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Some Reflections on the Classical Stored Program Machine

This chapter presents alternative structures for controlling a data path of the type described in
chapter 5. It contains a review of the basic concepts of the stored program computer, and how
such computers are constructed from a combination of (i) a data processing path, (i) a controller,
and (iii) a memory to hold programs and data. A description is given of some of the ideas
behind the architecture of a specific controller chip, designed at Caltech, for use with the OM2

data chip. Several exampies of controller operations are provided.

We have previously used the OM2 data path chip as a source of illustrative examples, primarily
at the circuit layout level, (o help the reader span the range of concepts from devices, to circuit
tavout, to LST subsystems. Tn this chapter, the controller chip is used as a source of examples one
level higher, at the subsystem level, to help the reader span the range from digital logic circuits, to
LSI subsystems, to arrangements of subsystems for constructing [ SI computer systems. The
computer system one can construct using the OM2 data chip, the OM?2 controller chip, and some
memory chips, contains rather simple, regular layout structures. Yet the system is functionally

quite powerful, comparing well with other classical, general-purpose, stored program computers.

All present general-purpose computers are designed starting with the stored program, sequential
instruction fetch-exccute concepts described in this chapter. These concepts are important not

only for understanding present machines, but also for understanding their limitations.

As we look into the future and anticipate the dimensional scaling of the technology, we must
recognize that it will ultimately be possible to place very large numbers of simple machines on a
single chip. When mapped onto silicon, classical stored program machines make heavy use of a
scarce resource: communication bandwidth. They make little use of the most plentiful resource:
multiple, concurrent, local processing elements. What might be the alternatives? We will reflect

on some of these issues at the end of this chapter, and examine them in detail in chapter 8.
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Alternative Control Structures

In this section we will clarify the distinction between the data processing and control functions in

a digital computer system, and then examine several alternative forms of control structures.

The data processing path described in chapter 5 is capable of performing a rich set of operations
on a stream of data supplied from its internal registers or from its input/output ports. How is it
that a structure having such a static and regular appearance as the OM Data Path can mechanize
such a rich sct of operations? An analogy may help in visualizing the data path in operation.
Imagine the data path as like a piano, with the interior regions of the chip visualized as the array
of piano wires, and the control inputs along the edge of the chip as the keys. Under the external
control of the controller chip, now visualized as the piano player, a sequence of keys are struck.
During some cycles, many keys are struck together simultaneously, forming a chord. A complex
function may thus be performed over a period of time by the data path, just as the static-
appearing array of piano wires may produce a complex and abstract piece of music when a series

of notes and chords are struck in a particular order.

We see from this analogy, however, that the data path in itself is not a complete system. A
mechanism is required to supply, during each machine cycle, the control bits which dstermine the
function of the path during that cycle. The over: !l operations performed on data within the data

path are determined by sequences of control bit patterns supplied by the system controller.

Mechanisms for supplying these sequences of control inputs to a data path can either be very
simple or highly complex. There are many aiternative sorts of control structures. The detailed
nature of the controller has many important effects on the structure, programming, and
performance of the computer system. Let us begin with the description of the simplest form of
finite state machine controller. Then, through a sequence of augmentations of this controller, we

will build up to the concepts of the stored program computer and microprogramming.

Simple block diagrams, such as figures 1, 2, and 3, are used in this chapter to convey the essential
distinctions between various classes of controllers without requiring the diagramming of the
internal details of any particular controiler. Although the detailed internal logic of any particular
controller may be rather complex, there are only a smail set of key ideas involved in the

hierarchy of controller structures presented by the sequence of block diagrams.

If you closely examine the controllers of typical computers, you will find that every one either is,

[ Ché.: Sect.1] < Conway > newdsclvisi July 21, 1978 11:44 AM



[Ch.6, Sect.1]

<
OR-Plane <41 AND-Plane
pe—
ph1  ——— outreg inreg f&——— ph2
controlinputs
data €—> DATA PATH &> data

Fig.1. Finite state machine controllingthe Data Path

in this case, perigdically cyclingthru a fixed sequence of states

data

<
OR-Plane e AND-Plane
<
R
flags
controlinputs
DATA PATH p&e————>» data

Fig.2. Finite state machine controlling the Data Path

fn this case, the next statecan be a function of the previous operation’s outcome

daty 2>

<

OR-Plane ey AND-Plane
<—

flags
load Hags

» lag-req
controlinputs
DATA PATH [ oe—nsn data

Fig.3. Finite state machine controiling the Data Path

Inthis case, adatapath operation resultmay controi

machine sequencing 1or a number of 1atercycles

{dsec1-3.sil)






or contains within it, a finite state machine such as those described in Chapter 3. The very
simplest form of controller for the data path is a finite state machine having no inputs other than
state feedback lines, as shown in figure 1. The operations performed by the data path are
determined by the sequencing of the state machine. Each clock cycle, the output of the OR
plane is fed back into the AND plane and determines the next state of the state machine, which
periodically cycles through a fixed sequence of states. The data path is clocked in synchronism
with the controller, although for simplicity we haven't shown clock inputs to the data path in the
figures. Thus a fixed algorithm implemented in the code of the state machine operates on the

data in the data path.

Such a control structure could be used with the data path to implement a function such as a
digital filter, in which data is taken in from the left port of the data path, a fixed set of operations
performed on the data, and a result output at the right port of the data path. However, this
elementary control structure provides no way to perform operations which depend on the

outcome of a previous operation or upon the data itself.

A simple augmentation, shown in figure 2, enables the control sequencing to be a function of the
outcome of the previous operation. In figure 2, some of the data, or some logical functions of the
data, called flags, are fed into the AND plane inputs of the state machine along with the next
state information. Some typical flags are: whether or not the ALU output is zero, is positive, or
whether or not one ALU input is numerically equal to the other. The next state can thus be a
function of flags generated during the preceding operation. To simplify figure 2, we have not
shown the clock inputs to the PLA. However, assume that all subsystem structures shown in the
figure, and throughout this chapter, are appropriately operated in a synchronous manner using

our normal two phase clock scheme and proper design methodology.

