Chapter 8: Highly Concurrent Systems
Copyright ® 1978, C.Mead, L.Conway

Sections:

Introduction - - - Communication and Concurrency in Conventional Computers - - - Algorithms for
VLSI Processor Arrays - - - Hierarchically Organized Machines - - - Highly Concurrent Systems

with Global Communications - - - Challenges for the Future

How can the properties of VLSI be exploited to build computational structures? Our discussion
lo this point has concentrated primarily on principles for structuring circuits and wircs on the
chip rather than on the application of VLSI to solve intcresti'ng computational problems.
Although the OM example described in chapters 5 and 6 shows an elegant use of the structuring
principles in the design of a conventional processor, we are left with an intriguing question: Does

VLSI offer more than inexpensive implementations of conventional computers?

This chapler answers the question with a resounding YES! Because processing elements and
memory elements can both be easily implemented in VLSI, we are encouraged Lo find structures
that usc a great deal of concurrency--a large number of calculations occurring at the same time.
Although we can clearly design VLSI structures that have many sites at which processing is
performed, how are these structures to be applied? Some applications may require different sorts
of concurrent processing than others. Are there any principles or theorics that will guide us in
the design of highly concurrent systems? (For an cxcellent introduction to the promises and
problems of VLSI and concurrency, see reference [1]) Unfortunately, we lack experience in
designing systems of this sort. As a consequence, this chapter can offer no complete designs
which have been applied in real system applications. Instead, we offer several glimpses of the

possibilities available with VLSI, and of its limitations.

The chapter is organized into four quite separate scclions; although they are designed 10 be read
sequentially, they may also be read concurrently! The first section reviews the problems that
conventional computer designs present when implemented in VLSI, and summarizes efforts to
achieve concurrency in general-purpose computers. Section 2 takes up a particular sort of

concurrent organization--the array of identical processors--and shows ils application to matrix

[Ch&.: Sect.1] < mead > systemslvlsi July 22, 1978 4:06 PM

arithmetic. Section 3 examines hierarchically-organized machines-—-in this case, machines
structured as a binary tree—-and demonstrates how they can be programmed to perform several
tasks. Finally, section 4 presents a nascent theory of planar computational structures. It links the

topological and electrical properties of VLSI elements to the structure of computations.

1. Communication and Concurrency in Conventional Computers

The architectures of conventional computers suffer from two difficulties that we must avoid when
designing VLSI computational structurcs. First, & processor is scparated from its memory by long
communication paths such as buses. These buses are long enough 1o slow substantially the
transmission of information between a processor and memory. Second, the "von Neumann
machine” provides ohly a single processor that sequentially fetches and executes instructions--it
offers few opportunities for concurrent processing activity. In this section, we survey some of the
attempts to reduce communication costs and to use several processors concurrently. Although
designs using a great deal of concurrency have been cumbersome to implement in the past, VLSI
makes these designs considerably more attractive because of the ease with which memory and

processing clements can be placed in close proximity.

Human organizations, like computer organizations, suffer if communication costs are high or if
concurrent processing cannot be exploited. In fact, a human brings to an organization what VLSI
brings to a circuit: both combine processing and memory effortiessly! Analogies with human

structures will help to suggest the kinds of behavior we might achicve in compulational structures.

Humans struggle to reduce communication costs, because the cost is often measured in large
quantitics of time. Consider a student assigned to write a research paper, requiring the use of a
large library. Each time he nceds to consult a book, he could make a trip to the library, climb
into the stacks to retricve the book, rcad a few relevant paragraphs, and replace the book. He
now heads home to write the sentence that depends on the information he acquired. Libraries
and people both recognize the incfficiency of this approach, and allow students to borrow books.
The student will take several dozen books home, and store them on a short shelf, handy to his
desk. Now the communication cost required to find information is reduced, pravided the item

lies within the group of books he has selected. If the student finds it difficult to select a small

[ChB.: Sect.1} < mead > systemslvlst July 22.1978 4:06 PM

number of books that meet his needs, he may move his work to a carrel in the library, again in
order to reduce communication costs with the large library "memory.” The human strives to

keep his information supply close to his processing task,

Concurrency is widely exhibited in human organizations. Henry Ford introduced the production
line as a way to exploit concurrency in a well-understood manufacturing process. This is a
particularly simple structure, in which information and goods flow rigidly along the production
line. A more prevalent, general-purpose approach to concurrency in organizations is the
hierarchy: the president of a company supervises several subordinates, cach of whom in turn
supervises a like number of sub-subordinates, and so forth until we reach the lowest level

workers.

Two goals of the hierarchy are to keep cveryone about equaily busy, and to allow adequate
information flow in the organization. A supervisor must generate enough commands to keep
several subordinates busy--otherwise it would not be possible to build large organizations at all.
In addition, each subordinate requircs a certain amount of attention from the supervisor. These
requriements limit the number of subordinates who can be assigned 1o a single supervisor--ten
underlings can run the most diligent supervisor ragged. Supervisors gather information to make
decisions by querying their subordinates. In a badly organized hierarchy, supervisors may confer
frantically with their superiors to find answers nceded for crucial decisions. Meanwhile workers
stand idle, waiting for dircctions from above. While it is not possibie in gencral to have all
needed information available from one's own subordinates, concurrent systems require this

locality property to reduce interference from too much communication.

The design of computers and of algorithms has yet (o show the ingenuity reflected in human
organizations. This failure is not for want of cleverness in designers, but rather because the
technologies used to implement computers are much less flexible than the human beings used to
implement corporations. VLSI offers more flexibility than earlier technologies because memory

and processing structures can be implemented with the same technology, in close proximity.
Communication costs in computers

The archetypal computer consists of a single "processor” (the CPU or “central processing unit™),

connecled to a large, homogeneous memory (Figure 1). The processor fetches an instruction from

[Ch&.: Sect1] < mead > systemslvisi July 22, 1978 4:06 PM

memory, decodes it, executes it, and repeats the cycle. Many instructions will cause additional
references to memory in order to fetch operands or to store results. The performance of such a

computer depends critically on the speed with which memory can be accessed.

A very simple argument can be developed to determine the speed of the memory. If a memory
of M bits is implemented on a single chip in a two-dimensional array, wires approximately Mm%
long are required to transmit data between a memory cell and the processor. (We are concerned
with relative units of length and time, because we intend only to compare different designs, not to
determine absolute execution speeds.) The time required for data transmission is proportional to
this length: the longer the wire, the greater the distance the signal must propagate and the greater
the wire's capacitance, slowing propagation. In addition to slowing the memory, long wires also
consume a great deal of chip space and require substantial power to drive. In present
implementations of large computers, performance is further decreased by the several levels of
packaging required to provide a memory of significant size: chip, printed-circuit board, backplane.
The wiring on chips and printed-circuit boards grows as Mvz. but backplane wiring grows lincarly

with memory size.

The organization shown in Figure 1 is also rather wasteful of resources: most of the memory and
memory wiring is idle most of the time. For a typical large memory, M might be 32"106. but
only a 16- or 32-bit word will be delivered to the processor with cach memory reference. If the
memory is organized as an array of 109 bits for cach bit in the word, only 2 of the 2000 wires
needed 1o address the array are used in a given refcrence (1000 select wires running horizontally,
and 1000 select wires running vertically). Vast areas of memory thus lic idle because the amount

of information extracted on a single reference is small compared to the size of the entire memory.

The costs of communication are cxhorbitant in today’s computers. Most of the cxpense, time,

and energy required to compute are consumed by the communication of data over large distances.

Memory Locality

Computer designers have recognized the difficulty of communicating with a very large memory,
and have taken steps to utilize the memory more cffectively. The result is a memory hierarchy,
outlined in Figure 2. The processor communicates with & scries of memorics, whose size
increases and speed decreases as they become farther from the processor. The closest memory

(M,) provides high-speed “registers” or "accumulators” that are used very frequently, usually to

[Ch8.: Sect1}! < mead > systemslvisi July 22 1978 .06 PM

M
I
P
Fig. 1
Nnb Nbb
P = P
Fig.3
Nt@ Nbé
e oot
= =
P P

Fig.4

Fig.2

Access
time

Fig.5

contain intermediate results of arithmetic calculations. Next comes “cache” memory (M),
designed to hold data and instructions that are referenced frequently. The “primary” memory
(Mp) is similar to the large memory of several million bits illustrated in Figure 1. Finally, a

"secondary” memory (Mg) of some sort is provided, usually implemented with disks.

The average time required to reference a memory element will depend on which piece of the
memory hierarchy holds the desired element. The intent is that fast, small memories be
referenced more frequently than the slow, large ones. This desire is reflected in the design of the
instruction set of the computer: referencing "registers” is usually encouraged by the structure of
the instruction set; refercncing primary memory (or cache) is supported by the instruction set, but
perhaps in less flexible ways than for register access; finally, accessing a disk is not directly

supported by instruction sets at all, but requires complicated "I/O control.”

It is instructive to formulate a crude model (o estimate the performance of the memory hierarchy.
We need to assign representative values to the frequency with which each memory is accessed,

and to the size of each memory:

f~.6 Frequency of access to registers (M)
f.~.38 Frequency of access to cache (M)
fp~.02 Frequency of access lo primary memory (Mp)

fs~.000005 Frequency of access to secondary memory (Ms)

M, ~16

M, ~10

M,~10°

M,~1010
Using our model of memory access lime, the time required to access memory on the average is
f#M + £#M, + fp#Mp + 100 £#M,, measured in arbitrary units. (The factor of 100
arises because disk access times are substantially worse than our memory wiring model indicates.)
It is instructive 1o nole the relative contributions of the separate memories: 2.4, 12, 6, 50, for a
tolal of 70. The cost of access to the slowest memory, the disk, is the most important

coniribution to the average.

The mnemory hicrarchy is an improvement over the homogeneous memory of Figure 1. The time

1o reference a single memory of sizc 10° is 320 units. The time to reference a three-level

[Ch&.: Scct.1] < mead > systemsLvlsi July 22, 1978 4:06 PM

hierarchy of about the same size (M, M, Mp, with frequencies shown above) is a mere 20 units.

The effectiveness of the memory hierarchy depends on locality of the memory references. Cache
algorithms copy large chunks (8-32 words) of primary memory into the cache, hoping that
additional memory references will occur in the neighborhood of the first reference. A similar
hope is attached to transfers from secondary memory. If an application arises in which most of
the memory references do not go to Lhe fast register memory, the memory hierarchy will perform

pootly.

Locality can also be viewed as a function of size. If a program and its data can reside in primary
memory for the duration of eseculion, and do not require secondary memory, the average
memory access time will drop from 70 to 20. If the program is small enough to fit in the small

cache memory, access time will drop further to 14.
Concurrency in computers

Not content with the increases in speed due to a memory hierarchy, computer designers have also
sought to increase the concurrency in computer designs. A number of different approaches have

been tried (see reference [3]): we shall illustrate pipeline structure and muitiprocessor structures.

Pipelined processors

Pipelined processors are patterned after the production line found in manufacturing: a portion of
the processing is performed by each of several processors, and then handed to the next processor
in the line. Starting from Figure 1, the designer reasons that two processors could function
concurrently, each assigned to haif the original memory (Figure 3); a communication path is

provided so that the first processor can transmit results to the second.

The two-processor pipelinc more than doubles the processing power available. 1f we neglect the
cost of inter-processor communication, the time required to execute an instruction is (1/2)
(M/Z)VZ, about one third the lime required by the uniprocessor in Figure 1. The improvement
comes from two effects: doubling the number of processors doubles the speed, but reducing the

memory size also increases speed.

A special case of pipelining is illustrated by instruction-fetch overlap in computers. One processor

is responsible for fetching an instruction from memory: it then passes on to the second processor

[Ch8.: Sect.1] < mead >systemslvist July 22. 1978 4.06 PM

information required to execute the instruction: the second processor actually performs the
execution. In chapter 6, we saw this technique applied in OM: while one microinstruction is
being executed, the controller is fetching the next microinstruction. Execution overlap allows the

execution itself to be pipelined (see reference [6] for ‘more pipelining structures),

Pipelined structures are perhaps most effective in special-purpose applications that can utilize a
large number of processors. Signal-processing is a particularly good example: a signal is sampled
digitaily to generate a siream of signal data. This data is pipelined through processors to perform
corrections, correlations, frequency analysis, etc. Section 2 of this chapter illustrates the

applicalion of pipelines o matrix arithmetic of various sorts.

