory addresses of higher level machine
instructions. The most common address calculation is to increment the address by one, so in
addition to the pPC latch, the controller should contain an incrementer. The second most
important address calculation is the jump or branch, so there should be some means of forcing
values into the pPC latch. With the hardware mentioned so far, we have progresscd one step
beyond the controller type shown in figure 6: our instruction register also increments, so we don’t

need the feedback terms that originate in the microcode memory and drive the memory decoder.

A great deal of microcode memory space can be saved if subroutines are available at the
microcode level. These subroutines can be shared between microcode sequences emulating
instructions at a higher level. For example, many different machine instruction types may have
the same sct of operand feich sequences. If the machine instruction set encodes a variety of
indexing or relative addressing schemes, these operand fetch sequences may be quite lengthy, and

repeating these sequences for every instruction type would waste a great deal of microcode
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memory. To provide such microcode subroutine capabilities, provisions must be made for saving
pPC values, which is most easily done with a stack. Stacks are easily constructed in LSI. An
example of stack cell and subsystem design, and stack control driver design, is given in chapter 3

The microcoder may also wish to use relative jumps or subroutine calls so that relocatable
microcode can be written. To provide for relative operations, an adder must be included that can
add displacements to the uPC contents. The displacements can either be fixed displacements and
come from the microcode or be calculated displacements and come from the data path.
Calculated displacements enable many-way branching, or dispatching, in the microcode, which is
an almosl essential operation for emulating instructions at a higher level. An example of
dispatching will be given in a later section. Therefore, provisions should be made for accepting

displacements from either the microcode or the data path.

Another microcode address operation that could be considered is a form of loop operation, which
is useful when sections of microcode should be executed n times, where n can either be a constant
and come from the microcode or be the result of a calculation done in the data path. One way to
implement this instruction is to dedicate one register in the data path to be the loop counter and
to do conditional branches in the controfler based on the resuit of decrementing the vaive in that
register. This is simple to do, because the hardware of the controller and data path discussed so
far will allow the execution of this instruction. Unfortunately, there is a time penaity when doing
interchip communication: the loop counter must be decremented during one cycle, the result of
the decrement must be sent to the controller during the following cycle, and a conditional branch
must be performed in the controiler on the third cycle. If the loop counter were in the controller
chip, this operation would only take one cycle and would not require the use of the ALU for one

cycle in the data path.

With only one loop counter, loops could not be nested, and loops could not be used inside of
subroutines. If a stack werc provided for the counter values, however, nested loops and loops

within subroutines could both be accommodated.

The first OM2 controller proposal was based primarily on the arguments presented above. Figure
9 shows a block diagram of the proposed controller. Table 1 lists the operations possible for each
of the three sections of the controller chip: the uPC source selection, the pPC stack operation,
and the loop stack operation. In cach cycle, the controller exccutes one operation in each of the

three sections. For most operations, all three scctions work together to perform the programmed
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uPC Sources:

uPC Stack Operation:

uPC +1

microcode

uPC Stack Top

True: uPC Stack Top; False: uPC +1

Loap Stack Operation:

Push microcode
Push literal

Push count

Pop

Decrement Count
NOP

Push uPC +1
Push microcode
Push uPC + microcode

Push uPC Stack Top + microcode

Pop

Push uPC +literal
True: Pop; False: NOP
True: NOP; False: Pop
NOP

Table 1. Opcodes of the Initial Controller Proposal.

uPC Sources:

uPC Stack Sources:

uPC + 1

uPC + microcode + 1
microcode

Stacktop + 1

Stacktop + microcode + 1
Stacktop + literal + 1
uPC + literal + 1

literal + microcode

Condition Selection:

False

True

Data path flag

Compliment of Data path flag
Count=0

Count< >0

Data path lag AND Count =0
Datapath flagOR Count=0

Adder output
uPC
microcode
literal

Counter Operations:

No Operation
Push microcode
Push literal

Pop to literal bus

true: decrement; false: pop
true: decrement; false: nop

uPC Stack Operations:

Push if conditionis true
No push

Pop if condition is true
No pop

Table 2. Opcodes of the Final Controller Design.
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operation. There are cases, however, when only one or two of the sections are needed to perform
the controller’s instruction, so the other section(s) are free to perform other tasks. For example,
the loop stack may be loading a count from the Data Path, while the pPC sections are performing
a subroutine call. This concurrency saves having to load the count later, and may save microcode
space. Because the controller’s instruction is broken into three fields, more than one thing can be
happening in parallel in the controller. This is why the instruction was not kept as one field and

decoded into the three sections on chip.

The controller shown could handie all of the microcode address operations listed above, and a few
new operations were discovered and added to the list. However, there are a few problems with
this design. It is a "brute force” design: rather than viewing the whole chip at one time and
looking for generalizations, each section of the chip and of the chip’s operation was looked at
individually and the chip was filled with specialized hardware for performing specialized
operations. It was found that by adding one circuit here a new operation could be performed,
and that by adding another circuit there a different operation could be added to the repertoire.
Many designs suffer from “creeping features” of this sort. While it may be casy Lo draw circles
and arrows on paper, it can be more difficult to draw adders and multiplexers on silicon. It

would be very difficult to route all the wires needed lo interconnect the devices shown in the

proposal.

So let's make a few gencralizations about the circuits in the design. First, there are too many
adders on the chip. A close look a the proposal shows that for almost all operations we only use
one adder for any one cycle, and the few operations that used more than one adder are aot
critical operations. Incrementing the pPC can also be done in the adder, by clearing one of the
data inputs to the adder and forcing a carry into the first stage. Thus, alt three of the adders and
the incrementer can be combined into one adder, and multiplexers can be put on the inputs to
that adder. Another simplification would be to always load the pPC latch from the output of the
adder, which would allow the removal of the muitiplexer on the input to the latch. The only
operations that were sacrificed in making the simplifications involved loading the pPC stack with
the output of an adder. Figure 10 shows the block diagram of our simplified controller, and
Table 2 lists the operations it performs. Notice Lhat the controller's instruction is now broken
into five fields, controlling the pPC sources, the pPC stack sources, the counter operation, the

condition sclection, and the pPC stack operation.

Now we will develop the geometrical and topological arrangement of the controller’s subsystems.
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Such arrangements are often called floor plans. A translation of the preceding ideas into the
starting floor plan of the controller is shown in figure 11. The plan is composed of subsystems
built of horizontal bit slices which are then stacked vertically. The number of bit slices is equal

to the microcode address width for the machine, which in this case is 12 bits.

The following points were considered when deciding upon the basic framework of the floor plan.
First, the uPC latch is placed adjacent to the microcode memory address pins. This is done to
minimize the delay when driving addresses to the memory, as this operation is in the critical
timing path for the entire machine. The input of the latch comes only from the output of the
adder, so the adder should logically be placed next to the uPC latch. The adder is considerably
simpler than the full arithmetic logic unit used in the data path. However, it employs the same
principies as the ALU: the Manchester carry chain, the insertion of double inveriers every four
bits to minimize the delay in the carry chain, and the logic block to implement the desired
functions with the minimum delay and power. The multiplexer is placed adjacent (o the left side
of the adder. This multiplexer operates in the same manner as the input multiplexer to the ALU

in chapter 5. The pPC stack is then placed to the lefl of the mulliplexer.

The only problem with this arrangement of the floor plan is that the microcode bus and the data
path bus must also connect to the multiplexer. A large amount of area would be wasted if these
two buses connected to the multiplexer from the side. Instead, if the buses could be placed
where the PC stack is located, they could connect to the loop counter circuits directly. But then
there is the problem of where to place the uPC stack. One solution is to run the buses through
the £PC stack! Each cell of the stack thus has the two buses designed right in. The two buses

could then run on through the loop counter stack to the loop counter decrementer and the pads.

Having placed the major blocks of the chip into the floor plan, the layout of the control circuits
can be examined, and a detailed floor plan worked out. Each of the stacks require push and pop
drivers. as discussed in Chapter 3. As in the chapter 3 example, one set of drivers is placed along
the top, and the other set along the bottom of the stack. The controi dovers for the latch, adder,
multiplexer, and counter are identical to those discussed in Chapter 5. The control bits for these
control drivers could all be derived directly from the outputs of the microcode memory, but this
technique would result in an exceedingly wide microinstruction. By encoding the operations to
be performed by the adder and its input multiplexers, the width of the microinstruction can be
dramatically decreased. With proper cncoding of these operations, the functional capability of the

chip is not impaired, since a number of possible control signal combinations are in fact illegal and
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thus redundant. For instance, if more than one control line for the multiplexer is enabled, the
outputs of two or more sources would be shorted together, and the resulting multiplexer output
would contain erroneocus data. The placements of the control circuits and encoding PLAs are
shown in figure 12, which also shows additional details of the final floor plan. Notice that the
counter stack is higher than the 12-bit high pPC stack, so that it can contain entire 16 bit data
path words for parameters passed to subroutines in the microcode. The stacks are aligned on
their least significant bit position, and the additional length of the counter stack allowed space for

the control PLAs for the adder and pPC stack.

The programmable logic arrays empioyed in instruction decoding do not have feedback from their
outputs back into their inputs. Their only function is to serve as combinational logic for
condensing the number of control wires and thus saving microcode memory bits. The finite state
machine for the control of this path is made up of the microcode memory address feedback
through the adder and stack PLAs and also the microcode literal path feedback into the input of
the adder. If there were feedback terms in any of the PLAs, provisions would have to be made
for access to the state of the feedback terms from off chip. Without such access, the uniestable
state information on the chip would make the testing of the completed chip next to impossible:
the current operation of the chip would be a function not only of the control signals and data
that we supply to the chip at a particular moment, but also of the past control signals and data.
In the absence of a practical way to directly probe all the signal lines on the chip, it is imperative

that all of the chip’s state be accessible somehow from off chip.

One of the problems encountered in many mullichip microprogrammed machines is that a great
deal of interchip communication is required in their operation. Although the bandwidth of the
machine can be made large by pipelining the operations, any operation which rcquires the full
circle through the feedback loop of the state machine will require a greal deal of time for its
execution. In the OM?2 system, hardware features have been included in both the data path and
the controller lo reduce the chip-to~chip communication as much as possible. As already
mentioned, the loop counter circuitry was included on the controller chip, which reduced the loop
operation time from 3 cycles to 1 cycle. Chapter 5 mentions the conditional ALU operations in
the data path which can modify the actual ALU operation as a function of the flag bit. An
example of the utility of this capability is provided by the multiply operation. When performing
a multiply, the ALU should either add two numbers or just pass one of the numbers straight

through, depending upon the state of a flag. One way to do this operation would be to send the
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flag to the controller chip, and execute a conditional branch to one of two locations. One of the
two appropriate ALU operations would be at each of the two microcode locations. However, it
would take several cycles to perform each step of a multiply were this method used. Since in
OM the ALU on the data chip has the capability of modifying its instruction as a function of the
flag, it actually takes only one cycle to perform this part of the multiply step.

There are times when it would be convenient to communicate many bits between the controller
and the data path in one cycle. For instance, when emulating the instruction set of a higher level
machine, the data path can examine various fields in the instruction currently being emulated and
calculate microcode branch locations. It is then necessary to load the pPC latch with the
calculated branch location. To facilitate this loading, a 16-bit bus connects the two chips, and is
referred to as the "literal bus”. To economize on the data path’s pin count, when this bus is not
transferring literal data between the two chips it is used to load microcode into the data path
chip. A large number of pads are required for the microcode and data path literal inter-
connections. There was insufficient space along the left edge of the chip for all of the pairs of
pads required for this communication. Hence, some pads werc placed along the top of the chip
and others along the bottom, and connections between these pads and the buses were made by

running vertical wires to the appropriate bus lines where they run between the two stacks.

The layout of the completed controller chip is shown in figure 13. A floor plan of the controller
is given in figure 14, for use as an aid in studying the layout figure. Examples of the use of some

of the controller’s operations are given in the following section.

Examples of Controller Operation

This section will illustrate the operation and programming of the controller presented in the last
section through the use of four programming examples: subroutine linkage. For-loops, Do-lcops,
and field dispatches. Refer to Table 2 for a tabulation of Lhe controller’s opcodes. It should be
noted that the uPC operations are pipelined by one cycle so that if one particular
microinstruction contains a controller jump opcode, the following microinstruction wiil also be

executed before the jump actually occurs.

To call a subroutine, we would like to save the current value of the pPC on the pPC stack and
load the pPC laich with the microcode address of the subrouline. When we have finished

executing the subroutine code and wish to return, we just pop the return address off of the pPC
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stack and load it into the pPC latch, To save the uPC value on the stack, "uPC” should be
selected as the stack source and "PUSH" should be selected as the stack operation, As Table 2
shows, the condition must be true in order for the stack to push a value. Therefore, the condition
selection should be "TRUE" to guarantee that the stack will save the return address. While we
are saving the current pPC value on the stack, we must also load the uPC latch with the
subroutine address. To do this, we select "MICROCODE" as the pPC source and put the
subroutine address in the literal field of the microcode. Since we are not using the counter, the
counter operation should be "Nop". For the return, we load the uPC latch with the return
address by selecting "STACKTOP+1" as the pPC source and pop the stack by selecting "POP"” as
the pPC stack operation. In order to guarantee that the stack pops the oid value off the stack, we

must make sure the condition is true by selecting “TRUE" as the condition selection.

Figure 15 illustrates the execution of subroutine linkages. Four "snapshots” of the microcode
and ;PC circuits are shown at the various steps as the exccution proceeds. Snapshot (a) gives us
a background for what is happening: The uPC is stepping through a segment of microcode, and
is about 1o execute a CALL operation. The CALL operation contains a poinler to a sub-program
located somewhere in the microcode memory. Snapshot (b) shows the state of the machine just
afler the CALL operation is executed. The pPC now points to microcode addresses inside the
subroutine, while the return address to the main "program” is saved on the stack. Snapshot (c)
shows that the pPC has advanced to the end of the subroutine, and the RETURN operation is
about to be executed. The return address is popped off of the stack and loaded into the pPC
latch, and program execution resumes where it lefl off in the main program, as shown in the last

snapshot.

A For-loop should execute the same section of code many times. We can use the loop counter to
store the number of times we have executed the code so that we know when we have finished the
specified number of executions. Thus, when starting a For-loop, we should push the repetition
number onto the loop counter stack. At the end of the loop we decrement the count, and if the
result is not zero we should jump back to the start of the loop. If the decremented result is zero,
we have finished execution of the For-loop, and we should pop the count off of the loop counter
stack. Executing the For-loop in this manner requires that the end-of-loop command contain the
address of the start of the loop. How then can we construct rclocatable code containing For-
loops? We can eliminate the nced for the end-of-loop command to contain the loop’s start

address, by saving the start address on the pPC stack. The pPC latch would just have to be
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loaded with the value contained at the top of the stack. Using this method of saving the loop
address, the start-of-loop command becomes:

pPC Source « puPC + 1

1PC Stack Source « uPC

jtPC Stack Operation + Push

Condition « True
Counter Operation « either Push Microcode or Push Literal

and the end-of-loop command becomes:

UPC Source « Stacktop + 1

JPC Stack Operation « Pop

Condition «+ Count NOT EQ 0

Counter Operation « True: decrement; False: Pop

The operation of For-loops is illustrated in figure 16. Again, four snapshots are shown which
represent the state of the controller and microcode at various points in the execution of the loop.
Snapshot (a) shows the state of the machine just prior to the execution of the FOR operation.
When the FOR operation is executed, the value in the pPC latch is pushed onto the pPC stack,
and the number of iterations specified by the FOR command is pushed onto the counter stack.
The uPC continues advancing through the microcode. Soapshot (b) shows the stale of the
controlier and microcode at some point in the middle of the FOR loop execution. When the end
of the loop is reached, the vaiue on the top of the counter stack is decremented. If the result is
not zero, the new value is pushed onto the stack and the pPC fatch is loaued with the value on
the top of the pPC stack, as shown in snapshot (c). Notice that the value is not popped of the
top of the uPC stack, because we will need the loop address again if the loop is not completed
after exccuting one more time. When the result is zero, data is popped off the top of both stacks
(to remove the loop address and the old count, which is now =0} while the pPC value is just

incremented, causing the controller to exit from the FOR loop, as shown in the last snapshot,

The Do-loop is similar to the For-loop, except that the code is rcpeatedly exccuted until a
condition becomes true. That condition may be, for instance, when the data path flag becomes
true. In this case. the condition selection in the end-of-loop command becomes "DATA PATH
FLAG” instead of "COUNT NOT EQ 0", Also, since Lhe counter is not being used. the counter

operation in both the start-of-loop and the end-of-loop commands becomes "NOP".

Figure 17 shows somc snapshots associated with the execution of a DO loop. By comparing

figures 16 and 17, the similaritics between FOR loops and Do loops can be observed. Basically,
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the only difference between these two types of loops is the decision of when to exit the loop. In
a FOR loop a counter decides when the loop should be exited, while in the Do loop a flag, such
as the flag from the Data Path, decides when the loop should be exited. Since the DO loop does

not use the counter, the counter is not shown in the snapshots of figure 17.

When emulating the instruction set of a higher level machine, it is oflen convenient to do a
multi-way branch. Suppose, for example, that the machine we are emulating has a 16-bit
instruction word that contains a 4-bit opcode field and a 12-bit address field. In this case, we
would have 16 code segments in the microcode, one for cmulating each of the 16 possible
opcodes of the higher level machine. We would like to be able to perform a 16-way branch,
depending on the contents of the 4-bit opcode field, that would take us directly to the correct
microcode segment, thus implementing the decode stage of instruction interpretation. We could
use the ALU in the data path for calcutating the microcode address for the proper segment, and
load the pPC laich with the result of this calculation. This works especially nicely if the starting
addresses of the segments arc evenly spaced, because o calculate the branch address we merely
muitiply the 4-bit opcode by the segment length and add the displacement of the first segment.
The multiplication is particularly easy to perform if the segment length is a power of 2, because

then we just have to shift the 4-bit opcode value the appropriate number of places to the left.

A problem with the above method of ficld dispatching is that the microcode segments have to be
evenly spaced in the microcode, preferably by a power of 2. In practice, scgments are seldom of
the same length. Even if they were of the same length, if one of the segments had to be
modified, extensive corrections might have to be made all through thc microcode. As an
alternative, a dispatch table can be inserted into the microcode, which just contains a series of
jump instructions to the appropriate microcode segments. If this is done, the 4-bit opcode value
need only be shifted left once (because jump instructions are lwo microcode words long due to
pipelining), added to the dispatch table displacement, and loaded into the nPC laich. To load the
value into the pPC lalch, the data path sends the resull of the above calculation across the literal

bus to the controller, and the controller selects a pPC source of "LITERAL".

Figure 18 illustrates the operation of the dispatch instruction. The controller jumps to a location
in the dispatch table that is a function of one of the fields in the opcode. The dispatch table
conlains JUMP instructions to the various routines that perform the micro-instructions necessary 10
emulate each of the possible opcodes. The selection of the proper field in the opcode and the

calculation of the dispatch table address are performed in the Data Path pror to the dispatch.
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Some Reflections on the Classical Stored Program Machine

In the future, very large quantities of computing machinery may be placed on a single chip.
Such chips will be easily and quickly designed, and rapidly implemented. This capability will
present both a great opportunity, and a great challenge. How are we to organize and program

such a wealth of hardware? Certainly not the way we do now.

Scaling of the technology to higher densities is producing effects which may be clarified by
analogy with events in civil architecture. Decades ago, standard bricks, "two-by-fours”, and
standard plumbing were used as common basic building blocks. Nevertheless, architects and
builders stili explored a great range of architectural variation at the top level of the time: the
building of an individual home. Today. due to the enormous complexities of large cities, many
archilects and planners have moved on to lackle the larger issues of city and regional planning.
The basic building blocks have become the housing tract, the business district, and the freeway
network. While we may rcgret the passing of an older style and its traditions, there is no turning

back of the forces of change.

In present LSI, where we can put many circuits on a chip, we are like the earlier builder. While
we no longer tend to explore and locally optimize at the circuit level (the level of bricks and two-
by-fours), we siill explore a great range of varfation at the level of the individual computer
system. In future VLSI, where we may put many processors on 4 chip, architects will, like the
city planner, be more interested in how to interconnect, program, and control the flow of
information among the components of the overall system. They will move on to explore a wider
range of issues and alternatives at that level, rather than occuping themselves with the detailed
internal structure, design, and coding of each individual stored program machine within a system.
If systems are to work at all, they must at the least be understood at their highest level. These

are some of the issues explored in chapter 8.
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Chapter 7: System Timing
by Charles L. Seitz,

Dept. of Computer Science, California Institute of Technology

Sections:

The Third Dimension - - - Synchronous Systems - - - Clock Distribution - - - Clock
Generation - - - Synchronization Failure - - - Self-Timed Systems - - - Signaling Conventions - - -
Synchronous Elements - - - Asynchronous Elements - - - Arbitration

The Third Dimension

The successful design of large scale integrated systems requires careful management not only of
the two-dimensional silicon area, but also of the operation of the system in the time dimension.
Although time is physically different than the spatial dimensions, the general strategies alrcady
introduced for carrying the spatial design from conception to layout apply to system timing as
well. These are the usual strategies for conlaining complexity: use of abstraction and structured

design.

Much of the functional design of the spatial aspect of a system is done with the help of block
diagrams, logic diagrams, circuit diagrams, and stick dragrams, 1n a metric-free topological
domain. These representations are helpful because they allow designers o suppress detail, so that
they can think about system behavior at a level of abstraction which is effective for the task at
hand. One specific abstraction employed in these diagrammalic representations is the suppression
of geometrical detail, while focussing on the topological structure of the circuit or system.
Topology is sufficient to specify information flow between functional parts, so diagrammatic

representations are a useful abstraction to the functionat or logical structure of a system.

The third dimension, time, may also be regarded as having features analogous to geometry and
topology. The definition of a sequential process -- whether represented by a program, flowchart,
state diagram, or in plain English -- specifies only the ordering, or partial ordering, of the
individual steps that compose it. Thus it is the metric-free "topological" concept of sequence,

rather than the physical concept of a time metric, that is most useful for the functional design of a

system.