While in principle the figure 2 structure is quite general, improvements are possible which allow
greater flexibility and compactness of representation of the algorithm in the state machine. One
of these improvements is shown in figure 3. Here an additional output from the OR plane of the
state machine is used to control the loading of the flag outputs of the data path into a flag
register. The flag register is used as an input into the AND plane of the stale machine. This
enables flags generated by a particular operation to be used as contro! inputs for the state
machine for a number of later operations. The stored flag values are replaced by a new set only
when the flag load signal is raised. One difficulty inherent in this structure is the limited amount
of information provided by the few flags generated by the data path’s ALU.
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The Stored Program Machine

A very general and powerful arrangement is shown in figure 4a. This structure is similar to the
one discussed in the last section. In this case the state machine sequencing is controlled not only
by the last state and flags, but also by the data coming from some memory attached to the
machine. The memory contains not only the data upon which the data path is operating, but also

contains encoded information for influencing the sequencing of the state machine.

This scheme gets around the limitation of the structure in figure 3, and also provides a complete
new dimension of possibilities. The basic idea is to design the state machine controlier so that it
may perform any of a set of different predefined operations, called the machine instruction set,
rather than just perform one dedicated, predefined operation. This machine instruction set is
carefully defined so as to enable the system composed of the data path, controller, and memory
to mechanize any of a number of different algorithms of interest to a number of different users.
These algorithms are implemented as programs composed as sequences of machine instructions

loaded into the memory. These programs operate upon data also conlained in the memory.

It is possible to show that this arrangement is perfectly general and can implement any digital
data processing function. John von Neumnann! is generally credited with originating this idea of
a stored program machine, and such machines are often called von Neumann machines. The
abstract notion of the most basic form of stored program machine was pr: posed by Turing2 in
1936, for application in the development of the theory of algorithms. The abstract Turing
Machine is important not only for historical reasons, but aiso because of its present use in the

development of the theory of computational complexity of sequential algorithms.

The way in which the stored program machine operates is as follows. One of the internal
registers of the data path is selected to hold a pointer into the program stored in the memory.
This register is commonly called the program counter (PC), or alternatively, the instruction address
register. In one particular state of the controlling state machine, which we will call the fetch next
instruction (FNT) state, the program counter is caused by the state machine to output its data as
an address to the memory, and the state machine initiates a memory read from this address. The
data from this memory read operation is taken into the AND plane of the state machine, placing
the state machine into a state which is the first of the sequence of states which mechanize the
machine instruction corresponding o the code just read from the memory. The state machine

then sequences the data path through a number of specific operations sufficient to perform the
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function defined by that instruction. At some point during instruction execution the next PC

value is calculated, usually by simply incrementing the current PC value,

When the state machine has completed the interpretation, or execution, of the machine
instruction, it returns to the FNI state. The instruction fetch is then repeated, sending a new
program counter value to the memory as an address, reading the next instruction from the
memory, and beginning its interpretation. The system can thus perform any set of required

operations on data stored in memory, as specified by encoded instructions stored in memory.

There is a problem with the organization of the controller in figure 4a. Most of the steps of an
instruction execution sequence need as input the encoding of the insiruction which initiated the
sequence. In figure 4a, this information must be duplicated each cycle by the next state
information. The number of bits in the feedback path for this information can be reduced by the
arrangement shown in figure 4b. Here the incoming instruction is stored in a register, called the
instruction register (IR), which is loaded under the control of an output from the state machine.
It stays in the instruction register, and is available for state machine input during the entire
period that particular instruction is being interpreted by the machine. This new arrangement is
not fundamentally different from the preceding one, but is more efficient in its use of the PLAs.

The separation and naming of the instructin register also enables us to take another step in the
structuring of the state machine controller’s operations: the conception and naming of stages of
the intcrpretation of instructions fetched and held in the IR.

Suppose we have defined a machine instruction set which, for example, includes arithmetic-logic
instructions, memory instructions, and branch instructions. Suppose we also have a data path
such as the OM data chip, or any other typical data path containing registers, an ALU, buses for
moving data around, and inputs for control signals to control the movement of data and the ALU
operations. What functions must a control unit, such as that shown in figure 4b, perform in order
to fetch and execute machine instructions? We find that in most stored program machines, the
execution or interpretation of each machine instruction is typically broken down into the
following six basic stages. Note that some instruction types may skip one or more of the stages,

and that each of the stages may require sequencing through several controller states:

(1) Fetch next instruction: This is the starting point of the fetch-execute sequence. The machine

instruction at the address contained in the PC is fetched from the memory into the IR.

[ Ché.; Sectl] < Conway > newdscl.visi July 21, 1978 11:44 AM



(2) Decode Instruction: As a function of the fetched machine instruction’s type, encoded in its
OP code field, the controller must "branch” to the proper next control state o begin

execution of the operations specific to that particular instruction type.

(3) Fetch instruction operands: Instructions may specify operands such as the contents of registers
or of memory locations. During this execution stage, the controller cycles through a
sequence of states outputting control sequences 0 fetch the specified operands into specified

locations, for example into the input registers of the ALU.
(4) Perform Operation: The operation specified by the OP code is performed upon the operands,

(5) Store Resuli(s): The results of the operation are stored in destinations, such as in registers,

memory locations, flags, etc..

(6) Set up next address, and return to FNI: Most instructions increment the PC by one and
return to the FNI state (1). Branch instructions may modify the PC, perhaps as a function of

flags, by replacing its contents with a literal value, fetched value, or computed value.