Unfortunately, it is not always possible to cast problems in a framework suited to exccution on
pipelined computers. If the workload is not divided evenly among the processors, some will
stand idle, reducing the cffective speed increase. But it is the rigid communication discipline that

most severely restricts the application of pipelines.
Multiprocessors

Another important class of concurrent computers are multiprocessors. Unlike the pipeline, these
structures provide switching structures that allow each processor o communicate with each other
processor. The hope is that those algorithms not suited to pipelines because of their

communication requircments can be executed on mulliprocessors.

Figure 4 shows a dual-processor configuration, again adapted from Figure 1. Each processor
communicates primarily with a memory half the size of the original. In addition, a common

"bus” is provided to allow each processor to reference the other’'s memory.

Two problems with the dual-processor arrangement are immediately apparent. First, if each
processor references memories at random, the two will interfere often, and vitiate some of the
speed gain. Second, can we assurc (hal the scquential program suited to the uniprocessor
architecture of Figure 1 can be adapted o the dual-processor configuration? Putting aside for the

moment the problems of programming a multiprocessor, we shall examine its performance.

We shall construct a crude model of the time reguired to cxecule an instruction on the dual
processor. Assume that cach processor references its own memory with probability (1-/), and the

other’s with probability / Further, assume that the useful duty cycle of each processor isd If

[Ch8.: Sect.1] < mead > systemslvist July 22, 1978 4:06 BM

both processors can be productively employed at ali times, 4 will be 1. However, if the two
processors must occasionally wait for each other, ie., must "synchronize,” 4 may fall below 1.
We can identify three cases:

1. P, references M, and Py, references My,: probability is (1-)‘)2.

2. P, and Py, both reference M, (or, equivalently My); probabilities sum to 2f£1-/).

3. Pa references Mb and Pb references M,; probability is jz
We also need to model the time required to complete each of the three cases. A processor
references its own memory, of size M/2, in time (M/Z)%. When a reference is made to a
neighbor's memory, we assume the time for communication on the bus and referencing the
memory sum to #M, as if it were addressing the entire memory as one array. The costs for the
three cases then become:

1. (M/2)%

2. (M/)% + M%

3. M% 4+ M7
From these estimates we calculate the expected instruction execution time, remembering that 2d
processors are available:

time = M%® d) (2%74 + f- £12)

is expression is plotted in Figure 5, assuming d=1.

The simple model of a dual-processor configuration is suggestive of bechavior we can expect from
multi-processor systems thal require global communication. We observe that if f= 0, execution
speed is more than twice that of the uniprocessor illustrated in Figure 1. Just as in the pipeline,
doubling the number of processors contributes a factor of two, but additional speed is achieved

because each processor addresses a smaller memory.

The model also illustrates the importance of locality in the use each processor makes of its
memory. If fis allowed to grow too large, the factor of two contributed by two processors is

erased by interfecrence between the processors when accessing the common memory.

Perhaps the most important parameter is 4, which is determined by our ability to adapt
algorithms to multi-processor configurations. Some applications seem Lo decompose nicely for
exccution on concurrent hardware, and some offer difficultics. In human organizations we have
become resigned to afways attacking large problems in a concurrent way. We will, no doubt,

have to do the same with compuler programs.

[ChR.: Sect.1! < mead >systemsl.vlsi July 22.1978 4:06 PM

Summary

The schemes we have illustrated that reduce communication costs and try to exploit concurrency
can be combined in various ways in computer structures. The table below summarizes the
speedup effect that these techniques offer, as derived from our crude models (n denotes the

number of processors used):

Technique Typical speedup factor
Memory hierarchy 10
Pipelining
instruction overlap 2
special-purpose n
Mulitprocessors <n

The processor-memory structures and algorithms presented in the remainder of this chapter all
attempt o have as many processors as can be kept productive simultaneously and to locate them as
close as possible to the data they require. These are the considerations exhibited by our simple
models of memory hicrarchies, pipelines and multiprocessors. The examples presented here by
no means cxhaust the topic of concurrent computation; the interested reader will find literatures
on compuler architecture [2,3], paraliel processor and processing [4.5,6,7], performance evaluation

{3], and algorithm design {8,9,10,11,14].

[ChR.: Sect.1] ¢ mead > sysiemslvisi July 22. 1978 4:06 PM

10

2. Algorithms for VLSI Processor Arrays

H. T. Kung and Charles E. Leiserson
Department of Computer Science

Carnegie-Mellon University

2.1. Introduction

“"And the smooth stream in smoother numbers flows"

--Alexander Pope

We are interested in high-performance parallel algorithms that can be implemented directly
on low-cost hardware devices. By performance, we are not refering to the traditional operation
counts that characterize classical analyses of algorithms, bul rather, the throughput obtainable
when a special purpose peripheral device is attached to a general purpose host computer. This
imphies that time spent in 1/0, control, and data movement as well as arithmetics must all be
considered. The cost of the device must be measured in how well it can be implemented using
LSI technology and must be sensitive to what the technology can do cheaply, and what is

expensive.

LSI technology has made one thing clear. Simple and regular interconneclions lead to
cheap implementations and high densities, and high density implics both high performance and
low overhcad for support components. The two-dimensional array structure consisting of mesh-
connected processors enjoys this desirable property. Therefore, we are interested in designing
paraflel algorithms which have simple and regular data flows so that they can be executed
efficiently on such processor arrays. We are also interested in using pipelining as a general
method for implementing these algorithms in hardware. By pipelining, processing may proceed
concurrently with input and output, and conscquently overall exccution time is minimized.
Pipclining plus multiprocessing at ecach stage of a pipeline should lcad to the best-possible
performance. In this section, we demonstrate simple and regular multiprocessor networks that

are capable of pipelining some important matrix computations with optimal speed-up.

[ChR.: Sect.?2 1 < mead > systems2.visi July 24, 1978 4:25 PM

Most of the results reported here are based on a paper by H. T. Kung and C. E. Leiserson, which
is to be presented at the Symposium on Sparse Matrix Computations and Their Applications in

Knoxville, TN, November 2-3, 1973.
2.2. The Basic Components and Structures

The single operation common Lo the problems considered in this section is the so-called inner
product s.tep. C « C + A x B. We postulate a processor which has three registers Ry, Rp,
and R. Fach register has two conncctions, one for input and one for output. Fig.
22.1 shows two types of geometries for this processor. Type (a) geometry will be used for
matrix-vector multiplication and solution of triangular linear systems (Sections 2.3 and 2.6),
whereas type (b) geometry will be used for matrix multiplication and LU-decomposition

(Sections 2.4 and 2.5).

A
!
(= BCa
= e
|
A
(2) (b)

Fig. 2.2.1. Geometries for the inner product siep processor.

The processor is capable of performing the inner product step. We shall define a basic Line
unit in terms of this processor. At time t, the processor shifls its inputs into Ry, Ry, and R,
and computes Ro = Re + Ry x Rp. Al time t+1, the new value of R together with the

input valucs for Ry and Ry are available as outputs. All outputs are latched and the logic is

| Ch8: Sect.2 | <mead > systems? visi July 24 1978 4:25 PM

1

12

clocked so that when one processor is connected to another, the changing output of one during
the time interval between t and t+1 will not interfere with the input to the other during this
time. This is not the only processing element we shall make use of, but it will be the work

horse. These spccial processors will be specified later when they are used.

The basic network organization we shall adopt for internal communication is the mesh-connected
processor scheme. (See Fig. 2.2.2.) All connections from a processor are to neighboring
processors. The most widely known system based on this organization is the ILLIAC IV. If
diagonal conncclions arc added in one direction only, we shall call the resulting scheme
hexagonally mesh-connected or hex-connected for short. We shall demonstrale that linearly

connected and hex-connected processors are natural for matrix problems.

(a) linearly connected

{b) orthogonally connected
(ILLIAC IV}

(c) hexagonally connected
Fig. 2.2.2. Examples of mesh-connected processors.

When an input path o a processor lies on an edge of the device, we shall sometimes duesignate
it as an external input connection from the host memory. Alternatively, we may et the input
have a fixed value such as zero. An output data path will either go to the host memory or be

ignored.

{ Chi: Seet.?] Cmead > systems? vlsi July 24 1978 405 PM

2.3. Matrix-Vector Multiplication

We consider the problem of multiplying a matrix with a vector. Let A = (“ij) be an nxn band
matrix with band width w = p+g-l, and x = (xl,...,xn)T. y = (yl,...,yn)T be n-vectors such
that Ax = v. (See Fig. 2.3.1 for the case when p = 2 and q = 3.

p
— —_ p— — — —
a, a, X Y,
q 2y 83 3An Xz Y2
Ay 25 @y Iy i X3 Y3
8,; 35 e A 1 X4 — Ya
2y
L —_ — —

Fig. 2.3.1. The matrix-vector multiplication when the matrix is a band matrix

withp = 2and q = 3.

Suppose A and x are given. The following algorithm computes the product y = Ax by
pipelining the computation through w lincarly connected processors. Before giving the code for
cach processor, we illustrate the algorithm for the band matrix-vector multiplication problem in

Fig. 2.3.1. For this case the lincarly connected network has four processors. Sce Fig. 2.3.2.

[ChR.: Sect?] <mead > systems? vIsi July 211978 425 PM

14

i 1
oAy, LI !
| }
3 \
t '
1 L}
1
: 2 2 1
1 |
I]
L §
1 a,?3 aaz]
| i
] t
]]
¥ \
' aZZ a!t rd
' ’
”
1 s |
| ,’ §
L al! az! /’ :
“
~ ,(Vv
} ~ p ”’ i
t ~ 1
N e \au P v
\/
L L 4 h
- £3 = Yy, = Y, <em----
______ ~ X - = - =
2 '

Fig. 2.3.2. The lincarly connected network for the matrix-vector mulliplication problem

showa in Fig. 2.3.1.

The general scheme of our pipelining algorithm can be viewed as follows. The y;. which are
initially zero, keep moving to the lefl while the x; are moving to the right and the 3y are moving
down. It turns oul that cach y; is able to accumulate all its terms, namely, 312842 3 5-1%-15
ai,i";i and A i+ 1%+ 1 before it leaves the network, Fig. 2.3.3 illustrates e first seven steps of
the algorithm. Note that when yy and yy are output they have the correct values. Observe also
that at any given lime alternating processors are idle. (Indeed. it is possible to use w/2
processors in the network for a general band matrix with band width w. We did not do so for

the sake of clarity.)

We now specify the algorithm more precisely. Assume that the processors are numbered by
integers 1, 2, w from the left end processor to the right end processor. Each processor has
three registers, Ry, Rx and Ry, which will hold entries in A, x and y. respectively. Initially, all
registers contain zervs. Fach step of the afgorithin consists of the following operations, but for
odd numbered time steps only odd numbered processors are activated and for even numbered

time steps only even numbered processors are activated.

[ChR.: Sect.? | < mead » systems? vist Tuly 241978 4:25 PM

1. Shift.
- Ry gets a new element in the band of matrix A.

- R, gets the contents of register R, from the left neighboring node. (The R, in processor

1 gets a new component of x.)

- Ry gets the contents of register Ry from the right neighboring node. (Processor 1 outputs

its Ry contents and the Ry in processor w gets zero.)
2. Multiply and Add.

Ry"‘Ry‘i"RAXRX.

Using the processor postulated in section 2.2, we nole that the three shift opcrations in step 1
can be done simultancously, and that each step of the algorithm takes a unit of time. Suppose the
bandwidth of A is w = p+q-1. It is readily scen that afler w units of time the components of
the product y = Ax start shifting out from the left end processor at the rate of onc output every
two units of time. Therefore, using our network all the n components of y can be cotnputed in
2n+w time units, as compared to the O(wn) time needed for the seguential algorithm on 2 single

Processor.