As was pointed out in section 3-[Relating Different Levels of Abstractior], it is important that the levels

of abstraction be related to each other and to physical concepts. The sequence domain is a self-
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consistent abstraction that applies across several levels of system design -- programming,
organization, logic. However, flowcharts and state diagrams do not say anything explicit about
space, time, and other physical characteristics of a system, just as logic diagrams do not. The
value of abstraction to the design process is that it permits one to defer certain bindings to
physical form. The hazard is that one can become so isolated from physics and economics as to
produce elegant schemes that are unworkable in practice. Thus, an important goal of any study

of timing is to devise and explain methods by which sequence and time can be related.

At some level in the mechanization of a sequential process, one may no longer ignore the time
metric. The electrical behavior of devices and wires is governed by physical laws which are
expressed as partial differential equations in time. Devices and wires also take space, and their
temporal behavior depends on these geometrical aspects of their construction. It is not generally
possible, therefore, to separate the spatial and temporal aspects of system design. Failure to
account for physical delays in the implementation of systems frequently results in unreliable

operation, poor performance, or both,

Time is also important to people. We believe that the process of design starts with a conception
of the functional operation of a system, together with a set of requirements -- or desires -
expressed in metrical units of space and time. These requirements are determined not by physics,
but by human needs, expectations, and desires. The “interactive” text system that requires

several seconds to respond to a keysuroke is misnamed.

Unfortunately, the world is full of examples of digital systems which -- even when functionally
correct -- have disappointed their designers and users as being unreliable or too slow. Why is it

that so many systems have “timing problems”, or fail to achieve performance objectives?

As is the case with the spatial dimensions, the design problems in the third dimension result not
from a lack of possible forms, bul rather from an overabundance. If one is to build a large scale
integrated system with any hope of correct operation, it is necessary o restrct oneself to a
consistent style of design. The canonical forms in the time dimension are signaling conventions
which are adhered to throughout the system. and serve the function of establishing between ail
parts engaged in a commuaication an interval or sequence of intervals of time for this
communication. If such a scheme is to be regarded as a discipline, it must be possible to state
precisely the requirements that the signaling convention places on system interconnections and

element timing.
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Alternative disciplines of design in this dimension can be characterized by the way in which they
connect sequence and time. Let us take as an example the synchronous discipline of design,
which has been used in a form with a two-phase clock in the designs presented previously in this
book. Here, sequence and time are connected by means of the clock. The term "synchronous”
comes from Greek: syn, or sym = same, or together + chronos = time: and the discipline is
well named, since it requires all parts of the system to operate together in time. Since
synchronous systems are by far the best known and most widely used, we take them as the

starting point for the body of this chapter.

Synchronous systems possess some serious limitations, which are made even worse as A is scaled
down, and as systems become larger. One problem is efficiency. It usually happens that most of
the combinational paths are short, and the system clock period is determined by one or a few
seldom used slow paths. One particularly difficult situation with slow paths occurs when
synchronous signals must be driven off-chip. The time required to drive a signal off-chip is today
a substantial fraction of the minimal clock period of about 1007. As A is scaled down, the r-
relative delay off-chip gets larger, indeed may exceed the minimal clock period. So, it appears
that synchronous communication across chip boundaries will become less and less attractive.
Synchronous communication within a chip appears to be at least possible down to the
fundamental limit of about 0.25; channel lengths, but it would be very difficult to manage a
synchronous design of the number of parts implied by this scaling while achieving reasonable

efficiency.

The same considerations of managing the design of very large integrated systems which provide a
motivation for dividing a system into modular parts argue that the parts be independently timed.
If the parts are each synchronous systems with independent clocks, information communicated
from one part to another must be synchronized to the receiver's clock. Unfortunately, as we show
in a later section, this synchronization cannot be accomplished with complete reliability. The
reason for this problem is that synchronizing elements are bistable, and have a metastable or
balanced condition that occurs under the conditions in which synchronizers must operate. As was
discussed in Chapter 1, there is no bound for the time the bistable element may remain in this
metastable condition. There arc many methods to reduce the probablily that such a fault would

crash a system, but all cost time and so reduce efficiency.

The limitations imposed by the synchronous discipline suggest that other disciplines be tried. The

final sections of this chapter are devoted to an outline of an alternative called self~timed logic.
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This term refers to a discipline of digital system design in which the timing aspect of the design is
confined to the interior of elements. Elements can be designed in a number of ways, for example,
as synchronous systems with an internal clock which can be stopped synchronousty and restarted
asynchronously. This type of clock allows synchronous elements to communicate reliably, because
their clocks are partly dependent, i.c. not independent. Elements may also be designed as speed-
independent asynchronous circuits. In any case, the terminal behavior of a self-timed element
must satisfy a sequence domain representation, which assures that correct sequential operation of a
self-timed system is insensitive to element and wiring delays. There are no clocks or global time
references in a self-timed system. Instead, initiation of a given computational step depends on
completion signals produced by its sequential predecessors. Thus self-timed systems operate at a
rate determined Jocally by element and wiring delays, a rate which tends to reflect typical rather

than worst case delays.

The subject of self-timed logic has two principal facets, the design of elements and the design of
systems of interconnected elcments. Along the seam between these subjects arc conventions for
delay-insensitive signaling. This bifurcation of the discipline is deliberate. The design of
elements is difficult because it is here that logic, physics, and timing come together. However,
the element designer can work within a domain in which physical and logical scale are both
restricted to be small enough to make the design managable. The design of systems is difficult
because of the combinatorics of scale. However, the system designer can work within a domain
similar to that of a programmer, in which many of the details of the underlying physical system
have been suppressed and replaced by an abstraction which is free of hidden rules - namely, the

sequence domain abstraction.
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Synchronous Systems

In the synchronous discipline of design, sequence and time are connected through the use of a
system-wide clock signal. The clock signal serves two purposes -- Or one might say it serves two
masters. The clock is a global sequence reference, and is also a global time reference. As a
sequence reference, its transitions serve the logical purpose of defining successive instants at
which system state changes may occur. As a time reference, the period or interval, either fixed or
variable, between clock transitions serves the physical purpose of accounting for element and

wiring delays in paths from the output to input of clocked elements.

The ability of the clock signal to serve two masters, logic and physics, has a certain compact
elegance, and conforms to an obsolete tradition of parsimony in the use of active elements.
However, the dual role of the clock binds the system sequencing and timing so closely that
“timing” is the source of numerous difficulties in the design, maintenance, modification, and

reliability of synchronous systems.

The logical model which synchronous systems resembie is the finite-state machine, a model that
has been described in detail in section 3-[Finite-state Machines] and in chapter 6. As illustrated in
Figure 1, any such system must satisfy a fopological reguirement that avery closed sigral path pass
through a clocked storage element. Closed paths which do not pass through clocked storage
elements are excluded as thev may create non-deterministic behavior either through oscillation or
through asynchronous latching. There are several important consequences of this topological
constraint on the logical design. First, it assures deterministic behavior if the physical aspects of
the design are also correct. Second, it relieves the designer of any requirement that the
combinational logic be free of transients -- static or dynamic hazards -- on its outputs. The only
dynamic characteristic of a combinational net that matters is its propagation delay time. Finally,
the storage or history dependence of the system resides entirely within the clocked storage
elements, a fact which simplifies the design process and often also the maintenance and testing of

a system.

The clocked storage elements in a synchronous system may take any of a variety of forms,
discussed below, depending on physical requirements such as speed, economy, or static operation.
While these elements are distinguished as being the only recipients of clock signals, in praclice
there may be a number of timing signals derived as different phases or submultiple frequencies of

the clock. In these cases it may be difficult to see the correspondence between the circuit and the
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finite-state model. Circuits such as shift registers are finite-state machines, but already possess
such a natural and regular structure that it would be pointless and awkward to describe their
behavior with state diagrams. Control elements, such as the finite-state machine stoplight
controller described in section 3-{Finite State Machines], are a case of imposed structure, in which the
combinational logic and clocked storage elements can be patterned on the silicon in a form that

mimics the usual block diagram of a finite-state machine.

Clocked storage elements may be clocked by different schemes, but all are binary storage devices,
The sort of physical device that has the property of storing information -- also called memory, or
history dependence -- are those which store energy, or are those such as film or punched cards in

which energy is required to change some detectable condition of the medium.

For semiconductor integrated circuits the energy represented by charge stored on circuit
capacitances is the only practical mechanism for storing information. Inductance plays the same
role in superconducting circuits. MOS circuits employ this mechanism very directly in the
dynamic register introduced in Chapter 3 and used in designs throughout this bhook. In the
dynamic register illustrated in Figure 2, the output stored data follows the input as long as the
enable input to the transfer gate is high. When the enable signal goes low, the charge stored on

the node is very well isolated, and so maintains the same voltage.

Unfortunately, this is not the whole story. While the charge is very well isolated, it is not
perfectly isolated. Charge escapes by two different mechanisms, which scale differently. The
principal leakage path for 1978 MOS technology is the reverse leakage current of the drain
junction of the pass transistor. The time constant of this decay is in the order of a few seconds at
room temperature, but decreases exponentially with temperature (o a millisecond or so at 70°C,
This leakage phth is a current per unit area, and because scaling down the circuit dimensions
increases the capacitance per unit area due to decreased oxide thickness, the time constant of
charge decay increases with reduced circuit dimensions. The scaling is largely masked by the
exponential temperature dependance, however, so the time constant of junction leakage is
reasonably regarded as constant for values of A over the recent past and future. Subthreshold
currents are expected to become the limiting faclor in holding charge on a node as soon as
threshold voltages are reduced to much below 1 Volt. This effect of scaling down the dimensions
of MOS circuits was discussed in section 1-[Effects of Scaling Down the Dimensions of MOS Circuits and
Systems]. We refer to the time a node will reliably hold a high level as the refresh period
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The decay of charge on a dynamic node is no problem so long as the charge is sensed and
refreshed frequently enough, for example in every clock period as is done in the OM design. In
some cases this is not possible, and so-called static registers are used instead. An assortment of
static registers is shown in Figure 3. The general idea evident in the first two circuits is to
amplify and feed back the stored data so as to counteract the decay of charge. The first circuit
does this through a resistance which must be much larger than the effective Rgp of the pass
transistor, so that the storage node can be driven to the value desired. For voltages close to the
switching threshold this circuit amounts to a negative resistance termination to Vinys where the
resistance is -(large R)/(voliage gain of the pair of inverters). This circuit can be used
advantageously as a termination for buses to assure static operation. The third diagram is a
storage circuit typical of bipolar families, in which low impedances make dynamic storage

unattractive, so that static storage is the rule rather than the exception.

These static circuits are logically equivalent to the dynamic storage circuit, except that the stored
information will remain indefinitely. The use of extra circuitry for cach node to accomplish this
continuous refreshing is usually unnccessary, and it will be omitted in the following discussion

and figures with the understanding that it could in all cases be included where required.

As an aside, the reader may wonder about the statement above that capacitance provides the
mechanism for information storage. Is this true of the static and cross-coupled storage circuits as
well? Many references on switching circuits leave the impression that the existence of two
logically consistent stable states in these cross-coupled circuits is sufficient to insure that the
circuit will store a bit. Some refercnces mention also that the circuit must have more than unity
gain around the loop, which is indeed a necessary but not sufficient condition. Consider the
consequence if the circuit capacitances were all taken to zero. The circuit would then be able to
respond instantly to an excitation, which means that a current pulse of arbitrarily short duration
could change the state of the circuit. If this arbitrarily small amount of energy could change the
state of the circuit, one could not reasonably expect the circuit to remain in either state. Without
capacitance, it cannot store information. This physical aspect of storage devices is discussed in

detail in Chapter 9.

With this background on storage elements, let us proceed to clocking schemes, As we pointed
out in the opening section of this chapter, it should be possible to state precisely the requirements
the timing form places on system interconnections and on element timing. For synchronous

systems, the requirement on interconnections is the topological requirement that alt closed paths
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pass through a clocked storage element. The requirements on element timing depend on the

clocking scheme.

The storage devices described above, all logically equivalent to the dynamic register, may be used
in a cheap, fast and risky clocking scheme illustrated in figure 4. We know of no exampie of this
scheme being used in LSI circuits, but it was common in many of the early "transistorized"
computers, with the gated, cross-coupled storage element shown in figure 3. This scheme might
best be termed "narrow pulse clocking,” because it requires that the clock pulse be narrow
compared to the delay of the combinational logic. The present state information changes a short
time, about Ry, C;y, after the leading edge of the clock. The delay through the combinational
logic must be greater than the clock width, or else the change in the present state information will
propagate through the combinational logic to change the next state information before the trailing

edge of the clock.

Once a clock period and width are established, the combinational logic must be designed to
satisfy a fwo-sided bound on its delay time -- greater than the clock width and less than the clock
period. As indicated above the clock width is also bounded on two sides -- below by the time
required to transfer charge Lo the present state inpuls of the combination logic, and above by the
minimum delay of the combinational logic. The clock period also has a two-sided bound, unless
static registers are used. The relations which must be satisfied are summarized in figure 4, They
are relations which apply in a worsl-case sense, in spite of variation in temperature, power supply

voltage, aging, and manufacturing.

This "narrow pulse clocking” scheme was abandoned because of the difficulty of satisfying so
many two-sided bounds simultaneously under so many conditions of variation. Also, the
economies achieved due to the simplicity of the clocked elements were partly offset by necessity
to "pad out” the delay in many of the combinational nets. This clocking scheme is quite feasible
for certain LSI systems, since it is inherent in their manufacture and operation that most of the

variables will track if the clock signal is generated on-chip.

Two-sided bounds on timing create enough difficulties in the design and maintenance of a system
that it is generally worthwhile to use more logic 0 make the timing bounds one-sided.
Elimination of the two-sided bound on clock width, or the complementary bound on
combinational delay, requires the use of at least two clock phases. This minimum form occurs for

much the same reason that ship canal locks require at least two watertight gates.
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The two-phase clocking scheme illustrated in figure 5 includes four sequentially repeated epochs.
During g1, previously stored information is applied to the present state inputs of the system'’s
combinational logic. The ¢ signal must remain high long enough to charge the present state
input nodes, a process which incurs some delay on the order of R, Cyy,, and which is called the
delay time of the clocked storage element. Following this delay, if inputs are also available, the
combinational logic starts setting up the outputs and next states, independent of when @l may
transit from high to low. This epoch is analogous to the operation of a canal lock releasing a
ship. The gate must open before the ship leaves, and the ship must clear the gate before it is
again closed. If the lock master chooses to leave the gate open for a while after the ship leaves, it

does not slow down the ship.

What the lock master must never, never do is to open both gates at once! The epoch labeled in
figure 5 as t}; is an interval produced by the non-overlapping phases of the clock. By analogy
with the narrow pulse clocking scheme, it is clear that overlap less than the minimum delay of the
combinational logic is harmless to correct operation. However, as the minimum delay of the
combinational logic is ordinarily legislated to be zero -- most people would agree it could not be
less, and for circuits such as shift registers the delay does approach zero --, the overlap period t)9
must be greater than zero. In practical cases, because lj5 does not represent “dead time”, but
time during which the combinational logic is working, this time is made as short as is convenient

but not necessarily as short as is possible,

In the epoch during which 2 is high, the clocked element samples its input. The combinational
outputs must be stable slightly before the trailing edge of ¢:2, an interval called the preset time of
the clocked storage element. After this point in time, changes at the input of the pass transistor
clocked by ¢:2 will not be fully passed to its output. Of course, ¢2 must be wider than the preset
time. This 2 epoch is analogous tov the entry of a ship into a lock. The ship cannot enter the
lock until the gate is opened, and the gate should not be closed until the ship is completely

inside.

Following ¢2 is another period of non-overlap, tyy, during which the system is idle. The
minimum clock period for correct operation is the maximum combinational delay, plus the
maximum delay time and preset time, plus t57. It is important therefore to make t7 as small as
possible if one is designing for performance. -As we show in the following section, t4] does serve

a useful purpose of accommodaling clock skew, a variation in the arrival time of the clock to
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different clocked storage elements, and so in some systems t9] can be reduced only as much as a

clock skew allows.

The net result of this two-phase clocking scheme is that the clock period and its constituent
epochs are, with static storage devices, bounded only below. A region of correct operation can
always be found by making periods larger. With dynamic storage devices, the upper bound on
the period is so large compared with the lower bound, at least for present values of threshold
voltages, that the region of correct operation is always adequate. The complementary requirement

on the propagation delay of the combinational logic is a simple upper bound.

Many variations on this basic scheme are found in different kinds of digital systems, more
schemes than we could hope to describe individuaily. Many processors and storage systems are
advantageously designed with more than two clock phases. In processors these phases -- usually
four or eight, and sometimes a variable number -- delineate minor cycles which subdivide the
major cycle. The general rules here are quite simple. No path may lead from a register or
storage element output to an input clocked on the same phase. The maximum propagation delay
time of a path from a register clocked on some phase, say ¢3, terminating at the input of a
register clocked on some other phase, say g6, cannol exceed the minimum lime between the
leading edge of ¢3 to the trailing edge of ¢6, less delay and preset times. Multiple phases are
also commonly used in systems which employ precharged pullup, and other charge transport
techniques such as CCD storage. Magnetic bubbles are made to move in response to a rotating
magnetic field, a two-phase clocking scheme when viewed as two orthogonal fields with sinusoidal

oscillation 90% out of phase with each other.

Some mention of variant forms with respect to inputs and outpuls is also required. Inpuls to
synchronous systems must appear in synchrony with the clock, a requirement which is readily
satisfied when the inputs are outputs of another system which shares the same clock. If an input
does not assume its correct value until after the leading edge of g1, its worst-case delay relative
to the leading edge of 1 is accounted for in the same way as the delay of the clocked storage
element. The general procedure for checking compliance with timing bounds consists of marking
nodes starting with clocked clement outputs and system inputs with the latest time relative to the
beginning of ¢1 that the signal will become stable. Programs to accomplish such checking are
not trivial, as they may at first appear, because the program should account for different delays in
different states and inputs. Otherwise, the large differences between delays for positive and

negative transitions cannot be accounted for: nor can circumstances such as time of output
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determination in simple AND and OR circuits be dealt with simply, because these times are data

dependent. Unfortunately, this checking problem is about as difficult as exhaustive simulation.

The form of finite-state machine model of synchronous systems used in the descriptions above of
clocking schemes is the transition output (Mealy) machine. It is more general than the state
output (Moore) machine in that the outputs are functions both of the input and present state,
while for the state output machine the output is a function only of the present state”. Transition
output machines tend to be used in cascade arrangements in which economy is the principal
design goal, while state output machines are characteristic of pipcline architectures in which high

performance is sought.

Networks of transition output machines must be acyclic, the same requirement as for the
combinational paths in a single machine. Combinational delays may accumulate on paths
through many machines, so the general checking procedure described above must be used.
Networks of state output machines may be connected cyclically, and checking is confined to
communicating pairs of machines. Checking can be made entirely local to each finite-state
machine if communication between machines is performed in pipeline fashion through clocked

elements. The finite-state machine described in section 3-{Finite State Machines, {figure 14)] is of this

sort.

In a two-phase clocking scherie, gl and 2 are symmetrical in the sequence sense, and perhaps
also in time. This symmetry suggests a reversal of roles between ¢l and ¢2 is possible. For
example, there is no reason in the finite-state machine structure shown in Figure 5 not to replace
the simple amplifier or double _invcrter with combinational logic. The general siructure allowed
in a two-phase clocking scheme is any composition of basic elements consisting of registers
foliowed by combinational logic, in which outputs of elements clocked by ¢1 drive only inputs to
elements clocked by ¢2, and vice-versa. Please note that combinational delays must be checked
across communicating pairs of machines. This scheme is similar to that used in the OM2 and its

controller, and is well illustrated in Chapters 5 and 6.
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Clock Distribution

Readers who have been designing systems with catalog parts are now invited to stand up and
object: "What is with all of these clock phases? My systems use a single-phase clock.” That is a
good question.

The clock supplied externally to catalog parts such as registers, counters, shift registers, and
microprocessors is most often a single-phase clock. because this approach is convenient and the
clock then uses only a single package pin. Internally, a two-phase clock or its functional
equivalent is derived from the single-phase clock, cither as part of each clocked element with the
single-phase clock distributed through the chip, or once for the chip with the derived two-phase

clock signals distributed as required.

Figure 6a shows a relationship between a single-phase clock and a two-phase clock derived from
it, and figure 6b is a circuit which performs this function. While other conventions of relating
single-phase and two-phase clocks are possible, in what follows this form will be taken as
canonical. The single-phase clock is used in a trailing-edge triggering discipline, so-called because
system state changes occur following the trailing edge of the clock pulse. This mode of operation
has many advantages over leading-edge triggering. For example, because the state variables are
stable during the clock pulse, one can perform logical operations between the clock and state

variables in order to derive gated clock signals for selective register loading.

The preset and delay time relations to the derived two-phase clock can be transiated, as shown in
figure 6a, to be referred to the trailing edge of the single-phase clock. A study of this figure
shows that, because of delays in deriving ¢l and ¢2, preset times referred to the single-phase
clock may be negative. Over a set of clocked storage elements the preset times will have
maximum and minimum values, just as delay times will. The maximum preset time is called the
setup time, and the minimum preset time, with its sign reversed, is called the hold time. In single
phase clocking arrangements, the input to a clocked storage element should become stable by the
setup time before the clock edge, and hold this value until at least the hold time after the clock
edge. In the two phase clocking arrangements most often used in MOS LSI, the preset time is
always positive since it is referenced to the trailing edge of ¢:2, so only its maximum value or

setup time is critical to correct circuit operation.

It is an essential feature of clocking schemes with a one-sided bound that there is a critical period
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during which the clocked storage element is actually storing two bits of information. For either
single- or two-phase clocking this critical period begins at the preset time and ends at the delay
time. One of the stored bits is the input value presented before the preset time; the other is the
bit presented at the clocked storage element output. This critical period provides a built-in
tolerance for clock skew. This term refers to a variation in the effective arrival time of the clock
at different clocked elements. These variations may be due to a combination of several effects:
different threshold voltages, signal propagation delays on wires, or variation in element delays

such as is found when gated clock signals are used to control register loading.

Clock skew even within a chip can be a problem. As was pointed out in section 2-{Electrical
Parameters}, propagation of signals on poly lines, as they are of fairly high resistance, is a diffusion
process for which the delays are not negligible. Given the distances and need for short delay in
clock distribution, use of the diffusion layer for carrying the clock more than short distances is
not recommended ecither. For example, the delay in a line 6p wide and 6 mm. long is calculated
by the method presented in section 1-[Delays in Another Form of Logic Circuitryl, and using the typical
1978 MOS electrical parameters given in Table 1, section 2-[Electrical Parameters), 10 be about 100
nsec. in 70§2/0 poly and about 30 nsec. in diffusion. Propagation over the same distance on a
9 metal line requires only 0.1 nsec. Other sources of clock skew are little problem. Threshold
voltages of elements built as monolithic companions tend to track. Skew in signals produced by

gating a clock is present but consistent, and can be controlled by a method presented later in this

section.

