Chapter 5: Overview of an LSI Computer System,

and the Design of the OM2 Data Path Chip
Copyright @ 1978, C.Mead, L.Conway

Sections:

The OM Project at Caltech - - - System Overview - - - The Overall Structure of the Data
Path - - - The Arithmetic Logic Unit - - - ALU Registers - - - Buses - - - Barrel Shifter - - -
Register Array - - - Communication with the Outside World - - - Data Path Operation

Encoding - - - Functional Specification of the OM2 Data Path Chip

Up to this point, we have chosen simple examples o illustrate the fundamental properties of
integrated systems, and have presented a design methodology which can be used to build
hierarchically organized, complex systems. To more fully clarify these concepts, we now present
examples drawn from the design of an LSI computer system. In this chapter, we provide a brief
overview of this computer system, and then describe in detail one of its major components, the
data path chip. Much of the detail in this chapter is intended to provide the reader with a source
of examples of the implementation of digital logic subsystems into 1.81 circuit layout structures,
under the constraints imposed both by the design methodology and by the architectural
requirements of a real computer system. Chapter 6 similarly describes .the controller chip of this

computer system, and provides additional information on the sequencing of the overall system.

In this chapter we assume that the reader is familiar with the structure and function of the
classical stored program digital computer, and with the concept, and computer design
implications, of microprogrammed control. An informal review of these basic concepts is given in
the introductory portions of chapter 6, so that the mapping of the required controller subsystems
into silicon can be examined. The less experienced reader may benefit from a study of that

material in parallel with reading this chapter.

It is important to note that the computer system discussed in chapters 5 and 6, while composed of
structured LSI subsystems, is nevertheless of classical von Neumann form. The architectural
possibilities of VLSI are just now beginning to be explored. Future lower cost, higher density,
higher speed devices, combined with major reductions in integrated system implementation time,
may make completely new forms of computing machines, and new notions of programming, not

only feasible but also practical. Some of these issues will be discussed in chapter 8.

{ ChS.: Sect.1] < Conway > newdoml.vlsi July 6. 1978 T7:29 PM

The OM Project at Caltech

The design of this computer system was undertaken as a university project in experimental
computer architecture, The "Our Machine” (OM) project, as it has come to be known, was
started by Carver Mead in 1976, as part of the LSI Systems course at Caitech. The project

involves the design of a number of LSI chips, as described in the system overview section.

The initial focus of the project was the architecture and design of the system's primary data
processing module, the data path chip. Early contributions to this effort were made by Mike
Tolle |Litton Industries], while atlehding the LSI systems course. Other participants were Caltech
students Dave Johannsen aﬁd Chris Carroll, with much inspiration from Ivan Sutherland. By
December 1976, the first design (OMy) of the data path chip was nearly completed. The
participants decided at that time that the design had become "baroque” and ugly, and it was
scrapped. A new data path design (OML) was completed by March 1977 by Dave Johannsen,
Chris Carroll, and Rod Masumoto. Fabricated chips were received in June 1977. It was this chip
which appeared in the September 1977 Scientific American article by Sutherland and Mead. The
chip was fully functional except for a timing bug in the dynamic register array, which had been

designed in departure from the structured design methodology developed in this text

A complete redesign of the data path chip was undertaken in June 1977, by Dave Johannsen. By -
September 1977, a complete set of new cells had been constructed. The design was completed by
December, and chips fabricated by April 1978, The redesign included improvements in the
encoding of the microcode control word, and rigorously applied the structured design
methodology. Certain cells from the OM2 data path chip, and from its companion controller

chip, were used as examples in chapter 3.

During 1977, the controller chip was designed as one of 4 class projects in the Caltech LSI
systems course. Il was finished in the summer of 1977, and fabricated chips were received in
early 1978.

During 1978, the architecture of an overall system was planned. Design has begun of the three
remaining chips in the OM computer system: the system bus interface chip, the memory manager

chip, and the clock chip.

All of the detailed LSI design on the OM project has been done by students. Throughout most

of the project's history only rather limited design aids were available, notably a simple symbolic

[Chs.: Sect1] < Conway > newdomlvisi July 6, 1978 7:2% PM

layout language and graphic plotters for checkplotting. The efforts of students to quickly create
large integrated systems, using only primitive designs aids, helped to motivate the development

and refinement of the structured design techniques described in this text.

The OM project has also required the implementation of many prototype designs and complete
chip designs. Since early in the project, the Caltech group collaborated with researchers in
industry, who were similarly completing many prototype LSI system designs, on the development
of practical methods for simplifying and speeding up prototype project implementation. This led
to the formulation and debugging of the standard starting frame for conveying mulli-project chips

through maskmaking and wafer fabrication, as described in chapter 4.

System Overview

An informal block diagram of one OM processor is shown in figure 1a. Such a processor is a
complete stored program, general purpose computer. Input/output devices are usually interfaced
via the external data bus and control lines, located lo the left in figure la. Several such
processors may be interconnected via the system bus to augment one user's compuler sysiem.
Tasks may then be distributed among the processors, improving system performance, for ex;ample
by using difterent processors to independently control different input/output devices. Groups of

different user systems may also share the system bus.

Each OM processor is composed of five LSI chips, along with some standard memory chips and a
few MSI chips. A brief description follows of the five LSI chips being designed as part of this

project. For a more detailed description of these chips and the overall system, see reference 1.

The data path chip performs most of the data manipulation functions for the processor. These
operations are performed as directed by sequences of control microinstructions, which are fetched
from a microcode memory using addresses generated by the controller chip. The main
subsystems of the data path chip are a register file, a barrel shifler, and an arithmetic logic unit
(ALU). Two buses connect these subsystems together. This chip’s internal structure is described

in detail later in this chapter.