[Cha.: Sect.2 | < mead > systems2.vist July 24. 1978 325 PM

15

16

Step
Number

Configuration

= = = 3 Y,
=1 = = =

- = - Yl

= = = i=

] = Y= - Y,
= =i, 3, = =

=] Y, = = Y.|=

= a2 | =, 4, |=

-~ - Y, i= - Y,

a

= =, 2, |= = 1
] Y, l= = Y=

=t 3y |z =l %2 |=

-~ = Y,l= 3 Y.
= e T =i %

Comments

y, is fed into the fourth
processor initialized at Q.

x, is fed into the first
processor whiie y, is moved
left one place. (From now

on the x; and y; keep moving
right and lefl, respectively.}

a,, enters the second
processor where vy, is
vpdated vy, «y, + a, x,.
thUS ¥, = 3, X,

a,, and a,, enier the first
and third processors,
respeclively. y, = 8, %, +3,%
and y,= a,,%,.

y, is output.
Y, = 8%, Fa,%.
Yy ™ 3%,

Yo B 35, X, 43,503,
Yy = 8%, 43,%.

y, is output.
Yy = 35X, Py, % 3% .
Ya = 347%;-

Fig. 2.3.3. The first seven steps of the matrix-vector multiplication algorithm.

{ Ch&: Sect 7] <mead > svstems? vlsi July M4 1978 4225 PM

2.4. Matrix Muitiplication

This section considers the problem of multiplying two matrices. Let A and B be nxn band
matrices of bandwidth w and w, respectively. We show that a network of wywy hex-connected
processors can compute the product C = AxB in 3n+min(wy,w,) units of time. The algorithm
uses the same principle as the ome in Section 2.3. We illustrate the general scheme by

considering the matrix multiplication problem depicted in Fig. 241,

The diamond shaped interconnection network for this case is shown in Fig. 2.4.2, where
processors are hex-connected and data flows are indicated by arrows. The nonzero elements in
A, B and C move through the network in three directions, as indicated in the figure. Initially, the
c;; are all zeros. One can easily see that with the type (b) inner product processors described in

)

Section 2.2, each Cij is able to accumulate all its terms before it leaves the network.

Suppose that Fig. 2.4.2 describes the configuration at time 1. Then, for example, ¢y gets

ajpbyp at time 2 and ajpbyy at time 3. while ¢y gets apyby; at time 3 and ajpbyy at time 4.

(Note that approximately only one third of processors in the network are active at a given time.
Indeed, it is possible to use about (wyw4)/3 processots in the network for multiplying two band

matrices with band widths wj and WZ-)

[Ch&: Sect? | < mead > systems2.vlsi July 24, 1978 4:25 PM

17

18

A, b, b, by, € €12 €3
22 Ay b, b, by by €y Ca Cp
8y, 83 Ay, b, by by by — €3y €12 C;
ad? . bl? cn| cﬂ?

p— L — L.

Fig. 2.4.1. Matrix multiplication.

A
i
1
]
1
]
]
¥
!
]

Fig. 2.4.2. The nctwork for the matrix multiplication C = AxB shown in Fig. 2.4.1.

I Ch&.: Sect.? | <mead > systems? visi July 24, 1978 4:25 PM

2.5. The LU-Decomposition of a Matrix

The LU-decomposition of a given a matrix A is the problem of computing lower and upper
triangular matrices L and U such that A = LU. (Cf. Fig. 2.5.1)

Fig. 2.5.1. The LU-decomposition of a matrix.

Once the L and U factors are known it would be relatively easy to solve a linear system Ax =
b or to invert A. In the following we describe a parallel LU-decomposition algorithm using a

hex-connected network.

We assume that A is either a symmetric pusitive-definite or irreducible diagonally dominant
matrix. It is well-known that under this assumption the L and U matrices can be oblained by
Gaussian elimination without pivoting. We show the rather surprising fact that Gaussian
climination cnjoys the same data flow as matrix multiplication and that ail the processors except
one perform the same inner product step. In fact, the same matrix multiplication nctwork in
Section 2.4 can be used to compute L and U matrices, provided that the processor at the top
pow computes minus the reciprocal of an input and the orientation of the other boundary
processors is properly altered. More precisely, at the special processor at the top, the data from
the south processor is passed unchanged to the north, minus its reciprocal is computed and sent
to the southwest processor, and a numerical value "17 is sent to the southeast processor. The
processors on the lefl hand "upper” side are rotated 120 degrees clockwise and always receive
0" from their northwest external inpul connections. Shnilarly, the processors on the right hand
“upper” side are rotated 120 degrees counterclockwise and always reccive "0" from their

northeast external input connections. (Of course, it is not necessary to actually input 0" for

[Ch&.: Scet)] < mead > systems2 vist July 241978 4:25 FM

19

20

these processors; we did so for the sake of uniformity.)

Suppose that L = (]ij) and U = (uij). Then Gaussian elimination computes the entries in L and
U using the following procedure:

1

u—:mijfori>j,1fori=jand0fori<j.

uy = aij(i) for i € jand 0 fori > j

O = %

my = - a7 a®

To illustrate our results, we consider a band matrix A with p = 4 and q = 4. When clements in
the band of matrix A are fed into the lower edge of the hex-connected network as shown in Fig.
2.5.2, the elements of L and U are output from the upper edge. Fig. 2.5.3 shows an enlargement
of the configuration after eight steps of the algorithm have been cxecuted. The flow of data on
the network is indicated by arrows in Fig. 2.5.3. The hexagons denote the standard processors
which perform the inner product step just like the corresponding processors in the matrix
multiplication network (cf. Fig. 2.4.2). The processor at the top denoted by a circle performs the
reciprocal and negation operations. As in the matrix multliplication algorithm, each processor only
operates once every three time steps. We will not give a formal correctness proof for the
algorithm here. But for understanding the algorithm the reader is advised to view the LU-
decomposition as the inverse problem of mulliplying a lower trangular matrix with 1's on the
diagonal to an upper (riangular matrix. Then the algorithm of this section can simply be
regarded as one which undocs the matrix multiplication algorithm of Scction 2.5. Having
realized this, one should be able understand also why the two algorithms use the same network
and enjoy the same data flow pattern. The idea of using the same network for both the forward

and backward problems scems to be general. It will be used again in Section 2.6.

[Ch8.: Sect 2 | <mead > systems2.visi July 24, 1978 4:25 PM

21

Fig. 2.5.2. The hex-connected network for pipelining the LU-decomposition of a band matrix

4and q = 4.

with p

[Ch8.: Sect.2 | < meud > systems2.visi July 24. 1978 4:25 PM

2

Fig. 2.5.3. LU-decomposilion after the first eight steps.

It is readily seen that if matrix A is nxn, then using the network shown in Fig. 2.5.2 the L and U
matrices can be computed in 3n+4 units of time. In general, if A is an nxn band matrix with
band width w = p+q-1. then with a network of no more than pq hex-connected processors, the
{.U-decomposition of A can be done in 3n+min(p,g) units of time. (It is possible to reduce the
number of required processors 10 about pg/3.) In particular if A is an nxn dense matrix, then n2

hex-connected processors can compute the L and U matrices in 4n units of lme, including 10

time.

[Ch&.: Sect.2 | < mead > systems? visi July 24. 1978 4:25 PM

23

2.6. Triangular Linear Systems

Suppose that we want to solve a linear system Ax = b. Then after having done with the LU-
decomposition of A (e.g., by methods described in Section 2.5), we still have to solve two
triangular linear systems Ly = b and Ux = y. This section concerns itself with the solution of

triangular linear systems.

Let A = (aij) be a nonsingular nxn band lower triangular matrix with band width w=q.
Suppose that A and an n-vector b--*(bl....,bn)T are given. The problem is to compute

x=(x1,....xn)T such that Ax=b. (See Fig. 2.6.1 for the case when q=4)

r a|| xl bl
3, 2n Xz b,
q < |
3y 45 35 Xy b,
L au aaz ad:l au xn : ba
Ay By By By Xy b,

L I I S
Fig. 2.6.1. The band (lower) triangular linear system with g=4.
We show that Lhis problem can be solved by the algorithm and nctwork almost identical to those
used for band matrix-vector multiplication in Scction 2.3. (Notc that the linear system problem
can be regarded as the inverse of the matrix-vector multiplication problem.) We illustrate our

result by considering the lincar system problem in Fig. 2.6.1. For this case, the network and the

general scheme of the algorithm are described in Fig. 2.6.2.

[Ch8.: Scct.2] <mead > systems2 vlsi July 24, 1978 4:23 PM

24

: '
a \
i a3 a, '
: i
' H
'
]
| a:!‘.l aaz :
: |
| !
1
S 35 a, v
' ’
4
i R
[|
) 22 2t :
) Pid \Y)
1 s 1
) ,’ i
' a!l 4 !
[} /’ \f/
1 ,('
J ’/ t
! t
: an ,’ v
[
vy
{
l 4 h
. yl homd | =~ yz Lod
--> X, x' =] - [= -
t
b;
bz
n
1
'
t
t

Fig. 2.6.2. The linearly connected network for solving the linear system shown in Fig. 2.6.1.

The y;, which are initially zeros keep moving Lo the left while the x;, % and b; are moving in the
network, as indicated in Fig. 2.6.2. The left end processor is special in that it performs x;+(b;-
yi//a;;. Each y; accumulates inner product lerms in the rest of the processors as it moves o the
lefl. Al the time y; reaches the lefl end processor it has the value a31Xy +2j9%9 +.. +8j . {Xj. 1
and, consequently, the x; computed by xj+(byy;May at the processor will have the correct value.

Fig. 2.6.3 demonstrates the the first ten steps of the algorithm.

[Ch&.; Sect.? | < mead > svstems? visi July 24, 1978 4:25 PM

Step Configuration Comments
Number

y, enters processor 4.

o
Iy ir
THIG
$ it

x
[s 1t

y, moves left one position.

[
s 1t
it
1l Ir
o

y, enters processor 4.

(V]
It
x
0
it
“‘<
Mt

£, = (b,- Y|)/an'
(x, = b,/a,,since y, = 0)

w
b i
14 it
s
THE
It

Yz = 8%,

Py
Iyt
_’K
1]
T
it
s
S
o
3t

> = Yy o x, = (b,- ¥ 2y,
5 i.] =i T B -~ ¥ = 23%-
6 e Y= = . Yole= Yy = 25X, + 35X,
= X’ LI feed = XI a = Yo ™ 3,,X,-

x, is output.
7 = “1oa T x; = (by- y3)/a,,.
= rlx Caz - =¥
2 U Y. = 8%, * 3, X,
- Y=t = Y |= Yo = a,%, F 3,% ¥ ag¥%,
8 =%, 20 [= =x, 2 | Yo = AgyXp.

X, is output.
Xg ® (bl— Y¢)/asn-

Ys = A,% + 2,%,

w0

TN
it

u)(

[-*)

5
Iyt
it

NX

Fig. 2.6.3. Solving a lower band triangular system with q = 4,

One can check that the computed xq, X9, x3 and xy all have correct values. With this network we

can solve an nxn band triangular linear system with band width w=q in 2n+q units of time.

[ChR.: Sect.2 | < mead »systems? visi July 24. 1978 125 PM

26

2.7. Applications and Comments
2.7.1 Variants of the Algorithms

Rather than the basic algorithms presented above it is their variants that will be used mostly in
practice. No attempt is given here for listing all the possible variants; it is important that the
reader understands the basic principles of the algorithms so that he can construct appropriate

variants for his specific problems.

We first note that although most of our illustrations are done for band matrices all the
algorithms work for the regular nxn dense matrix. In this case the band width of the matrix is w
= 2n - 1. If the band width of a matrix is so large that a corresponding algorithm requires
more processors than a given network provides, then one should decompose the matrix and

solve each subproblem on the network,

One can oflen reduce the number of processors required by an algorithm if the matrix is known
to be sparse. For example, the matrices derived from differential equations by using finite
differences or finite elcments approximations are usually "sparse band matrices.” These are
band matrices whose nonzero entries appear only in a few of those lines in the band which are
parallel to the diagonal, In this case by introducing proper delays to each processor for shifting
its data to its neighbors, the numbe= of processors required by the algorithms in Sections 2.3 and
2.6 can be reduced o the number of those diagonal lines which contain nonzero entries. This

variant is useful for performing iterative methods involving sparse band matrices.