Clock skew is a much more serious and common problem in systems built from "families” of SSI
and MSI circuits. The origin of the problem is not entirely clock distribution, but the
manufacturers’ inattention to preset and delay time bounds. It is easy to find examples in
popular families of catalog parts certain pairs of clocked elements in which the hold time
(minimum negative preset time) specified for one part is greater than the minimum delay time of
another part. Although the system may work if delays are “typical,” some fraction of a
production run can be expected not to work, or worse, may fail intermittently in service.
Designers of families of circuits intended and advertised o work together should strive to make
all preset and delay time characteristics identical within a family, as variations from one part to

another decrease the tolerance of the system 1o clock skew.

Let us return now to the typical MOS integrated system with a two-phase clock distributed as the

signals 1 and 2. These are generally "popular” signals, second only to VDD and ground, and
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the capacitance accumulated in their distribution and gate connections is considerable. It is
possible, of course, to drive ¢l and @2 directly onto the chip from an external driver. Systems
operating at the extremes of performance of the MOS technology benefit from this approach.
The external clock driver can be made to switch fast, and to a higher voitage than VDD, so that
transmission gate outputs can then transit all the way to VDD. Because the saturation current
varies as (vgs-vm)z, there is a large speed advantage on the chip of the higher voltage clock
drive. '

The performance benefits from driving ¢l and @2 onto the chip from fast off-chip drivers are
achieved at the expense of external components. Although on-chip clock drivers may limit the
performance of a system slightly, they are generally used in the interests of economy. An
integrated system which is large by today’s standards may have a clock load on the order of
104Cg. where Cg is the gate capacitance of a minimum dimension transistor. The techniques
developed in section 1.[Driving Large Capacitive Loads] for driving large capacitive loads are applicable
to clock driving. The total delay in an exponential driving structure with the optimum fanout of
e, starting from a minimum energy signal to drive 104Cg, is only 25r. However, the last stage of
the driver would be impractically large; the gate width would be 2'10%\/e. The tradeoffs
between performance and area may dictate a large fanout for the final stage of the clock driver,
say about 40, with smaller fanouts for the drivers preceeding it. Most of the delay in this driver

structure would be in the final stage.

A clock driver of this sort is illustrated schematicaily in figure 7a, with size ratios indicated by the
delay times. Waveforms expected for this circuit are shown in figure 7b. The clock is assumed
to ariginate from somewhere off the chip. There is no reason to use two pins for this function
where one would serve, so the canonical scheme for production of a two-phase clock from a
single-phase clock is used. The capacitance of the pin and package are so large compared to Cg
that there is no point is starting from a minimum energy signal. The structure shown presents a
1oad of about 30C,. If the clock source were an on-chip clock generator, more stages would be

B
used. The slight asymmetry between @l and @2 is of course due to the inverter at the input.

The reader should take careful note of an important characteristic of this clock driver; namely,
that non-overlap of the clock phases is assured independent of clock loading. This desirable
characteristic is the reason that it is the clock phases, rather than the NOR gate outputs, that are
fed back in a cross-coupled fashion. The non-overlap periods can be reduced somewhat at the

expense of silicon area by cross-coupling at every stage. This same circuit tiick can be extended
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as shown to assure non-overlap independent of clock loading for gated clocks as well. The
techniques used in these clock driver circuits to assure the existence of the non-overlap period
independent of the effects of loading on element timing are much in the spirit of those
techniques used in speed-independent and self-timed systems, in that the circuit adapts its

temporal behavior to conform to a sequencing constraint.

A question is sometimes raised as to whether clocks for different sections of a chip should be
buffered separately, as is often done at a circuit board level for systems built from collections of
circuit boards. On a physical basis, the answer is no. It is best for two reasons that the clock
lines be common throughout the chip. First, this approach minimizes clock skew. Second, since
one must pay the same transistor area whether the driver is lumped or distributed, optimum
driver design locates the stray capacitance of the clock distribution wires where the largest signal
energy is available, which is affer the final driver. There may be organizational reasons for
distributing the final driver stage to locations close to sections being driven when some logicat

operations are performed on the clock signal.
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Clock Generation

Where great clock accuracy is required, or where a system clock is distributed to many circuits,
the clock generation task is external to the chip and is not the direct concern of its designers.
The clock will ordinarily originate from an electronic oscillator circuit, the period of which is
controlled by a crystal or some resonant network. Process variation in integrated circuit
fabrication does not allow accurate resonant networks to be fabricated by usual means, but it is
perfectly feasible, indeed essential for self-contained VLSI systems, to generate clock signals on
the chip. It is best in approaching this subject to forget about electronic oscillator circuits, and
instead to take a more basic approach originating with an understanding of what clocks are for.

As we have mentioned before -- and this is a principle that bears repeating on every
opportunity --, the role of the clock in a synchronous system is to connect sequence and time.
The interval between clock transitions, whether these transitions are on one or distributed over
several wires, must be such as to permit enough time for the activities planned for that interval,
When viewed in this way, a clock is more like a set of timers than like an oscillator. A model of
the temporal behavior of the systems being clocked is built into the clock generator in the choice

of times for the various timers.

The easiest way to build these timers is as chains of inverters. The propagation delay time of
such a chain will of course vary with r, according to the way in which the fabrication process,
aging, temperature, and power voltage affect 7. However, these variations only make the inverter
chain a better model of the system being clocked than a fixed timer would be, since on the same

piece of silicon these variable factors are nearly the same for the clock and for the system.

It is helpful to distinguish between the two kinds of timers shown in figure 8. The first is a
symmetrical delay, so-called because the propagation delay for positive and negative transitions at
the input is about the same. The second is a logic network designed to produce as asymmetrical
a delay as possible. A negative transition propagates through the delay in about 57 independent
of length. A complementary form of asymmetrical delay is also possible, but to simplify the
figures and symbology in what follows, we shall use only the form in which a low input resets the
delay and a positive transition propagates slowly. The symbols shown in the figure allow for aps

at various points along the delay.

Clocks which employ these delays as timers are all elaborations of the ring oscillator circuit shown
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in figure 9a. Rings of an odd number of inversions have no stable condition, and will oscillate
with a period which is some multiple of the delay time twice around the ring. The oscillation of
the largest period will eventually predominate following bringing power on, but the erratic clock
signals produced during power-up could leave the system in a peculiar state. It is much better to
produce an initialization signal which is held high during power-up, and to use it to initialize the
state and the clock. In the modification of the ring oscillator shown in figure 9b, clock signals are
suppressed during initialization, and will start immediately following the negative transition of the
INITIALIZE signal. This circuit produces a symmetrical single-phase clock which can be converted

to a two-phase clock by the circuit shown in figure 7a.

Although the clock circuit shown in figure 9b would be adequate for many applications, many
elaborations can be included which are shown together in figure 9c. The width of the single-
phase clock pulse, related to the @2 period, is determined by one asymmetrical delay, while the
interval between clock pulses, related to the ¢l period, is determined by an independent
asymmetrical delay. Another feature of this universal clock is that it allows the system being
clocked to select between a variety of periods, which can be changed on a cycle-by-cycle basis
according to the combinational delay of the operation performed on that cycle. In order to
visualize how this works, note that following the trailing edge (negative transition) of the clock
signal, any high input to the 5-input NOR circuit has the effect of preventing the occurrence of
the next clock pulse. The usual default case is with the LONG', MED', and RUN high, and
INITIALIZE low, resulting in a short period determined by the first tap on the period delay. If a
decoding of the state indicates Lhat a longer period is required for that cycle, the MED' or LONG'
lines must be driven low before the short default period is elapsed. If for example the LONG' line
were low, the period before the next clock pulse is stretched to that determined by the full delay.
Of course, this scheme may be generalized to any number of delay taps. Signals such as MED' or
LONG' can be derived from function coding of the combinational sections whose modeled delay

they match, or as microcode bits.

The RUN line is a bus intended to generalize this cycle stretching feature so that any part of the
system being clocked may stop the clock synchronously, and then permit it to restart
asynchronously. If this cycle is ever to be stretched to more than the refresh time, static storage
elements must be used {(at least for the ¢l part of the cycle for two-phase clocking). This
technique of control over the clock is the basic mechanism exploited later in this chapter to allow

asynchronous communication between synchronous systems.
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Synchronization Failure

Jean Buridan (1295 - ? afier 1366), a 14th century French philosopher often cited as a precursor
of Issac Newton for his priority in giving a technical definition of kinematic terms such as inertia
and force, posed in his commentary on Aristotle’s De caelo a paradox; that a dog could starve if
placed midway between two equal amounts of food. The unfortunate creature placed in this
position would be equally attracted to each source of food, and in a position of equilibrivm. One
20th century explanation of this paradox, if indeed it is a paradox at all, is that the structure
consisting of the dog and the two sources of food is and behaves just as any other structure which

can store 2 bit of information.

The analysis of the electrical behavior of cross-coupled circuits presented in section 1-[Properties of
Cross-Coupled Circuits], and developed in physical terms in section 9-[Energetics of the flip-flop], applies
also to the situation which Buridan described. The equilibrium condition either for the dog or
for the cross-coupled circuit is unstable, as any displacement from equilibrium brings about forces
which tend to destroy rather than restore the equilibrium condition. An unstable equilibrium of
this sort is called a metastable condition. Buridan was correct in believing that the dog could
starve, as it is characteristic of a metastable condition that it may persist indefinitely. A functional
definition of metastability applied to cross-coupled circuits is the occurrence under undriven
conditions of an output voltage in a range around Vi, which cannot reliably be interpreted as

either high or low.

A bistable element in a self-contained synchronous system never has the opportunity to reach a
metastable condition, since satisfaction of the timing constraints assures that the output is driven
{o a voltage outside of the metastable range. But is any system really self-contained? A system
such as a microprocessor may be enti'rely synchronous internally, but cannot extend this
synchrony indefinitely to encompass all of the external world with which it may interact. If
asynchronous signals of external origin are aflowed to enter a synchronous system as ordinary
inputs, the timing constraints required to assure cotrect operation cannot be satisfied, since there

is no known relationship between the timing of the asynchronous inputs and the clock.

Figure 10 illustrates in a small fragment of a larger synchronous system the consequence of
ignoring synchronization altogether. Even if one employs a model of the clocked storage
eclements as having perfectly discrete outputs, the unequal delay in the paths from the

asynchronous input X to the clocked storage elements allows the inputs to the clocked storage
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elements during state A to represent an illegal successor state for a period following a transition
of the asynchronous input. If the clock happens to capture the inputs during this transitory
period, one of the illegal state transitions shown in dashed lines on the state diagram will result.

So, a slightly smarter thing to do is to assure that only one clocked storage element is affected by
a given asynchronous input. A clocked storage element that is used in this way is called a
synchronizer, since it is intended to produce an output signal which is in synchrony with the
clock. Figure 11 shows a redesigned version of the previous fragment of a circuit modified in its
state coding so that the asynchronous input X affects the input to only one clocked storage
element. If it were only possible to build perfectly discrete bistable devices -- indeed, if perfect
discreteness exists in nature, for which, see chapter 9 -, this scheme would be perfectly reliable.
Unfortunately, there is some probability of synchronizer failure, since a lransition of the
asynchronous input in certain times relative to the clock will leave the synchronizer in a
metastable condition, and the time required for the clocked storage element to get out of a
metastable condition is unbounded. During the period in which the synchronizer output remains
in a metastable condition, the logic cannot discriminate between states B and C, and if the

condition persists for oo long, an illegal or incorrect successor state can result.

It is part of the interesting history of the subject of synchronization that even long after the
necessity to synchronize asynchronous inputs was recognized as a standard part of good
engineering practice, the faith of logic designers in the discreteness of the outputs of clocked
storage elements was so great that Lhe very existence of synchronization failure was widely denied.
Another curious aspect of the sociology of the problem is the many schemes proposed to “solve”
the problem, but which only move it to another location in a system or reduce its probability.
Synchronization failure was discovered independently by numerous researchers, designers, and
engineers in the 1960's, some of whom published reports of their analyses or
obsewaﬁonsl'2'3-4-5-6. The work done at the Computer Systems Laboratory of Washington
University by Thomas J. Chaney and Charles E. Molnar-", and by Marc Hurtado® has provided

convincing demonstrations of the existence and fundamental nature of the problem.

It is fairly easy to estimate the probability of a synchronization failure with a simple mathematical
model. If one observes that a bistable device is in a mctastable condition at some time t, what is
the probabiiity that it will have left this condition by time t+4, in the limit as & approaches zero?
The only answer to this question that seems reasonable is that the probability is proportional to

5: let it be ps. This assumption produces a simple model in which the exit from a metatstable
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condition is a Poisson process of rate p, and the probability that a clocked storage element will
remain in the metastable condition, once in it, for a period D or longer is e D The prediction
of this simple model has been verified experimentally and is consistent with analyses based on
circuit modelsg, including the analysis presented in section 1-{Properties of Cross-Coupled Circuits}, The
parameter p depends on circuit characteristics, A dynamic storage element is not an acceptable
synchronizer, as the time evolution of its output in undriven conditions is possibly even foward
the metastable region (See section 9-{Energetics of the Flip-flop]). Ome can identify p in the analysis
in section 1-{Properties of Cross-Coupled Circuits] with 1/7. The time evolution of the voltage output
of the cross-coupled circuit has the effect of transforming a uniform probability distribution of
initial conditions to an exponential or Poisson distribution of exit events. For ratio logic with a

ratio of r, () is about the pair delay, (r+1)r.

In order to estimate the probability of a fault in a synchronous system due to the non-vanishing
probability that a synchronization will take longer than some bounded time, one must also
calculate the probability that a synchronization event will put the synchronizer into a metastable
condition. For most synchronizations, the asynchronous level to be synchronized will transit
sufficiently far away from the time at which it is sampled that the clocked storage element will be
overdriven in the usual way. Only over a rather narrow time aperture, denoted here as A, does
the occurrence of a transition result in the synchronizer taking more than the usual delay time of
the clocked storage element. The boundaries of this aperture are not sharp, but may be treated
as such, so that for a particular frequency of transitions of the asynchronous signal, f, the
probability that a metastable condition will be produced in a single synchronization event is fA.

One may take this relation as the definition of A.

The overall probability of a system failure at each synchronization event, fAe'PD, depends on p
and A, which are parameters of the clocked storage element used as a synchronizer; on D, which
is a parameter of the synchronous system in which the synchronizer is used: and on f, which is a
parameter of the asynchronous input signal. D is the time allowed in the synchronous system for
the decay of the probability of metastability, and is effectively like a delay. It corresponds to the
excess delay allowed from clocked storage element outputs to inputs (see figure 5), and even for

zero combinational delay cannot exceed the clock period less delay and preset times.

In order to get some feeling for the failure rates involved, consider a synchronous processor which
is accepting data from, or sending data to, a disc storage unit at a IMHz rate. An asynchronous

signal alerts the processor to the presence of, or need for, a new data item, but the processor is
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able to clear this signal synchronously. We can assume that p is about 1/5+ for ratio logic with
r=4. If almost all of a fairly short 1007 clock period were available for the decay of the
probability of metastability, D would be about 80r. It is interesting that when D is expressed as
a multiple of 7, the exponent in the formula is then independent of r, and so is independent of
scaling circuit dimensions. The scaled down version of this system would allow less time for the
decay of the probability of metastability, but the synchronizer would exhibit a proportionately

higher métastable exit rate.

We are not aware of any experimental determinations of A for nMOS circuits, but by analogy
with experiments performed with several bipolar circuit families, we believe that A is a small
fraction of 7, say about 7/10. This estimate agrees with the notion that A is time aperture
corresponding to that time required for a signal to transit through a small voltage range around
the switching threshold, a time which is proportional to r. For present values of r, A is then
approximately 30 picoseconds, and the probability of a system failure for a single synchronization
event would be about (106)(30'10'12)e'16 or about 37107 12 So, about one in each 31011 items

transferred across this interface would be in some fashion mistreated.

Failure rate depends on the frequency at which the system samples asynchronous inputs. This
frequency cannot be greater than the clock frequency, and as is clear from 2 careful study of
figure 11, this frequency may be as low as the frequency of the states whose choice of successor
depends on the asynchronous input. This figure is intended to suggest how synchronizers can be
sheltered from needless synchronization events, as the synchronizer is here sheltered by ANDing
the asynchronous input with a signal which indicates that the system is in state A. Synchronizers
that are used directly on asynchronous input signals and whose outputs enter PLA or ROM
structures may cause failures even when the system is in a state in which the successor does not

depend on the asynchronous input.

For the example above, the synchronous processor must sample every transition of the
asynchronous input in order to transfer every data item. If this processor were engaged in
transferring data at a 1 MHz. rate about one third of the time, synchronization failures would
occur at a (Poisson) rate of once each 106 seconds, or about every 10 days. It is worth noting
that the exponential relation in pD) makes the failure rate remarkably sensitive to pD. This
dependence may be particularly noticable if the clock signal originates off-chip so that pD
depends on 7. A chip with a slightly larger than typical r may exhibit a drastically higher than

typical failure rate.
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The probabilistic character of synchronization failures makes them exceedingly difficult to trace.
Designers of synchronous systems who wish to avoid the curses and plagues that are the just
reward for those that build secret flaws into human tools and enterprises should cultivate a
rational conservatism toward this problem. The worst-case failure rate for a design should be
calculated. If the failure rate is higher than some criterion, it can be reduced by techniques
which increase D. Use of cascaded synchronizers is one technique for increasing D which does
not require increasing the system clock period. Criteria for acceptable failure rates depend on

many of the same economic and social factors that influence other aspects of system reliability.

One conservative failure rate criterion that can be supported by a physical argument is that the
rate of synchronization failures should be on the order of the rate at which the bistable
synchronizer will change state due to the random thermal motions of the electrons. This rate is
shown in section 9-{Themal Limit] to be (1/ r)e'(Esw/ KT) 1f s is the frequency of synchronization

events -- often s = f --, this physical criterion is:

sfae™PD = sfae"D/(r+Dr ¢ (1/’!‘)6-(ESW/kT).

Solving for D yields: D > [E/XT + In(sfAT)(r+ v,

If one takes A as about r/10 and s and f in the order of 1/100r, it is clear that the second term
in the brackets can be ignored. The switching energy for today’s circuits is about 108kT, and
bistable devices are consequently so reliable that the time required to allow the probability of
metastability to decay to achieve the same reliability is very large -- about 5'1087, or 0.15
seconds! However, this criterion scales in a remarkable way. The ratio D/, which represents the
number of transit times the criterion provides for the metastable exit, scales with the switching
energy, which goes down as «3. This scaling should not be interpreted as meaning that smaller
devices have a higher probability of metastable exit per transit time. Rather, smaller transistors
result in less reliable storage devices, which makes it possible to lower one’s standards. Ultimately
small transisitors with channel lengths of about 0.25p would allow circuits with a switching energy
of about 10%kT. Because of the significant subthreshold currents at the low threshold voltages
implied by this scaling, CMOS circuits with r = 1 would have to be used. At these minimum
dimensions, this criterion implies D > 2°10%7, and taking + = 0.02 nanoseconds, D > 400
nanoscconds. So, at this ultimate limit of MOS technology, one cannot disregard synchronization
failure, but one would not expect it to limit designs for synchronization rates up to 1 MHz. or so.
Since this criterion represents the most conservative position that can still be rationally defended

on physical grounds, it is known as the Mead Criterion.
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Self-timed Systems

The operation of a synchronous system is reminiscent of soldiers marching to the commands of a
drill sergeant. The temporal control over a collective activity is centralized in a single authority,
and the soldiers respond to known commands that are synchronous with the marching cadence.
Lockstep control results in a particularly simple form of organized behavior which people often
associate with the relentless efficiency of machines. However, lockstep control is certainly not the
only way to coordinate the collective activity of many participants, nor is it efficient unless the
tasks of the participants are very well matched. Self-timed systems are patterned on Quite a
different image of organized activity, one in which the temporal control is delegated to the
participants. If one were to try to construct a mental image of self-timed behavior, it would be
one in which the airplane could not leave until after all the passengers scheduled for the flight
had gotten on board. One tries to assure that everything occurs in proper sequence, but nothing

ever has to occur at a particular time.

In a self-timed system, the metrical notion of time is confined strictly to the interior of parts
called elements. Time and sequence are related inside these elements in such a way that the
terminal behavior of an element obeys a set of sequence domain relations on the occurrence of
signal transitions. The only kind of relations possible are x <y, x preceeds y, for which one might
also say either that x is before y or that y is after x, and x#y, x Is concurrent with (not ordered
with) y. The relation < is a partial ordering on the set of occurrences of signal transitions; it is
reflexive, x <x: antisymmetric, <y N y<x => x=y; and transitive, x<y N y<z => x<z. The
relation x=y in the definition above means that x and y are identical, not simultaneous. The
notion of simultaneity is specifically regarded as meaningless and disallowed by the antisymmetric

property of <.

According to the special theory of relativity, it would not be possible to have any relations
between occurrences of signal transitions at different points in space, as the order might be
interpreted differently for observers in different locations. The problem with the relativistic
environment is that one knows so little about time that systems are either impossible to make, or
more complicated than is justified by the actual situation. Over volumes that are sufficiently
small, volumes that are here called equipotential regions, one is justified in applying the

approximations that (1) a signal is identical at all points on a wire, and (2) a relation which holds
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anywhere in the region holds everywhere in the region. Of course, an element must be contained
entirely within an equipotential region or else the set of relations which define its terminal
behavior would be meaningless. A system may contain many equipotential regions. Each of

them is conformal to a point in a relativistic space, and each keeps time to itself.

In a medium such as free space, events that originate at one point in a certain order are observed
to occur in thé same order at any other point. However, in a medium in which signals are
carried on wires which may follow different routes from one equipotential region to anoLhér,
order is not in general preserved. Some self-timed systems may use a muiti-wire structure called
a bundle, which can convey 2 set of signals from one equipotential region or element to another
while preserving specified ordering relations. For example, a two-wire bundle with inputs (a,b)
and outputs {c.d) may satisfy the constraint that a<b => c<d, but would not also be required to
satisfy b<<a => d<c, as the pair of requirements would imply that the bundle satisfy a two-sided

timing bound.