Now, how would we go about designing such a controller? We can construct the state diagram
for the controller just as we did for the traffic light controller example in chapter 3. Then we
proceed to build up the detailed state transition table, and finally derive the AND and OR plane
code for the PLA. However, in this case the state diagram will be rather more complex than that
in our earlier example. One hundred or more states may be required to implement the controller
for a simple machine instruction set. How do we even begin constructing the state diagram? The
above list of stages of instruction execution provides a simple means of structuring the diagram.
Figure 5 contains part of the controller state diagram for a typical stored program machine, The
diagram is structured as a matrix of regions, where the instruction execution stages proceed from
top to bottom, and the columns contain specific state sequences for each instruction type. The
FNI state is placed at the top of the diagram, followed by the states léading to the decode. The
decode results in a many-way branch, each path leading to a sequence for execuling a particular
instruction type. The figure contains some (informal) details indicating the sorts of specific
control operations performed at each stage of the instruction execution or interpretation. One
will encounter many variations on the simple state diagram structure shown. These are usually
easily understood elaborations. For example, groups of machine instructions may share common
subsequences of control operations. To reduce the number of states, we might have another level

of decoding, first decoding to groups of instructions and performing shared operations, then

FrhA - Rert 11 ¢ Crmwav > newdsel visi Tulv 21, 1978 11:44 AM



{Ch.6, Sect.]

. . Fetch
sl RPOR.T «PC, init memory read, inct PC ™ Next
wait for Inst
memory op
completion ~—" Control:
done : —
_Decode
inst
Fetch
Operands
Control: ?
A"RA, " —
_‘Perform
Control: : oP
ALUouteg~A +8 RPORT~ADDR
g init memory write LTtjag Tflag
=0 =1 e
Control: Control: | RPORT+~RA | Store
RC~Al{Uoutreg —_ Result
wait ]‘or
memgp ) 4 =
complete 7
done
BL2 Compute
= Next
Contrel: PC+~ADDR Inst Addr
L K 3 p—
FNi FNI FNI FNI R
Instruction

\...x Interpretation

b — e e

«Instruction .
ADDRARBRC STORE RAADDR BR.LT.ADDR Type

Fig.5. A Portion of the State Diagram for the Controfler of a Stored Program Machine
[ Liustrating some typical instruction interpretation state sequences, and their associated control outputs )

{dscstdiag.press)






decoding to individual instruction types. In any event, the generation of the state diagram and
eventually the PLA code is just a matter of grinding out the details. The generation of these

details is another activity which is made more tractable by following a structured approach.

Some examples follow which will clarify how a machine instruction’s execution can be divided
into parts, and how the parts interact with each other. Instead of using the graphical notation of
figure 5, an informal tabular form is used, containing a list of statements that are normally
performed sequentially, as encountered. In these examples, the unbracketed statements under
"control [& state] sequence” indicate control actions. However, some staiements explicitly set the
next state Y'. These statements are bracketed, "[ ], and indicale a more complex state transition

than simple state-to-state progression (shown in figure 5 by a single arrow between circles).

ALU Example: Suppose that an arithmetic/logic instruction in our machine instruction set has
the general form: { ALUOP, REGA, REGB, REGC }, specifying that ALUOP be performed on
operands REGA and REGB, and the result stored in REGC. Then the instruction { ADD. R7, R2, RS }
might be executed by the following control sequence. Note that certain of the individual control
steps may occur in the same machine cycle ( for example: A<R7, B«R2 ), as a function of the
capabilities of the data path; the more the data path can do in parallel, the fewer machine cycles

it will require to complete an instruction:

Function of sub-sequence: Comirol [& State] sequence:  Commenis:
Fetch Next Inst: RPORT « PC Place next instr. address in right port.
read memory Raise control line to initiate memory read,
PC « PC+1 Increment PC, overlapping incr. with fetch.
[Y'=fcn(memop complete)] Loop here ull memory read completes,
IR « mem data Load IR with inst. when read completed.
Decode Instruction: [Y = fen(IRY] Set machine state as fen of instruction.
Fetch Operands: A « R7 Load ALU input registers with operands.
B+« R2
Perform Operation: ALUoutreg « A+B Add A and B, store in output register.
Store Result: RS « ALUoutreg Send result address to RS,
[Y' = FNI] Inst. not a branch, so simply return to FNI state

The example assumes there is some sort of shared access to the memory, and thus the time for
completion of memory accesses is not predictable. That is why we wait, testing for the presence
of a completion signal before proceeding. In some computer systems, such memory accesses
might proceed in lockstep with the controller sequencing, and the data taken from, or placed on,

the memory bus at some fixed number of cycles following initiation of the memory operation.
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Normally, most machine instructions are not branches, so we usually just have to increment the
PC sometime during instruction execution. This incrementing can often be overlapped with other
control operations: In the example, the incrementing of the PC is done during the FNI stage,

while waiting for the completion of the instruction-fetch memory operation,

Memory Example: A memory instruction in our set might have the general form { MEMOP,
REGA, ADDRESS } , specifying the loading or storing, according to MEMOP, of the contents of
register REGA to or from the memory address ADDRESS. The instruction { STORE, R3. ADDRESS }

might then be executed by the following control sequence:

Funcrion of sub-sequence: Control [& State] sequence: Commenis:

Fetch Next Inst: RPORT « PC Place next instr. address in right port.

read memory Raise comtrol line to initiate memory read.

PC « PC+1 Increment PC.

[Y'=fcn(memop complete)] Loop here tll memory read completes.

IR « mem data Load IR with inst, when read completed.
Decode Instruction: [Y' = fen(IR)] Set machine state as fen of instruction
Perform Operation: RPORT « IR(ADDRESS) Send the address of the result to the memory,

write memory Raise write control line to init memory write,
Store Result: RPORT « R3 Place result in right output port.