It is possible to use our algorithms and networks to slove some nonnumerical problems when
appropriate interpretations are given to the addition (+) and mulliplication (x) operations. For
example, some pattern matching problems can be viewed as matrix problems with comparison

and Boolean operations.
2.7.2. Convolution and Discrete Fourier Transform

There are a number of important problems which can be formulaled as matrix-vector
multiplication problems and thus can be solved rapidly by the algorithm in Scction 2.3. The
problems of computing convolutions and discrete Fourier transforms are such exampies. If a

matrix has the property that the entries on any line parallel to the diagonal are all the same, then

[Ch&.; Sect.? | < mead > sysiems2.visi July 24, 1978 4:25 PM

the matrix is a Toeplitz matrix. The convolution problem is simply the matrix-vector

multiplication where the matrix is a triangular Toeplitz matrix (cf. Fig. 2.7.1).

— —_ — —
ar Xy b,
& a1 ' Xy bz
ag & g X3 0,
a, % & & X, | — | b
' Xs by
L I I L

Fig. 2.7.1. The convolution of vectors a and x

On the other hand the n-point discrete Fourier transform is the matrix-vector mulliplication,

th

where the (i,j) entry of the matrix is wﬁ'l)(j'l) and « is a primitive n*? root of unity (cf. Fig.

2.1.2).

— — — —
1 1 1 1 Xy b,
1 w w2 w3 X, b,
1 w2 ot b X3 o
1 wd Wb Lo X4 - by
Xg by

l.— L L

Fig. 2.7.2. The discrete Fouricr transform of vector x.

[Ch&.: Sect.2] <mead »systems2.visi July 24, 1978 1:25 PM

Therefore using a lineariy connected network of size O(n) both the convolution of two n-vectors
and the n-point discrete Fourier transform can be computed in O(n) units of time, rather than
O(n log n) as required by the sequential FFT algorithm. Moreover, note that for the
convolution problem each processor has to receive an entry of the matrix only once, and this
entry can be shipped to the processor through horizontal connections and stay in the processor
during the rest of the computation. For the discrete Fourier transform problem each processor
can in fact generate on-the-fly the powers of w it requires. As a result, for these two problems it
is not necessary for each processor in the network to have the external input connection on the

top of the processor, as depicted in Fig. 2.3.2.

In the following we describe how the powers of w can be generated on-the-fly during the process
of compuling an n-point discrete Fourier transform. The requirement is that if a processor is i
units apart from the middle processor then at time i + 2j the processor must have the value of
wjz + 4 for all i, j. This requirement can be fulfilled by using the algorithm below. We assume
that each processor has one additional register R;. All processors except the middle one perform
the following operations in each step, but for odd (respectively, even) numbered time steps only
processors which are odd (even) units apart from the middle processor are aclivated. For all

processors except the middle one the contents of both R, and R, are initially "0".

1. Shift. If the processor is in the left (respectively, right) hand side of the middle processor
then

- R, gels the contents of register R, from the right (respectively, left) neighboring

processor.

- R; gets the contents of register R, from the right {respectively, left) neighboring processor.
2, Multiply.

RA - RA X R[

[Ch&.: Sect.2 | <mead >systems2.vlsi July 24. 1978 4:25 PM

The middle processor is special; it performs the following operations at every ever numbered time

step. For this processor the contents of both Ry and R are initially "1".
L Ry « Ry x RZ x w.

2. Ry «+ Ry x w.

2.7.3. The Common Memory Access Pattern

Note that all the algorithms given in this section retrieve and store elements of the matrix in the
some order. (See Fig. 2.3.2, 2.4.2, 2.5.2, and 2.6.2.) Therefore, we recommend that matrices be
always arranged in memory according to this particular ordering so that they can be accessed

efficiently by any of the algorithms.
2.7.4.The Pivoling Problem

In Section 2.5 we assume that the matrix A has the property that there is no need of using
pivoting when Gaussian elimination is applied to A. What should one do if A does not have this
nice property? (Note that Gaussian elimination becomes very incfficient on mesh-connected
processors if pivoting Is necessary.) This question motivated us to consider Givens’
transformation for triangularizing a matrix, which is known to be a numerically stable method. It
turns out that, like Gaussian climination without pivoting, the orthogonal factorization based on
Givens transformation can be implemented naturally on mesh-connected processors, although a

pipelining implementation appears to be more complex.
2.8. Concluding Remarks

Research in interconnection networks and algorithms has been traditionally motivated by large
scale array computers such as ILLIAC IV (see, for example, Kuck[S] and Stone [3]). The results
presented in this section were, however, motivated by the advance in integrated circuit
technology, though they are certainly applicable to parallel array computers. We have shown that
many basic matrix computations can be done very ¢fficiently by special purpose mulliprocessors,
which may be built cheaply using the current technology. The common feature of our algorithms
is that their data flows are very simple and regular, and they are pipeline algoriims. We have
discovered that some data flow patterns and interconnection schemes are fundamental for matrix

computations. For example, the two-way flow on the linearly connected network is common 1o

{ Ch8.: Sect.2 | < mead > systems2.vlsi July 24. 1578 4:25 PM

28

30

both matrix-vector multiplication and solution of triangular linear systems (Sections 2.3 and 2.6),
and the three-way flow on the hexagonally mesh-connected network is common to both matrix
muitiplication and LU-decomposition (Sections 2.4 and 2.5). A practical implication of this fact
is that one device may be used for solving many different problems. Moreover, we note that
almost all the processors needed in any of these devices are the inner product processor
postulated in Section 2.2. A careful design for this processor is desirabe since it is the work horse

for all the devices presented.

For the important problem of solving a dense system of n linear equations in ((n) time on nxn
mesh-connected processors, we have improved upon the recent results of Kant and Kimura [13].
The basis of their results is an theorem on determinants which was known to J. Sylvester in 1851.
Their algorithm requires that the matrix be "strongly nonsingular” in the sense that every square
submatrix is nonsingular. It is sufficient for our algorithms in Section 2.5 that the matrix be

symmetric positive-definite or irreducible diagonaily dominant.

We end this section by noting that processor communication will likely continue to dominate the
cost of parallel algorithms and systems. Communication paths inherently take more space and
energy than processing elements. We regard the problem of minimizing communication costs as
fundamental. We hope the results of this section have demonstrated that the communication
problem in paralle! algorithms is not only tractable but also interesting. We expect that a large

number of algorithms having small communication costs will be discuvered in the future,

[Ch&.: Scct.? | < mead > systems2.visi July 24, 1978 4:25 PM

3. Hierarchically Organized Machines

We know that human organizations use hierarchical structure to extract the greatest possible
benefit from the daily activities of tens of thousands of individuals. We know that complex
systems can be constructed by subdividing them into less complex systems, which are again
subdivided, as many times as nccessary until the resulting systems are simple enough to construct
easily. We have seen that the organization of real estate on the silicon surface dictates a
hierarchical communication system for any device which must support global communication.
Such hierarchical communication exists in conventional compulcrs only in a limited way. Are
there new machine structures which communicate hicrarchically, which support systems that
consist of an arbitrary hierarchy of subsystems, and which can coordinate the activitics of any

number of submachines?

Binary Trees

Consider any number of processors physicatly arranged as a binary Lree. Each processor has two
subprocessors which it can control. These subprocessors, in turn, have two sub-subprocessors, and
so on. A possible layout of such a binary proccssor tree is shown in figure 8. At the lowest level
a small array of ordinary memory cells, labeled My is accessed Ly the lowest level processors,
labeled Py The combination of one lowust level processor with its associated memory is the
element of computing power. Thesc units are grouped together in pairs and accessed by the next
level processor, labeled Py, Two Py’s with their associated 1owef level units are grouped together
and accessed by the next level higher processor, labeled Py. This arrangement is repeated
recursively until an entire silicon chip s covered by the processor memory hierarchy. The rate at
which information can be transferred within a processor is in independent of the level of the
processor. As the wires within a processor get longer, the drivers must become proportionately
larger to drive them. The highest level processor which communicates off the silicon chip to the
outside world has large drivers and hence is able lo drive off chip without suffering a scvere
performance penalty. Such a machine can thus be extended to a large number of individual

chips and still maintain the full speed of the individual processors within it

A conventional computer is a special case of this organization, consisting of a memory ccll and a
bottom-level processor. Also, there is another way to map a conventional computer onto a binary
tree of processors. View the highest level processor as a cpu and load all subprocessors with

programs that merely decode requests for the memory below them. Loaded with these programs,

[ChR.: Sect.3] <mead > systems2visi July 26. 1978 7:27 AM

3l

32

the structure between the two extreme levels becomes a memory decoder tree between a

conventional cpu and its memory.

More importantly, this binary tree structure is a completely general, concurrent processing engine
and can be used for problems decomposed in an arbitrary hierarchical way. If a problem requires
more than two subprocessors at any level, a subtree of physical processors can be operated as one
logical processor, matching the problem’s structure. Algorithms for constructing logical processors
of any size are given in the next section. The tree has inherent in it the ability for all processors
to compute concurrently and hence has a vaslly larger potential computing prower than a

conventional machine using a similar amount of silicon real estate.

Since the number of processors dccreases exponentially with the level, the total bandwidth
available, whether processing or communication, decreases exponentially with the level. Half of
the lotal bandwidth of the system is concentrated at tevel 0, one quarter at level 1, one eighth at
level 2, etc. A particular computation is well matched to such a processor if its bandwidth
requirements are concentrated at the lowest levels. If an algorithm requires more communication
al any level than the structure provides, it will not be able to take advantage of all the processing
power of the structure. An extreme example of this sort is the von Newnann machine where all
computation occurs at the highest leve! processor and the lower level processors arc used only one
al a time as an ordinary memory. Such a machine requires equal bandwidth at cach level of the

hierarchy and is an exponential waste of the resources of the machine.

It is also clear that such a structure is lestable if a single processor is testable. Each supervisor
merely loads a test program into its two subordinates and exercises them. Once it has established
that both work correctly, it loads each wilh the program it just used Lo test them. A tree of N

levels can thus be tested in N times the time necessary Lo test one processor.

It is difficult to predict how any radically different machine structure will perform in a real
compuling environment. Ideally, one should implement a number of complete systems, spanning
a large range of user requirements, in order Lo gain experience with the sirengths and weaknesses
of any given scheme. Failing that, we can at least map certain algorithms onto our machine in
the hope that they will shed light on its capabilities and its problems. Several such mappings are
presented in the next scction. We plan to develop others and we hope our readers will contribute

still morc for subsequent editions of this text.

[ChR.: Sect. 3| <mead > svstems2 visi July 26, 1978 7:27 AM

Algorithms for the Tree Machine
Section contributed by Sally Browning, Caltech
A, A Word About Notation

The notation chosen to describe the processor tree and the algorithms that run in each node of
the tree must emphasize that the number of different flavors of processors is small (usually one).

That is, a few templates describe them all

Sccondly, we want to emphasize locality. The processor tree is interesting because each node is a
powerful computing engine that can work independent from its neighbors. Our notation must be

one that encourages sclf-sufficient modules.

We will use a2 modificd version of the SIMULA syntax. The CLASS concept of SIMULA
provides us a means of describing a template that will be instantiated as the nodes of the tree.
We can designate individual procedures and data elemenls as either local to this node or visible

to the outside world. And we can use recursion to indicate flow of execution through the tree.

Most importantly, though, SIMULA's CLASS construct is designed for cxpressing and enforcing
locality. SIMULA is an object-oriented language, and, as such, encourages the programmer to
think in terms of objects doing operations to themselves. The knowledge of the representation
and meaning resides in the class, not in some ommipotent overlord. This is exactly the notation

we need to describe (he nodes of our tree.

Because we are describing highly concurrent algorithms we need (o get around the sequential
nature of SIMULA statcments. We expand the mecaning of the semicolon symbol. In
conventional SIMULA, semicolon is used to terminate a statement. We use semicolon 10 make a
statement about the execution as well. Read semicolon as "Al this point, all statements in
progress must be terminated before advancing to the next statement.” Lincfeed will be used to
indicate syntactic end of the statement. In other words, linefecds are used to sepurale statemenls;

semicolons are used to separate groups of statements which can execule concurrently.