The time required for an electromagnetic wave to traverse a large chip is less than 0.1 nsec, and
for 1978 MOS circuits the signal transition times on-chip are greater than about 0.3 nsec.
Accordingly, the equipotential environment is very well approximated on a single chip. For
typical transition times on pins of many nanoseconds, a circuit board up to about a foot square is
a good approximation of an eguipotential region. However, communication delays in pin driving
structures are so long compared with internal transition times that two chips may not be regarded

as being in the same equipotential region.

Cremainder of this section in preparation)

discussion of the formation of systems from elements based on the recursive definition: A self-timed
system is either (1} a self-timed element, or (2) a legal interconnection of self-timed systems.
Correctness proofs. Fundamental motivation for self-timed systems: that correctly functioning

elements assure a correctly functioning system.
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Signaling Conventions

<in preparation>
two-cycle (transition) and four-cycle (Muller) signaling - data validity - the M OSbus convention --

ternary and data-driven signaling.

Synchronous Elements

<in preparation>
illustration of the use of the stoppable clock to implement self-timed elements as synchronous

systems.

Asynchronous Elements

<in preparation>
self-timed elements implemented without clocks -- delay modeled timing -- speed-independent

timing -- inherent error detection and correction.

Arbitration

<in preparation>

asynchronous arbiters -- application to shared self-timed systems.
Acknowledgements

<in preparation?
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Chapter 8: Highly Concurrent Systems
Copyright ® 1978, C.Mead, L.Conway

Sections:

Introduction - - - Communication and Concurrency in Conventional Computers - - - Algorithms for
VLSI Processor Arrays - - - Hierarchically Organized Machines - - - Highly Concurrent Systems

with Global Communications - - - Challenges for the Future

How can the properties of VLSI be exploited to build computational structures? Our discussion
lo this point has concentrated primarily on principles for structuring circuits and wircs on the
chip rather than on the application of VLSI to solve intcresti'ng computational problems.
Although the OM example described in chapters 5 and 6 shows an elegant use of the structuring
principles in the design of a conventional processor, we are left with an intriguing question: Does

VLSI offer more than inexpensive implementations of conventional computers?

This chapler answers the question with a resounding YES! Because processing elements and
memory elements can both be easily implemented in VLSI, we are encouraged Lo find structures
that usc a great deal of concurrency--a large number of calculations occurring at the same time.
Although we can clearly design VLSI structures that have many sites at which processing is
performed, how are these structures to be applied? Some applications may require different sorts
of concurrent processing than others. Are there any principles or theorics that will guide us in
the design of highly concurrent systems? (For an cxcellent introduction to the promises and
problems of VLSI and concurrency, see reference [1] ) Unfortunately, we lack experience in
designing systems of this sort. As a consequence, this chapter can offer no complete designs
which have been applied in real system applications. Instead, we offer several glimpses of the

possibilities available with VLSI, and of its limitations.

The chapter is organized into four quite separate scclions; although they are designed 10 be read
sequentially, they may also be read concurrently!  The first section reviews the problems that
conventional computer designs present when implemented in VLSI, and summarizes efforts to
achieve concurrency in general-purpose computers. Section 2 takes up a particular sort of

concurrent organization--the array of identical processors--and shows ils application to matrix
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arithmetic.  Section 3 examines hierarchically-organized machines-—-in this case, machines
structured as a binary tree—-and demonstrates how they can be programmed to perform several
tasks. Finally, section 4 presents a nascent theory of planar computational structures. It links the

topological and electrical properties of VLSI elements to the structure of computations.

1. Communication and Concurrency in Conventional Computers

The architectures of conventional computers suffer from two difficulties that we must avoid when
designing VLSI computational structurcs. First, & processor is scparated from its memory by long
communication paths such as buses. These buses are long enough 1o slow substantially the
transmission of information between a processor and memory. Second, the "von Neumann
machine” provides ohly a single processor that sequentially fetches and executes instructions--it
offers few opportunities for concurrent processing activity. In this section, we survey some of the
attempts to reduce communication costs and to use several processors concurrently.  Although
designs using a great deal of concurrency have been cumbersome to implement in the past, VLSI
makes these designs considerably more attractive because of the ease with which memory and

processing clements can be placed in close proximity.

Human organizations, like computer organizations, suffer if communication costs are high or if
concurrent processing cannot be exploited. In fact, a human brings to an organization what VLSI
brings to a circuit: both combine processing and memory effortiessly!  Analogies with human

structures will help to suggest the kinds of behavior we might achicve in compulational structures.

Humans struggle to reduce communication costs, because the cost is often measured in large
quantitics of time. Consider a student assigned to write a research paper, requiring the use of a
large library. Each time he nceds to consult a book, he could make a trip to the library, climb
into the stacks to retricve the book, rcad a few relevant paragraphs, and replace the book. He
now heads home to write the sentence that depends on the information he acquired. Libraries
and people both recognize the incfficiency of this approach, and allow students to borrow books.
The student will take several dozen books home, and store them on a short shelf, handy to his
desk. Now the communication cost required to find information is reduced, pravided the item

lies within the group of books he has selected. If the student finds it difficult to select a small

[ ChB.: Sect.1} < mead > systemslvlst July 22.1978 4:06 PM



number of books that meet his needs, he may move his work to a carrel in the library, again in
order to reduce communication costs with the large library "memory.” The human strives to

keep his information supply close to his processing task,

Concurrency is widely exhibited in human organizations. Henry Ford introduced the production
line as a way to exploit concurrency in a well-understood manufacturing process. This is a
particularly simple structure, in which information and goods flow rigidly along the production
line. A more prevalent, general-purpose approach to concurrency in organizations is the
hierarchy: the president of a company supervises several subordinates, cach of whom in turn
supervises a like number of sub-subordinates, and so forth until we reach the lowest level

workers.

Two goals of the hierarchy are to keep cveryone about equaily busy, and to allow adequate
information flow in the organization. A supervisor must generate enough commands to keep
several subordinates busy--otherwise it would not be possible to build large organizations at all.
In addition, each subordinate requircs a certain amount of attention from the supervisor. These
requriements limit the number of subordinates who can be assigned 1o a single supervisor--ten
underlings can run the most diligent supervisor ragged. Supervisors gather information to make
decisions by querying their subordinates. In a badly organized hierarchy, supervisors may confer
frantically with their superiors to find answers nceded for crucial decisions. Meanwhile workers
stand idle, waiting for dircctions from above. While it is not possibie in gencral to have all
needed information available from one's own subordinates, concurrent systems require this

locality property to reduce interference from too much communication.

The design of computers and of algorithms has yet (o show the ingenuity reflected in human
organizations. This failure is not for want of cleverness in designers, but rather because the
technologies used to implement computers are much less flexible than the human beings used to
implement corporations. VLSI offers more flexibility than earlier technologies because memory

and processing structures can be implemented with the same technology, in close proximity.
Communication costs in computers

The archetypal computer consists of a single "processor” ( the CPU or “central processing unit™),

connecled to a large, homogeneous memory (Figure 1). The processor fetches an instruction from
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memory, decodes it, executes it, and repeats the cycle. Many instructions will cause additional
references to memory in order to fetch operands or to store results. The performance of such a

computer depends critically on the speed with which memory can be accessed.

A very simple argument can be developed to determine the speed of the memory. If a memory
of M bits is implemented on a single chip in a two-dimensional array, wires approximately Mm%
long are required to transmit data between a memory cell and the processor. (We are concerned
with relative units of length and time, because we intend only to compare different designs, not to
determine absolute execution speeds.) The time required for data transmission is proportional to
this length: the longer the wire, the greater the distance the signal must propagate and the greater
the wire's capacitance, slowing propagation. In addition to slowing the memory, long wires also
consume a great deal of chip space and require substantial power to drive. In present
implementations of large computers, performance is further decreased by the several levels of
packaging required to provide a memory of significant size: chip, printed-circuit board, backplane.
The wiring on chips and printed-circuit boards grows as Mvz. but backplane wiring grows lincarly

with memory size.

The organization shown in Figure 1 is also rather wasteful of resources: most of the memory and
memory wiring is idle most of the time. For a typical large memory, M might be 32"106. but
only a 16- or 32-bit word will be delivered to the processor with cach memory reference. If the
memory is organized as an array of 109 bits for cach bit in the word, only 2 of the 2000 wires
needed 1o address the array are used in a given refcrence (1000 select wires running horizontally,
and 1000 select wires running vertically). Vast areas of memory thus lic idle because the amount

of information extracted on a single reference is small compared to the size of the entire memory.

The costs of communication are cxhorbitant in today’s computers. Most of the cxpense, time,

and energy required to compute are consumed by the communication of data over large distances.

Memory Locality

Computer designers have recognized the difficulty of communicating with a very large memory,
and have taken steps to utilize the memory more cffectively.  The result is a memory hierarchy,
outlined in Figure 2. The processor communicates with & scries of memorics, whose size
increases and speed decreases as they become farther from the processor. The closest memory

(M,) provides high-speed “registers” or "accumulators” that are used very frequently, usually to
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contain intermediate results of arithmetic calculations. Next comes “cache” memory (M),
designed to hold data and instructions that are referenced frequently. The “primary” memory
(Mp) is similar to the large memory of several million bits illustrated in Figure 1. Finally, a

"secondary” memory (Mg) of some sort is provided, usually implemented with disks.

The average time required to reference a memory element will depend on which piece of the
memory hierarchy holds the desired element. The intent is that fast, small memories be
referenced more frequently than the slow, large ones. This desire is reflected in the design of the
instruction set of the computer: referencing "registers” is usually encouraged by the structure of
the instruction set; refercncing primary memory (or cache) is supported by the instruction set, but
perhaps in less flexible ways than for register access; finally, accessing a disk is not directly

supported by instruction sets at all, but requires complicated "I/O control.”

It is instructive to formulate a crude model (o estimate the performance of the memory hierarchy.
We need to assign representative values to the frequency with which each memory is accessed,

and to the size of each memory:

f~.6 Frequency of access to registers (M)
f.~.38 Frequency of access to cache (M)
fp~.02 Frequency of access lo primary memory (Mp)

fs~.000005 Frequency of access to secondary memory (Ms)

M, ~16

M, ~10

M,~10°

M,~1010
Using our model of memory access lime, the time required to access memory on the average is
f#M + £#M, + fp#Mp + 100 £#M,, measured in arbitrary units. (The factor of 100
arises because disk access times are substantially worse than our memory wiring model indicates.)
It is instructive 1o nole the relative contributions of the separate memories: 2.4, 12, 6, 50, for a
tolal of 70. The cost of access to the slowest memory, the disk, is the most important

coniribution to the average.

The mnemory hicrarchy is an improvement over the homogeneous memory of Figure 1. The time

1o reference a single memory of sizc 10° is 320 units. The time to reference a three-level
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hierarchy of about the same size (M, M, Mp, with frequencies shown above) is a mere 20 units.

The effectiveness of the memory hierarchy depends on locality of the memory references. Cache
algorithms copy large chunks (8-32 words) of primary memory into the cache, hoping that
additional memory references will occur in the neighborhood of the first reference. A similar
hope is attached to transfers from secondary memory. If an application arises in which most of
the memory references do not go to Lhe fast register memory, the memory hierarchy will perform

pootly.

Locality can also be viewed as a function of size. If a program and its data can reside in primary
memory for the duration of eseculion, and do not require secondary memory, the average
memory access time will drop from 70 to 20. If the program is small enough to fit in the small

cache memory, access time will drop further to 14.
Concurrency in computers

Not content with the increases in speed due to a memory hierarchy, computer designers have also
sought to increase the concurrency in computer designs. A number of different approaches have

been tried (see reference [3] ): we shall illustrate pipeline structure and muitiprocessor structures.

Pipelined processors

Pipelined processors are patterned after the production line found in manufacturing: a portion of
the processing is performed by each of several processors, and then handed to the next processor
in the line. Starting from Figure 1, the designer reasons that two processors could function
concurrently, each assigned to haif the original memory (Figure 3); a communication path is

provided so that the first processor can transmit results to the second.

The two-processor pipelinc more than doubles the processing power available. 1f we neglect the
cost of inter-processor communication, the time required to execute an instruction is (1/2)
(M/Z)VZ, about one third the lime required by the uniprocessor in Figure 1. The improvement
comes from two effects: doubling the number of processors doubles the speed, but reducing the

memory size also increases speed.

A special case of pipelining is illustrated by instruction-fetch overlap in computers. One processor

is responsible for fetching an instruction from memory: it then passes on to the second processor
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information required to execute the instruction: the second processor actually performs the
execution. In chapter 6, we saw this technique applied in OM: while one microinstruction is
being executed, the controller is fetching the next microinstruction. Execution overlap allows the

execution itself to be pipelined (see reference [6] for ‘more pipelining structures),

Pipelined structures are perhaps most effective in special-purpose applications that can utilize a
large number of processors. Signal-processing is a particularly good example: a signal is sampled
digitaily to generate a siream of signal data. This data is pipelined through processors to perform
corrections, correlations, frequency analysis, etc. Section 2 of this chapter illustrates the

applicalion of pipelines o matrix arithmetic of various sorts.

Unfortunately, it is not always possible to cast problems in a framework suited to exccution on
pipelined computers. If the workload is not divided evenly among the processors, some will
stand idle, reducing the cffective speed increase. But it is the rigid communication discipline that

most severely restricts the application of pipelines.
Multiprocessors

Another important class of concurrent computers are multiprocessors. Unlike the pipeline, these
structures provide switching structures that allow each processor o communicate with each other
processor. The hope is that those algorithms not suited to pipelines because of their

communication requircments can be executed on mulliprocessors.

Figure 4 shows a dual-processor configuration, again adapted from Figure 1. Each processor
communicates primarily with a memory half the size of the original. In addition, a common

"bus” is provided to allow each processor to reference the other’'s memory.

Two problems with the dual-processor arrangement are immediately apparent. First, if each
processor references memories at random, the two will interfere often, and vitiate some of the
speed gain. Second, can we assurc (hal the scquential program suited to the uniprocessor
architecture of Figure 1 can be adapted o the dual-processor configuration? Putting aside for the

moment the problems of programming a multiprocessor, we shall examine its performance.

We shall construct a crude model of the time reguired to cxecule an instruction on the dual
processor. Assume that cach processor references its own memory with probability (1-/), and the

other’s with probability / Further, assume that the useful duty cycle of each processor isd If
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both processors can be productively employed at ali times, 4 will be 1. However, if the two
processors must occasionally wait for each other, ie., must "synchronize,” 4 may fall below 1.
We can identify three cases:

1. P, references M, and Py, references My,: probability is (1-)‘)2.

2. P, and Py, both reference M, (or, equivalently My); probabilities sum to 2f£1-/).

3. Pa references Mb and Pb references M,; probability is jz
We also need to model the time required to complete each of the three cases. A processor
references its own memory, of size M/2, in time (M/Z)%. When a reference is made to a
neighbor's memory, we assume the time for communication on the bus and referencing the
memory sum to #M, as if it were addressing the entire memory as one array. The costs for the
three cases then become:

1. (M/2)%

2. (M/)% + M%

3. M% 4+ M7
From these estimates we calculate the expected instruction execution time, remembering that 2d
processors are available:

time = M%® d) (2%74 + f- £12)

is expression is plotted in Figure 5, assuming d=1.

The simple model of a dual-processor configuration is suggestive of bechavior we can expect from
multi-processor systems thal require global communication. We observe that if f= 0, execution
speed is more than twice that of the uniprocessor illustrated in Figure 1. Just as in the pipeline,
doubling the number of processors contributes a factor of two, but additional speed is achieved

because each processor addresses a smaller memory.

The model also illustrates the importance of locality in the use each processor makes of its
memory. If fis allowed to grow too large, the factor of two contributed by two processors is

erased by interfecrence between the processors when accessing the common memory.

Perhaps the most important parameter is 4, which is determined by our ability to adapt
algorithms to multi-processor configurations. Some applications seem Lo decompose nicely for
exccution on concurrent hardware, and some offer difficultics. In human organizations we have
become resigned to afways attacking large problems in a concurrent way. We will, no doubt,

have to do the same with compuler programs.

[ ChR.: Sect.1! < mead >systemsl.vlsi July 22.1978 4:06 PM



Summary

The schemes we have illustrated that reduce communication costs and try to exploit concurrency
can be combined in various ways in computer structures. The table below summarizes the
speedup effect that these techniques offer, as derived from our crude models (n denotes the

number of processors used):

Technique Typical speedup factor
Memory hierarchy 10
Pipelining
instruction overlap 2
special-purpose n
Mulitprocessors <n

The processor-memory structures and algorithms presented in the remainder of this chapter all
attempt o have as many processors as can be kept productive simultaneously and to locate them as
close as possible to the data they require. These are the considerations exhibited by our simple
models of memory hicrarchies, pipelines and multiprocessors. The examples presented here by
no means cxhaust the topic of concurrent computation; the interested reader will find literatures
on compuler architecture [2,3], paraliel processor and processing [4.5,6,7], performance evaluation

{3], and algorithm design {8,9,10,11,14].

[ ChR.: Sect.1] ¢ mead > sysiemslvisi July 22. 1978 4:06 PM



10

2. Algorithms for VLSI Processor Arrays

H. T. Kung and Charles E. Leiserson
Department of Computer Science

Carnegie-Mellon University

2.1. Introduction

“"And the smooth stream in smoother numbers flows"

--Alexander Pope

We are interested in high-performance parallel algorithms that can be implemented  directly
on low-cost hardware devices. By performance, we are not refering to the traditional operation
counts that characterize classical analyses of algorithms, bul rather, the throughput obtainable
when a special purpose peripheral device is attached to a general purpose host computer. This
imphies that time spent in 1/0, control, and data movement as well as arithmetics must all be
considered. The cost of the device must be measured in how well it can be implemented using
LSI technology and must be sensitive to what the technology can do cheaply, and what is

expensive.

LSI technology has made one thing clear. Simple and regular interconneclions lead to
cheap implementations and high densities, and high density implics both high performance and
low overhcad for support components. The two-dimensional array structure consisting of mesh-
connected processors enjoys this desirable property.  Therefore, we are interested in designing
paraflel algorithms which have simple and regular data flows so that they can be executed
efficiently on such processor arrays. We are also interested in using pipelining as a general
method for implementing these algorithms in hardware. By pipelining, processing may proceed
concurrently with input and output, and conscquently overall exccution time is minimized.
Pipclining plus multiprocessing at ecach stage of a pipeline should lcad to the best-possible
performance.  In this section, we demonstrate simple and regular multiprocessor networks that

are capable of pipelining some important matrix computations with optimal speed-up.
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Most of the results reported here are based on a paper by H. T. Kung and C. E. Leiserson, which
is to be presented at the Symposium on Sparse Matrix Computations and Their Applications in

Knoxville, TN, November 2-3, 1973.
2.2. The Basic Components and Structures

The single operation common Lo the problems considered in this section is the so-called inner
product s.tep. C « C + A x B. We postulate a processor which has three registers Ry, Rp,
and R. Fach register has two conncctions, one for input and one for output. Fig.
22.1 shows two types of geometries for this processor. Type (a) geometry will be used for
matrix-vector multiplication and  solution of triangular linear systems (Sections 2.3 and 2.6),
whereas  type (b) geometry will be used for matrix multiplication and LU-decomposition

(Sections 2.4 and 2.5).

A
!
(= BCa
= e
|
A
(2) (b)

Fig. 2.2.1. Geometries for the inner product siep processor.

The processor is capable of performing the inner product step. We shall define  a basic Line
unit in terms of this processor. At time t, the processor shifls its inputs into Ry, Ry, and R,
and computes Ro = Re + Ry x Rp. Al time t+1, the new value of R together with the

input valucs for Ry and Ry are available as outputs. All outputs are latched and the logic is
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clocked so that when one processor is connected to another, the changing output of one during
the time interval between t and t+1 will not interfere with the input to the other during this
time. This is not the only processing element we shall make use of, but it will be the work

horse. These spccial processors will be specified later when they are used.

The basic network organization we shall adopt for internal communication is the mesh-connected
processor scheme. (See Fig. 2.2.2.) All connections from a processor are to neighboring
processors. The most widely known system based on this organization is the ILLIAC IV. If
diagonal conncclions arc added in one direction only, we shall call the resulting scheme
hexagonally mesh-connected or hex-connected for short. We shall demonstrale  that linearly

connected and hex-connected processors are natural for matrix problems.

(a) linearly connected

{b) orthogonally connected
(ILLIAC IV}

(c) hexagonally connected
Fig. 2.2.2. Examples of mesh-connected processors.

When an input path o a processor lies on an edge of the device, we shall sometimes duesignate
it as an external input connection from the host memory.  Alternatively, we may et the input
have a fixed value such as zero. An output data path will either go to the host memory or be

ignored.
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2.3. Matrix-Vector Multiplication

We consider the problem of multiplying a matrix with a vector. Let A = (“ij) be an nxn band
matrix with band width w = p+g-l, and x = (xl,...,xn)T. y = (yl,...,yn)T be n-vectors such
that Ax = v. (See Fig. 2.3.1 for the case when p = 2 and q = 3.

p
— —_ p— — — —
a, a, X Y,
q 2y 83 3An Xz Y2
Ay 25 @y Iy i X3 Y3
8,; 35 e A 1 X4 — Ya
2y
L —_ — —

Fig. 2.3.1. The matrix-vector multiplication when the matrix is a band matrix

withp = 2and q = 3.

Suppose A and x are given. The following algorithm computes the product y = Ax by
pipelining the computation through w lincarly connected processors. Before giving the code for
cach processor, we illustrate the algorithm for the band matrix-vector multiplication problem in

Fig. 2.3.1. For this case the lincarly connected network has four processors. Sce Fig. 2.3.2.
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Fig. 2.3.2. The lincarly connected network for the matrix-vector mulliplication problem

showa in Fig. 2.3.1.

The general scheme of our pipelining algorithm can be viewed as follows. The y;. which are
initially zero, keep moving to the lefl while the x; are moving to the right and the 3y are moving
down. It turns oul that cach y; is able to accumulate all its terms, namely, 312842 3 5-1%-15
ai,i";i and A i+ 1%+ 1 before it leaves the network, Fig. 2.3.3 illustrates e first seven steps of
the algorithm. Note that when yy and yy are output they have the correct values. Observe also
that at any given lime alternating processors are idle.  (Indeed. it is possible to use w/2
processors in the network for a general band matrix with band width w. We did not do so for

the sake of clarity.)