[Y'=fentmemop complete)] Loop here till memory write completes.

iY' = FNI} Inst not a branch, so simpiy return to FNI state

Branch Example: Suppose that branch instructions have the form: { BR. COND, ADDRESS },
specifying that if the condition COND is true according to the flags, then the PC is to be loaded
from memory address ADDRESS. The branch instruction { BR. LT. ADDRESS } might then be

executed by the following control sequence:

Function of sub-sequence: Control {& State] sequence:  Comments;
Fetch Next Inst: RPORT « PC Place next instr, address in right port
read memory Raise control line to initiate memory read
PC « PC+1 Increment PC.
[Y' = fen(memop complete)] Loop here till memory read completes.
IR + mem data Load IR with inst, when read completed.
Decode Instruction: {Y' = fen(IR) Sect machine state as fen of instruction.
Perform Operation: {Y' = fen(LTflag)] Set machine state as fcn ALU LTflag. Set to FNI
if notL.T. Else contnute and generate new address.
Next Address: PC « IR(ADDRESS) Generate new next address.
[Y' = FNI| Retumn to the FNI state.
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Now, how are the next higher level system software control functions mapped onto this basic
machine structure?  Higher-level functions common to all machine instructions are often
performed within the FNI stage of instruction execution. After return to the FNI state, but prior
to the decode state, one machine instruction has been completely executed but no action has yet
been taken to execute the next instruction. Therefore, that is a natural place to check for
interrupts from 1/O devices, to test the priorities for task switching in a multiprogramming
environment, and so forth. The testing of these logical signals, which are input to the state
machine, can often be overlapped with other FNI activity, Multiple tasks may then be

implemented by having the controller manipulate multiple program-counters.

In summary, once both a machine instruction set and a data path have been defined, then the
control sequences required lo interpret the machine instructions can be "programmed”, the
overall controller state diagram consiructed, the "code” for the AN and OR scctions of the state
machine can be generated, and software systems can be built upon (he resulling stored program
machine.  Interestingly, the control sequences in the above cxamples look somewhat like
"programs" written in a very primitive machine language. This observation anticipates the

concept of microprogrammed control, which is described in the next section.

For more information on this material, including the various trade-offs involved in the definition
and encoding of instructions, see the many cxamples in Bell and Newell®. Sce also Dietmeye 7,
which works out an exampie all the way from state diagram through the design of the controls of
an elementary digital computer. Formal methods for describing state machine algorithms are
given in reference 7, and in the reference R4 of chapter 3: an interesting alternative method
based on ideas of T. E. Osborne, is presented along with practical examples in Clared.

The abstract concepts behind the arrangement shown in figure 4b are used in almost ail stored
program digital computers manufactured today. A computer having any sort of machine
instruction set can be implemented with the arrangement shown. In many cases, the state
machine is implemented in random logic and therefore is not easily recognizable as one of the
forms shown. However, the opcrations performed are equivalent to those described here. Note
that any performance contraints imposed by limited functionalily in the data path simply trade off

against the number of machine cycles required to mechanize particular algorithms.
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10

Microprogrammed Control

Sometimes the complete machine instruction set is not definable at the time a compuier is being
designed. This contingency often arises when certain operations, defined by some later user, must
be executed at very high speed. Perhaps the data path is inherently capable of satisfying the
required performance constraints, but not when operated under the control of any sequence
composed of standard machine instructions. In such cases, special new machine instructions

would have to be defined and then implemented in the state machine control logic.

Another common situation is the need to execute the instruction set of another computer system
for which the user has existing programs. While such instructions could be executed by
simulation, i.e. by interpreting them via a program written in the original machine instruction set,
such simulations usually pay a high performance penalty. It would be much better if the
machine could execute them directly. However, a substantial augmentation and/or medification

of the controller’s logic would have to be made, for such direct execution to be possible.

In both of these situations it would be desirable if the state machine were implemented in some
writeable medium, rather than in the fixed code of a standard programmable logic array and thus
patterned permanently in the silicon. While it is quite possible to build writeable programmable
logic arrays, none are currently in use. Instead, machine designers have invented many clever

ways of using standard writeable memories to hold the feedback logic «f the state machine.

The simplest such arrangement is shown in figure 6. Here the state machine is implemented
using a set of memory chips. Collectively, this set of memory chips functions externally exactly
as the programmable logic array shown earlier. However, this very clementary structure has a
problem in supporting wide machine instruction words, since the decoder must exhaustively
decode all combinations of the input variables. Thus, if fis the number of flag bits, and » is the
number of next state lines, then the memory must have 2ﬁ+f +1) words to be of sufficient size
to allow emulation of any machine having instructions / bits wide. For this reason designers have
taken io inserting more complex logic than just a simple instruction register into the path between

the data source and the memory decoder section of state machines of this form,

A systemn using a logic path between the memory bus, or source of instructions, and the memory
decoder section of the stale machine is shown in Figure 7. Here a logic block we have termed

the micro program-counter path is inserted between the source of machine instructions and the
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inputs to the decoder. This type of control, using either writeable or read-only memories, is
generally referred to as microprogrammed control. Notice in figure 7 that the flags and the
machine instruction fetched from the memory both act as input data to the small micro program-
counter data path, and the outputs of this data path are the microcode memory address lines.
The arrangements shown is very powerful and general, and capable of emulating any instructions

set for which there is sufficient microcode memory.

In a microprogrammed controller, the design of the control logic is reduced to encoding
sequences of control bit patterns to be stored, along with control memory address sequencing
information, in the microcode memory. The encoded control bit patterns for each clock cycle or
machine cycle are visualized, as in the examples in the past section, as a primitive form of
“instruction” and are called microinstructions. Rather than creating a "circles and arrows™ state
diagram and "assembling” PLA code, we write a symbolic microprogram and assembie it in the

same manner as we would a symbolic machine language program,

The micro program-counter data path (pPC) is similar to the main data path: it is controlled by a
number of outpuls from the microcode memory section of the state machine. Its main purpose is
to decrease the amount of microcode memory required to emulate the particular machine
instruction set being implemented. This is done in two ways: First, the pPC maps the f+n bits
of state into a smailer number of bits whicli are then decoded to address the microcode memory.
Secondly, it reduces n by allowing complex operations within the pPC to be specified with only a
few bits of control information. The controller chip described in the later sections of this chapter

is the microprogram counter path portion of a microprogrammed controller for OM2.