The controller chip contains the microprogram counter (3PC) which stores the microcode memory
address, and a counter for the control of microprogram loops. This chip also contains stacks for

both the microprogram counter a_nd loop control counter values. The concepts of controller

[Chs.: Sectl] < Conway » newdomlvisi July 6, 1978 7:29 PM

structure and function are fundamental in computer architecture. Chapter 6 provides an

introduction to these ideas, and then describes the organization and layout of the controller chip.

The memory manager chip provides addresses for the data memory, and directs the
communication between chips on the data bus. It also implements some simple data structures in
the data memory. The manager can divide the memory into separate partitions, and implement a
different data structure in each partition. Four basic data structures are implemented: stacks,
queues, linked lists, and arrays. When accessing 2 stack partition for example, the microcode
need only ask the manager to push or pop data off the stack, and the manager does the rest,

maintaining stack poinlers, performing bounds checking to see if the stack is full or empty, etc.

The system bus interface chip provides asynchronous communication with other OM processors via
the system bus. There are a whole host of subtleties associated with interfacing asynchronous
buses. These issues are discussed in detail in chapter 7, along with the details of the organization

and design of the interface chip.

The clock chip gencrates the two phase clock signals needed by the system. The clock can be
stopped to allow for the synchronization of asynchronous signals. Some chips in the system have

a single ¢1 clock input, and generate the other clock phase signal on-chip.

A few words about timing may be helpful: In general, during ¢1 data is transferred from one
subsystem to another on the same chip, while during ¢2 data is transferred from one chip to
another. The data chip’s ALU, and other data modification units, operate during ¢2. Microcode
is available on both phases, and is pipelined by one phase. Thus, the opcodes that control the
ALU enter the data chip during ¢:1. The microprogram address is generated by the controller
chip during ¢2, gets driven off chip into the data chip’s microcode latches during ¢1, and is used
to look up the next opcode on the following ¢2. Because of these timing requirements, all jumps

in the microcode are pipelined by one clock cycle.

The remainder of this chapter describes the data path chip, and is presented in two distinct parts.
The first part outlines the architectural requirements for the data path chip, and then illustrates,
via the detailed design and layout of the chip's subsystems and cclls, how the design methodology
was applied to satisfy these requirements. The second part is an external functional description of
the data path chip, intended as a user manual for those who microprogram the computer system,

and for reference during the study of the OM2 controller chip in chapter 6.

[ChS.: Sect.1] < Conway > newdoml.vlsi July 6, 1978 7:29 PM

Microcode Data Bus
Microcode
Microcode Enabies
Address
Microcode
Microcode
p Externai Flags
Controller
- Y
Flag Flags and
4 Enables

External
Data

Datachip

Data 8us

[Ch. 5., Sect. 1]

Externai

Datachip Enables

1.

I Interface “

System
Bus

interface
Enables

Enable
Clock
Clock X
— Clock i
External Hold * Manager
Hoid Memory
Address
Manager Manager
Address 4 Microcode
. Rom

Figure 1a. Block Diagram of an OM Processor.

L

Memory

Left
Port

Registers

Shifter

Arithmetic
Logic
Unit

Right
Port

Figure 1b. General Floor Plan of the Data Path Chip.

[ch5ligt.

.

Bus
Enables

sil)

The Overall Structure of the Data Path

The basic requirements initially established for the data path chip were (i) that it be gracefully
interconnectable into multiprocessor configurations, (i) that it effectively support a
microprogrammed control structure, thus enabling machine instruction sets to0 be configured to
the application at hand, (iii) that it be able to do variable field operations for emulation
instruction decoding, assembly of bit-maps for graphics, etc., and (iv) that its performance be as

fast as possible.

In order to satisfy the ﬁrﬁt requirement, the data path chip was designed with two ports: one
port to be used for a system interconnection, and the other for connection to local memory,
input-output devices, etc. In many systems time is lost in assembling the two operands required
for many operations. Therefore, the data path has two internal buses, and all registers on the
chip are two-port registers. The requirement for gracefully handling variable length words
required a shifler at least sixteen bits long. The performance requirement dictated an arithmetic
logic unit having considcrable flexibility without sacrificing speed. In order to avoid extensive
random wiring for connecting the major subsystems on the chip, the following strategy was
adopted al the outset: two system buses would run through the entire processing array, from one
end of the chip to the other. One port was to be located at the left end of the chip, and the
other port at the right end, and the two system buses were to run the full length of the chip

between the two ports through the register and the data processing array.

The three main functional blocks on the chip are the register array, the shifter, and the arithmetic
logic unit. These blocks are placed next to each other in the center of the chip, between the two
ports. The arrangement of the major subsystems is shown in figure 1b. The systern buses run
horizontally, on the polysilicon level, through these functional blocks. The major control lines
run vertically across these blocks, on the metal level. The power, ground, and clock lines are run
parallel to the control signal lines. The details of these functional blocks will be described in
subsequent sections of this chapter. Included are descriptions of peripheral circuits needed to
interface subsystemns with cach other and to the outside world. Delailed layouts of certain cells in
the system are also included. Some of the layouts shown are earlier versions than those actually
included in the final data chip. Nevertheless, they convey the basic ideas involved in laying out

those cells. The overall layout of the data chip is shown in the frontispiece.

[ChS.: Sect1] < Conway> newdomlyvlsi July 6. 1978 7:2% PM

The Arithmetic Logic Unit

The carry chain of the ALU, and its associated logic, was the first functional block to be designed
in detail, since it was believed that the carry chain would limit the performance of the system.
Simulations of several look-ahead schemes indicated that they added a great deal of complexity to
the system without much gain in performance. For this reason a decision was made early in the
project to implement the fastest possible Manchester type carry chain (reference 4, chapter 1),
having a carry propogation circuit similar to that shown in figure 11, chapter 1. The carry chain
and ils associaled logic were allowed to dictate the repeat distance of the cells in the vertical
direction. In MOS technology, a Manchester carry chain is particularly limited in its ability to
propagate a high carry signal. However, it can quite rapidly propagate a low carry signal.