We now specify the algorithm more precisely.  Assume that the processors are numbered by
integers 1, 2, . . .. w from the left end processor to the right end processor.  Each processor has
three registers, Ry, Rx and Ry, which will hold entries in A, x and y. respectively.  Initially, all
registers contain zervs.  Fach step of the afgorithin consists of the following operations, but for
odd numbered time steps only odd numbered processors are activated and for even numbered

time steps only even numbered processors are activated.
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1. Shift.
- Ry gets a new element in the band of matrix A.

- R, gets the contents of register R, from the left neighboring node. (The R, in processor

1 gets a new component of x.)

- Ry gets the contents of register Ry from the right neighboring node. (Processor 1 outputs

its Ry contents and the Ry in processor w gets zero.)
2. Multiply and Add.

Ry"‘Ry‘i"RAXRX.

Using the processor postulated in section 2.2, we nole that the three shift opcrations in step 1
can be done simultancously, and that each step of the algorithm takes a unit of time. Suppose the
bandwidth of A is w = p+q-1. It is readily scen that afler w units of time the components of
the product y = Ax start shifting out from the left end processor at the rate of onc output every
two units of time. Therefore, using our network all the n components of y can be cotnputed in
2n+w time units, as compared to the O(wn) time needed for the seguential algorithm on 2 single

Processor.
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Step
Number

Configuration

= = = 3 Y,
=1 = = =

- = - Yl

= = = i=

] = Y= - Y,
= =i, 3, = =

=] Y, = = Y.|=

= a2 | =, 4, |=

-~ - Y, i= - Y,

a

= =, 2, |= = 1
] Y, l= = Y=

=t 3y |z =l %2 |=

-~ = Y,l= 3 Y.
= e T =i %

Comments

y, is fed into the fourth
processor initialized at Q.

x, is fed into the first
processor whiie y, is moved
left one place. (From now

on the x; and y; keep moving
right and lefl, respectively.}

a,, enters the second
processor where vy, is
vpdated vy, «y, + a, x,.
thUS ¥, = 3, X,

a,, and a,, enier the first
and third processors,
respeclively. y, = 8, %, +3,%
and y,= a,,%,.

y, is output.
Y, = 8%, Fa,%.
Yy ™ 3%,

Yo B 35, X, 43,503,
Yy = 8%, 43,%.

y, is output.
Yy = 35X, Py, % 3% .
Ya = 347%;-

Fig. 2.3.3. The first seven steps of the matrix-vector multiplication algorithm.
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2.4. Matrix Muitiplication

This section considers the problem of multiplying two matrices. Let A and B be nxn band
matrices of bandwidth w and w, respectively. We show that a network of wywy hex-connected
processors can compute the product C = AxB in 3n+min(wy,w,) units of time. The algorithm
uses the same principle as the ome in Section 2.3. We illustrate the general scheme by

considering  the matrix multiplication problem depicted in Fig. 241,

The diamond shaped interconnection network for this case is shown in Fig. 2.4.2, where
processors are hex-connected and data flows are indicated by arrows. The nonzero elements in
A, B and C move through the network in three directions, as indicated in the figure. Initially, the
c;; are all zeros. One can easily see that with the type (b) inner product processors described in

)

Section 2.2, each Cij is able to accumulate all its terms before it leaves the network.

Suppose that Fig. 2.4.2 describes the configuration at time 1. Then, for example, ¢y gets

ajpbyp at time 2 and ajpbyy at time 3. while ¢y gets apyby; at time 3 and ajpbyy at time 4.

(Note that approximately only one third of processors in the network are active at a given time.
Indeed, it is possible to use about (wyw4)/3 processots in the network for multiplying two band

matrices with band widths wj and WZ-)
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A, b, b, by, € €12 €3
22 Ay b, b, by by €y Ca Cp
8y, 83 Ay, b, by by by — €3y €12 C;
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Fig. 2.4.1. Matrix multiplication.
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Fig. 2.4.2. The nctwork for the matrix multiplication C = AxB shown in Fig. 2.4.1.
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2.5. The LU-Decomposition of a Matrix

The LU-decomposition of a given a matrix A is the problem of computing lower and upper
triangular matrices L and U such that A = LU. (Cf. Fig. 2.5.1)

Fig. 2.5.1. The LU-decomposition of a matrix.

Once the L and U factors are known it would be relatively easy to solve a linear system Ax =
b or to invert A. In the following we describe a parallel LU-decomposition algorithm using a

hex-connected network.

We assume that A is either a symmetric pusitive-definite or irreducible diagonally dominant
matrix. It is well-known that under this assumption the L and U matrices can be oblained by
Gaussian elimination without pivoting. We show  the rather surprising fact that Gaussian
climination cnjoys the same data flow as matrix multiplication and that ail the processors  except
one perform the same inner product step.  In fact, the same matrix multiplication nctwork in
Section 2.4 can be used to compute L and U matrices, provided that the processor at the top
pow computes minus the reciprocal of an input and the orientation of the other boundary
processors is properly altered.  More precisely, at the special processor at the top, the data from
the south processor is passed unchanged to the north, minus its reciprocal is computed and sent
to the southwest processor, and a numerical value "17 is sent to  the southeast processor. The
processors on the lefl hand  "upper” side are rotated 120 degrees clockwise and  always receive
0" from their northwest external inpul connections.  Shnilarly, the processors on the right hand
“upper” side are rotated 120 degrees counterclockwise and always reccive "0" from their

northeast external input connections. (Of course, it is not necessary to  actually input 0" for
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these processors; we did so for the sake of uniformity.)

Suppose that L = (]ij) and U = (uij). Then Gaussian elimination computes the entries in L and
U using the following procedure:

1

u—:mijfori>j,1fori=jand0fori<j.

uy = aij(i) for i € jand 0 fori > j

O = %

my = - a7 a®

To illustrate our results, we consider a band matrix A with p = 4 and q = 4. When clements in
the band of matrix A are fed into the lower edge of the hex-connected network as shown in Fig.
2.5.2, the elements of L and U are output from the upper edge. Fig. 2.5.3 shows an enlargement
of the configuration after eight steps of the algorithm have been cxecuted. The flow of data on
the network is indicated by arrows in Fig. 2.5.3. The hexagons denote the standard processors
which perform the inner product step just like the corresponding processors in the matrix
multiplication network (cf. Fig. 2.4.2). The processor at the top denoted by a circle performs the
reciprocal and negation operations. As in the matrix multliplication algorithm, each processor only
operates once every three time steps. We will not give a formal correctness proof for the
algorithm here.  But for understanding the algorithm the reader is advised to view the LU-
decomposition as the inverse problem of mulliplying a lower trangular matrix with 1's on the
diagonal to an upper (riangular matrix. Then the algorithm of this section can simply be
regarded as one which undocs the matrix multiplication  algorithm of Scction 2.5. Having
realized this, one should be able understand also why the two algorithms use the same network
and enjoy the same data flow pattern. The idea of using the same network for both the forward

and backward problems scems to be general. It will be used again in Section 2.6.

[ Ch8.: Sect 2 | <mead > systems2.visi July 24, 1978 4:25 PM



21

Fig. 2.5.2. The hex-connected network for pipelining the LU-decomposition of a band matrix

4and q = 4.

with p
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Fig. 2.5.3. LU-decomposilion after the first eight steps.

It is readily seen that if matrix A is nxn, then using the network shown in Fig. 2.5.2 the L and U
matrices can be computed in 3n+4 units of time. In general, if A is an nxn band matrix with
band width w = p+q-1. then with a network of no more than pq hex-connected processors, the
{.U-decomposition of A can be done in 3n+min(p,g) units of time. (It is possible to reduce the
number of required processors 10 about pg/3.) In particular if A is an nxn dense matrix, then n2

hex-connected processors can compute the L and U matrices in 4n units of lme, including 10

time.
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2.6. Triangular Linear Systems

Suppose that we want to solve a linear system Ax = b. Then after having done with the LU-
decomposition of A (e.g., by methods described in Section 2.5), we still have to solve two
triangular linear systems Ly = b and Ux = y. This section concerns itself with the solution of

triangular linear systems.

Let A = (aij) be a nonsingular nxn band lower triangular matrix with band width w=q.
Suppose that A and an n-vector b--*(bl....,bn)T are given. The problem is to compute

x=(x1,....xn)T such that Ax=b. (See Fig. 2.6.1 for the case when q=4)

r a|| xl bl
3, 2n Xz b,
q < |
3y 45 35 Xy b,
L au aaz ad:l au xn : ba
Ay By By By Xy b,

L I I S
Fig. 2.6.1. The band (lower) triangular linear system with g=4.
We show that Lhis problem can be solved by the algorithm and nctwork almost identical to those
used for band matrix-vector multiplication in Scction 2.3. (Notc that the linear system problem
can be regarded as the inverse of the matrix-vector multiplication problem.) We illustrate our

result by considering the lincar system problem in Fig. 2.6.1. For this case, the network and the

general scheme of the algorithm are described in Fig. 2.6.2.
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Fig. 2.6.2. The linearly connected network for solving the linear system shown in Fig. 2.6.1.

The y;, which are initially zeros keep moving Lo the left while the x;, % and b; are moving in the
network, as indicated in Fig. 2.6.2. The left end processor is special in that it performs x;+(b;-
yi//a;;. Each y; accumulates inner product lerms in the rest of the processors as it moves o the
lefl. Al the time y; reaches the lefl end processor it has the value a31Xy +2j9%9 +.. +8j . {Xj. 1
and, consequently, the x; computed by xj+(byy;May at the processor will have the correct value.

Fig. 2.6.3 demonstrates the the first ten steps of the algorithm.
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Step Configuration Comments
Number
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Fig. 2.6.3. Solving a lower band triangular system with q = 4,

One can check that the computed xq, X9, x3 and xy all have correct values. With this network we

can solve an nxn band triangular linear system with band width w=q in 2n+q units of time.
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2.7. Applications and Comments
2.7.1 Variants of the Algorithms

Rather than the basic algorithms presented above it is their variants that will be used mostly in
practice. No attempt is given here for listing all the possible variants; it is important that the
reader understands the basic principles of the algorithms so that he can construct appropriate

variants for his specific problems.

We first note that although most of our illustrations are done for band matrices all the
algorithms work for the regular nxn dense matrix. In this case the band width of the matrix is w
= 2n - 1. If the band width of a matrix is so large that a corresponding algorithm requires
more processors than a given network provides, then one should decompose the matrix and

solve each subproblem on the network,

One can oflen reduce the number of processors required by an algorithm if the matrix is known
to be sparse. For example, the matrices derived from differential equations by using finite
differences or finite elcments approximations are usually "sparse band matrices.” These are
band matrices whose nonzero entries appear only in a few of those lines in the band which are
parallel to the diagonal, In this case by introducing proper delays to each processor for shifting
its data to its neighbors, the numbe= of processors required by the algorithms in Sections 2.3 and
2.6 can be reduced o the number of those diagonal lines which contain nonzero entries. This

variant is useful for performing iterative methods involving sparse band matrices.

It is possible to use our algorithms and networks to slove some nonnumerical problems when
appropriate interpretations are given to the addition (+) and mulliplication (x) operations. For
example, some pattern matching problems can be viewed as matrix problems with comparison

and Boolean operations.
2.7.2. Convolution and Discrete Fourier Transform

There are a number of important problems which can be formulaled as matrix-vector
multiplication problems and thus can be solved rapidly by the algorithm in Scction 2.3. The
problems of computing convolutions and discrete Fourier transforms are such exampies. If a

matrix has the property that the entries on any line parallel to the diagonal are all the same, then
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the matrix is a Toeplitz matrix. The convolution problem is simply the matrix-vector

multiplication where the matrix is a triangular Toeplitz matrix (cf. Fig. 2.7.1).

— —_ — —
ar Xy b,
& a1 ' Xy bz
ag & g X3 0,
a, % & & X, | — | b
' Xs by
L I I L

Fig. 2.7.1. The convolution of vectors a and x

On the other hand the n-point discrete Fourier transform is the matrix-vector mulliplication,

th

where the (i,j) entry of the matrix is wﬁ'l)(j'l) and « is a primitive n*? root of unity (cf. Fig.

2.1.2).

— — — —
1 1 1 1 Xy b,
1 w w2 w3 X, b,
1 w2 ot b X3 o
1 wd Wb Lo X4 - by
Xg by

l.— L L

Fig. 2.7.2. The discrete Fouricr transform of vector x.
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Therefore using a lineariy connected network of size O(n) both the convolution of two n-vectors
and the n-point discrete Fourier transform can be computed in O(n) units of time, rather than
O(n log n) as required by the sequential FFT algorithm. Moreover, note that for the
convolution problem each processor has to receive an entry of the matrix only once, and this
entry can be shipped to the processor through horizontal connections and stay in the processor
during the rest of the computation. For the discrete Fourier transform problem each processor
can in fact generate on-the-fly the powers of w it requires. As a result, for these two problems it
is not necessary for each processor in the network to have the external input connection on the

top of the processor, as depicted in Fig. 2.3.2.

In the following we describe how the powers of w can be generated on-the-fly during the process
of compuling an n-point discrete Fourier transform. The requirement is that if a processor is i
units apart from the middle processor then at time i + 2j the processor must have the value of
wjz + 4 for all i, j. This requirement can be fulfilled by using the algorithm below. We assume
that each processor has one additional register R;. All processors except the middle one perform
the following operations in each step, but for odd (respectively, even) numbered time steps only
processors which are odd (even) units apart from the middle processor are aclivated. For all

processors except the middle one the contents of both R, and R, are initially "0".

1. Shift. If the processor is in the left (respectively, right) hand side of the middle processor
then

- R, gels the contents of register R, from the right (respectively, left) neighboring

processor.

- R; gets the contents of register R, from the right {respectively, left) neighboring processor.
2, Multiply.

RA - RA X R[
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The middle processor is special; it performs the following operations at every ever numbered time

step. For this processor the contents of both Ry and R are initially "1".
L Ry « Ry x RZ x w.

2. Ry «+ Ry x w.

2.7.3. The Common Memory Access Pattern

Note that all the algorithms given in this section retrieve and store elements of the matrix in the
some order. (See Fig. 2.3.2, 2.4.2, 2.5.2, and 2.6.2.) Therefore, we recommend that matrices be
always arranged in memory according to this particular ordering so that they can be accessed

efficiently by any of the algorithms.
2.7.4.The Pivoling Problem

In Section 2.5 we assume that the matrix A has the property that there is no need of using
pivoting when Gaussian elimination is applied to A. What should one do if A does not have this
nice property? (Note that Gaussian elimination becomes very incfficient on mesh-connected
processors if pivoting Is necessary.) This question motivated us to consider Givens’
transformation for triangularizing a matrix, which is known to be a numerically stable method. It
turns out that, like Gaussian climination without pivoting, the orthogonal factorization based on
Givens transformation can be implemented naturally on mesh-connected processors, although a

pipelining implementation appears to be more complex.
2.8. Concluding Remarks

Research in interconnection networks and algorithms has been traditionally motivated by large
scale array computers such as ILLIAC IV (see, for example, Kuck[S] and Stone [3]). The results
presented in this section were, however, motivated by the advance in integrated circuit
technology, though they are certainly applicable to parallel array computers. We have shown that
many basic matrix computations can be done very ¢fficiently by special purpose mulliprocessors,
which may be built cheaply using the current technology. The common feature of our algorithms
is that their data flows are very simple and regular, and they are pipeline algoriims. We have
discovered that some data flow patterns and interconnection schemes are fundamental for matrix

computations. For example, the two-way flow on the linearly connected network is common 1o
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both matrix-vector multiplication and solution of triangular linear systems (Sections 2.3 and 2.6),
and the three-way flow on the hexagonally mesh-connected network is common to both matrix
muitiplication and LU-decomposition (Sections 2.4 and 2.5). A practical implication of this fact
is that one device may be used for solving many different problems. Moreover, we note that
almost all the processors needed in any of these devices are the inner product processor
postulated in Section 2.2. A careful design for this processor is desirabe since it is the work horse

for all the devices presented.

For the important problem of solving a dense system of n linear equations in ((n) time on nxn
mesh-connected processors, we have improved upon the recent results of Kant and Kimura [13].
The basis of their results is an theorem on determinants which was known to J. Sylvester in 1851.
Their algorithm requires that the matrix be "strongly nonsingular” in the sense that every square
submatrix is nonsingular. It is sufficient for our algorithms in Section 2.5 that the matrix be

symmetric positive-definite or irreducible diagonaily dominant.

We end this section by noting that processor communication will likely continue to dominate the
cost of parallel algorithms and systems. Communication paths inherently take more space and
energy than processing elements. We regard the problem of minimizing communication costs as
fundamental. We hope the results of this section have demonstrated that the communication
problem in paralle! algorithms is not only tractable but also interesting. We expect that a large

number of algorithms having small communication costs will be discuvered in the future,
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3. Hierarchically Organized Machines

We know that human organizations use hierarchical structure to extract the greatest possible
benefit from the daily activities of tens of thousands of individuals. We know that complex
systems can be constructed by subdividing them into less complex systems, which are again
subdivided, as many times as nccessary until the resulting systems are simple enough to construct
easily. We have seen that the organization of real estate on the silicon surface dictates a
hierarchical communication system for any device which must support global communication.
Such hierarchical communication exists in conventional compulcrs only in a limited way. Are
there new machine structures which communicate hicrarchically, which support systems that
consist of an arbitrary hierarchy of subsystems, and which can coordinate the activitics of any

number of submachines?

Binary Trees

Consider any number of processors physicatly arranged as a binary Lree. Each processor has two
subprocessors which it can control. These subprocessors, in turn, have two sub-subprocessors, and
so on. A possible layout of such a binary proccssor tree is shown in figure 8. At the lowest level
a small array of ordinary memory cells, labeled My is accessed Ly the lowest level processors,
labeled Py The combination of one lowust level processor with its associated memory is the
element of computing power. Thesc units are grouped together in pairs and accessed by the next
level processor, labeled Py, Two Py’s with their associated 1owef level units are grouped together
and accessed by the next level higher processor, labeled Py.  This arrangement is repeated
recursively until an entire silicon chip s covered by the processor memory hierarchy. The rate at
which information can be transferred within a processor is in independent of the level of the
processor. As the wires within a processor get longer, the drivers must become proportionately
larger to drive them. The highest level processor which communicates off the silicon chip to the
outside world has large drivers and hence is able lo drive off chip without suffering a scvere
performance penalty. Such a machine can thus be extended to a large number of individual

chips and still maintain the full speed of the individual processors within it

A conventional computer is a special case of this organization, consisting of a memory ccll and a
bottom-level processor. Also, there is another way to map a conventional computer onto a binary
tree of processors.  View the highest level processor as a cpu and load all subprocessors with

programs that merely decode requests for the memory below them. Loaded with these programs,
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the structure between the two extreme levels becomes a memory decoder tree between a

conventional cpu and its memory.

More importantly, this binary tree structure is a completely general, concurrent processing engine
and can be used for problems decomposed in an arbitrary hierarchical way. If a problem requires
more than two subprocessors at any level, a subtree of physical processors can be operated as one
logical processor, matching the problem’s structure. Algorithms for constructing logical processors
of any size are given in the next section. The tree has inherent in it the ability for all processors
to compute concurrently and hence has a vaslly larger potential computing prower than a

conventional machine using a similar amount of silicon real estate.

Since the number of processors dccreases exponentially with the level, the total bandwidth
available, whether processing or communication, decreases exponentially with the level. Half of
the lotal bandwidth of the system is concentrated at tevel 0, one quarter at level 1, one eighth at
level 2, etc. A particular computation is well matched to such a processor if its bandwidth
requirements are concentrated at the lowest levels. If an algorithm requires more communication
al any level than the structure provides, it will not be able to take advantage of all the processing
power of the structure. An extreme example of this sort is the von Newnann machine where all
computation occurs at the highest leve! processor and the lower level processors arc used only one
al a time as an ordinary memory. Such a machine requires equal bandwidth at cach level of the

hierarchy and is an exponential waste of the resources of the machine.

It is also clear that such a structure is lestable if a single processor is testable. Each supervisor
merely loads a test program into its two subordinates and exercises them. Once it has established
that both work correctly, it loads each wilh the program it just used Lo test them. A tree of N

levels can thus be tested in N times the time necessary Lo test one processor.

It is difficult to predict how any radically different machine structure will perform in a real
compuling environment. Ideally, one should implement a number of complete systems, spanning
a large range of user requirements, in order Lo gain experience with the sirengths and weaknesses
of any given scheme. Failing that, we can at least map certain algorithms onto our machine in
the hope that they will shed light on its capabilities and its problems. Several such mappings are
presented in the next scction. We plan to develop others and we hope our readers will contribute

still morc for subsequent editions of this text.
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Algorithms for the Tree Machine
Section contributed by Sally Browning, Caltech
A, A Word About Notation

The notation chosen to describe the processor tree and the algorithms that run in each node of
the tree must emphasize that the number of different flavors of processors is small (usually one).

That is, a few templates describe them all

Sccondly, we want to emphasize locality. The processor tree is interesting because each node is a
powerful computing engine that can work independent from its neighbors. Our notation must be

one that encourages sclf-sufficient modules.

We will use a2 modificd version of the SIMULA syntax. The CLASS concept of SIMULA
provides us a means of describing a template that will be instantiated as the nodes of the tree.
We can designate individual procedures and data elemenls as either local to this node or visible

to the outside world. And we can use recursion to indicate flow of execution through the tree.

Most importantly, though, SIMULA's CLASS construct is designed for cxpressing and enforcing
locality. SIMULA is an object-oriented language, and, as such, encourages the programmer to
think in terms of objects doing operations to themselves. The knowledge of the representation
and meaning resides in the class, not in some ommipotent overlord. This is exactly the notation

we need to describe (he nodes of our tree.

Because we are describing highly concurrent algorithms we need (o get around the sequential
nature of SIMULA statcments. We expand the mecaning of the semicolon symbol. In
conventional SIMULA, semicolon is used to terminate a statement. We use semicolon 10 make a
statement about the execution as well. Read semicolon as "Al this point, all statements in
progress must be terminated before advancing to the next statement.” Lincfeed will be used to
indicate syntactic end of the statement. In other words, linefecds are used to sepurale statemenls;

semicolons are used to separate groups of statements which can execule concurrently.
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B. A Word About Branching Ratios

While the physical structure of our tree restricts each processor to two descendants, we can
impose a logical siructure that allows an arbitrary branching ratio. Each logical processor consists
of several physical processors, enough to provide the desired number of offspring. A logical node
with N children is built from N-1 physical nodes and is Mog N7 levels deep. Figure 1 shows

some sample logical processors.