The concept of microprogramming was originated by M. V, Wilkes>4 in 1951. In those days
when controller logic functions were implemented using gates constructed out of vacuum tubes,
switching hardware was very expensive compared to wires, and great efforts were expended
towards gate minimization. This inevitably led to rather intertwined connections in the controller
logic, and any change in function might require a complete redesign. Wilkes presented the
notion of microprogrammed conlrol using a read-only memory to hold the control sequences, as a
means of bringing regularity and structure to the design of system controllers and thus
simplifying their design and redesign. There is a large body of knowledge associated with the
architectural implications of microprogrammed control, and the serious reader will benefit from a

study of the literature>-87,
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Today, although we can easily implement control logic in a structured way using a PLA, we still
often use microprogrammed control in order to obtain the advantages offered by writeable control
logic. An additional present advantage of microprogrammed control is that the detailed
design/redesign of control logic is extended into the wide arena of those familiar with linear
sequential programming concepts. In the future as the "programming” of structures into silicon
becomes easier, as the time to implement designs becomes much shorter, and as state machine
“coding” becomes more widely understood, we may find that these activities will become viewed

as a natural extension of microprogramming.

There is an alternative way of viewing the machine shown in figure 7. Examine carefully the
loop formed by the micro program-counter data path, the decoder section of the microcode
memory, and the outputs of the microcode memory which are used to control the micro program-
counter. We can view the microcode memory address as an instruction address and the wires

coming from the microcode memory to control the micro program-counter path as an instruction.

This alternative view is illustrated in figure 8. Observe that we have constructed another stored
programmed machine of the same form as that shown in figure 4b. We have come full circle in
our machine design: in our zeal to put as much capability as possible in the path between the
machine instruction and the decoder of the state machine, we have in fact created a stored
programmed machine within a stored programmed machine. This phenomenon is referred to by
Ivan Sutherland as the "great wheei of reincarnation".‘ Computers often have many such levels of
machine within them, each a general purpose stored program machine in its own right. We thus
find that elaborate computing machines are often only simple machines, nested and connected

together in complex ways.
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Design of the OM2 Controller Chip

We now describe some of the ideas behind the design of one particular micro program-counier
path used for controlling the OM data chip in the system conﬁgurati0n9 described in chapter 5.
The design of the controller chip will be examined at several stages in its actual development.
This material illustrates the mapping into LS, and the topological/geometrical planning in LSI of
various subsystems such as stacks, incrementers/decrementers, multiplexers, etc., which are useful

in constructing controllers.

Even at the 1978 value of A = 3 microns, the OM2 data path and certain forms of controller
could be integrated onto a single chip. The separation of these modules onto two chips was
primarily for research and (utorial purposes in the university environment: so that different
controllers could be used with the OM?2 data chip and vice-versa. The fact that data path and
controller are on scparale chips does, however, lead lo detailed sysiem partitioning decisions
aimed at minimizing interchip communication. These decisions might be made differently were
data path and controller integrated onto the same chip. Nevertheless the issuc of minimization of

interchip communication would stiil be involved at the next system level, and is worthy of study.

The basic function of the micro program-counter path, which we call the controller for short, is to
provide microprogram memory addresses. The microprogram memory addresses are stored in a
latch which is called the micr:> program-counter, or uPC. The uPC should be distinguished from
the program-counter, or PC, which stores the main memory addresses of higher level machine
instructions. The most common address calculation is to increment the address by one, so in
addition to the pPC latch, the controller should contain an incrementer. The second most
important address calculation is the jump or branch, so there should be some means of forcing
values into the pPC latch. With the hardware mentioned so far, we have progresscd one step
beyond the controller type shown in figure 6: our instruction register also increments, so we don’t

need the feedback terms that originate in the microcode memory and drive the memory decoder.

A great deal of microcode memory space can be saved if subroutines are available at the
microcode level. These subroutines can be shared between microcode sequences emulating
instructions at a higher level. For example, many different machine instruction types may have
the same sct of operand feich sequences. If the machine instruction set encodes a variety of
indexing or relative addressing schemes, these operand fetch sequences may be quite lengthy, and

repeating these sequences for every instruction type would waste a great deal of microcode
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memory. To provide such microcode subroutine capabilities, provisions must be made for saving
pPC values, which is most easily done with a stack. Stacks are easily constructed in LSI. An
example of stack cell and subsystem design, and stack control driver design, is given in chapter 3

The microcoder may also wish to use relative jumps or subroutine calls so that relocatable
microcode can be written. To provide for relative operations, an adder must be included that can
add displacements to the uPC contents. The displacements can either be fixed displacements and
come from the microcode or be calculated displacements and come from the data path.
Calculated displacements enable many-way branching, or dispatching, in the microcode, which is
an almosl essential operation for emulating instructions at a higher level. An example of
dispatching will be given in a later section. Therefore, provisions should be made for accepting

displacements from either the microcode or the data path.

Another microcode address operation that could be considered is a form of loop operation, which
is useful when sections of microcode should be executed n times, where n can either be a constant
and come from the microcode or be the result of a calculation done in the data path. One way to
implement this instruction is to dedicate one register in the data path to be the loop counter and
to do conditional branches in the controfler based on the resuit of decrementing the vaive in that
register. This is simple to do, because the hardware of the controller and data path discussed so
far will allow the execution of this instruction. Unfortunately, there is a time penaity when doing
interchip communication: the loop counter must be decremented during one cycle, the result of
the decrement must be sent to the controller during the following cycle, and a conditional branch
must be performed in the controiler on the third cycle. If the loop counter were in the controller
chip, this operation would only take one cycle and would not require the use of the ALU for one

cycle in the data path.

With only one loop counter, loops could not be nested, and loops could not be used inside of
subroutines. If a stack werc provided for the counter values, however, nested loops and loops

within subroutines could both be accommodated.