In any arithmetic logic unit there will be a null period when the OP code for the next operation
is being brought in. Advantage can be taken of this null period to precharge the carry chain and
other sections of the data path where timing is particularly crucial. In this way, it is not necessary
to propagate high signals through pass transistors where the rise transicnt would be particularly

slow. This strategy was applied in OM’s ALU, and the resulting carry chain is shown in figure 2.

The main carry chain runs through the pass transistor from carry-in to carry-out. The carry-in
signal is detccted by the gate of an inverter which feeds the signal into the subsequent logic of
the ALU. Three transistors are used to control the state of the carry-out of each stage. The first
one merely precharges the node associated with carry-out during the null period of the ALU.
The second is the carry-kill signal which is derived from the inputs to the ALU, and simply
grounds the carry-out through a single transistor. The third is a pass transistor which causes
carry-oul to be equal to carry-in. These last two signals associated with the carry chain in each
stage, carry-kill and carry-propagate, are generated by two NOR gates which have kill-bar and
propagate-bar as one input and precharge as the second input. Hence, it is assured that the kill

signal and propagate signal are disabled during the null period when the precharging takes place.

After some analysis, we found that nearly all interesting combinations of carry-in and the input
signals could be generated using propagate and carry-in from each stage. Thus, as in fig.3, the
carry-chain may be seen as a logic block with 2 inputs, carry-kill' and carry-propagate’, 2 outputs,

propagate and carry-in, a vertical signal, carry-in and carry-out, and one control wire, precharge.

The task of designing the balance of the ALU is now reduced to that of designing functional

[Ch5.: Sect.1] < Conway > newdoml.visi July 6, 1978 T:29 PM

vl
N

{Ch.5., Sect1)

Precharge Carry Out

Precharge Carry Out
o Y N
| r % N D
I ' 7> P
l__. 1"[>N p
bl 11 s
l" g Cin

* This represents how the carry
chain is bulfared. In most of the

Carryin

I 1

stages, the vertical connection
is made, while in the stages with
the amplitication the diagonal
connection is made.

Figure 2. Carry Chain Circuit for the Arithmetic Logic Unit.

Carryln

Figure 3. Abstraction of the Carry Chain Circuit.

[ch5lig?.sil)

blocks to:; (a) combine the two input variables to form a propagate bar and kill bar, (b) combine
carry bar and propagate o form the output signal, and (c) drivers for controlling the logical

function blocks and deriving a timing for precharge.

A number of random logic implementations of function blocks for deriving kill, propagate, and
the output were attempted. All seemed to be at variance with the horizontally microprogrammed
architecture of the data path, and required a large amount of area and power. For this reason it
was decided to use the general logical function block illustrated in chapter 3, figure 12a. Recall
that the depletion mode transistors, i.e. those covered by ion implanted regions represented by
yellow, are always on. Such logic function blocks are used to generate carry-bar, propagate-bar,
and for combining carry-bar in and propagate to form the output. The circuit, shown in figure 4,
implements sixteen logic functions of two input variables. It consists of a set of transistors which
fully decode the input combination of A and B, and connect one and only one of the vertical
control lines to the output, depending on this input combination. For example, when A and B
inputs are both low, the vertical control wire labetled G, is connected to the output. The truth
table entries for the desired logic function are placed on the G vertical control wires, and the
output is then the desired logic function of the two input variables. For example, if the
Exclusive-OR of A and B is desired, a logic-0 will be applied to the control wires 0 and 3, and
logic-1 will be applied to control wires 1 and 2. Since it is desired to implement the same logic
function on all bits of the word, the control variables G, through G; need not be generated in
every bit slice, but may be generated once at either the top or bottom of the array. The

functional abstraction of the circuit of Fig. 4 is shown in figure 5.

The block diagram for a compléte arithmetic logic unit is shown in figure 6. The functional
dependence of the output on the two inputs and the state of the carry is determined by a 12-bit
number: P, through Py K, through K, and Ry through R,, logether with the carry-in to the
least significant bit of the ALU. The ALU is quite general, and its detailed operation set may be

feft unbound until the control structure of the computer system is designed at a later time.

There are two general principles illustrated by this design. First, it is often less expensive in area,
time, and power to implement a general function than to implement a specific one. Secondly, if
a general function can be implemented, the details of its operation can be left unbound until
later, and hence, provide a much cleaner interface to the next level of design. The detailed
choices of which functional entities to leave unbound and which to bind early requires a

considerable amount of judgment, and is where much of the skill in integrated system design lies.

[ChS.; Sect1] < Conway > newdoml.visi July 6, 1978 7:29 PM

Two details need to be dealt with before the arithmetic logic unit function block is complete.
Drivers are needed for the PO - - P3, KO - - Ky, and RO --R 3 control lines which will generate
signals with the appropriate timing. In addition, inverters must be interposed in the carry chain
occasionally to minimize the propagation delay through the entire carry chain. The way we have
chosen to implement the interposition of inverters is to recognize that each carry chain function
block contains two inverters which produce at their output the carry-in, having been twice
inverted from the actual carry-in signal. If we merely substitute this signal for the carry-out
signal from the pass transistor, we have doubly inverted our carry-in and buffered it to minimize
the propagation delay. This approach avoids putting spaces between the carry function blocks for
inverters. It is illustrated by the dotted connection lines in figure 2. In the actual

implementation, the connection through the inverters was made in every fourth stage.