[ChA: Sect 3] < mead >systems? vIsi July 26. 1978 727 AM

13

B. A Word About Branching Ratios

While the physical structure of our tree restricts each processor to two descendants, we can
impose a logical siructure that allows an arbitrary branching ratio. Each logical processor consists
of several physical processors, enough to provide the desired number of offspring. A logical node
with N children is built from N-1 physical nodes and is Mog N7 levels deep. Figure 1 shows

some sample logical processors.

We can describe the process of mapping our logical structure onlo the physical tree in SIMULA.
We define two CLASSes; a node and a processor. A node represents the physical entity. It has
exactly two descendants. A processor will refer to the logical entity, with an arbitrary number of

children.

In the SIMULA dcfinitions, N represents the number of descendants desired. As we build the
logical node, we attempl to keep it balanced. That is, all availabic physical nodes on a given level
of the tree will be used before a new level is added. Nodes on a given level are added to the
logical processor from left to right, as in Figure 1. Note that CLASS Processor is a refinement of
CLASS Node that knows how to choose one of N descendants.

CLASS Node(n); INTEGER n;
BEGIN

REF(MNode)eft, rght:

linit code to build logical node:

If n>2 THEN icft;-NEW Node{{n+1)//2);

If n>»3 THEN rnght-NEW Node(n//2);
END of CLASS Node;

Node CLASS Processor:
BEGIN

REF(Processor) PROCEDURE Son(s); INTEGER s;
BEGIN REF(node)p:
pIF s< =(n+1y/2" THEN left ELSE right:
WHILE NOT (p IN Processor) DO
p:-IF s< =(pn+1)//2 TUEN pleft ELSE p.right:
Son:-p:
END of PROCEDURE Son:

END of CLASS Processor:

| Ch&.: Sect.3] <mead > systems2 vlsi Jjuly 26. 1978 7:27 AM

ESELY R T e¥e

Figure 1. Logical Nodes (solid color) with Two to Seven Descendants

34 24 234 14 134 124 1234

Figure 2. Systematic Generation of Subgraphs in a Graph of 4 Nodes

II. Algorithms with Polynomial Complexity

One of the traditional approaches to solving a problem that is too large or teo complex when
considered as a whole is to break the problem recursively into pieces that are manageable. The
point is to apply as many concurrent processors to the problem as possible in order to reduce
exccution time. We will look at two algorithms that use this approach, sorting and matrix
multiplication. While both of these problems are solved nicely on celtular arrays, it is instructive
to map them onlo a machine with different communication properties.

A. Sorting in linear time.

We use a binary trce with depth log N to sort N numbers. The sort is accomplished as a
byproduct of loading the numbers into memory and then reading them out again. The numbers

themsclves are never in sorted order internally, but come out of the tree in the desired order.

This algorithm is an implementation of heap sorting, one of the well known techniques used in
sequential machines {14). It is a particularly interresting example because it illustrates a
fundamental issuc in coucurrency. It is well known that sorting on a sequential machine can be
done with O{NlogN) comparisons. Heap sorting requires O(N?) comparisons, and has been
considered inferior for that reason. However, it has been shown on very fundamental grounds
that if communication is restricted to nearest neighbors, at least N? comparisons are required [17].
The apparent advantage of the O(NlogN) algorithins comes as a direct result of longer
communication paths. It is also clear that no scheme will be able to produce an ordered set of
numbers until all numbers to be sorted are loaded into the machine. For this reason, the best we

can expect is to use N processors for O(N) cycles.

The algorithm that runs in each processor has a procedure for loading the tree called Fillup and a
procedure invoked during the output cycle called Passup. Fillup keeps the largest number scen to
date, and passes the smaller one to the right or left child, keeping the tree balanced by alternating
sides. Passup returns U;is processor's current number and refills itsclf with the larger of the

numbers stored in its descendants. This action is pipelined so that the largest number is always

available in the root.

[ChR.: Sect.3 J < mead > systems?. vist July 26. 1978 7:27 AM

35

36

Below is a SIMULA description of the aigorithm running in each processor. The variable number
holds the number stored in this processor. The boolean symbol empty reflects the validity of that
number., The boolean identifier balanced is used to keep the tree balanced as it is loaded.

CLASS processor;

BEGIN
INTEGER number;
BOQLEAN balanced,empty;
REF(processorleft,right;

PROCEDURE fillup{candidate); INTEGER candidate;
BEGIN
IF empty THEN
BEGIN
numbet; = candidate
empty: = FALSE;
END
ELSE
BEGIN
IF candidate > number THEN lswap;
BEGIN INTEGER
t: =candidate;
candidate: = number;
number: =t;
END:
IF balanced
THEN left.fillup{ candidate)
ELSE right fillup{candidate);
palanced: = NOT balanced;
END;
END of procedure fillup:

INTEGER PROCEDURE passupnumber:
BEGIN
passupnumber: = number;
IF left==NONE AND right==NONE THEN empty:=TRUE lits a leaf;
ELSE
IF leftempty THEN
BEGIN
IF rightempty THEN empty:=TRUE lieft & right subtrees empty:
ELSE number: =right passupnumber: 'fill from right son;
END
ELSE .
IF rightempty THEN naumber: =leftpassupnumber !fill from left son;
ELSE number:=IF left.number > right.number
THEN left passupnumber ELSE right passupnumber:
‘take the larger of the two.
END of procedure passupnumber:
linit code:
empty: = FALSE;
balanced: = TRUE;
Neft and right set:

END of class processor;

[Ch&: Sect.3] < mead > systems2.vlsi July 26, 1978 7:27 AM

B. Matrix Muliiplication.

Suppose we have two NxN matrices to multiply together. By using the divide and conquer
approach, we can break the problem down until we have N3 problems that multiply two numbers
(1x1 matrices) together. We reassemble the matrix on the way back up the tree.

We use the following rule to subdivide the problem:

Let A, B, and C be NxN matrices such that AB=C. We subdivide all three into four
N/2xN/2 submatrices, e.g. A1y, Ay Ajqs Aga. '

Then C = (Ail Bl] + AIZBZJ), ij=1.2.

We will consider matrices of size N=2M without loss of generality. A tree to mulliply two
matrices of size 2M will have M levels of processors that add two matrices together, M levels that
split and assemble the matrix, and one level (the leaf nodes) that multiply two numbers together.

Thus the tree is 2M +1 logical levels deep.

Each adder node has two descendants, and each split/assemble node has four descendants. Thus
the physical structure will use two levels to simulate the 4-way branching, and the tree will, in
fact, be 3M levels deep. That is, the tree is 3log N levels deep and therefore has N3 leaf nodes.
Thus a total of IN3-1 processors are used in the computation.

Let us look at the communication requirements between nodes of the tree. The root node must
be prepared to store the entire matrix. The adder nodcs in level one (the root is level () will
each deal with a quarter of the original matrix, as will the split/assemble nodes in level three.
The further down the trce you go, the smaller the matrix the node must store and transfer.

However, note that each of the NZ elements must travel the entire length of the tree and back
again during the execution of the algorithm. While communication requirements are low at the

leaves, they are extremcly high (roughly N2 numbers (o receive, and {N/2)2 to pass down to each

descendant) at the root,

In the algorithm given below, the add operation takes N? time. By splitting this up among
parailel processors by row (N of them) or clement (N2 of themn) we can make (his operation
linear or constant in time. However, the problem is still limited by the split/assemble process
that requires cach element to travel the height of the tree. That is, the best time performance we

can achieve with this algorithm is NzlogN.

{ ChR: Sect.3 | < mead >systems?.visi July 26, 1978 7:27 AM

LY

]

We now present a SIMULA representation of a matrix and use it in the algorithm that follows.
The algorithm uses two kinds of processors, the adders and the split/assemble nodes. Each

matrix is divided into submatrices as follows;

CLASS matrix(n); INTEGER n;
BEGIN

INTEGER ARRAY vai[l:n.lin];
REF{matrix) PROCEDURE quarter{select); INTEGER select;
BEGIN REF(matrixjaq; INTEGER ijkl

aq:-NEW matrix{(n//2);

ii=j:=1;

IF select=2 THEN j:=n//2+1

ELSE IF select=3 THEN i;=n//2+1
ELSE IF select=4 THEN i:=};=n//2+1;
FOR k;=1STEP 1 UNTIL ag.n DO

FOR 1: =1 STEP 1 UNTIL ag.n DO
aq.vallk,l}: = valfi + k-1 + I-1];
quarter:-aq;
END of procedure quarter;

REF(matrix) PROCEDURE compose(a.b.c.d): REF(matrix)a,b.c.d;
BEGIN INTEGER ij;

FOR i: =1 STEP 1 UNTIL an DO
FOR j: =1 STEP 1 UNTIL a.n DO
val[ijl=a.valfij]:
FOR i:=1 STEP 1 UNTIL b.n DO
FOR j:=1 STEP 1 UNTIL b.n DO
val(ij +n//2): =b.valli j;
FOR i:=1 STEP 1 UNTIL cn DO
FOR j: =1 STEP 1 UNTIL ¢.n DO
valli + n//2 jf: = c.val[ij]:
FOR i:=1STEP 1 UNTIL d.n DO
FOR j:=1 STEP 1 UNTIL d.n DO
valli+n//2j+ n/72): = dvallij]: N
compose;-THIS matrix;

END of procedure compose:

END of class matrix;

[ChR: Sect.3] ¢ mead > systems2.vlsi July 26. 1978 7:27 AM

CLASS processor(size);
BEGIN

REF{matrix)mat;
REF(processorjone,two three, four;

REF(matrix} PROCEDURE multiplv(a,b). REF(matrixja.b;
BEGIN REF(matrix)c;

¢:-NEW matrix{a.n},
IF cn=1 THEN
c.val[L,1]: =a.val[1,1]*b.vai[l,1]
ELSE
c.compose(one.mult&add(a. quarter(1),b.quarter{1}.a.quarter(2).b.quarter(3)),

two.mult&addia. quarter{ 1).b.quartert 2).a.quarter(2).b.quarter(4)),
three. mult&addia. quarter(3).b.quarteré 1).a.quarter(4),b.quarter(3)).
four. mult&add(a.quarter(3).b.quarter{ 2).a.quarter{4),b.quarter(4)});
multiply:-¢;
END of procedure multipty;

REF(matrix) PROCEDURE mult&add(a.b.c.d); REF(matrix)a.b.c.d;
BEGIN REF{matrix)cl.c2; INTEGER ij:

cl:-one.multipiy(a.b); c2:-two.multiply(c,d);
FOR t:=1 STEP 1 UNTIL ¢l.n DO

FOR j:=1 STEP 1 UNTIL ¢2.n DO
clvalfij]: = cLvallij]+ c2.vallijl;
muit&add:-cl;
END of precedure mult&add:;

END of class processot;

[Ch8.: Sect 3] <mead > systems2.visi July 26, 1978 7:27 AM

39

1. Solutions to Nonpolynomial Problems.

Complexity theory [9,10] has established a context within which it is possible to make certain
statements concerning the inherent complexity of computations. These statements are universally
couched in the terminology of sequential machines. There is, however, a class of problems for

which the possibility of large scale concurrency has been addressed.

Consider a computation in which there are N conceptual steps. At each step, g alternative
branches may be taken. Such a computation may be viewed as a trec with qN possible outcomes.
If at cach step there is cnough information available to decide which branch to take, a sequential
machine will be able to complete the computation in KN cycles where K is the average number
of cycles spent at each step. The dependence of the number of machine cycles upon the number
of conceptual steps is thus linear. The problem is said to be linear in N or of order N, written
O(N).

In many computations, not enough information has been gencrated by previous steps to
determine which branch to take. Later steps will gencrate this information, but we cannot
execute the later steps until after the earlier steps! In such cases, the sequential machine must
simply try one branch at random. If it concludes afler excculing subsequent steps that the

particular branch taken was wrong, it must backtrack to the original point, and try another route.

In a wild flight of fancy, we might become frustrated with this behavior and wish we had a
machine which was so smart that it could telt if it was on the right path, even if there was no
possibility of choosing such a path with the information at hand. It would make an arbitrary
choice at each branch--and always be right! Such a machine cannot, of course, be built with real
togic operating with real programs. However, we can imagine such a machine in much the same
way we imagine a space ship traveling faster than the speed of light. Machines of this sort are

called nondeterministic, since there is no way this behavior can be specified on rational grounds.