We can describe the process of mapping our logical structure onlo the physical tree in SIMULA.
We define two CLASSes; a node and a processor. A node represents the physical entity. It has
exactly two descendants. A processor will refer to the logical entity, with an arbitrary number of

children.

In the SIMULA dcfinitions, N represents the number of descendants desired.  As we build the
logical node, we attempl to keep it balanced. That is, all availabic physical nodes on a given level
of the tree will be used before a new level is added. Nodes on a given level are added to the
logical processor from left to right, as in Figure 1. Note that CLASS Processor is a refinement of
CLASS Node that knows how to choose one of N descendants.

CLASS Node(n); INTEGER n;
BEGIN

REF(MNode)eft, rght:

linit code to build logical node:

If n>2 THEN icft;-NEW  Node{{n+1)//2);

If n>»3 THEN rnght-NEW Node(n//2);
END of CLASS Node;

Node CLASS Processor:
BEGIN

REF(Processor) PROCEDURE Son(s); INTEGER s;
BEGIN REF(node)p:
pIF s< =(n+1y/2"  THEN left ELSE right:
WHILE NOT (p IN Processor) DO
p:-IF s< =(pn+1)//2 TUEN pleft ELSE p.right:
Son:-p:
END of PROCEDURE Son:

END of CLASS Processor:
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Figure 1. Logical Nodes (solid color) with Two to Seven Descendants
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Figure 2. Systematic Generation of Subgraphs in a Graph of 4 Nodes






II.  Algorithms with Polynomial Complexity

One of the traditional approaches to solving a problem that is too large or teo complex when
considered as a whole is to break the problem recursively into pieces that are manageable. The
point is to apply as many concurrent processors to the problem as possible in order to reduce
exccution time. We will look at two algorithms that use this approach, sorting and matrix
multiplication. While both of these problems are solved nicely on celtular arrays, it is instructive
to map them onlo a machine with different communication properties.

A. Sorting in linear time.

We use a binary trce with depth log N to sort N numbers. The sort is accomplished as a
byproduct of loading the numbers into memory and then reading them out again. The numbers

themsclves are never in sorted order internally, but come out of the tree in the desired order.

This algorithm is an implementation of heap sorting, one of the well known techniques used in
sequential machines {14). It is a particularly interresting example because it illustrates a
fundamental issuc in coucurrency. It is well known that sorting on a sequential machine can be
done with O{NlogN) comparisons. Heap sorting requires O(N?) comparisons, and has been
considered inferior for that reason. However, it has been shown on very fundamental grounds
that if communication is restricted to nearest neighbors, at least N? comparisons are required [17].
The apparent advantage of the O(NlogN) algorithins comes as a direct result of longer
communication paths. It is also clear that no scheme will be able to produce an ordered set of
numbers until all numbers to be sorted are loaded into the machine. For this reason, the best we

can expect is to use N processors for O(N) cycles.

The algorithm that runs in each processor has a procedure for loading the tree called Fillup and a
procedure invoked during the output cycle called Passup. Fillup keeps the largest number scen to
date, and passes the smaller one to the right or left child, keeping the tree balanced by alternating
sides. Passup returns U;is processor's current number and refills itsclf with the larger of the

numbers stored in its descendants. This action is pipelined so that the largest number is always

available in the root.
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Below is a SIMULA description of the aigorithm running in each processor. The variable number
holds the number stored in this processor. The boolean symbol empty reflects the validity of that
number., The boolean identifier balanced is used to keep the tree balanced as it is loaded.

CLASS processor;

BEGIN
INTEGER number;
BOQLEAN balanced,empty;
REF(processorleft,right;

PROCEDURE fillup{candidate); INTEGER candidate;
BEGIN
IF empty THEN
BEGIN
numbet; = candidate
empty: = FALSE;
END
ELSE
BEGIN
IF candidate > number THEN  lswap;
BEGIN INTEGER
t: =candidate;
candidate: = number;
number: =t;
END:
IF balanced
THEN left.fillup{ candidate)
ELSE right fillup{candidate);
palanced: = NOT balanced;
END;
END of procedure fillup:

INTEGER PROCEDURE passupnumber:
BEGIN
passupnumber: = number;
IF left==NONE AND right==NONE THEN empty:=TRUE lits a leaf;
ELSE
IF leftempty THEN
BEGIN
IF rightempty THEN empty:=TRUE lieft & right subtrees empty:
ELSE number: =right passupnumber:  'fill from right son;
END
ELSE .
IF rightempty THEN naumber: =leftpassupnumber  !fill from left son;
ELSE number:=IF left.number > right.number
THEN left passupnumber ELSE right passupnumber:
‘take the larger of the two.
END of procedure passupnumber:
linit code:
empty: = FALSE;
balanced: = TRUE;
Neft and right set:

END of class processor;
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B. Matrix Muliiplication.

Suppose we have two NxN matrices to multiply together. By using the divide and conquer
approach, we can break the problem down until we have N3 problems that multiply two numbers
(1x1 matrices) together. We reassemble the matrix on the way back up the tree.

We use the following rule to subdivide the problem:

Let A, B, and C be NxN matrices such that AB=C. We subdivide all three into four
N/2xN/2 submatrices, e.g. A1y, Ay Ajqs Aga. '

Then C = ( Ail Bl] + AIZBZJ ), ij=1.2.

We will consider matrices of size N=2M without loss of generality. A tree to mulliply two
matrices of size 2M will have M levels of processors that add two matrices together, M levels that
split and assemble the matrix, and one level (the leaf nodes) that multiply two numbers together.

Thus the tree is 2M +1 logical levels deep.

Each adder node has two descendants, and each split/assemble node has four descendants. Thus
the physical structure will use two levels to simulate the 4-way branching, and the tree will, in
fact, be 3M levels deep. That is, the tree is 3log N levels deep and therefore has N3 leaf nodes.
Thus a total of IN3-1 processors are used in the computation.

Let us look at the communication requirements between nodes of the tree. The root node must
be prepared to store the entire matrix. The adder nodcs in level one (the root is level () will
each deal with a quarter of the original matrix, as will the split/assemble nodes in level three.
The further down the trce you go, the smaller the matrix the node must store and transfer.

However, note that each of the NZ elements must travel the entire length of the tree and back
again during the execution of the algorithm. While communication requirements are low at the

leaves, they are extremcly high (roughly N2 numbers (o receive, and {N/2)2 to pass down to each

descendant) at the root,

In the algorithm given below, the add operation takes N? time. By splitting this up among
parailel processors by row (N of them) or clement (N2 of themn) we can make (his operation
linear or constant in time. However, the problem is still limited by the split/assemble process
that requires cach element to travel the height of the tree. That is, the best time performance we

can achieve with this algorithm is NzlogN.
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We now present a SIMULA representation of a matrix and use it in the algorithm that follows.
The algorithm uses two kinds of processors, the adders and the split/assemble nodes. Each

matrix is divided into submatrices as follows;

CLASS matrix(n); INTEGER n;
BEGIN

INTEGER ARRAY vai[l:n.lin];
REF{matrix) PROCEDURE quarter{select); INTEGER select;
BEGIN REF(matrixjaq; INTEGER ijkl

aq:-NEW matrix{(n//2);

ii=j:=1;

IF select=2 THEN j:=n//2+1

ELSE IF select=3 THEN i;=n//2+1
ELSE IF select=4 THEN i:=};=n//2+1;
FOR k;=1STEP 1 UNTIL ag.n DO

FOR 1: =1 STEP 1 UNTIL ag.n DO
aq.vallk,l}: = valfi + k-1 + I-1];
quarter:-aq;
END of procedure quarter;

REF(matrix) PROCEDURE compose(a.b.c.d): REF(matrix)a,b.c.d;
BEGIN INTEGER ij;

FOR i: =1 STEP 1 UNTIL an DO
FOR j: =1 STEP 1 UNTIL a.n DO
val[ijl=a.valfij]:
FOR i:=1 STEP 1 UNTIL b.n DO
FOR j:=1 STEP 1 UNTIL b.n DO
val(ij +n//2): =b.valli j;
FOR i:=1 STEP 1 UNTIL cn DO
FOR j: =1 STEP 1 UNTIL ¢.n DO
valli + n//2 jf: = c.val[ij]:
FOR i:=1STEP 1 UNTIL d.n DO
FOR j:=1 STEP 1 UNTIL d.n DO
valli+n//2j+ n/72): = dvallij]: N
compose;-THIS matrix;

END of procedure compose:

END of class matrix;
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CLASS processor(size);
BEGIN

REF{matrix)mat;
REF(processorjone,two three, four;

REF(matrix} PROCEDURE multiplv(a,b). REF(matrixja.b;
BEGIN REF(matrix)c;

¢:-NEW matrix{a.n},
IF cn=1 THEN
c.val[L,1]: =a.val[1,1]*b.vai[l,1]
ELSE
c.compose( one.mult&add(a. quarter(1),b.quarter{1}.a.quarter( 2).b.quarter(3)),

two.mult&addia. quarter{ 1).b.quartert 2).a.quarter(2).b.quarter(4)),
three. mult&addia. quarter( 3).b.quarteré 1).a.quarter(4),b.quarter(3)).
four. mult&add(a.quarter( 3).b.quarter{ 2).a.quarter{4),b.quarter(4)});
multiply:-¢;
END of procedure multipty;

REF(matrix) PROCEDURE mult&add(a.b.c.d); REF(matrix)a.b.c.d;
BEGIN REF{matrix)cl.c2; INTEGER ij:

cl:-one.multipiy(a.b); c2:-two.multiply(c,d);
FOR t:=1 STEP 1 UNTIL ¢l.n DO

FOR j:=1 STEP 1 UNTIL ¢2.n DO
clvalfij]: = cLvallij]+ c2.vallijl;
muit&add:-cl;
END of precedure mult&add:;

END of class processot;
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1. Solutions to Nonpolynomial Problems.

Complexity theory [9,10] has established a context within which it is possible to make certain
statements concerning the inherent complexity of computations. These statements are universally
couched in the terminology of sequential machines. There is, however, a class of problems for

which the possibility of large scale concurrency has been addressed.

Consider a computation in which there are N conceptual steps. At each step, g alternative
branches may be taken. Such a computation may be viewed as a trec with qN possible outcomes.
If at cach step there is cnough information available to decide which branch to take, a sequential
machine will be able to complete the computation in KN cycles where K is the average number
of cycles spent at each step. The dependence of the number of machine cycles upon the number
of conceptual steps is thus linear. The problem is said to be linear in N or of order N, written
O(N).

In many computations, not enough information has been gencrated by previous steps to
determine which branch to take. Later steps will gencrate this information, but we cannot
execute the later steps until after the earlier steps! In such cases, the sequential machine must
simply try one branch at random. If it concludes afler excculing subsequent steps that the

particular branch taken was wrong, it must backtrack to the original point, and try another route.

In a wild flight of fancy, we might become frustrated with this behavior and wish we had a
machine which was so smart that it could telt if it was on the right path, even if there was no
possibility of choosing such a path with the information at hand. It would make an arbitrary
choice at each branch--and always be right! Such a machine cannot, of course, be built with real
togic operating with real programs. However, we can imagine such a machine in much the same
way we imagine a space ship traveling faster than the speed of light. Machines of this sort are

called nondeterministic, since there is no way this behavior can be specified on rational grounds.

Returning to our problem, it is clear that a scquential nondcterministic machine could solve the
problem in O(N) cycles. Problems which can be solved by such an imaginary nondeterministic
machine in a number of cycles which is bounded by some fixed power of N are said to be

Nondeterministic-Polynomial abbreviated NP {199].

It is quite clear that the behavior of a nondeterministic machine can be simulated by a set of

concurrent deterministic machines. iach machine can simply follow a scparate path through the
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tree. At the end, there will be qN processors, representing each possible outcome of the
computation. Although different problems will have different branching ratios (q) and different

depths (N), ail can be mapped onto the tree machine using techniques described earlier,

It has been shown that there is a class of problems of this sort where there are no shortcuts.
Working one path through to the end gives no clue concerning the outcome of another path.

Such problems are, in some sense, maximally difficult. They are called NP-complete problems.

A great deal of lore has developed concerning NP-complete problems. It has been shown that, in
some sense they are all "equivalent” [18]. Suppose machine Y can solve a single kind of NP-
complete problem. The equivalence property states that therc is an algorithm which will run on
an ordinary sequcntial machine in a polynomial number of cycles that transforms a description of
any NP-complete problem into a description of a problem solvable by Y. [f Y can solve its NP-
complete problems in polynomial time, then it can be used to solve any NP-complete problem in
polynomial time. If Y requires exponential time, any NP-complete problem will also require

exponential time.

The methods we use to describe trees of different branching ratios to a binary tree machine are
very similar 1o the methods used to map an NP-complete probicm onto a machine that solves
another. When a tree with branching ratio greater than 2 is mapped onto a binary tree, the depth
of the tree increases. Mappirng a tree with branching ratio less than 2 will decrease the depth. In
a similar fashion, the algorithm that transforms NP-complete problems may increase the number
of alternative branches (q) and decrease the number of conceptual steps (N) or vice-versa. Thus
the mappings that cstablish the equivalence class of NP-complete problems are exactly like the

mappings from trees of one branching ratio to another.

The theory that establishes the NP-complete equivalence class offers direct guidance in mapping
such problems onto a highly concurrent structure. Because we can solve any one problem in our
concurrent lree machine, and because we know a mapping from an arbitrary NP-complete

problem into this one, we can solve the arbitrary problem.

The traditional approach to solving the class of problems thal grow exponentially has been to
recognize spacc or processing power as a limited resource. The problems have exponenual time
complexity because the solutions proceed sequentially.  As VLSI becomes a reality, however, il is

interesting to treat processors as an unlimited resource and look at the time complexity of these
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problems when they take advantage of concurrency. We emphasize, however, that while the time
complexity is significantly reduced, problems require an exponential number of processors. If
you solve a problem of reasonable size, you will use an enormous number of processors. In a
later section, an example is worked for an NP-complete problem that grows as NN, The prablem
uses a graph of 4 nodes, and our concurrent solution requires 95 processors. A graph of 10 nodes

could use as many as 2‘1010 processors!

We will examine two NP-complete problems. The clique problem has time complexity of O(2N)
when the possible cliques are considered sequentially. The color cost problem is O{NN). By
taking advantage of the parallel consideration of possible solutions, using O(ZN) and O(NN)
processors respectively, we will present solutions to these two problems that take polynomial, in

fact O(Nz), time.
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A. The Clique Problem.

A clique is complete subgraph. That is, given an undirected graph G, a clique C contained in G
is a graph such that for all nodes nm in C, there is an edge (n.m). Finding the largest clique in
an arbitrary graph is an NP-complete problem.

Given a graph G with N nodes, numbered from 1 to N, we will consider each node sequentially
and generate potential cliques. Ignoring the edges for a moment, a collection of M nodes leads to
M potential cliques. This, interestingly enough, is the number of nodes in a binary tree of
depth M. We will use this fact to generate the cliques in our graph incrcmentally.

Each level in the tree represents the addition of another node to be considered. Each processor
at a given level will spawn two descendants. The left child will consider the subgraph consisting
of the new node and all but the last node of the parent subgraph. The right child’s subgraph will
add the new node to the complete parent subgraph. In (his manner, we generatc all possible
subgraphs for a graph of N nodes. Figure 2 is an example for N=4.

If each node stores an edge list, the tree can be pruned of subgraphs that are not cliques. The
number of processors required is reduced, but the worst case behavior is identical. At most aN-1
processors are required to solve the problem for a graph of size N. Our solution, which uses
pruning, regquires O(Nz) time.

Each processor stores the edge list as a boolean matrix called edge, an integer size that holds the
size n (number of nodes) of the clique this processor represents. An array called cligue containg
the numbers of the nodes that form the clique.

When a processor is activated, by a call to the procedure Findeligue, it will already have a clique
assigned to it. Findclique's purpose is to generate cliques for its descendent nodes. It does this
according to the method described above. That is, if Lhe subgraph that contains the new node
and all of the nodes in c¢ligue except the last one is a clique, it will be assigned to the left child.
Likewise. if the addition of node to cliqgue yields a complete subgraph. the right child will
represent it. If either of the subgraphs is not complete, the descendant will not be generated.

The tree of all cliques is generated iteratively by considering each node of the graph in turn. In
the main program given below, p is a reference to the root processor. Each processor in the tree
will pass up the largest clique among its children. "Thus the root returns the size of the largest

clique known to date.
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CLASS processor;

BEGIN
REF(processor)left,right;
BOOLEAN ARRAY edge{l:n,1:n];
INTEGER ARRAY clique{l:n];
INTEGER size;

BOOLEAN PROCEDURE IsClique;
BEGIN INTEGER ij;
IsClique: =TRUE;
FOR i:=1 TOQ size DO
FOR j:=1TO size DO
IF NOT edgefi,jj THEN IsClique: = FALSE;
END of procedure IsClique;

REF(processor) PROCEDURE FindClique(node);
BEGIN INTEGER 1 REF(processor)Lr,
l: =r: =THIS processor;
IF size=0 THEN tthis is the root node;
BEGIN
cliquefl]: =node
size:=1
FindClique:-THIS processor;
END
ELSE
BEGIN
IF leftsize=0 THEN
BEGIN
FOR i: =1 TO size-1 DO left.cliquefi]: = cliqueli]
left.clique(size]: = node
leftsize: =size;
IF NOT left.IsClique THEN leftsize: =0;
END
ELSE 1:-left FindClique{node);
IF nght.size=0 THEN
BEGIN
FOR i:=1 TO size DO right cliquefi]: = clique[i]
right.cliquefsize + 1]: = node
right.size; =size + 1;
IF NOT right.IsClique THEN rightsize: =0;
END
ELSE r:-right. FindClique(node);
IF Lsize > size THEN ‘
BEGIN
IF 1.size > rsize
THEN FindClique:-1
ELSE FindClique:-r;
END
ELSE IF rsize > size
THEN FindClique:-r
ELSE FindClique:-THIS processor.
END:
END of procedure FindClique:

size: ={):
Neft and right set up correctly:
'read in edge hist:
END of class processor:
Imain program to start it all up;
BIGIN REF(processor)largest: INTEGER i
TFOR i:=1 TO n DO largest:-p.findclique(node):
END of main:
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Figure 3. Sample Graph for Clique Problem
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Figure 4. Tree built to find Cliques in Graph of Figure 3
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Figure 3 gives a sample graph of six nodes. Figure 4 shows the processor tree that is built and
used to find the cliques in the graph, The tree has height 6, and the largest cliques have 4 nodes.

Each processor in the lree represents a clique in the graph.
B. The Color Cost Problem.

This NP-complete problem is an adaptation of the K-colorability problem. Given an undirected
graph G of N nodes and a set of N colors, each with an associated cost, we want to find a

minimum cost coloring of the graph such that no nodes sharing an edge are the same color.

There are NN possible colorings of the graph. 'Evaluau'ng them sequentially produces a solution
in time O{NN). We present a parallel algorithm that requires O(Nz) time and O( NN) pProcessors.

In this problem we will make use of the ability lo simulate arbitrary branching ratios on our
binary tree. We will discuss the problem in terms of logical nodes with up to N descendants. An
earlier part of this section describes the method of mapping logical structures onto the physical

one.

As in the clique problem, cach level in the processor tree represents the consideration of another
node. That is, level one shows possible colors for the first node, level two colors the second node

based on the choices made for at level one, and so on. We will describe the generation of the

potential colorings.

Each node has an edge list called edge and a list of costs indexed by color number called
colorcosts. There is an array called coloring that reflects the color choices for preceding nodes,

and a boolean array called colors that is used to generate the possible colorings for this node.

The algorithm, given in procedure color begins by assuming that all colors yield valid colorings.
The array coloring is used to climinate those colors that have been used to color nodes that share
an edge with this node. This reduced set of colors, all of which are legal colorings, is used to

spawn descendants, one for each coloring of this node.

When the tree is N levels deep all the legal colorings have heen generated. The leaf nodes
calculate a cost for the coloring they represent, and cach parent node takes as its cost the least

cost among its children. Thus the minimum cost coloring is stored at the root.
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Here is the algorithm that will run in each processor.

CLASS processor;

BEGIN
BOOLEAN ARRAY edge[l:n.l:n].colorsfl:n};
INTEGER ARRAY coloring{l:n]colorcosts(1:n];
INTEGER. cost;

PROCEDURE color{node); INTEGER node;
BEGIN INTEGER i
IF node>n THEN
BEGIN
cost: =0;
FOR i:=1 TO node-l DO cost: =cost+ colorcostcoloring(i]];
END
ELSE
BEGIN
FOR i:=1 TO node-l DO IF edgeli,node] THEN
colors[coloring(i]]: = FAISE;
FOR i:=1 TO n DO
IF colors{ii THEN
BEGIN
son(i).coloring{node]: =1;
son(i).color{node + 1):
END
ELSE son(i):-NONE;
COst: = maxcost;
FOR i:=1 TO n DO
IF (JF son{i} = NONE THEN FALSE ELSE cost> son{i).cost)
TIIEN cost: =son{i}.cost;
END;
END of procedure color;

REF(Processor) PROCEDURE Son(s). INTEGER s;
BEGIN REF(node)p:
p:-IF s<=(n+1}/2 THEN left ELSE right:
WHILE NOT ({(p IN Processor) DO
pi-IF s =(pn+1)//2 THEN pleft ELSE p.right;
Son:-p;
END of PROCEDURE Son;

END of class processor;

Let us work a small example. We will usc the graph and color sct given in Figure 5. Figure 6
shows the colorings and costs arrived at by the algorithm. Each level of the tree represents a
node of the tree. Thal is, if the root is fevel 0, the first node is colored in level 1, and level 4
represcnts potential colorings for the fourth node. Besides representing a part of a coloring, each

node also contains the minimum cost coloring found among its decendent colorings.
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We see that there are two equivalent colorings that yield the minimum cost of 3. Coloring nodes
(1,2,3,4) either (green,blue,red,blue) or (red,blue,green,blue) gives us a coloring with minimum

cost,
V. Conclusions

The tree of processors we have described is a general computing structure. Each node in the tree
is a processor with gencral computing capability. It is not designed with a specific problem or

class of problems in mind.