Drivers for the P, K, and R control lines have the following function: At some time during the
null period of the ALU (which we shall call ¢/}), an OP code specifying the state of each control
line arrives at the drivers. It must be latched while the ALU itself is being precharged, and then
it must be applied to the P, K, and R control lines as soon as the ALU is activated. The P, K,
and R function blocks are themselves composed of pass Lransistors, and their outputs are more
effectively driven low than high. For this reason, we will precharge the outputs of the P, K, and
R function blocks as well as the carry chain itself. This is most conveniently done by requiring .
that ail of the P, K, and R control signals be high during the null period of the ALU. Then,
independent of the states of A and B inputs, the outputs will be charged high by the time the

ALU active period commences. The control buffer implementing this function is shown in Fig. 7.

The OP code is latched through a pass transister whose gate is connected t0 ¢, and the OP code
runs into a NOR gate, the other input of which is also 1. Thus, the output of the NOR gate is
guaranteed (o be low during the ¢ period. The NOR gate output is then run through an
inverting super-buffer, so that during ¢ the output is guaranteed to be high. At the end of g3,
the OP code are driven onto the P, K, and R control lines. The only interface specification for
the ALU which must be passed to the next level of system design is that the P, K, and R control
signals be valid before the end of ¢, and that the A and B inputs likewise be valid by the end
of g and be stable throughout g, the active period of the ALU. We are then guaranteed that
afier enough time has passed to allow the carry to propagate, the output of the R function block
will accurately reflect the specified function of the ALU and may be latched at the end of @-.

[ChS.: Sect.l] < Conway > newdomlvisi July 6. 1978 7:29 PM

[Ch.5., Sect.1]

GO . - G1 G2 G3

wi
\/
'I::Ll

8 > i In
A >———C
A D = n
Out = G(A,B)
Y
P
2 & N W

Figure 4. General Logic Function Block Transistor Diagram.

> »|
Pl

— G(A,B)

o o

N

Figure 5. Functional Abstraction of the General Logic Function Block.

chbligd sil)

[Ch.S., Sect.1]

Fig 4a. Stick Diagram of the FFunction Block

Ont = G(AB)

Go Gl G2 G3

Fig b Actual Layout of the Function Block

4

Propagate

Function Block

P P

VAN

CKill
Function Block
Precharge

K K K K
0 2

Carry Chain Logic

Carry Qut

A3—)

A3—
B3 ——
B3 —>

Ll

AN

[Ch.5., Sect.1]

. Result

Function Block

R R R R
0 2

UNN)

U

A2—

82—

B2 —)|

NSNS

TLLL

Y d

Y Tl R P Vg

t—>

Qut 3

NN

NN

NN

i—
A1—
Bi—

NN

B1—

N RN RN AN 2

QOut 2

NN

ot 2 Tl R

>
Q
J/

NN

l
PEN V2N

BO—

h S

LLL

",

S

£

"

~,

NS

QOut 1

NN

x/\;\b\/

,[\

Carrylin

Figure 6. Block Diagram of a 4-Bit ALU.

Out O

lchStig6.sil}

Cout

Bus A Out PP Cin' Cin Bus B

2 3 W

D

VDD

Phl (PreCh)
VDD

Cin
GND

VDD

Phl (PreCh)
GND
VDD

GND

vbbD

Ph?

[Ch.5., Sect.1]

Layout of ALU Bit Slice and Input Registers

Figure 6a.

ALU Registers

In order for the arithmetic logic unit described in the last section to be useful, it must be
equipped with a set of registers both for its input variables and for its output. Let us consider
the input registers first. Inputs to the ALU may be derived from either the shifter, the buses, or
other sources. They may be latched and lefl unchanged during any @1 - ¢; machine cycle or set
of machine cycles. This is one of the situations in which combining the multiplexing function
with the laiching function simplifies the design and achieves better performance. A register

operating in (his manner is shown in figure 8.

The input to the first inverter can be derived from four sources: three internal sources such as
shifter output, bus, elc., and a fourth, the output of the second inverter. When it is desired to
latch a new signal into the register, one of the source pass lransistors is driven high during ¢;.
The feedﬁack transistor around the two inverters is always activaled during ¢. Thus, with three
vertical control wires plus the ¢ liming signal, it is possible to select one of three sources into
the register, or none of the three sources, thereby leaving the previous value of the register stored
on the gate of the first inverter during the ¢ period. Since il is necessary 1o have two inverters
to form the stable pair when the feedback transistor is on, both the input and its complcmént are
available as required by the P and K function blocks of the arithmetic logic unit. The OP code
signal which selects which source will be applied to the ALU input register during ¢ must come
in during the previous ¢. Each of the select signals must be low during ¢, and at most one of
them may come high during the following ¢ . A driver appropriate for these control signals is
shown in figure 9. The control OP code is latched during 5, during which time the NOR gate
shown disables Lthe output driver. Since the output driver in this case is non-inverting, the output
select line is held low during all of 9. At the end of ¢, the OP code signal is latched and the
particular select line t0 be enabled that cycle is allowed to go high. '

Note that this timing allows two incoming OP code bits per external wire per machine cycle. In
particular, if it were desirable to share a microcode bit between the ALU function and the ALU
selector inputs, this could be done by bringing the ALU OP code in during ¢ and the ALU
input selection code in during ¢, as shown in figure 10. This technique was suggested by Ivan
Sutherland.

The ALU output register is similar to the ALU input register, except the timing is reversed. The
result of the ALU operation is available at the end of 5.