Returning to our problem, it is clear that a scquential nondcterministic machine could solve the
problem in O(N) cycles. Problems which can be solved by such an imaginary nondeterministic
machine in a number of cycles which is bounded by some fixed power of N are said to be

Nondeterministic-Polynomial abbreviated NP {199].

It is quite clear that the behavior of a nondeterministic machine can be simulated by a set of

concurrent deterministic machines. iach machine can simply follow a scparate path through the

§ Ch&.: Sect.3] < mead > systems2visi July 26, 1978 7.27 AM

tree. At the end, there will be qN processors, representing each possible outcome of the
computation. Although different problems will have different branching ratios (q) and different

depths (N), ail can be mapped onto the tree machine using techniques described earlier,

It has been shown that there is a class of problems of this sort where there are no shortcuts.
Working one path through to the end gives no clue concerning the outcome of another path.

Such problems are, in some sense, maximally difficult. They are called NP-complete problems.

A great deal of lore has developed concerning NP-complete problems. It has been shown that, in
some sense they are all "equivalent” [18]. Suppose machine Y can solve a single kind of NP-
complete problem. The equivalence property states that therc is an algorithm which will run on
an ordinary sequcntial machine in a polynomial number of cycles that transforms a description of
any NP-complete problem into a description of a problem solvable by Y. [f Y can solve its NP-
complete problems in polynomial time, then it can be used to solve any NP-complete problem in
polynomial time. If Y requires exponential time, any NP-complete problem will also require

exponential time.

The methods we use to describe trees of different branching ratios to a binary tree machine are
very similar 1o the methods used to map an NP-complete probicm onto a machine that solves
another. When a tree with branching ratio greater than 2 is mapped onto a binary tree, the depth
of the tree increases. Mappirng a tree with branching ratio less than 2 will decrease the depth. In
a similar fashion, the algorithm that transforms NP-complete problems may increase the number
of alternative branches (q) and decrease the number of conceptual steps (N) or vice-versa. Thus
the mappings that cstablish the equivalence class of NP-complete problems are exactly like the

mappings from trees of one branching ratio to another.

The theory that establishes the NP-complete equivalence class offers direct guidance in mapping
such problems onto a highly concurrent structure. Because we can solve any one problem in our
concurrent lree machine, and because we know a mapping from an arbitrary NP-complete

problem into this one, we can solve the arbitrary problem.

The traditional approach to solving the class of problems thal grow exponentially has been to
recognize spacc or processing power as a limited resource. The problems have exponenual time
complexity because the solutions proceed sequentially. As VLSI becomes a reality, however, il is

interesting to treat processors as an unlimited resource and look at the time complexity of these

[Ch8.: Sect.3 | <mead >sysiems? visi July 26, 1978 7:27 AM

41

42

problems when they take advantage of concurrency. We emphasize, however, that while the time
complexity is significantly reduced, problems require an exponential number of processors. If
you solve a problem of reasonable size, you will use an enormous number of processors. In a
later section, an example is worked for an NP-complete problem that grows as NN, The prablem
uses a graph of 4 nodes, and our concurrent solution requires 95 processors. A graph of 10 nodes

could use as many as 2‘1010 processors!

We will examine two NP-complete problems. The clique problem has time complexity of O(2N)
when the possible cliques are considered sequentially. The color cost problem is O{NN). By
taking advantage of the parallel consideration of possible solutions, using O(ZN) and O(NN)
processors respectively, we will present solutions to these two problems that take polynomial, in

fact O(Nz), time.

! Ch8.: Sect.3] < mead > systems2.vist July 26. 1978 727 AM

A. The Clique Problem.

A clique is complete subgraph. That is, given an undirected graph G, a clique C contained in G
is a graph such that for all nodes nm in C, there is an edge (n.m). Finding the largest clique in
an arbitrary graph is an NP-complete problem.

Given a graph G with N nodes, numbered from 1 to N, we will consider each node sequentially
and generate potential cliques. Ignoring the edges for a moment, a collection of M nodes leads to
M potential cliques. This, interestingly enough, is the number of nodes in a binary tree of
depth M. We will use this fact to generate the cliques in our graph incrcmentally.

Each level in the tree represents the addition of another node to be considered. Each processor
at a given level will spawn two descendants. The left child will consider the subgraph consisting
of the new node and all but the last node of the parent subgraph. The right child’s subgraph will
add the new node to the complete parent subgraph. In (his manner, we generatc all possible
subgraphs for a graph of N nodes. Figure 2 is an example for N=4.

If each node stores an edge list, the tree can be pruned of subgraphs that are not cliques. The
number of processors required is reduced, but the worst case behavior is identical. At most aN-1
processors are required to solve the problem for a graph of size N. Our solution, which uses
pruning, regquires O(Nz) time.

Each processor stores the edge list as a boolean matrix called edge, an integer size that holds the
size n (number of nodes) of the clique this processor represents. An array called cligue containg
the numbers of the nodes that form the clique.

When a processor is activated, by a call to the procedure Findeligue, it will already have a clique
assigned to it. Findclique's purpose is to generate cliques for its descendent nodes. It does this
according to the method described above. That is, if Lhe subgraph that contains the new node
and all of the nodes in c¢ligue except the last one is a clique, it will be assigned to the left child.
Likewise. if the addition of node to cliqgue yields a complete subgraph. the right child will
represent it. If either of the subgraphs is not complete, the descendant will not be generated.

The tree of all cliques is generated iteratively by considering each node of the graph in turn. In
the main program given below, p is a reference to the root processor. Each processor in the tree
will pass up the largest clique among its children. "Thus the root returns the size of the largest

clique known to date.

[Ch8: Sect.3} < mead » systems2 vist July 26. 1978 7:27 AM

43

CLASS processor;

BEGIN
REF(processor)left,right;
BOOLEAN ARRAY edge{l:n,1:n];
INTEGER ARRAY clique{l:n];
INTEGER size;

BOOLEAN PROCEDURE IsClique;
BEGIN INTEGER ij;
IsClique: =TRUE;
FOR i:=1 TOQ size DO
FOR j:=1TO size DO
IF NOT edgefi,jj THEN IsClique: = FALSE;
END of procedure IsClique;

REF(processor) PROCEDURE FindClique(node);
BEGIN INTEGER 1 REF(processor)Lr,
l: =r: =THIS processor;
IF size=0 THEN tthis is the root node;
BEGIN
cliquefl]: =node
size:=1
FindClique:-THIS processor;
END
ELSE
BEGIN
IF leftsize=0 THEN
BEGIN
FOR i: =1 TO size-1 DO left.cliquefi]: = cliqueli]
left.clique(size]: = node
leftsize: =size;
IF NOT left.IsClique THEN leftsize: =0;
END
ELSE 1:-left FindClique{node);
IF nght.size=0 THEN
BEGIN
FOR i:=1 TO size DO right cliquefi]: = clique[i]
right.cliquefsize + 1]: = node
right.size; =size + 1;
IF NOT right.IsClique THEN rightsize: =0;
END
ELSE r:-right. FindClique(node);
IF Lsize > size THEN ‘
BEGIN
IF 1.size > rsize
THEN FindClique:-1
ELSE FindClique:-r;
END
ELSE IF rsize > size
THEN FindClique:-r
ELSE FindClique:-THIS processor.
END:
END of procedure FindClique:

size: ={):
Neft and right set up correctly:
'read in edge hist:
END of class processor:
Imain program to start it all up;
BIGIN REF(processor)largest: INTEGER i
TFOR i:=1 TO n DO largest:-p.findclique(node):
END of main:

I Ch8.: Sect.3] <mead > systems2.visi Tuly 26. 1978 7:27 AM

6

Figure 3. Sample Graph for Clique Problem

56 |1 46 [[456 1] 36 | 1356|1346 | 13456

Figure 4. Tree built to find Cliques in Graph of Figure 3

134

123

Figure 3 gives a sample graph of six nodes. Figure 4 shows the processor tree that is built and
used to find the cliques in the graph, The tree has height 6, and the largest cliques have 4 nodes.

Each processor in the lree represents a clique in the graph.
B. The Color Cost Problem.

This NP-complete problem is an adaptation of the K-colorability problem. Given an undirected
graph G of N nodes and a set of N colors, each with an associated cost, we want to find a

minimum cost coloring of the graph such that no nodes sharing an edge are the same color.

There are NN possible colorings of the graph. 'Evaluau'ng them sequentially produces a solution
in time O{NN). We present a parallel algorithm that requires O(Nz) time and O(NN) pProcessors.

In this problem we will make use of the ability lo simulate arbitrary branching ratios on our
binary tree. We will discuss the problem in terms of logical nodes with up to N descendants. An
earlier part of this section describes the method of mapping logical structures onto the physical

one.

As in the clique problem, cach level in the processor tree represents the consideration of another
node. That is, level one shows possible colors for the first node, level two colors the second node

based on the choices made for at level one, and so on. We will describe the generation of the

potential colorings.

Each node has an edge list called edge and a list of costs indexed by color number called
colorcosts. There is an array called coloring that reflects the color choices for preceding nodes,

and a boolean array called colors that is used to generate the possible colorings for this node.

The algorithm, given in procedure color begins by assuming that all colors yield valid colorings.
The array coloring is used to climinate those colors that have been used to color nodes that share
an edge with this node. This reduced set of colors, all of which are legal colorings, is used to

spawn descendants, one for each coloring of this node.

When the tree is N levels deep all the legal colorings have heen generated. The leaf nodes
calculate a cost for the coloring they represent, and cach parent node takes as its cost the least

cost among its children. Thus the minimum cost coloring is stored at the root.

{ Ch8.: Sect.3} <mead > systems2 vlsi July 26, 1978 7:27 AM

45

Here is the algorithm that will run in each processor.

CLASS processor;

BEGIN
BOOLEAN ARRAY edge[l:n.l:n].colorsfl:n};
INTEGER ARRAY coloring{l:n]colorcosts(1:n];
INTEGER. cost;

PROCEDURE color{node); INTEGER node;
BEGIN INTEGER i
IF node>n THEN
BEGIN
cost: =0;
FOR i:=1 TO node-l DO cost: =cost+ colorcostcoloring(i]];
END
ELSE
BEGIN
FOR i:=1 TO node-l DO IF edgeli,node] THEN
colors[coloring(i]]: = FAISE;
FOR i:=1 TO n DO
IF colors{ii THEN
BEGIN
son(i).coloring{node]: =1;
son(i).color{node + 1):
END
ELSE son(i):-NONE;
COst: = maxcost;
FOR i:=1 TO n DO
IF (JF son{i} = NONE THEN FALSE ELSE cost> son{i).cost)
TIIEN cost: =son{i}.cost;
END;
END of procedure color;

REF(Processor) PROCEDURE Son(s). INTEGER s;
BEGIN REF(node)p:
p:-IF s<=(n+1}/2 THEN left ELSE right:
WHILE NOT ({(p IN Processor) DO
pi-IF s =(pn+1)//2 THEN pleft ELSE p.right;
Son:-p;
END of PROCEDURE Son;

END of class processor;

Let us work a small example. We will usc the graph and color sct given in Figure 5. Figure 6
shows the colorings and costs arrived at by the algorithm. Each level of the tree represents a
node of the tree. Thal is, if the root is fevel 0, the first node is colored in level 1, and level 4
represcnts potential colorings for the fourth node. Besides representing a part of a coloring, each

node also contains the minimum cost coloring found among its decendent colorings.

[Ch8: Sect.3] <mead>systems2visi July 26. 1978 7:27 AM

¢ aIndr.{ Jo oidwexy My 10) ag 180y-1010) 9 anfig

8] [[¢] bol L] B 0] s} (o (st [of (el o CoF] (od (2] B B [+ G BT T BT Bl TR DI 18] A I G) CI G ER B BT LG BT BB B BB
2 1 1IN 5 N I 1 I 1 S 5 N 3 B C N VI C N CF B 1 O G A I CJ [C I G B G I 0

g 4 d g ¢ g d ;| g g 8 i

wo[qoId 1500)-10[0D) 10 o[qr], lojo) pur yduo sdung ¢ a1nSig

13 oriq
z pal L4 t
1 udMg
0 aniq
150D 10100 ¢ !