The first OM2 controller proposal was based primarily on the arguments presented above. Figure
9 shows a block diagram of the proposed controller. Table 1 lists the operations possible for each
of the three sections of the controller chip: the uPC source selection, the pPC stack operation,
and the loop stack operation. In cach cycle, the controller exccutes one operation in each of the

three sections. For most operations, all three scctions work together to perform the programmed
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uPC Sources:

uPC Stack Operation:

uPC +1

microcode

uPC Stack Top

True: uPC Stack Top; False: uPC +1

Loap Stack Operation:

Push microcode
Push literal

Push count

Pop

Decrement Count
NOP

Push uPC +1
Push microcode
Push uPC + microcode

Push uPC Stack Top + microcode

Pop

Push uPC +literal
True: Pop; False: NOP
True: NOP; False: Pop
NOP

Table 1. Opcodes of the Initial Controller Proposal.

uPC Sources:

uPC Stack Sources:

uPC + 1

uPC + microcode + 1
microcode

Stacktop + 1

Stacktop + microcode + 1
Stacktop + literal + 1
uPC + literal + 1

literal + microcode

Condition Selection:

False

True

Data path flag

Compliment of Data path flag
Count=0

Count< >0

Data path lag AND Count =0
Datapath flagOR Count=0

Adder output
uPC
microcode
literal

Counter Operations:

No Operation
Push microcode
Push literal

Pop to literal bus

true: decrement; false: pop
true: decrement; false: nop

uPC Stack Operations:

Push if conditionis true
No push

Pop if condition is true
No pop

Table 2. Opcodes of the Final Controller Design.
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operation. There are cases, however, when only one or two of the sections are needed to perform
the controller’s instruction, so the other section(s) are free to perform other tasks. For example,
the loop stack may be loading a count from the Data Path, while the pPC sections are performing
a subroutine call. This concurrency saves having to load the count later, and may save microcode
space. Because the controller’s instruction is broken into three fields, more than one thing can be
happening in parallel in the controller. This is why the instruction was not kept as one field and

decoded into the three sections on chip.

The controller shown could handie all of the microcode address operations listed above, and a few
new operations were discovered and added to the list. However, there are a few problems with
this design. It is a "brute force” design: rather than viewing the whole chip at one time and
looking for generalizations, each section of the chip and of the chip’s operation was looked at
individually and the chip was filled with specialized hardware for performing specialized
operations. It was found that by adding one circuit here a new operation could be performed,
and that by adding another circuit there a different operation could be added to the repertoire.
Many designs suffer from “creeping features” of this sort. While it may be casy Lo draw circles
and arrows on paper, it can be more difficult to draw adders and multiplexers on silicon. It

would be very difficult to route all the wires needed lo interconnect the devices shown in the

proposal.

So let's make a few gencralizations about the circuits in the design. First, there are too many
adders on the chip. A close look a the proposal shows that for almost all operations we only use
one adder for any one cycle, and the few operations that used more than one adder are aot
critical operations. Incrementing the pPC can also be done in the adder, by clearing one of the
data inputs to the adder and forcing a carry into the first stage. Thus, alt three of the adders and
the incrementer can be combined into one adder, and multiplexers can be put on the inputs to
that adder. Another simplification would be to always load the pPC latch from the output of the
adder, which would allow the removal of the muitiplexer on the input to the latch. The only
operations that were sacrificed in making the simplifications involved loading the pPC stack with
the output of an adder. Figure 10 shows the block diagram of our simplified controller, and
Table 2 lists the operations it performs. Notice Lhat the controller's instruction is now broken
into five fields, controlling the pPC sources, the pPC stack sources, the counter operation, the

condition sclection, and the pPC stack operation.

Now we will develop the geometrical and topological arrangement of the controller’s subsystems.
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Such arrangements are often called floor plans. A translation of the preceding ideas into the
starting floor plan of the controller is shown in figure 11. The plan is composed of subsystems
built of horizontal bit slices which are then stacked vertically. The number of bit slices is equal

to the microcode address width for the machine, which in this case is 12 bits.

The following points were considered when deciding upon the basic framework of the floor plan.
First, the uPC latch is placed adjacent to the microcode memory address pins. This is done to
minimize the delay when driving addresses to the memory, as this operation is in the critical
timing path for the entire machine. The input of the latch comes only from the output of the
adder, so the adder should logically be placed next to the uPC latch. The adder is considerably
simpler than the full arithmetic logic unit used in the data path. However, it employs the same
principies as the ALU: the Manchester carry chain, the insertion of double inveriers every four
bits to minimize the delay in the carry chain, and the logic block to implement the desired
functions with the minimum delay and power. The multiplexer is placed adjacent (o the left side
of the adder. This multiplexer operates in the same manner as the input multiplexer to the ALU

in chapter 5. The pPC stack is then placed to the lefl of the mulliplexer.

The only problem with this arrangement of the floor plan is that the microcode bus and the data
path bus must also connect to the multiplexer. A large amount of area would be wasted if these
two buses connected to the multiplexer from the side. Instead, if the buses could be placed
where the PC stack is located, they could connect to the loop counter circuits directly. But then
there is the problem of where to place the uPC stack. One solution is to run the buses through
the £PC stack! Each cell of the stack thus has the two buses designed right in. The two buses

could then run on through the loop counter stack to the loop counter decrementer and the pads.

Having placed the major blocks of the chip into the floor plan, the layout of the control circuits
can be examined, and a detailed floor plan worked out. Each of the stacks require push and pop
drivers. as discussed in Chapter 3. As in the chapter 3 example, one set of drivers is placed along
the top, and the other set along the bottom of the stack. The controi dovers for the latch, adder,
multiplexer, and counter are identical to those discussed in Chapter 5. The control bits for these
control drivers could all be derived directly from the outputs of the microcode memory, but this
technique would result in an exceedingly wide microinstruction. By encoding the operations to
be performed by the adder and its input multiplexers, the width of the microinstruction can be
dramatically decreased. With proper cncoding of these operations, the functional capability of the

chip is not impaired, since a number of possible control signal combinations are in fact illegal and
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thus redundant. For instance, if more than one control line for the multiplexer is enabled, the
outputs of two or more sources would be shorted together, and the resulting multiplexer output
would contain erroneocus data. The placements of the control circuits and encoding PLAs are
shown in figure 12, which also shows additional details of the final floor plan. Notice that the
counter stack is higher than the 12-bit high pPC stack, so that it can contain entire 16 bit data
path words for parameters passed to subroutines in the microcode. The stacks are aligned on
their least significant bit position, and the additional length of the counter stack allowed space for

the control PLAs for the adder and pPC stack.