[Chs.: Sectl] < Conway > newdoml.visi July 6, 1978 7:29 PM

10

An OP code bit will, if desired, enable the latch signal to go high during ¢9. The feedback
transistor is always enabled during ¢y, and thus the laich is effectively static even though in the
absence of a latching signal the data is stored dynamically on the gate of the first inverter
through the ¢4 period. Once again, both the output and its complement are available if desired.

Buses

An early design decision was made to have data flow through the data path chip on two buses
which communicate with all of the major blocks of the system. We have already seen that the
ALU performs its operation during the ¢ period and does not have valid data to place into its
output register until the end of g. If data are to be transferred from the output register of the
ALU to its input register, this must be done during the ¢} period. If we adopt a standard timing
scheme in which all transfers on the buses occur during ¢y, we can make use of the ¢ period
when the ALU is performing its operation to precharge the buses in the same manner that the
carry chain was precharged during the ¢ period. In this way we solve one of the knotty
problems associated with a technology designed for ratio logic. If we had insisted that the tristate
drivers associaled with various sources of data for a bus be able to drive up as well as down, we
would have required both a sourcing and sinking transistor, together with 2 method for disabling
both transistors. While it is perfectly possible to build such a driver (we ;;hall undertake the
exercise as part of the design of the output ports), it is a space-consuming matter to use such a
driver at every point where we wish to source data onto an internal bus. By using the bus

precharge scheme, our tristate drivers become simply two series transistors as shown in figure 11.

Here the data from one source, for example the ALU output register, is placed on the gate of one
of the serics transistors. An cnable signal which may come high during ¢ is placed on the other
series lransistor. If one and only one of the enable signals is allowed ld come high during any
one ¢ period, the bus can be driven from as many sources as necessary. The performance of
such a bus is limited only by the pull-down capability of the two series transistors. We shall
adopt this philosophy for the processor chip we are designing, and attach such a tristate driver to

each of the output registers for the ALU.

[Chs.: Sect.1] < Conway > newdoml.visi July 6. 1978 7:29 PM

Opcode
~ |
< d 1 !
Phi 1

Phil * Phit*

Select1 Select2 Selectd

¥

J Co-ntrol

Phi2

——

1 Line

11

Phi1*

{Ch.5.,Sect.1]

Figure 7. ALU Control Driver

All outputs high during Phi 1
(Precharge)

Selected terms low during Phi 2
Opcode valid during Phi 1

Figure 8. ALU Input Register
and Multiplexer.

Phi 2
input 1 —T T __II_ T 1
tnput 2 T 1 {>o—--—Do—— Output
L
Input 3 Qutput
-‘ \E\ Figure 2. Seiect Control Driver.
{ N Afl outputs low during Phi 2
7
'_] __| Select {Precharge)
Opcode > L ! % _l Line Selected terms high during Phi 1
T 1 QOpcode valid during Phi 2
Phi 2 Phi 1
Phi 1
Phi 2 * Latch _I_ Figure 10. Quiput Register
TT
Inpul wj_r-—*—*L—[x“i-——{ _-4—— OQutput

fchiblig? sill

[Ch.5., Sect.1]

Phase 2
Phase 1

1
Phase 1

Y]
Phase 2

GND

VDD

GND

VDD

out out

IFig. 7a. ALU Control Fig. 9a. Select Control

Driver ILayout Driver Layout

[Ch.5., Sect.1]

Phi2 —]
(_ _) BusLine (
’ | | |

Phii * Phit " Phil1*
Enable 1 —l . Enable 2 _‘ L Enable 3

Source 1 —'I : Source 2 -—| i Source 3 —i
1 1

—T T L]

Figure 11. Precharged Bus Circuit.

Lch*Phil
Shu*Phi 1 Shd " Phi 1 Phi 2

i
Y

Aj i
TL
Ai +1 N -r . [;’_'__-""s::‘_ '__,.-".0—._” Bi +1

Figure 12. A Simple 1-Bit, Right-Left Shifter.

{ch5ligt 1.s5il)

Barrel Shifter

Since shifting is basically a simple multiplexing function, it might be thought that a shifter could
be combined with the input multiplexer to the ALU. A simple 1-bit, right-left shifter

implemented in this manner is shown in figure 12.

It is identical with the three-input ALU register, and the three inputs have been used to select
between the bus, the bus shifted leR by one, and the bus shifted right by one. To support the
multibit shifts necessary for field extraction and building up odd bit arrays, something more is
required. One is tempted initially to build up a multibit shift out of a number of single shifts.
However, for word]ehgths of practical interest, the n? delay problem mentioned in Chapter 1

makes such an approach unworkable.

The basic topology of a multibit shift dictates that any bus bit be available at any output position.
Therefore, data paths must run vertically at right angles to the normal bus data flow. Once this
simpte fact is squarely faced, a multibit shifter is scen as no more difficult than a single bit
shifter. A circuit enabling any bit to be connected to any output position is shown in figure 13a.
It is basically a crossbar switch with individual MOS transistors acting as the crossbar points, the
basic idea being that each switch Scij connects bus; 1o outputj. In priaciple this structure can be
set 1o interchange bits as well as shift them, and is completely general in the way in which it can
scramble outpul bits from any input position. In order to maintain this complete generality, the
control of the crossbar swilch requires n? control bits. In some applications, this n? bits may not
be excessive. but for most applications a simple shift would be adequate. The gate connections
necessary to perform a simple barrel shift are shown in figure 13b. The shift constant is
presented on n wires, one and only one of which is high during the period the shift is occurring.
If the shifler's output lines are precharged in the same manner as the bus, the pass transistors
forming the shift array are only required to pull down the shifier’s outputs when the appropriate
bus is pulled low by its tristate drivers. Thus, the delay through the entire shift network is

minimized and effective use is made of the technology.