We see that there are two equivalent colorings that yield the minimum cost of 3. Coloring nodes
(1,2,3,4) either (green,blue,red,blue) or (red,blue,green,blue) gives us a coloring with minimum

cost,
V. Conclusions

The tree of processors we have described is a general computing structure. Each node in the tree
is a processor with gencral computing capability. It is not designed with a specific problem or

class of problems in mind.

The most dramatic results are achieved when the machine is applied to a problem that can take
advantage of the concurrency the tree of processors provide. We have presented solutions to four

problems that, in varying degrees, have this characteristic.

The four examples we have presented in this scction can be summarized by citing the execution
time and the number of processors required. Note that the total chip area of a tree machine is

related to the number of processors.

Problem Time Processors
Sorting N N

Matrix muitiplication N2iogN N31
Clique N2 aN-1
Color cost N2 NN

If an algorithm exhibits expone'nlial growth, as do Lhe clique and color-cost problems, the lower
bound on time complexity is N. A tree with an exponential number of leaves will be O(N) deep.
Again, our solutions do not realize this lower bound. The loading of the edge matrix is an O(Nz)
operation. Additionally, each node of the graph is considered in turn, and causes the traversal of
a tree of depth up to N. This too is of O(Nz) in time. Are there better algorithms that can

achieve the lower bound complexity?

Because we are used 1o designing machines for a sequential environment, we do not yet
understand the effect that concurrency will have on the conceptualizalion of problem solutions.
An upen question is to characterize those probiems that can benefit from the concurrency

provided by our tree of processors. Are the communication paths of the tree adequate for this

[ChR.: Sect.3] <mead > systems2.vlIsi July 26, 1978 7:27 AM

47

48

class of problems? Can we design algorithms with the traditional programming notations, or does
their sequential nature hide the concurrency? Can NP-complete problems be solved in O(N) time
with an unlimited number of processors? What can be said about the concurrency of NP-
complete problems in general? These are just a few of the interesting questions that arise from

the study of a concurrent environment.

[Ch8.: Sect.3] < mead > systems2.visi July 26, 1978 7:27 AM

4. Highly Concurrent Structures with Global Communication
(Adapted from a paper by Carver Mead and Martin Rem [16])

This section presents an analysis of the constraints placed by physical laws on a VLSI system in
which information must be communicated from any location to any other. The spectacular
performance of cellular arrays on algorithms which map into regular structures leads us to ask if
there is any possibility that a highly concurrent structure can be built which will act as a general
purpose computational engine. Such generality must include the ability to transmit information
over distances as large as required by the computation. Before describing such a machine we will
analyze in detail the requirements that global communication places on the design of any

computing structure.

There has previously been no adequate theoretical basis for optimizing the overall organization of
systems implemented in the VLSI technology. Conventional complexity theory is inadequate
because its measure of cost is the number of steps laken by a sequential machine to complete the
computation. No account is taken of the size of the machine {and hence the time required for
each step). Possible concurrency is ignored, thereby ruling out the most important potential
contribution of the silicon technology. Traditional switching theory is also inadequate. While it
provides a beautiful formalism for describing elementary logic functions, its optimization methods
concern themselves with logical operations rather than communication requirements. Even in
today's integrated circuits, the wires required for communicating information across the chip
account for most of the area. Driving these wires accounts for most of the time delay and energy
dissipation. In very large scale integrated systems, the situation becomes even more extreme. In
this section, we describe a method by which (he conceptual organization of a large chip can be
analyzed. and a lower bound placed on ils size, cycle time, and cnergy dissipation, before a
detailed design is undertaken. The results of this analysis suggest rather general guidelines for the

organization of all large integrated systems.

[ChR.: Sect4] <mead > systemsd visi July 26. 1978 7:30 AM

49

50

Metrics of Space, Time, and Energy
Physical Properties

Devices used to construct monolithic silicon integrated circuits are universally of the charge-
controlled type. A charge Q placed on the control electrode (gate, base, etc.) results in a current I
= Q/7 flowing through the device. The transit time r is the time required for charge carriers to

move through the active region of the device.

All times in an integrated system can be formutated as simple multiples of 7. For one transistor
to drive another identical to it, a charge Q must flow through its active region, requiring time 7.
If the capacitance Cp of the load driven is K times the gate capacitance Cg of the driving

transistor, a time K7 = CL/Cg r s required. Likewise, the clementary energy associated with

‘the signal charge Q on the gale capacitance Cg is EBanVZ/E. A load capacitance I(Cg requires

an encrgy KE,. Since wircs have a minimum width, their capacitance is directly proportional to
their length. Thus the encrgy required to transmit a signal from one point on the chip to another
is proportional to the distance separaling the two points. As the unit of length we employ the
minimum spacing of two conducting paths. For the unit of time we choose the time it takes a
minimum size transistor to charge a wire of unil length plus another transistor like itself. One

unit of time is thus slightly larger than the tramsit time of a transistor

Advantages of hierarchical structures

We are considering large integrated systems in which it is necessary to communicate information
throughout the entire system. As an example, consider a bit of information stored on the gate of
2 minimum size transistor in a random-access memory which must be communicated to the
memory bus of a CPU. Since there arc many words of data in the memory, there are many
possible sources for each wire in the memory bus. Figure 1 illustrates two possible approaches to
organizing such a bus. In the first approach, a transistor associated with each bit drives the bus
wire directly. If the bus wire has a capacitance C,, the lime require (o drive the bus wire ist =
T Cw/Cg. In a typical computer memory C,, is many orders of magnitude larger than Cg, and
the delay introduced by such a scheme is very long. Since C,, is proportional to the length of
the wire, it is also porportional 1o S, the number of driver transistors connected 10 the wire and

by, the spacing between transistors. Assuming most uof the capacitance C,, is due Lo the wire

itself;

[Ch&.: Sect4] < mead >systemnsd.vlsi July 26, 1978 7.3 AM

if [4ﬁ 4t.4t iIE 1F 4F

Fig 1a

A bus driven directly by memory cells

Relative
Delay

1 10 100
alpha

Fig. 2
Delay of a hierarchical structure as a function of alpha

A second scheme is shown in Figure 1b. Here each transistor drives a wire only long enough to
reach its neighbor. Each such wire is connected to the gate of a transistor twice as large as the
transistor driving it. The arrangement is repeated upward until the top level where all sources
have a path to the bus. In this scheme the delay in driving the lowest level wire is approximately
27b,;. The delay introduced by the wires at each level is the same, since each driver transistor is
twice as large as those driving it. Hence the delay in driving the bus line is 27Nb, where N is
the number of levels in the structure. Since there are S = 2N transistors at the lowest level, the

delay may be written:
t = 2Tb0]ngs (2)

Comparing (2) and (1), we see that for large S the delay has been made much shorter by using a

hierarchical structure.

A Cost Criterion

A hierarchy such as that shown in Figure 1b may use any integral number, «, of transistors
driving each wire. We refer « as the branching ratio of the driver hierarcity. The driver
transistors will in general be « times the size of those driving them. The dclay for such a
structure is t = avhy log S = byr a/log ., dependent upon the branching ratio of the hicrarchy.

This delay is plotted in Figure 2, normalized to its minimum value which is attained at a=e,

While dramatic improvements in the performance of integrated struclures can be achicved by a
hierachical organization, a penalty is always paid in the area required for wires. In the simple
case shown, a bus requiring onc wire when driven dircctly requires log, S wires when organized
as a hicrarchy. For this reason it is not possible to oplimize a design without a cost function
involving both area and time. In this paper we will usc the area-time product as an example of
such a cost function. Other cost functions may be more appropriale under some circumslances.
For the above simple example, the cost function is arca * time = bor(lug,S)2 u/(logn)z. This

cosl is minimized for « = e = 74
Hicrarchical compating systems

The analysis given above suggests a very general structure for compuling systems. Lowest level

[Ch&.: Sectd] <mead »systemsd.vlsi July 26, 1978 7:30 AM

51

52

cells are grouped together into modules in such a way that « cells drive their outputs onto an
output wire. Each output wire is connected to a driver transistor which is a times as large as
those driving the wire. Modules are grouped in such a way that « of those modules drivers are
connected to an inter-module communication wire. This wire in turn is connected to a driver
transistor o2 times as large as the lowest level transistors. This process is continued until the
appropriate size systern has been realized. Notice that the area of the driver transistor for each
wire in such a structure is proportional to the area of the wire. For this reason, we compute only
the area of the wircs. The drivers somewhat enlarge the unit of wire area, but do not change the

functional form of the solutions.
Random-Access Memory - an example

In this section we discuss the design of a large of a random-access memory (RAM) of S bits. We
will apply a rigid structural dicipline to our design, and compute the cost and performance of the

resulting memoxy.
Organization of the RAM

We organize (he RAM in a hierarchical fashion. The elements of level 0 are the bits themselves,
each bit consisting of two crossing wires: a select wire and a data wire. When the select wire is
asserted, it puts its contents on the data wire. We group «2 bils into an « x « square to form a
module of level 1. If the width of an element (a bit) is by the elements have to drive wires of
length abg. A module on level 1 consists of an array of horizontal select and vertical data wires,
conslituting the a2 bits of level 0, and some additional logic and wires at the side. We group
again «2of these modules into a square to form a module of level 2, etc. Figure 3 shows three

levels of the hierarchy for «=4.

To study the memory in more detail we look at a module of level i (Figure 4). We describe how
one extracts one of iis «21 bits. In order to select one bit of storage 2iloga address wires are
required. We run iloge of them, called the row address wires, vertically along the side of the

2 submodules are

module and the other iloge, the column uaddress wires, horizontally. Its «
organized into « rows of « submodules each. When the select wire of the module is asserted
logee of the row address wires are used, by lhe decoder, 10 select one of the « rows of
submodules: the sclect wirc running through that row is asserted. The other (i-1)loga row

address wires are run horizontally into each of the « rows of submodules, where they serve as

[Chs.: Sect4 | <mead > systemsdvlsi July 26. 1978 7:30 AM

0oogry o0ocory ooaoo QOOO0[
agan 0oag ooog oo
oo ooog Qoog g0g
oaong Qoono oog googd
_ _ _ [

aoaood Oa0ar
Ogon ogoo
ogaa 10aagd
000 Qa0oogd
[L

Fig.3

Three Levéls of aMemory Hierarchy with Alpha

=4

1

iloga logg

w v m 3O O >

o m o O O M O

SUBMODULES

MULTIFLEXOR

COLUMN ADDRESS

data

Fig. 4
A RAM module ofteveli (i > 0)

log a

ilog o

column address wires for the submodules. Of the iloga column address wires (i-1)loge are run
vertically into each of the « columns of submodules, where they serve as row addresses. The
other loga address wires are used by the multiplexor to select one of the « data wires coming out
of the columns of submodules. The signal on the selected data wire is driven onto the data wire

of the module itself.

If we wish to have a memory of S bits with N+1 levels (level 0 through N) we choose N =
logS/2loge, o S = a2N. A hierarchical structure results which contains S bits from which we
can extract one bit at a time. If we want the word length to be W we employ W of these

structures in parallel; 1o select onc word we sclect one bit in each of the W hierarchies.

Area of the RAM

Figurc 4 alllows us to compute the size of a RAM. Let L; denote the width of a module of level

i, then we have the following recurrence relation:

Ly = by

Ly = iloga + 1 + loga + alyy
The solution to the above relation is

L = afoy + (DAaD) + Qaltlabal (el - i+ laDbga .

Rather than the width itself we are interested in the width per bit. In one direction, horizontal or
vertical, module 1 has o bits: we therefore compute L/ al,

Li/ob = by + Wal) + 201/ 12 Tog - 1/t (/a1 + 1+0) loga + 1] (3)

An interesting property of the width per bit, as expressed by (3), is that its limit for i — o0 is

finite.
imfioo Lifal = by + 1/l + 201w loga (4)

This means that the width per bit Li/(ti is bounded from above by (4) indcpendent of the
number of levels of 2 RAM. Expression {3) converges in an exponential fushion towards its limit:
for small values of i (3) is alrcady very close to (4). We, thercfore, use (4) as the width per bit

for a RAM; its squarc is then the arca per bit. By dividing the arca per bit by the bit area boz

[ChR.: Sectd | < mead > systemsd.vlsi July 26, 1978 7:30 AM

53

54

we obtain the total area per bit area for a RAM. Figure 5 shows this quotient as a function of «
for four different values of by. It gives the overhead factor in the area that is due to the wires.
A memory chip will be larger by this factor than the area of its level 0 cells alone. For a memory
of 64K bits with N=2, a should be 16. Expression (4) is then equal to by + 0.6. This shows
that in 2-level 64K dynamic MOS memories, for which by lies between 1 and 2, roughly half of

the area will be occupied by wires.