The most dramatic results are achieved when the machine is applied to a problem that can take
advantage of the concurrency the tree of processors provide. We have presented solutions to four

problems that, in varying degrees, have this characteristic.

The four examples we have presented in this scction can be summarized by citing the execution
time and the number of processors required. Note that the total chip area of a tree machine is

related to the number of processors.

Problem Time Processors
Sorting N N

Matrix muitiplication N2iogN N31
Clique N2 aN-1
Color cost N2 NN

If an algorithm exhibits expone'nlial growth, as do Lhe clique and color-cost problems, the lower
bound on time complexity is N. A tree with an exponential number of leaves will be O(N) deep.
Again, our solutions do not realize this lower bound. The loading of the edge matrix is an O(Nz)
operation. Additionally, each node of the graph is considered in turn, and causes the traversal of
a tree of depth up to N. This too is of O(Nz) in time. Are there better algorithms that can

achieve the lower bound complexity?

Because we are used 1o designing machines for a sequential environment, we do not yet
understand the effect that concurrency will have on the conceptualizalion of problem solutions.
An upen question is to characterize those probiems that can benefit from the concurrency

provided by our tree of processors. Are the communication paths of the tree adequate for this
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class of problems? Can we design algorithms with the traditional programming notations, or does
their sequential nature hide the concurrency? Can NP-complete problems be solved in O(N) time
with an unlimited number of processors? What can be said about the concurrency of NP-
complete problems in general? These are just a few of the interesting questions that arise from

the study of a concurrent environment.
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4. Highly Concurrent Structures with Global Communication
(Adapted from a paper by Carver Mead and Martin Rem [16])

This section presents an analysis of the constraints placed by physical laws on a VLSI system in
which information must be communicated from any location to any other. The spectacular
performance of cellular arrays on algorithms which map into regular structures leads us to ask if
there is any possibility that a highly concurrent structure can be built which will act as a general
purpose computational engine. Such generality must include the ability to transmit information
over distances as large as required by the computation. Before describing such a machine we will
analyze in detail the requirements that global communication places on the design of any

computing structure.

There has previously been no adequate theoretical basis for optimizing the overall organization of
systems implemented in the VLSI technology. Conventional complexity theory is inadequate
because its measure of cost is the number of steps laken by a sequential machine to complete the
computation. No account is taken of the size of the machine {and hence the time required for
each step). Possible concurrency is ignored, thereby ruling out the most important potential
contribution of the silicon technology. Traditional switching theory is also inadequate. While it
provides a beautiful formalism for describing elementary logic functions, its optimization methods
concern themselves with logical operations rather than communication requirements. Even in
today's integrated circuits, the wires required for communicating information across the chip
account for most of the area. Driving these wires accounts for most of the time delay and energy
dissipation. In very large scale integrated systems, the situation becomes even more extreme. In
this section, we describe a method by which (he conceptual organization of a large chip can be
analyzed. and a lower bound placed on ils size, cycle time, and cnergy dissipation, before a
detailed design is undertaken. The results of this analysis suggest rather general guidelines for the

organization of all large integrated systems.
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Metrics of Space, Time, and Energy
Physical Properties

Devices used to construct monolithic silicon integrated circuits are universally of the charge-
controlled type. A charge Q placed on the control electrode (gate, base, etc.) results in a current I
= Q/7 flowing through the device. The transit time r is the time required for charge carriers to

move through the active region of the device.

All times in an integrated system can be formutated as simple multiples of 7. For one transistor
to drive another identical to it, a charge Q must flow through its active region, requiring time 7.
If the capacitance Cp of the load driven is K times the gate capacitance Cg of the driving

transistor, a time K7 = CL/Cg r s required. Likewise, the clementary energy associated with

‘the signal charge Q on the gale capacitance Cg is EBanVZ/E. A load capacitance I(Cg requires

an encrgy KE,. Since wircs have a minimum width, their capacitance is directly proportional to
their length. Thus the encrgy required to transmit a signal from one point on the chip to another
is proportional to the distance separaling the two points. As the unit of length we employ the
minimum spacing of two conducting paths. For the unit of time we choose the time it takes a
minimum size transistor to charge a wire of unil length plus another transistor like itself. One

unit of time is thus slightly larger than the tramsit time of a transistor

Advantages of hierarchical structures

We are considering large integrated systems in which it is necessary to communicate information
throughout the entire system. As an example, consider a bit of information stored on the gate of
2 minimum size transistor in a random-access memory which must be communicated to the
memory bus of a CPU. Since there arc many words of data in the memory, there are many
possible sources for each wire in the memory bus. Figure 1 illustrates two possible approaches to
organizing such a bus. In the first approach, a transistor associated with each bit drives the bus
wire directly. If the bus wire has a capacitance C,, the lime require (o drive the bus wire ist =
T Cw/Cg. In a typical computer memory C,, is many orders of magnitude larger than Cg, and
the delay introduced by such a scheme is very long. Since C,, is proportional to the length of
the wire, it is also porportional 1o S, the number of driver transistors connected 10 the wire and

by, the spacing between transistors.  Assuming most uof the capacitance C,, is due Lo the wire

itself;
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A second scheme is shown in Figure 1b. Here each transistor drives a wire only long enough to
reach its neighbor. Each such wire is connected to the gate of a transistor twice as large as the
transistor driving it. The arrangement is repeated upward until the top level where all sources
have a path to the bus. In this scheme the delay in driving the lowest level wire is approximately
27b,;. The delay introduced by the wires at each level is the same, since each driver transistor is
twice as large as those driving it. Hence the delay in driving the bus line is 27Nb, where N is
the number of levels in the structure. Since there are S = 2N transistors at the lowest level, the

delay may be written:
t = 2Tb0 ]ngs (2)

Comparing (2) and (1), we see that for large S the delay has been made much shorter by using a

hierarchical structure.

A Cost Criterion

A hierarchy such as that shown in Figure 1b may use any integral number, «, of transistors
driving each wire. We refer « as the branching ratio of the driver hierarcity. The driver
transistors will in general be « times the size of those driving them. The dclay for such a
structure is t = avhy log S = byr a/log ., dependent upon the branching ratio of the hicrarchy.

This delay is plotted in Figure 2, normalized to its minimum value which is attained at a=e,

While dramatic improvements in the performance of integrated struclures can be achicved by a
hierachical organization, a penalty is always paid in the area required for wires. In the simple
case shown, a bus requiring onc wire when driven dircctly requires log, S wires when organized
as a hicrarchy. For this reason it is not possible to oplimize a design without a cost function
involving both area and time. In this paper we will usc the area-time product as an example of
such a cost function. Other cost functions may be more appropriale under some circumslances.
For the above simple example, the cost function is arca * time = bor(lug,S)2 u/(logn)z. This

cosl is minimized for « = e = 74
Hicrarchical compating systems

The analysis given above suggests a very general structure for compuling systems. Lowest level
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cells are grouped together into modules in such a way that « cells drive their outputs onto an
output wire. Each output wire is connected to a driver transistor which is a times as large as
those driving the wire. Modules are grouped in such a way that « of those modules drivers are
connected to an inter-module communication wire. This wire in turn is connected to a driver
transistor o2 times as large as the lowest level transistors. This process is continued until the
appropriate size systern has been realized. Notice that the area of the driver transistor for each
wire in such a structure is proportional to the area of the wire. For this reason, we compute only
the area of the wircs. The drivers somewhat enlarge the unit of wire area, but do not change the

functional form of the solutions.
Random-Access Memory - an example

In this section we discuss the design of a large of a random-access memory (RAM) of S bits. We
will apply a rigid structural dicipline to our design, and compute the cost and performance of the

resulting memoxy.
Organization of the RAM

We organize (he RAM in a hierarchical fashion. The elements of level 0 are the bits themselves,
each bit consisting of two crossing wires: a select wire and a data wire. When the select wire is
asserted, it puts its contents on the data wire. We group «2 bils into an « x « square to form a
module of level 1. If the width of an element (a bit) is by the elements have to drive wires of
length abg. A module on level 1 consists of an array of horizontal select and vertical data wires,
conslituting the a2 bits of level 0, and some additional logic and wires at the side. We group
again «2of these modules into a square to form a module of level 2, etc. Figure 3 shows three

levels of the hierarchy for «=4.

To study the memory in more detail we look at a module of level i (Figure 4). We describe how
one extracts one of iis «21 bits. In order to select one bit of storage 2iloga address wires are
required. We run iloge of them, called the row address wires, vertically along the side of the

2 submodules are

module and the other iloge, the column uaddress wires, horizontally.  Its «
organized into « rows of « submodules each. When the select wire of the module is asserted
logee of the row address wires are used, by lhe decoder, 10 select one of the « rows of
submodules: the sclect wirc running through that row is asserted. The other (i-1)loga row

address wires are run horizontally into each of the « rows of submodules, where they serve as
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column address wires for the submodules. Of the iloga column address wires (i-1)loge are run
vertically into each of the « columns of submodules, where they serve as row addresses. The
other loga address wires are used by the multiplexor to select one of the « data wires coming out
of the columns of submodules. The signal on the selected data wire is driven onto the data wire

of the module itself.

If we wish to have a memory of S bits with N+1 levels (level 0 through N) we choose N =
logS/2loge, o S = a2N. A hierarchical structure results which contains S bits from which we
can extract one bit at a time. If we want the word length to be W we employ W of these

structures in parallel; 1o select onc word we sclect one bit in each of the W hierarchies.

Area of the RAM

Figurc 4 alllows us to compute the size of a RAM. Let L; denote the width of a module of level

i, then we have the following recurrence relation:

Ly = by

Ly = iloga + 1 + loga + alyy
The solution to the above relation is

L = afoy + (DAaD) + Qaltlabal (el - i+ laDbga .

Rather than the width itself we are interested in the width per bit. In one direction, horizontal or
vertical, module 1 has o bits: we therefore compute L/ al,

Li/ob = by + Wal) + 201/ 12 Tog - 1/t (/a1 + 1+0) loga + 1] (3)

An interesting property of the width per bit, as expressed by (3), is that its limit for i — o0 is

finite.
imfioo Lifal = by + 1/l + 201w loga (4)

This means that the width per bit Li/(ti is bounded from above by (4) indcpendent of the
number of levels of 2 RAM. Expression {3) converges in an exponential fushion towards its limit:
for small values of i (3) is alrcady very close to (4). We, thercfore, use (4) as the width per bit

for a RAM; its squarc is then the arca per bit. By dividing the arca per bit by the bit area boz
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we obtain the total area per bit area for a RAM. Figure 5 shows this quotient as a function of «
for four different values of by. It gives the overhead factor in the area that is due to the wires.
A memory chip will be larger by this factor than the area of its level 0 cells alone. For a memory
of 64K bits with N=2, a should be 16. Expression (4) is then equal to by + 0.6. This shows
that in 2-level 64K dynamic MOS memories, for which by lies between 1 and 2, roughly half of

the area will be occupied by wires.

One may wonder why we have not discussed the area that is consumed by the wires for power
and ground. The reason is that these wires can be thought of as increasing only the width by of
each bit; they do this by an amount that is roughly independent of «, as is shown in the

following analysis,

For simplicity we assume that the wires for power and ground run in opposite directions, say
parallel to the data and select wires. We compule how much on¢ of them contributes o the
width of a module i. The width of a power or ground wire is proportional to the number of bits
served by it. Lt the width of the highest level be u, given S and the design of the lowest level
memory cell this parameter is casy to compute. The width of the wire in a module on level i is
proportional to the current it must supply and is hence u «2762N. 10 one direction, horizontal
or vertical, there are aN/at such modules. The total contribution of all modules on level i is
thus u /e, Taking the sum of this expression for i=0,1,...N yields walN «N+Lll/a-1 =0
«/w-1. There are u/S bits in one dircction, the increase of the bit width, due to power and

ground, is therefore
u/S a/a-l,
which is roughly equal to u/S.

We are interested in the optimal choice of «, but to make that choice we will have to look at the

access time, which also depends on a.
Access time of the RAM

Each clement of level 0 drives a wire of length wbg to reach the periphery of its module on level
1; this takes time aby. Each module on level 1 drives in the same amount of lime a wire that is
« times longer to reach the periphery of its module on level 2, ctc. With N being the level of

the highest module, the time reguired to extract one bit of storage adds up to «by N. We use
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this figure as the access time. For a RAM of S bits the access time is then aby logS/2loga.

Cost of the RAM

We take the product of the area and the access time as the cost function of the RAM. A RAM

of S words of logS bits each has the following area-time product.
(by + Val + 2a-l/(«)? logn)? (aby/2loga) Slog®s (5)

Figure 6 shows (5), normalized with respect to SIogzs, as a function of « for different values of
by One notices that for increasing bit sizes the branching ratio of the hierarchy should decrease.
Because of the simplicity of their storage cells, dynamic memorics have by between 1 and 2.
Static memories require a cross-coupled structure and hence a larger by-typically 3 to 4. For
optimal designs, stalic memories should therefore have a smaller « than dynamic ones. For
dynamic MOS memories the optimal choice for o lies betwcen 8 and 16, for static MOS
memories belween 4 and 8. "Smart memorics”, structures in which part of the processing task
is distributed over the memory cells, have quite large level 0 modules containing an entire
processor.  They should thercfore have small branching ratios and hence relatively deep
hierarchics. Current commercial memory chips are designed with « = 100 at the lowest level.
This value approximately minimizes the product of the access time and the exponential of the
area. Designs of this sort reflect the near exponential dependence of yield on chip area in the
early, low-yield phase of a device's production history. However. near its production peak, the
arca-time product is closer to a realistic cost function. This shift in production economics
suggests that redesigns of high-volume devices should be done using smaller values of « than

initial designs.
Energy per Access

In real systems, the cost of power, cooling, and electrical bypassing often cxceeds the cost of the
chips themselves. Hence any discussion of the cost of computation must include the cnergy cost
of individual steps of the compulation process. In a RAM, each access costs an energy
proportional to the length of the wires which must be charged or discharged during a given cycle.
Consider 2 RAM such as that shown in Figure 4. At the highest level (fevel N) such a device has
S = «2N pits. In each cycle logS address wires of length Ly will in general change state. In

addition one horizontal select line, « vertical data lines, and one multiprocessor output line (all of
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length Lyy) will change state. Thus at level N, the energy expended per access will be
En ~ Ly flog8 + o + 2]

At level N-1, 2log o fewer address wires will be needed. Since only one select line will be active,
only « of the aZ submodules will be active, Each submodule contains wires approximately 1/q

as large as those at level N.

Thus the total energy per access is

Er ~ Ly [logS1 + 1 - 2loga/logS + 1 - dloga/logS + . . ) + a+2]
This expression evaluates to

Ep ~ LylogS/loga [logS/4 + (e +2)72)

Using the by values from (4), the energy per access of any given size RAM may be evaluated.
The results of such an ecvaluation for a 65K bit RAM are shown in Figure 7.

These curves suggest that considerably less power would be required if memory chips, even of

current size, were built with smaller submodules and smaller «.
General Method of Analysis

We have presented a general method for analyzing the cost and performance of recutsively
defined VLSI structures. Parameters of any such structure may be oplimized with respect to

some combination of access time, area, and energy.

The results of this study indicate that as more processing is available in each module at level zero,
bg will be larger and the optimal value of « will decrease. A system with « = 4 would secem (o

be appropriate for structures in which substantial processing is commingled with storage.

Very general arguments were used to generate the basic recursive structure.  For that reason it
appears that a very large fraction of VLSI computing structures will be designed in this way. The
way in which the arca, time, and encrgy measures were established should make it clear how to

apply these techniques to other recursively defined computing structures.
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5. Challenges for the Future

We have seen that it is possible to construct general-purpose compuling engines that exploit
tremendous concurrency if computations are properly matched to the machine. The vast quantity
of concurrency available in such machines can be an enormous help with the computing tasks we
face. However, to date we have no formal way of making the possible concurrency in any given
caleulation apparent or finding if we have come close to the possible concurrency inherent in the

computation.

The future of concurrent processing is bounded in part by our ability to escape the strong hold
that the conventional sequential machine exerts on our thinking. We must approach problems
with concurrency in mind, recognizing that communication is expensive and that computation is
not. Progress in thesc endeavors will surely increase when some VLSI computers of the sort we
have illustrated in this chapler begin to appear. When the effort of casling the problem as a
structure of concurrent processes is rewarded by a tangible increase in performance, the incentive

to design concurrent algorithns will surcly increase.

The tools that we use to design and implement concurrent processes are primitive. We are badly
in need of notaticn or language that expresses the power and constraints of highly concurrent
machines. Whether such machines are general- or special-purpose, a natural way is nceded to
map problems onto them. Only in this way will it be possible for applications to find their way
into execution in this new computing environment rapidly. In addition we need a method of
formaily proving the correctness of algorithms mapped onto such machines; it is not possible for
human programmers to kecp track of the exact relationship of the enormous number of lasks
executing on such a machine. An ideal notation would allow expression of only those operations
which are free of obvious fatal errors such as deadlock. Only one such notation is known to the

authors at this writing, that of the Associons by Martin Rem [13].

Perhaps the greatest challenge that VLSI presents to computer science is that of developing a
theory of computation that accommodales a more general model of the costs involved in
computing. Can we find a way to express computations that is independent of the relative costs
of processing and communication, and then use the cost properties of a piece of hardware 1o
derive the proper program or programs? The current VLSI revolution has revealed the weaknesses

of a theory too solidly attached 1o the cost propertics of the scquential machine.
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Chapter 9: Physics of Computational Systems
Copyright ® 1978, C.Mead, L.Conway

Sections:

Thermodynamic View of Computation - - - Energetics of Bistable Devices - - - Thermal Limit - - -
Quantum Limits - - - Granularity of Charge - - - Voltage Limit - - - An Example - - - Energy
Management - - - Discreteness in Quantum Mechanical Systems - - - Conclusion

Computation is in the end a physical process. Data clements must be represented by some
physical quantity in a physical structure, for example, as the charge on a capacitor or the
magnetic flux in a superconducting ring.  These physical quantitics must be stored, sensed, and
logically combined by the clementary devices of any technology out of which we build compuling
machinery. At any given point in the evolution of a technology. the smallest logic devices have a
definite physical extent, require cerlain minimum fime 10 perform their function, and dissipate a
switching energy when switching from one logical state to another. From the system viewpoint,
these quantities are the units of cost of computation. They set the scale factor on the size, speed,
and power requirements of a compuling system. Some of the relationships between these
elementary quantitics are discussed in this chapter, and an example is given of application to

technology comparison,

Thermodynamic View of Computation

{ in preparation }

Encrgetics of Bistable Devices

Any physical structure we usc to represent information must be reliable. We must be able to
stably store all bits of information in our compuling machine over the period of any computation.
Binary information implics elementary memory clements of a bistable naturc; one state denoting
a logical zero, the other a logical one. A mechanical system which behaves in this way is the
inverted pendulum shown in figure la. The force of gravity holds the pendulum stably in cither
the rightmost or the lefimost position. Switching from one state to the other can be accomplished

by pushing (he weight up Lo its maximum position and letting it fall onto the oppusite stop.

Physicists view bistable systems of this sort in terms of a diagram such as that shown in figurc 1b.

What is plotted here is the potential energy of the physical system as a function of its spatial or
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electrical coordinate.  If the pendulum is left in one of its stable states, given by the minima in
the potential diagram, it will stay there indefinitely until enough external energy is provided to
surmount the potential maximum and allow the system to re-equilibrate in the other potential
minimum. Note that the energy provided by the external switching source is lost in the impact
when the pendulum falls to its stop (and perhaps bounces a bit until the energy is dissipated).
Others have constdered particles in potential wells of this shape to derive minimum switching

energies for computalion5 .

The slope of the energy curve, ie. the derivative of the encrgy with respect to the angle of the
pendulum, has the unils of a torque. This torque is being supplied by gravily, and pushes the
pendulum towards one of its stabie positions. Note that gravity acts as the "power supply” for

this mechanical logic device,

The energy required to switch from one state to the other can be supplicd deliberately, or by
some random occurrence. Suppose our pendulum were mounted on a railroad car.  While the
train is stationary, we expect the device o remain in its inilial state. However when the train
passes over a very rough stretch of track, the pendulum may bounce into the other state. The

polential maximum must be high enough to prevent such random events,

An electronic circuit with the same logical behavior as the pendulum is the ordinary flip-flop
shown in figure 2. The detailed behavior of the flip-flop is, however, soraewhat different from
that of the inverted pendulum. Let us attempt to change the slate of the device by supplying a
current into that side of the flip-flop which is at the the lower potential. If the current we supply
is large enough, we will raise the potential on (hat side of the flip-flop, turn on the transistor on
the opposile side, and change the state of the flip-flop.  We can, however, supply a lower current

(and therefore power) for an indefinite period of time without changing the state of the device.

In the pendulum we could support the weight part way up the potential curve for a long time
and nol change the pendulum’s state. However, while supporting the weight in a fixed position,
we would not be supplying power to the pendulum. We supply power to the pendulum only
when we are increasing the elevation of its mass in the gravitational field. It is thus clear that
while in general the behavior of the flip-flop and the inverted pendulum are similar, the detailed
energetics are quite different. In particular, we can supply a large quantity of cnergy to the flip-
flop without changing its state, provided we supply the energy slowly enough. This is not true of

a system like the inverted pendulum.
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Principle of Least Power

The basic physical law governing the behavior of any electrical circuit involving resistors is called
the Principle of Least Powerl. Any electrical network composed of resistors comes to equilibrium
by adjusting the potentials in such a way that the power dissipated in the network is a minirmurm.
This principle holds true even if the resistors which form the network are not ideal linear
resistors. Any network composed of dissipative electrical elements, such as the MOS or Bipolar

transistors, will behave in this way.
Energetics of the Flip-Flop

The power dissipated by our ordinary MOS flip-flop when we forcibly hold one node (V; for
example) at an arbitrary vollage, is plolled in figure 2. Notice that the curve has the same
general shape as the energy curve for our inverted pendulum. The two minima correspond to the
two stable states of the flip-flop. The maximum corresponds to the point at which no external
power need be supplied to hold the flip-flop in its intermediate state, ie. it is the metastably

balanced condition for the flip-flop.

The derivative of the total power wilh respect to the voltage Vy has the dimensions of a current,

and is equal to twice the current we must force into the node to hold it at a particular vollage.