A second topological observation is that in every computing machine, it is necessary to introduce
literals from the control path into the data path. However, our data path has been designed in
such a way that the data bits flow horizontally while the control bits from the program store flow
vertically. In order to introduce literals, some connection between the horizontal and vertical flow

must occur. It is immediately obvious in figure 13b that the bus is available running vertically

{ ChS: Seet || < Conwiys newdomd vise Taly b 1075 729 1'M

12

through the shift array. It is then the obvious place to introduce literals into the data path or to
return values from the data path to the controller.

At the next higher level of system architecture, the shift array bit slice may be viewed as a system
element with horizontal paths consisting of the bus, the shifter output, and if necessary, the shift
constant since it appears at both edges of the array. The literal port is available into or out of the
top edge of the bit slice, and the shift constant is available at the bottom of the bit slice. These

slices, of course, are stacked to form a shift array as wide as the word of the machine being built.

One more observation concerning the multibit shifter is in order. We stated earlier that our data
path was to have two buses. Therefore, in our data path, any bit slice of a shifter such as the one
shown in figure 13b will of necessity have two buses running through it rather than one. We
chose to show only one for the sake of simplicity. There remains the question of how the two
buses are to be integrated with the shifter. Since we are constructing a two-bus data path, we
have two full words available, and a good field extraction shifter would allow us to extract a word
which gracefully crosses the boundary between two data path words. The arrangement shown in
figure 13b performs 2 barrel shift on the word formed by one bus. Using the same number of
control lines and pass transistors, and adding only the bus lines which are required for the-
balance of the data path anyway, we may construct a shifter which places the words formed by
the two buses end to end and extracts a full-width word which is continuous across the word
boundary between the A and B buses. This function is accomplished in as compact a form as
just described with a circuit shown in figure 14. Notice that the vertical wires have a split in
them. The portion of the wire above the corresponding shift output being connected to the A
bus, and that below the corresponding shift output to the B bus.

It can be seen by inspection that this circuit performs the function shown in figure 15 which is
just what is required for doing field extractions and variable word length manipulations. The
literal port is connected directly to the A bus and may be run backwards in order to discharge the
bus when a literal is brought in from the control port. A block diagram which represents the

shifter at the next level of abstraction is shown in figure 16.

In order to complete the shifter functional block, it is necessary to define the drivers on the top
and bottom which interface with the system at the next higher level. Let us assume that the
literal bus from outside the chip will contain data which are valid on the opposite phase of the

clock from that of the internal buses. In. that case, a very simple interface between the two buses

[Ch5.: Sect1] < Conway > newdoml.visi July 6. 1978 7:29 PM

[Ch.5., Sect.1]

L - Bus 3l
’__J_I ”_.J"T '_l_l‘I '__l_r -
T T T T
SC03 sc13 sC23 $C33
"L_F'T "I_I"r '—I_l_I , "'I_I_I -
T T T T
- 8C02 sC12 §C22 5C32
— - Bus1
T T T T
L SCo1 . SC11 sc21 sC31 g.,,g
T T T T
$C00 §C10 sC20 5C30
Figure 13a. 4-by-4 Crosssbar Switch
: ous
T T T T
' - Busz)
T I |T r1T riT I
T ITlT T riT [
— Buso
]’]’]’ Qut0
— T T |

Figure 13b. 4-by-4 Barrel Shifter

{chonewlig1d.sil)

[Ch.5., Sect. 1}

Lit0O Lit1 Lit2 Lit3

ABus 2

Qut3

shitt3
BBus 3

N

ABus 2

Qut2

—

shift2
BBus 2

ABus 1

Out 1

HE | 4[‘L w h[’L

-
Ll

7
-

shift1
B Bus 1

ABus 0

OutO

ke
(el ket
el

{ﬁ

I I [

I_ shifto

-

BBus O

—8

shitt 3 shift 2 shift1 shift 0

Fig.14. 4-by-4 Shifter with Split Vertical Wires and 2 Data Buses

(chinewtig 14 sil}

[Ch.5., Sect.1]

Bus A.3

Out.3
Shift.3

Bus B.3
Bus A.2

Out.2
Shift.2

Bus B.2
Bus A.l

Out.1
Shift.1

Bus B.1
Bus A.0

Out.0
Shift.0

Bus B.0

Fig. 14a. Layout of a 4-Bit Barrel Shifter

[Ch.5.,Sect. 1}

' - -
‘:2 ' Shift Constant (= 2)
At Shift Qut 3
_| Ao Shift Qut 2
) B3 Shift OQut 1
" B2 - Shift Qut 0
B1
—_ BO Figure 15. Conceptual Picture
of the Shifter’s Operation.
Literal (in/Out)
B Bus — — B bus
A bus — Shifter —— A Bus
~—Shift Qutput
— Shift Constant Out
Shift Constantin

Figure 16. Block Diagram of the Shifter.

Phi 2 Phi 1

=

Shifter Literal External Literal Bus

Phi1‘|n_'|[| :]I'— Phi2*Qut

-

Figure 17. Literal Interface.

{ch5tigt5.sil)

[Ch.5., Sect.1]

S S N

. g ’

o
!]
i

U
t

-
11

>

T

heod

Figure 18. A Nor Form 1-of-N Decoder.

NN

A+B E-rB (h A'l--B h E+Ta
L N N
‘ — —7 .
l
=

T
1

i

__

[%fl %l’l

Figure 19. A Nand Form 1-of-N Decoder.