One may wonder why we have not discussed the area that is consumed by the wires for power
and ground. The reason is that these wires can be thought of as increasing only the width by of
each bit; they do this by an amount that is roughly independent of «, as is shown in the

following analysis,

For simplicity we assume that the wires for power and ground run in opposite directions, say
parallel to the data and select wires. We compule how much on¢ of them contributes o the
width of a module i. The width of a power or ground wire is proportional to the number of bits
served by it. Lt the width of the highest level be u, given S and the design of the lowest level
memory cell this parameter is casy to compute. The width of the wire in a module on level i is
proportional to the current it must supply and is hence u «2762N. 10 one direction, horizontal
or vertical, there are aN/at such modules. The total contribution of all modules on level i is
thus u /e, Taking the sum of this expression for i=0,1,...N yields walN «N+Lll/a-1 =0
«/w-1. There are u/S bits in one dircction, the increase of the bit width, due to power and

ground, is therefore
u/S a/a-l,
which is roughly equal to u/S.

We are interested in the optimal choice of «, but to make that choice we will have to look at the

access time, which also depends on a.
Access time of the RAM

Each clement of level 0 drives a wire of length wbg to reach the periphery of its module on level
1; this takes time aby. Each module on level 1 drives in the same amount of lime a wire that is
« times longer to reach the periphery of its module on level 2, ctc. With N being the level of

the highest module, the time reguired to extract one bit of storage adds up to «by N. We use

{ ChR.: Sectd | < mead > systemnsd visi July 26, 1978 7:30 AM

20

Total area
hit area

10

alpha 52 o4

Fig. 5 Total area per bit of a RAM as a function of alpha

100
N

8
Area - time
product
4
10 F
2

]
alpha=2 4 8 16 32 64 128
Fig. 6 Area-time product of a RAM as a function of alpha

this figure as the access time. For a RAM of S bits the access time is then aby logS/2loga.

Cost of the RAM

We take the product of the area and the access time as the cost function of the RAM. A RAM

of S words of logS bits each has the following area-time product.
(by + Val + 2a-l/(«)? logn)? (aby/2loga) Slog®s (5)

Figure 6 shows (5), normalized with respect to SIogzs, as a function of « for different values of
by One notices that for increasing bit sizes the branching ratio of the hierarchy should decrease.
Because of the simplicity of their storage cells, dynamic memorics have by between 1 and 2.
Static memories require a cross-coupled structure and hence a larger by-typically 3 to 4. For
optimal designs, stalic memories should therefore have a smaller « than dynamic ones. For
dynamic MOS memories the optimal choice for o lies betwcen 8 and 16, for static MOS
memories belween 4 and 8. "Smart memorics”, structures in which part of the processing task
is distributed over the memory cells, have quite large level 0 modules containing an entire
processor. They should thercfore have small branching ratios and hence relatively deep
hierarchics. Current commercial memory chips are designed with « = 100 at the lowest level.
This value approximately minimizes the product of the access time and the exponential of the
area. Designs of this sort reflect the near exponential dependence of yield on chip area in the
early, low-yield phase of a device's production history. However. near its production peak, the
arca-time product is closer to a realistic cost function. This shift in production economics
suggests that redesigns of high-volume devices should be done using smaller values of « than

initial designs.
Energy per Access

In real systems, the cost of power, cooling, and electrical bypassing often cxceeds the cost of the
chips themselves. Hence any discussion of the cost of computation must include the cnergy cost
of individual steps of the compulation process. In a RAM, each access costs an energy
proportional to the length of the wires which must be charged or discharged during a given cycle.
Consider 2 RAM such as that shown in Figure 4. At the highest level (fevel N) such a device has
S = «2N pits. In each cycle logS address wires of length Ly will in general change state. In

addition one horizontal select line, « vertical data lines, and one multiprocessor output line (all of

[ChR.: Scct.4 | <mead > systemsd.visi July 26. 1578 7:30 AM

55

56

length Lyy) will change state. Thus at level N, the energy expended per access will be
En ~ Ly flog8 + o + 2]

At level N-1, 2log o fewer address wires will be needed. Since only one select line will be active,
only « of the aZ submodules will be active, Each submodule contains wires approximately 1/q

as large as those at level N.

Thus the total energy per access is

Er ~ Ly [logS1 + 1 - 2loga/logS + 1 - dloga/logS + . .) + a+2]
This expression evaluates to

Ep ~ LylogS/loga [logS/4 + (e +2)72)

Using the by values from (4), the energy per access of any given size RAM may be evaluated.
The results of such an ecvaluation for a 65K bit RAM are shown in Figure 7.

These curves suggest that considerably less power would be required if memory chips, even of

current size, were built with smaller submodules and smaller «.
General Method of Analysis

We have presented a general method for analyzing the cost and performance of recutsively
defined VLSI structures. Parameters of any such structure may be oplimized with respect to

some combination of access time, area, and energy.

The results of this study indicate that as more processing is available in each module at level zero,
bg will be larger and the optimal value of « will decrease. A system with « = 4 would secem (o

be appropriate for structures in which substantial processing is commingled with storage.

Very general arguments were used to generate the basic recursive structure. For that reason it
appears that a very large fraction of VLSI computing structures will be designed in this way. The
way in which the arca, time, and encrgy measures were established should make it clear how to

apply these techniques to other recursively defined computing structures.

[Ch8.: Sect.d] <mead >systemsdvisi July 26, 1978 7:30 AM

100 |
65K RAM
b0= 8
ENERGY ;
PER \
4
ACCESS
\ /
\w y . oy
\ A "*-._______'__‘_,ﬂ-f-"' 2
\\
10 = \ -___\-‘ _ﬂ__-,_,-"'/// /
\\ “"b—..___________,_,.#' /
~
\" P
"\M H_d__.,/
e —
I l | J I | |
2 4 8 16 32 64 128
Alpha

Fig.7

Energy per Access as a function of Alpha

5. Challenges for the Future

We have seen that it is possible to construct general-purpose compuling engines that exploit
tremendous concurrency if computations are properly matched to the machine. The vast quantity
of concurrency available in such machines can be an enormous help with the computing tasks we
face. However, to date we have no formal way of making the possible concurrency in any given
caleulation apparent or finding if we have come close to the possible concurrency inherent in the

computation.

The future of concurrent processing is bounded in part by our ability to escape the strong hold
that the conventional sequential machine exerts on our thinking. We must approach problems
with concurrency in mind, recognizing that communication is expensive and that computation is
not. Progress in thesc endeavors will surely increase when some VLSI computers of the sort we
have illustrated in this chapler begin to appear. When the effort of casling the problem as a
structure of concurrent processes is rewarded by a tangible increase in performance, the incentive

to design concurrent algorithns will surcly increase.

The tools that we use to design and implement concurrent processes are primitive. We are badly
in need of notaticn or language that expresses the power and constraints of highly concurrent
machines. Whether such machines are general- or special-purpose, a natural way is nceded to
map problems onto them. Only in this way will it be possible for applications to find their way
into execution in this new computing environment rapidly. In addition we need a method of
formaily proving the correctness of algorithms mapped onto such machines; it is not possible for
human programmers to kecp track of the exact relationship of the enormous number of lasks
executing on such a machine. An ideal notation would allow expression of only those operations
which are free of obvious fatal errors such as deadlock. Only one such notation is known to the

authors at this writing, that of the Associons by Martin Rem [13].

Perhaps the greatest challenge that VLSI presents to computer science is that of developing a
theory of computation that accommodales a more general model of the costs involved in
computing. Can we find a way to express computations that is independent of the relative costs
of processing and communication, and then use the cost properties of a piece of hardware 1o
derive the proper program or programs? The current VLSI revolution has revealed the weaknesses

of a theory too solidly attached 1o the cost propertics of the scquential machine.

[Ch8: Sect.d4 | <mead >systemsd.visi July 26. 1978 7:30 AM

57

58

References

1. LE. Sutherland and C.A. Mead, "Microelectronics and Computer Science,” Seientific American,
vol. 237, no. 9, September 1977, pp. 210-228. This article is a readable and inspiring call to

abandon conventional computing structures.

2. C.G. Bell and A. Newell, Computer Structures: Readings and Examples, McGraw-Hill, New
York, 1971. This book gives a general overview of computer structures, describes the PMS and
ISP notations for describing the structures, and coliccls a number of papers concerning alternative

computer structures. A second edition is about to emerge that will greatly expand the material.

3. H.S. Stone, ed.. [Introduction to Computer Architecture, Science Research Associates, Chicago,
1975.

4. P.H. Enslow, Jr., "Multiprocessor Organization--A Survey,” Computing Surveys, 9. 1, March
1977, pp. 103-129. This entire issue of Computing Surveys is devoted to surveys of parailel

processors and processing,

5. DJ. Kuck, "A Survey of Parallel Machine Organization and Programming," Computing
Surveys, 9 (1977), pp. 29-39.

6. C.V. Ramamoorthy and H.F. Li, "Pipeline Architecture,” Computing Surveys, 9, 1, March 1977,
pp. 61-102.

7. K.J. Thurber and L.D. Wald, "Associative and Parallel Processors,” Computing Surveys, 7, 4,
December 1975, pp. 215-255.

8. B.A. Trakhtenbrot, Algorithms and Automatic Computing Machines, Heath, Boston, 1963. A

delightfully readable introduction to algorithms, theory of computation, and unsolvability.

9. A.V. Aho, J.E. Hopcroft, and 1.D. Ullman, The Design and Analysis of Compuler Algorithms,
Addison-Wesley, Reading, Massachusctts, 1974. A survey of aigorithms designed using
conventional models of computation. Includes discussion of divide-and-conquer, NP-complete

problems.

10. R.E. Tadan, "Complexity of Combinatorial Algorithms,” SIAAf Review, 20, 3, July 1978. A

most readable discussion - highly recommended.

[Ch8.: Sect4 | < mead >systemsd.visi July 26. 1978 7:30 AM

11. C.D. Thompson and H.T. Kung, "Sorting on a Mesh-Connected Parallel Computer,”
Communications of the Association for Computing Machinery, 20 (1977), pp. 263-271.

" 12. G.H. Barnes, R.M. Brown, M. Kato, D.J. Kuck, D.L. Slotnick, and R.E. Stokes, "The ILLIAC
IV Computer,” IEEE Transactions on Computers, C-17 (1968), pp. 746-757. Also appears in (2).

13. RM. Kant and T. Kimura, "Decentralized Parallel Algorithms for Matrix Computation,”
Proceedings of the Fifth Annual Symposium on Computer Architecture, Palo Allo, California,
April 1978, pp. 96-100.

14. D.E. Knuth, The Art of Computer Programming, vol. 3, "Sorting and Searching,” Addison-
Wesley, Reading, Massachusetts, 1973.

15. M. Rem, "Associons and the Closure Statement”. MC tract 76, Mathematical Centre,
Amsterdam, 1976.

16. M. Rem and C.A. Mead, Proc. 1978 USA-Japan Computer Conf. (in press)
17. H.B. Demuth, "Electronic Data Sorting” Ph.D. Thesis (Stanford University: October, 1956)

18. S.A. Cook, "The complexity of theorem-proving procedures,” Proc. 3rd Annual ACM
Symposium on Theory of Computing, pp. 151-158, 1971. Shows equivatence of np-complete

problems,

19. H.R. Lewis and C.H. Papadimitriou, "The Efficiency of Algorithms,” Scientific American, vol.
238. no. 1, January 1978, pp. 96-109. General introduction to NP-complete problems.

[Ch&.: Sect4] < mead > systemsd.viss July 26, 1978 7:30 AM

59