The programmable logic arrays empioyed in instruction decoding do not have feedback from their
outputs back into their inputs. Their only function is to serve as combinational logic for
condensing the number of control wires and thus saving microcode memory bits. The finite state
machine for the control of this path is made up of the microcode memory address feedback
through the adder and stack PLAs and also the microcode literal path feedback into the input of
the adder. If there were feedback terms in any of the PLAs, provisions would have to be made
for access to the state of the feedback terms from off chip. Without such access, the uniestable
state information on the chip would make the testing of the completed chip next to impossible:
the current operation of the chip would be a function not only of the control signals and data
that we supply to the chip at a particular moment, but also of the past control signals and data.
In the absence of a practical way to directly probe all the signal lines on the chip, it is imperative

that all of the chip’s state be accessible somehow from off chip.

One of the problems encountered in many mullichip microprogrammed machines is that a great
deal of interchip communication is required in their operation. Although the bandwidth of the
machine can be made large by pipelining the operations, any operation which rcquires the full
circle through the feedback loop of the state machine will require a greal deal of time for its
execution. In the OM?2 system, hardware features have been included in both the data path and
the controller lo reduce the chip-to~chip communication as much as possible. As already
mentioned, the loop counter circuitry was included on the controller chip, which reduced the loop
operation time from 3 cycles to 1 cycle. Chapter 5 mentions the conditional ALU operations in
the data path which can modify the actual ALU operation as a function of the flag bit. An
example of the utility of this capability is provided by the multiply operation. When performing
a multiply, the ALU should either add two numbers or just pass one of the numbers straight

through, depending upon the state of a flag. One way to do this operation would be to send the
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flag to the controller chip, and execute a conditional branch to one of two locations. One of the
two appropriate ALU operations would be at each of the two microcode locations. However, it
would take several cycles to perform each step of a multiply were this method used. Since in
OM the ALU on the data chip has the capability of modifying its instruction as a function of the
flag, it actually takes only one cycle to perform this part of the multiply step.

There are times when it would be convenient to communicate many bits between the controller
and the data path in one cycle. For instance, when emulating the instruction set of a higher level
machine, the data path can examine various fields in the instruction currently being emulated and
calculate microcode branch locations. It is then necessary to load the pPC latch with the
calculated branch location. To facilitate this loading, a 16-bit bus connects the two chips, and is
referred to as the "literal bus”. To economize on the data path’s pin count, when this bus is not
transferring literal data between the two chips it is used to load microcode into the data path
chip. A large number of pads are required for the microcode and data path literal inter-
connections. There was insufficient space along the left edge of the chip for all of the pairs of
pads required for this communication. Hence, some pads werc placed along the top of the chip
and others along the bottom, and connections between these pads and the buses were made by

running vertical wires to the appropriate bus lines where they run between the two stacks.

The layout of the completed controller chip is shown in figure 13. A floor plan of the controller
is given in figure 14, for use as an aid in studying the layout figure. Examples of the use of some

of the controller’s operations are given in the following section.

Examples of Controller Operation

This section will illustrate the operation and programming of the controller presented in the last
section through the use of four programming examples: subroutine linkage. For-loops, Do-lcops,
and field dispatches. Refer to Table 2 for a tabulation of Lhe controller’s opcodes. It should be
noted that the uPC operations are pipelined by one cycle so that if one particular
microinstruction contains a controller jump opcode, the following microinstruction wiil also be

executed before the jump actually occurs.

To call a subroutine, we would like to save the current value of the pPC on the pPC stack and
load the pPC laich with the microcode address of the subrouline. When we have finished

executing the subroutine code and wish to return, we just pop the return address off of the pPC
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stack and load it into the pPC latch, To save the uPC value on the stack, "uPC” should be
selected as the stack source and "PUSH" should be selected as the stack operation, As Table 2
shows, the condition must be true in order for the stack to push a value. Therefore, the condition
selection should be "TRUE" to guarantee that the stack will save the return address. While we
are saving the current pPC value on the stack, we must also load the uPC latch with the
subroutine address. To do this, we select "MICROCODE" as the pPC source and put the
subroutine address in the literal field of the microcode. Since we are not using the counter, the
counter operation should be "Nop". For the return, we load the uPC latch with the return
address by selecting "STACKTOP+1" as the pPC source and pop the stack by selecting "POP"” as
the pPC stack operation. In order to guarantee that the stack pops the oid value off the stack, we

must make sure the condition is true by selecting “TRUE" as the condition selection.

Figure 15 illustrates the execution of subroutine linkages. Four "snapshots” of the microcode
and ;PC circuits are shown at the various steps as the exccution proceeds. Snapshot (a) gives us
a background for what is happening: The uPC is stepping through a segment of microcode, and
is about 1o execute a CALL operation. The CALL operation contains a poinler to a sub-program
located somewhere in the microcode memory. Snapshot (b) shows the state of the machine just
afler the CALL operation is executed. The pPC now points to microcode addresses inside the
subroutine, while the return address to the main "program” is saved on the stack. Snapshot (c)
shows that the pPC has advanced to the end of the subroutine, and the RETURN operation is
about to be executed. The return address is popped off of the stack and loaded into the pPC
latch, and program execution resumes where it lefl off in the main program, as shown in the last

snapshot.