{ch5Tig1 B sil)

[Ch.5., Sect.1]

H A A A
i 1 Lh ' Lh
i —; i o [[
l L 1E = M
T 1T ¢
lm Lh lm Lh
i - I - [
[' 1 '
[[
W - Voo N - Ve
AB AB AB AB
Figure 20. A Complementary Form 1-0f-N Decoder.
Literal In/Out {Phi 2)
Out (Phi 1) % In (Phi 2)
J N
Phi1 —— Buffers €&—— Phi2
ABus(Phi1) & <—> A Bus (Phi 1)
Shift
——> Shift Control (Phi 1)
Array
——> Shift Qutput (Phi 1)
. -~ e , .
B Bus (Phi1) & —> B Bus(Phi1}
Phi 2 . Buffers
Shift Constant —37‘—\“ Decoder
logn

Figure 21. A Fully Synchronized Shilter.

{ch5lig20 sil)

which will operate in either direction is shown in figure 17

The internal shifter output is precharged during ¢, and active during ¢j. It may be sourced
either from the literal bus or from the shifted combination of the A and B buses through the shift
array, shown in figure 15. The external literal bus itself may be sourced either from the opposite

end (the external paths from the program source) or from the end attached to the A-Bus in the

shift array shown,

The bus to the exiernal literal path is precharged during ¢4, and data bits from the literal port of
the shifter are enabled onto it by a signal active during g9, as shown in Fig. 17. The two signals,
g1 * IN, and ¢ * OUT, are derived from buffers identical to those shown earlier. The shift
constant itself is represented by one line out of n, which is high, the others remaining low.

Buffers for these lines are identical to those shown in figure 9.

There is one more observation concerning the n-bit shift constant. It is represented most
compacily by a log n bit binary number. However, in order to gencrate from such a form a signal
that can be used in the actual data path, a decoder is required 10 convert the binary number into
a one-of-n signal suitable for feeding the buffers. Decoders can be made in a number of ways in
the ratio technology we are discussing. The most commen form is the NOR form, which is the
fully decoded equivalent of the AND-plane in the programmable logi;: array, Chapter 3. It is
shown in figure 18. Notice that the output is a high-going one-of-n pattern.

Decoders can also be made in other forms. For small values of n, the NAND form shown in
figure 19 is oflen convenient. We used a variant of this form for the ALU function block
described earlier. Notice that the output of this form, when used as a decoder, is a Jowgoing one-
of-n pattern. There is also a complementary form of decoder which can be built with ratio
technotogy, and was suggested by Ivan Sutherland. It takes advantage of the fact that in any
decoder both the input term and its complement must be present. In this case, the input term
can be used to activate pull-up transistors in series, while the complement can be used to activate
puli-down transistors in paraliel. This logic form is similar in principle to that used with fully
complementary technologies, and has similar benefits. It can generate either a highgoing or a
lowgoing one-of-n number, and dissipates no static power. A decoder of this sort is shown in
figure 20. Once we have added the appropriate buffers and decoders to our shift array, we have
a fully synchronized function block ready to be integrated with the system at the next level up.

The properties of this block are shown in figure 21.

[ChS.: Sectl] < Conway > newdoml.visi July 6, 1978 T7:29 PM

13

14

Register Array

In any microprogrammed processor designed for emulating an instruction set at a higher level, it
is convenient to have a number of miscellaneous registers available, both for working storage
during computations and for storing pointers of specific significance in the machine being
emulated: stack pointers, base registers, program counters, etc. Since the data path has two
buses, and the ALU is a two-operand subsystem, it is convenient if the registers in data path are
two-port registers. Using the design philosophy we have been discussing, a typical two-port
register cell is shown in figure 22. This register is a simple combination of the input muitiplexer
described earlier, the ¢ fedback transistor, and two tristate output drivers, one for each bus.
The registers can be combined into an array m bits long and n bits wide, the buses passing
through the array. Each cell of the array is defined at the next level up, as shown in figure 23.
Drivers for the load inputs and the read outputs are identical to those shown in figure 9. While
we could immediately encode the load and read inputs to the registers into log n bits, we shall
delay doing so until the next level of system design. There are a number of sources for the A

bus besides the registers, and we will conserve microcode bits by encoding them together.

Before we proceed, there is one mundane detail which must be taken care of in the overall
topological strategy. The routing of VDD and ground must generally be done in metal, except
for the very last runs within the cells themselves. Ofien the metal must be quite wide, since A
metal migration tends to shorten the life of conductors if they operate at current densities much
in excess of 1 milliampere per square micron cross-section. Thus, it is important to have a
strategy for routing ground and VDD to all the cells in the chip before duing the detailed layout
of any of the major functional blocks. Otherwise, one is apt to be faced with topological
impossibilities because certain conductors placed for other reasons interfere with the routing of
the VDD and ground. A possible strategy for the overall routing of VDD and ground paths is

shown in figure 24.

Notice that the VDD and ground paths form a set of interdigitated combs, so that both
conductors can be run to any cell in the chip. Any strategy will do, but it must be consistent,
thoroughly thought through at the beginning, and rigidly adhered to during the execution of the

project.

[Ch5.: Sect1] < Conway > newdoml.visi July 6, 1978 7:29 PM

[Ch.5., Sect.1]

{ _ Bus A) {
) [[- \:l J
LdA *Phi1 — Phi 2 I Rda * Phi1
TC

[
__|

-l
LdB * I;hi1 —-II:‘ ‘j}— R.dB(" Phi 1

) - Bus B 2

L
1 1

Figure 22. A Two Port Register Call.

LdA * Phi1 Phi 2 RdA * Phi 1
— <> BusA
/_\\ > { \} Bus B

./I‘\ /[\

LdB * Phi1 RdB * Phi 1

Figure 23. Block Diagram Definition of the Two Porl Register Cell.