Although the principles we derive for circuits of this sort are quite general in nature, it is
instructive 1o work a simple, idealized cxample. Let us represent the pullup transistors of our
flip-flop as ordinary resistors with resistance R, and the pulldown transistors as currcnt sources
whose magnitude is some mutual conductance G | multiplied by the voltage above threshold of

the transistor gate.

This idealized cquivalent circuit is shown in figure 3a. The transfer characteristic of each
individual inverter in the flip-flop is shown in figure 3b. The output voltage of the inverter is
constant at voltage zero until the input voltage exceeds the threshold voltage V,, of its pull down
transistor. 'V then varics lincarly with a slope -G_R. This slope is the gain of the inverter.
Afler the output voltage reaches 0, the inverter saturales and its output remains 0 for further

increases in the input voltage.

The power dissipated by this circuit for any given value of the voltage V, can be computed
analytically and is plotted in figure 4 for various values of the tramsistor transconductance G_ .
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Notice that for values of G R > 1 the power curve shows a distinct maximum in the center
separating the two minima corresponding to the stable states of the flip-flop. However, when the
gain is one or less, the power curve shows only one minimum near the threshold voltage. This

minimum corresponds (o a single stable state.

A cross-coupled circuit must have a loop gain greater than unily, in order to develop (wo

independent stable states. [anon]

This analysis based on the Principle of Least Power agrees with this standard electrical
engincering model. Tt provides us with a very gencral and fundamental viewpoint from which to

analyze the encrgetics of computer circuits.

Let us perform a conceptual experiment on the flip-flop of figure 2. In its initial state, Viisa
logical onc and V, is a logical zcro. We delicately remove the connection from V, 1o the gate of
the left transistor. At some instant of time we place a charge equivalent to a logical one on the

(now floating) gate. At the identical instant we force V, to a logical one.

As time progresses we observe the power we must supply to keep V, at a logical one. For a
while the device absorbs a large amount of power. However, afler the signal from the gate has
propagated through the two inverters, no more power will be absorbed, and we may reconnect
the gate to V,. Try as we might, we can find no path from one state to the other which can be
traversed without supplying an amount of power at least as high as the maximum in the power

curve. The total energy required is at least the product of this power and the inverter pair delay.

The essential difference between the “static” and "dynamic” storage devices discussed in chapter
7 is thus clear. Bolh forms use the same physical element (o store the energy which represents
information. However the "dynamic” form requires only that the requisite amount of energy be
supplicd to change its state. It docs not matter how slowly that energy is supplied. The “static”
form requires in addilion that the energy be supplied within the inverter pair delay of the

technology.
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Thermal limit

We have just illustrated how to compute the energy required for switching the flip-flop. An
external influence must supply an additional power, P, equal to the difference between the power
at the minimum and maximum of the power curve in order to switch the flip-flop from one

stable state to the other, That power must be supplied long enough for the information to
propagate through both inverters, and back to the node where we applicd the signal. This time is
just the inverter pair delay 7 for the technology out of which the flip-flop is built. The externally
input ¢nergy required to flip the flip-flop thus becomes:

E.=1P

W

The switching energy must be sufficient o prevent random occurrances from changing the state
of the device. Flectrical noise is always present in any real system. It is generated by heavy
eleclrical cquipment and propagated along power mains. Radio and tclevision (ransmitters of all
varieties create electromagnetic radiation which can induce vollages in a circuit. Modern
electronic devices allow single electronic occurrances to control relatively large currents. Atomic
imperfections randomly capture and releasc electrons, thus creating an unsteady environment.
Techniques cxist for minimizing the effect of cach such hazard. However, one fundamental

source of irreduciable randomness remains.

Any device operating at a finite temperature is subject Lo the randnm thermal motions of the
elements of which it is composed. The energy of any clement, large or small, is not fixed, but
fluctuates over a range of cnergies due to interactions with its environment. Each time we
measure the energy E of an clement, it will have some value which differs by some AE from its
equilibrium value. The probability that any given independent measurcment will yield a given
AE is given by the Boltzmann equation: Probability = e-Ab/kT

What constitutes "independent” measurements depends on the response time 7 of the system.
Two measurements should be made at least + aparl to be considered independent. Similarly we
have scen that in order to switch a bistable system from one state lo the other, a certain amount
of power P has to be supplied for the duration of the response, or switching, time 7 of the
system. Therefore, systems with a faster response time are more likely to be switched by thermal
fluctuations, since occasions where the critical power level 2 is exceeded for the necessary amount
of time r occur more often. This is equivalcﬁt to the view tthat systems with a wider bandwidth

capture more encrgy out of the spectrum of the thermal energy. Thus the probability per unit
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time that an element will achieve some large variation AE is:

- _ -AE/KT
Probability per unit time = (1/7)e
The probability per unit time that random thermal noise will change the state of a bistable device

is thus:
-E_/kxT

Probability per unit time = (1/7)e ¥

Typical computations may involve many millions of individual memory elements over a period of
many hours. Hence we must insist that the probability of spontaneous switching be less than one

part in 1012 or so, which requires a switching energy energy of the order of 30kT.

Viewing these cnergetic considerations from a system level, we have cstablished an absolute

minimum for the energy required for doing any given computation.

The energy required for a computation has a lower bound given by the minimum switching energy

multiplied by the number of elementary switching events wiich must occur during the compulation.

This estimate of minimum encrgy completely ignores the energy cost of communicating data from
one location to another. In many systems, the total communication energy is much larger than

the lotal switching energy.

In realizable electronic systems, the switching cost for elementary storage elements is much larger
than the limil given above. [n typical 1978 MOS technology, switching an elementary flip-tlop
requires 10712 Joule, or approximately 10%T at room temperature. Even a 174 micron MOS

transistor will require approximately 10%kT: more than 100 times the energy nccessaty for reliabie

computation as given above.

Note that this view of computation makes it perfectly clear that there is no possibility of 100%
reliable computing systems. There is always a finite chance (hat somce storage clement will switch
spontancously due to thermal noise. However, in today's systems, and cven foreseeable VLSI
systems, the probability of such a random switching event duc Lo thermal noise is much less than
that of a Filure due to electrical noise, cosmic rays. or mundane device failure mechaniss.  In
systems with poorly designed timing constraints, synchronizer failures occur many orders of
magnitude more frequently than thermal failures. This observation is the origin of the Seirz

Criterion given in Chapter 7.
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Quantum Limits

The thermal limit given above represents only one way in which an immutable law of nature
places bounds on what can be physically realized. Other such limitations come from other
physical laws. The lower bound on the size of an FET which will operate properly is determined,
not by thermal considerations but by the uncertainty principle and the discreteness of electrical
charge. From the uncertainty principle, an electron of mass m will, because of its wave nature,

have an uncertainty Ax in its position x related to the uncertainty Ap in its momentum p by:
ApAx=h

The energy is related to the momentum by:
E=p?/2m

Hence an energy barrier of thickness § and height E, can contain an electron only if:
§ » Ax = R/(mEy)”

For a barrier of height eV, Ax is aboul 0.001 micron. Gate oxides and junction depletion layers
must be many limes this thickness. In 1978, gate oxide is alrcady less than 0.1 micron thick. We

are thus within sight of a fundamental size limitation due to quantum phenomena.

Granularity of Charge

An even more severe limit results from the discreteness of impurity ion charges in the depletion
fayer under the FET channel. Let us attempt to reduce all voltages V and distances d by the
same factor. A charge layer of ¢ charges per unit area produces an electric figld. This field

across a depletion layer of thickness d results in a voltage V:

Vo qgd

The charge is duc to impurity ions of density N per unit volume. Hence:

q o« Nd

The voltage is therefore proportional Lo the square of the depletion layer thickness:

V & Nd?
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In order to scale both V and d by the same factor, N must therefore be proportional to 1/d.

The total number of charges in the channel is the number per unit volume times the volume of

the region under the gate. By our scaling convention, all volumes must be proportional to d*

3 2
Nyt & Nd° e d
For randomly distributed impurities, the expected statistical variation of the total number N, is:

- 172
AN, =(N J? «d

tot

Or a fraclionai varialion of;

AN, /Ny, & 1/d

This statistical variation of the number of impurity ions under the channels of different transistors

results in a similar distribution of threshold voltages:
AV, /Vy=AN /N, « 1/d

The variation in threshold voltages thus becomes larger as devices become smaller. A detailed
treatment of this effect is given in [Ref. R3 of Ch.l], which concludes that a device of % micron
channel length described in [Ref. 3 of Ch.1] would have an expecled variation in its threshold
voltage of ==.08 Volts. There are techniques which can greatly reduce this statistical variation. A
thin filin of undoped silicon just under the gate oxide will largely isolate the threshold voltage
from the granularity of charge in the substrate. Such a structure complicates an already difficult
task of sub-micron fabrication. It therefore appears that, aside from the fubrication process, the
" first barrier we face in Lhe sub-micron FET world is a difficulty in scaling voltages to low ¢nough

values. We consider the fundamental limit on supply voltage in the next scction.

Yoltage Limit

We have scen that a storage device must exhibit a maximum in its power curve in order to retain
information. There are wo independent ways in which this maximum may become oo smail.
The first is that the elementary logic gates may become too small to store enough energy. We see
that this limit does not constrain ordinary FET logic since FET gate Tengths must be greater than
1/4 micron for other reasons. Another way is that the operaling vollage may become too small to

assure that the gain of an clementary circuit exceeds unity. Semiconductor technology is evolving
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under a scaling law in which operating voltage must be decreased along with device dimensions.

Hence it is important to establish a lower limit on the operating voltage of FET circuits.

As mentioned in Chapter 1, when a MOS device is operated near its threshold, the channel

resistance R , is exponentially dependent upon the gate voltage Vg:
-qV,/nkT
R, e s
The factor n is due to the substrate effect, and is approximately 1.2 for most processes.

A modet of a complementary device (such as a CMOS inverter) is shown in figure 5. The
resistances R1 of the lower n-channel device and R2 of the upper p-channel device are
exponentially dependent on the input voltage V. as follows:

Rl =R e-qvin/nkT , R2 =R qum/nkT

Therefore the output voltage is:

Vour = [V/2R,+R)} [Ry-Ro] Vi

We are interested in the gain near the switching threshold, which because of the supply voltage
convenlion is at Vv, =0. We may cxpand the cxponcntials as a power serics and ignore all but

the first order terms in V.
Vour = -(qV/nkT)V,

The gain of the circuit is thus equal to qV/nkT. Hence realistic supply voltages for
complementary circuits should be a few kT/q. At room temperature (kT/qy= 25 mV. Ratio
logic familics, such as nMOS, can be analyzed by the same technique. Since they have only one
ﬁon-linear device rather than two, their gain is approximately half that given above. They will
therefore require twice the supply voltage required by complementary devices. Routine CMOS
circuits with =5 micron geometries operate with a 5V supply. Scaling mn a straightforward way,

we would expect Y% micron devices to operate with a 4 Volt supply.

While the gain of such a circuit would be adequate if all its transistors had the same threshold
voltages, it is possible that the pullup Lransistor of an inverter could have a particularly high
threshold voltage, while its companion had a particularly Tow threshold,  If the difference in
threshold voltages exceeded the supply voltage Vi, the device output would always remain in one

state. The probability of such an occurrence, computed from the variation in threshold
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mentioned in the last section is:
-2Vy/ /_Wth
e

We might for example require that, even in a VLSI system containing 107 inverters, the
probability of all the system’s transistors being within threshold limits be greater than 0.9. Such a
criterion would require a supply voltage of ==0.7V. Unless special attention is dirccted toward
reducing threshold variations, systems with ' micron device geometrics will be forced to operate
with higher supply voltages than the straightforward scaling would indicate. However the
inherent nonfincarity of the FET ncar threshold lowers the effect of threshold variations, and

system operation at a supply voltage in the 100 - 200 mV range appears feasible.

An Example

In this section we will apply physical considerations to the comparison of two very different
technologics for constructing computational systems. The technologies sciected for this cxample
are based on (i) semiconductor FET devices and (ii) Josephson junction devices. The material
presented in this example demonstrates the importance of considering not only device physics and

device design, but also system physics and system architecture, when making such cotnparisons.

Several types of limits on the performance of semiconductor FET logic families have becn noted
in the forcgoing discussion; those dealing with the temperature of operation, those arising from
quantum phenomena, those associaled with the granularity of charge in the sermiconductor
substrate, and voltage constraints arising from gain considerations. Of these, the limit due to

quantum phenomena appears the least restrictive.

It would thus appear that a physical process not involving a doped semiconductor and operating
at very low temperature would merit serious study. Superconducting logic families have, for this
reason, attracted much attention. Information is stored as a magnetic flux trapped in a
superconducting ring, and is switched by means of a Josephson (or similar) junction. Devices
have been demonstrated which exhibit very fast switching times and low operating power. It is
important o understand the relative merits of such a radically different technology from the point
of view of overall system design. We should therefore find some way to compare it directly with

semiconductor technology, and to extend the comparisons to scaling into sub-micron dimensions.

Tn real systems, the cost of energy, and energy conversion and distribution, often exceeds the cost
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of the chips themselves. Hence any discussion of the cost of computation must include the
energy cost of individual steps of the computation process. The fundamental figure of merit of a
logic device is its switching energy discussed previously. This quantity is a measure of the power-
delay product of the technology. Propagation delay can be traded off against power dissipation
over a wide range in any given technology, but their product cannot be reduced below the
switching energy. In a charge controlled semiconductor device such as the MOSFET, the

irreducible switching energy is Eg, = Cg\’2/2,' for gate capacitance Cg and supply voltage V.

In a superconducting device E. = LI2/2, where L is the inductance of the superconducling loop
plus the associated junction, and I is the supply current. In both technologies, parasitics will
increase E, 1o several times the values computed for minimum devices. However, for purposes

of comparison, we will consider only the minimum devices themselves.

Since all energics in both types of logic are multiples of kT, it might appear that operating a
computer at very low temperatures would reduce (he total power required. That this is not the
case is easily demonstrated. Suppose that 1o perform a compulation a machine dissipates cnergy
E; =nkT; as heat at some low temperature T;. To maintain the low temperature, this heat
energy must be transported to and released at room temperature, Ty, by some refrigerator. The
total energy to run ihe system is equal to E; plus the work required to run the refrigerator.
Thermodynamics shows us that a refrigerator operating on the Carnot cycle requires the least
amount of work input per unit of heat transported from the low lemperature environment to the
high temperature environment.> On input of work W, a Carnot refrigerator can transport, from

the T, to Ty environments, a quantity of heat energy Q given by:
Q/W = T /Ty - Ty

Thus the work W required to transport E; from T, to Tyy is in gencral;
W 2> E (T - T /T,

The total energy , E, . required for the computation is therefore:

tot’

By 2 nkT, + "kTL[(TH - TL)/TL] = kT

As T, is lowered, the switching encrgy is lowered, bul the work input to the refrigerator must be
increased by at least an equal amount. The total energy cost, including that necessary to run the

refrigerator, is thus indcpendent of the temperature of the computer’s switches. This energy cost
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is, at minimum, identicaily equal to nkT at the temperature of the ultimate heat sink. In some
space applications a heat sink at very low temperatures is available. However, for terrestrial
computers, refrigerating electronic devices in order to reduce the energy of computation is
logically equivalent to constructing a perpetual motion machine. For this reason, we will use kT
at the heat sink temperature in system energy calculations, independent of the actual temperature

at which the switching devices operate.

Now we turn to the details of the technology comparison. The switching energy of MOSFET
logic ts: E,, = CgV2/2 . The most straightforward MOSFET scaling results from reducing all
dimensions by the same scaling factor. If this type of scaling is applied to the MOS family, the
gate capacitance decreases lincarly with the scaling factor. In order to keep the electric fields
constant, the supply voltage is scaled by the same scaling factor. The switching energy is thus
reduced by the third power of the scaling factor, as illustrated in the top curve in figure 6. The

tower size limit shown is a conservalive estimate set by device physics factors previously discussed.

Were it possible to build FET devices which operated with one electronic charge on their gate,
their performance would not benefit from scaling to smaller dimensions. In such a device, the

switching energy can be expressed in terms of q, the charge of the electron:
— V27 = a2
E, = CV¥/2 = q47/2C

Since C decreases as the device dimensions are scaled down, Lhe.switching cnergy actually
increases. This relationship illustrates a general principle: A logic device working at its quantum

limit requires a higher switching energy as the dimensions of the device are made swaller.

Even at present dimensions, superconducting logic operates at or near its quantum limit. The
flux in a superconducting ring must be an integral multiple of the flux quantum @y = 2x 1078

Webers. The switching energy for a device operating with one flux quantum can be written as:
—~ 112/ = 2
E,, = LI/2 = &/2L

Note that the inductance L = /1 is directly proportional to the size of the loop. The above
dependence for superconducting logic is iHlustrated in the bottom curve in figure 6. The lower
size linil shown is set by the penctration depth A of the supcrconductor4. Magnetic ficld
strength decreases with distance, x, into the superconductor as ¢ A If the thickness of the

superconducting ring is less than a few A, the ring cannot localize the flux within it. A typical

{ Ch 9] < Conway >physicsl vlsi July 26, 1978 11:57 AM



10

107

SWITCHING

ENERGY

(kT)

10°®

10°

10

10

10

FET Logic
2
g GV

SwW ?

Superm

Logic

0.1

FEATURE SIZE (MICRONS)

Fig. 6 Comparison of FET and Superconducting Logic






value of A is 0.1 micron,

Comparing the upper and lower curves, it is clear that, when an accounting is made of the total
energy, and when the effects of scaling to sub-micron dimensions are taken into account, room
temperature FET logic is a remarkable technology. At achieveable sub-micron dimensions, it can
actually outperform its supcrconducting counterpart.  Lower switching encrgies in the
superconductor technology can be achieved only by sacrificing density. This trade-off may be
desirable under some circumstances. It seems more likely, however that maximum computation
per unit cost will be achieved by jointly minimizing swilching cnergy and maximizing circuit

density.

The absolute speed attainable with the superconducting logic is, however, considerably better than

that of its FET counterpart. For a critically damped Josephson junction. the time response 7 is
-1
r = (LC) % |

where L is the loop inductance used above, and C is the junclion capacitance. Since the normal
resistance of the Josephson junction varics exponentially with dielectric thickness, the thickness
can be assumed approximately constant as the devices are scaled. Hence the delay time 7 will
scale down as the 3/2 power of the scaling factor. For the FET, the oxide thickness must be

scaled, and the delay time varies lincarly with the scaling factor.

—~

At 1 micron feature size, for example, the switching time of a superconducting device is = 2 x

10713 sec, while for a FET with the same feature size the transit time is = 1071 sec.

One basic problem with low temperature logic is that the lower swilching energy levels result in
poor noise immunity. They therefore require better shielding to reduce the cffect of external

electromagnetic occurrences to a level well below the switching energy.

Another problem is that the low switching energy creates a mismatch to the outside world for
which a penalty in additional power consumption has to be paid, since the drivers to the outside
world consume a large amount of power, and introduce extra delays.  As long as information is
not required to cxit the low lemperature environment, chip to chip communication can be done
at high bandwidth. Nole that in this respect, superconducting logic is superior since it is
somewhat betier matched to the impedance of transmission lines than is FET logic. In any event,

exponentially staged drivers are required when driving from the low energy environment to the
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outside world, as discussed in chapter 1. These drivers introduce a minimum delay r
Tdr _>_ T€ LH(Y) '

where Y is the ratio of energy required at the destination to that of the elementary logic device.
If the switching energy of a logic element is a factor of 100 smaller due to operation at low
temperature, a factor of at least 10 in driver delay is introduced. Furthermore, the dissipation of
the last stage of the driver is determined by Lhe energy level necessary in the outside world, not in
the low temperature environment. The cost of this driving energy is at least 100 times higher
than that for a room temperaturc driver of the same capabilily, due to the constraints imposed by

the laws of thermodynamics.

It is important to recognize that the trade-off between power and delay tlime extends (o much
shorter times for Josephson devices than than it does for FET's. The speed advantage of the
Josephson devices, in the scaled environment of the future, will be about a factor of fifty.
Although their switching energy will be about the same as that of FETs, we would have the
option of inputting fifty times morc power into a system composed of Josephson devices, and

then being able to switch them fifty times faster than the fastest FETs.

Architects comparing alternative technologies for building computing systems take into account
many costs other than just total switching energy. The weights assigned to the various factors
usually depend upon their proximity to absolute constrainls inposed by physical law or by system
performance and cost considerations. In certain situations, we may be perfectly willing to pay the
price for large increments in energy, energy conversion equipment, mass, volume, and structural

and operational complexity, in order to achieve an increment of system performance.

Suppose, for example, we now had to specify a very high performance gencral purpose computer
for the late 80's or early 90's. Since swilching speed translates dircetly into time performance in
the classical stored program computer, we might see no other alternative for high performance
than a machine based on superconducling devices.  Such a decision recognizes that no present
alternatives exist for trading off processing speed against concurrency in multiple processors for
general purpose computation, That such alternatives must ullimately exist is of course evident by

observation of the information processing capability of living organisms.

Superconducting devices mect the requirement for high speed in the classical computer, and a

number of machines based on that technology will likely be built before viable high concurrency
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alternatives appear. However, in the longer term, in applications where mass, volume, structural
complexity, and cost are real constraints, semiconductor devices operated at heat sink tempcrature
will generally have the advantage. Thus, the switching technology likely to dominate the
terrestrial environment, used for personal computing and personal communications on a vast scale
in an enormous number of different applications, is semiconductor technology. Recall that
semiconductor lechnology itself may benefit in a variety of ways from low temperature operation

[Ref.7 of Ch.1], as for example in the reduction of subthreshold current in submicron MOSFETs.

Energy Management

{ in preparation }

Discretencss in Quantum Mechanical Systems

{ in preparation }

Conclusion

We opencd this book with a discussion of the physical properties of elementary switching devices.
We have now closed with a discussion of fundamental physical principles which profoundly

influence the higher-level propertics of computing systems.

The communication of information over space and time, the storage of information by change of
state at storage sites, and the transport of encrgy into and heat out of systems depend not only on
abstract mathematical principles, but also on physical laws. The generation and synthesis of very
large scale systems, whether artificial or natural, proceed under and indeed are directed by the

constraints imposed by the laws of physics.

We look forward to a lime when quantitative measures can be given for the true cost and
complexity of any required compulation. Al present we are very far from this goal. The
examples of this chapler do, however, serve to illustrate that concrele physical arguments can be
applied to the properties of information sysiems. We hope others will provide insights and

examples in this important area of investigation, for reporting in future editions of this text.
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