A For-loop should execute the same section of code many times. We can use the loop counter to
store the number of times we have executed the code so that we know when we have finished the
specified number of executions. Thus, when starting a For-loop, we should push the repetition
number onto the loop counter stack. At the end of the loop we decrement the count, and if the
result is not zero we should jump back to the start of the loop. If the decremented result is zero,
we have finished execution of the For-loop, and we should pop the count off of the loop counter
stack. Executing the For-loop in this manner requires that the end-of-loop command contain the
address of the start of the loop. How then can we construct rclocatable code containing For-
loops? We can eliminate the nced for the end-of-loop command to contain the loop’s start

address, by saving the start address on the pPC stack. The pPC latch would just have to be
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loaded with the value contained at the top of the stack. Using this method of saving the loop
address, the start-of-loop command becomes:

pPC Source « puPC + 1

1PC Stack Source « uPC

jtPC Stack Operation + Push

Condition « True
Counter Operation « either Push Microcode or Push Literal

and the end-of-loop command becomes:

UPC Source « Stacktop + 1

JPC Stack Operation « Pop

Condition «+ Count NOT EQ 0

Counter Operation « True: decrement; False: Pop

The operation of For-loops is illustrated in figure 16. Again, four snapshots are shown which
represent the state of the controller and microcode at various points in the execution of the loop.
Snapshot (a) shows the state of the machine just prior to the execution of the FOR operation.
When the FOR operation is executed, the value in the pPC latch is pushed onto the pPC stack,
and the number of iterations specified by the FOR command is pushed onto the counter stack.
The uPC continues advancing through the microcode. Soapshot (b) shows the stale of the
controlier and microcode at some point in the middle of the FOR loop execution. When the end
of the loop is reached, the vaiue on the top of the counter stack is decremented. If the result is
not zero, the new value is pushed onto the stack and the pPC fatch is loaued with the value on
the top of the pPC stack, as shown in snapshot (c). Notice that the value is not popped of the
top of the uPC stack, because we will need the loop address again if the loop is not completed
after exccuting one more time. When the result is zero, data is popped off the top of both stacks
(to remove the loop address and the old count, which is now =0} while the pPC value is just

incremented, causing the controller to exit from the FOR loop, as shown in the last snapshot,

The Do-loop is similar to the For-loop, except that the code is rcpeatedly exccuted until a
condition becomes true. That condition may be, for instance, when the data path flag becomes
true. In this case. the condition selection in the end-of-loop command becomes "DATA PATH
FLAG” instead of "COUNT NOT EQ 0", Also, since Lhe counter is not being used. the counter

operation in both the start-of-loop and the end-of-loop commands becomes "NOP".

Figure 17 shows somc snapshots associated with the execution of a DO loop. By comparing

figures 16 and 17, the similaritics between FOR loops and Do loops can be observed. Basically,
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the only difference between these two types of loops is the decision of when to exit the loop. In
a FOR loop a counter decides when the loop should be exited, while in the Do loop a flag, such
as the flag from the Data Path, decides when the loop should be exited. Since the DO loop does

not use the counter, the counter is not shown in the snapshots of figure 17.

When emulating the instruction set of a higher level machine, it is oflen convenient to do a
multi-way branch. Suppose, for example, that the machine we are emulating has a 16-bit
instruction word that contains a 4-bit opcode field and a 12-bit address field. In this case, we
would have 16 code segments in the microcode, one for cmulating each of the 16 possible
opcodes of the higher level machine. We would like to be able to perform a 16-way branch,
depending on the contents of the 4-bit opcode field, that would take us directly to the correct
microcode segment, thus implementing the decode stage of instruction interpretation. We could
use the ALU in the data path for calcutating the microcode address for the proper segment, and
load the pPC laich with the result of this calculation. This works especially nicely if the starting
addresses of the segments arc evenly spaced, because o calculate the branch address we merely
muitiply the 4-bit opcode by the segment length and add the displacement of the first segment.
The multiplication is particularly easy to perform if the segment length is a power of 2, because

then we just have to shift the 4-bit opcode value the appropriate number of places to the left.

A problem with the above method of ficld dispatching is that the microcode segments have to be
evenly spaced in the microcode, preferably by a power of 2. In practice, scgments are seldom of
the same length. Even if they were of the same length, if one of the segments had to be
modified, extensive corrections might have to be made all through thc microcode. As an
alternative, a dispatch table can be inserted into the microcode, which just contains a series of
jump instructions to the appropriate microcode segments. If this is done, the 4-bit opcode value
need only be shifted left once (because jump instructions are lwo microcode words long due to
pipelining), added to the dispatch table displacement, and loaded into the nPC laich. To load the
value into the pPC lalch, the data path sends the resull of the above calculation across the literal

bus to the controller, and the controller selects a pPC source of "LITERAL".

Figure 18 illustrates the operation of the dispatch instruction. The controller jumps to a location
in the dispatch table that is a function of one of the fields in the opcode. The dispatch table
conlains JUMP instructions to the various routines that perform the micro-instructions necessary 10
emulate each of the possible opcodes. The selection of the proper field in the opcode and the

calculation of the dispatch table address are performed in the Data Path pror to the dispatch.
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Some Reflections on the Classical Stored Program Machine

In the future, very large quantities of computing machinery may be placed on a single chip.
Such chips will be easily and quickly designed, and rapidly implemented. This capability will
present both a great opportunity, and a great challenge. How are we to organize and program

such a wealth of hardware? Certainly not the way we do now.

Scaling of the technology to higher densities is producing effects which may be clarified by
analogy with events in civil architecture. Decades ago, standard bricks, "two-by-fours”, and
standard plumbing were used as common basic building blocks. Nevertheless, architects and
builders stili explored a great range of architectural variation at the top level of the time: the
building of an individual home. Today. due to the enormous complexities of large cities, many
archilects and planners have moved on to lackle the larger issues of city and regional planning.
The basic building blocks have become the housing tract, the business district, and the freeway
network. While we may rcgret the passing of an older style and its traditions, there is no turning

back of the forces of change.

In present LSI, where we can put many circuits on a chip, we are like the earlier builder. While
we no longer tend to explore and locally optimize at the circuit level (the level of bricks and two-
by-fours), we siill explore a great range of varfation at the level of the individual computer
system. In future VLSI, where we may put many processors on 4 chip, architects will, like the
city planner, be more interested in how to interconnect, program, and control the flow of
information among the components of the overall system. They will move on to explore a wider
range of issues and alternatives at that level, rather than occuping themselves with the detailed
internal structure, design, and coding of each individual stored program machine within a system.
If systems are to work at all, they must at the least be understood at their highest level. These

are some of the issues explored in chapter 8.
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