(ch5fig22 . sil)

[Ch.5., Sect.1]

ILd A Phase 2 Rd A

vDD

Bus A

Bus B

GND

Bus B

Bus A

VDD

Ld B Rd B

Fig. 22a. Layout of Two Dual-Port Register Cells

[Ch.5.,Sect. 1]

AL oA e MRV RO A e T L AT e e N e e e e

PR e Y PN RMRA TLL TE e v e EE S R L T B

Sy

ANFOMSE S IS A RGN T ity

MM WL AT T AW B WIS AL 1

53 M3 Wi o2 WD e P R

it .—..r.,l...n.-...zh Fay

R R R I e e A e G S Al Lot N S

-t
-
-

I

Figure 24. VDD and GND Net for the Data Path Chip.

(ch5{ig24.sil

]
1 Driver

|

, :
Bus A ;wA.ph” y lj}—E:l[——
I

fCh.5., Sect-1]

Disable (asynchronous)

LchA * Phit -| ¢ Outbar
J— - I_ { Tri-
__]_L‘ } State

Pad

DrvB * Phi‘;—i[f

11

m—

Latch Pad (asynchronous)

Figure 25. Data Port Tristate Pad Circuit

Disabie A
S
3 I >—4
?I-—“
! AN
b
~ S >——'|
<
>
——[-
Tri-Slate Pad -_—

Buffer Stage — Driver Stage

Figure 26. The Tri-Slate Driver, which consisis of any number of Tri-Stale Buffer
Stages followed by a Pad Driver Stage. The Current Design used Two Tri-Slate

Buffer Stages.

{ch5fig25.sil

[Ch.5., Sect.1]

Disable
GND

VDD

Disable

GND

VDD

vDD

GND

Fig. 25a. Pad Driver Layout

Communication with the Outside World

Although in particular applications the interface from a port of the data path to the outside world
may be a point to point communication, the ports will often connect (o a bus. Thus it is
desirabie to use port drivers which may be set in a high impedance state. Drivers which can
either drive the output high, drive the output low, or appear as a high impedance to the output
are known as tristate drivers, Such drivers allow as many potential senders on the bus as

necessary. Figure 25 shows the circuit for a tristate interface to a contact pad.

Here, either bus A or bus B can be latched into the input of a tristate driver during ¢.
Likewise the pad may be latched into an incoming register at any time independent of the
clocking of the chip. Standard tristate drivers are enabled on bus A and B. The only remaining
chore is the design of the tristated buffer- which drives the pad directly. Details of the tristate

driver are shown in figure 26.

The terms out and outbar are fed to a series of buffer stages which provide both true and
complement signals as their outputs, and are disabled by a DISABLE signal. Note that this
DISABLE signal does not cause all current to cease flowing in the drivers, since the pull-up
transistors are depletion type, but reduces the current to a value where it can be handled by the
disable transistor of the following buffer stage. In general there will be a number of super buffer
stages of this sort. The very last stage of the driver is shown in Fig. 26b. It is not a super buffer
but employs enhancement mode transistors for both pull-up and pull-down. These transistors are
very large in order to drive the large external capacitance associated with the wiring attached to
the pad. They are disabled in the same manner as the super buffers, except that when the gates
of both transistors are low, the output pad is truly tristated. Once again the two output

transistors are a factor of approximately e larger than the last super buffer in the buffer string.

As we have seen, the inverter string necessary lo transform the impedance from that of the
internal circuits on chip to that sufficient for driving a pad attached to wiring in the outside world
is quite large, and imposes a delay of some factor times a logarithm of this impedance ratioc upon
communications between the chip and the outside world. Any help which can be obtained in
making this transformation is of great value. For example, the latch and buffers associated with
the input bus circuit to the pad drivers can themselves be graded in impedance level, so that by
the time the out and outbar signals are derived, they are at a considerably higher current drive

capability than the buses. Note that the buses are a considerably larger capacitance than

[Ch5.: Sect1] < Conway > newdoml.visi July 6, 1978 7:29 PM

16

minimum nodes on the chip, and thus the initial latch buffers can be larger than typical inverters
on the chip. All such tricks help to minimize the number of stages between the bus and the

outside pad, and thus the total delay in going off chip.

Data Path Control Operation Encoding

By now we have defined a complete functional data path with ports on each end and functional
blocks through the center, as shown in figure 27. The data path operation code bits required to
control the data path and the phase of the clock on which they are latched are shown. There are
forty-nine such bits together with the four asynchronous bits for latching and driving the pad to
the external world. In addition, there are the carry-out wire and the sixteen literal wires. These
sixty-six wires together with the thirty-two from the lefi and right port must go to and come from
somewhere. Schemes for encoding internal data path operations into microinstructions of various
lengths are discussed in chapter 6. At one extreme all the data path control wires can be brought
out to a microcode memory driven by a micro program counter and controller, in which case zll
operations which can be done by the data path may be done in parallel. The opposite extreme is
to very lightly encode the operations of the data path into a predefined microinstruction set. In
the present system, this encoding would be most conveniently done by placing a programmable
logic array or set of programmable logic arrays along the top and the bottom of the data path. A
condensed microinstruction could then be fed to the programmable logic arrays which would then

decode the compact microinstruction into the data path operation code bits.

The important point of the design strategy we have chosen is that we can orthogonalize the
design of the data path and the design of the microinstruction set in such a way that the interface
between the two designs is very well defined, very clean, and can be described precisely, in a way
that system designers at the next higher level can understand and work with comfortably. The
data path can then be viewed as a component in the next level system design. As time progresses
and it is possible to construct chips with larger and larger functional density, blocks of the sort
shown will form components in even larger geometrical arrangements which will form even larger
components and a whole hierarchy will emerge which will implement a system function at a
much higher level than contemplated here. However, if the design strategy we have described is
followed, it is possible to construct arbitrarily large and complex systems which are guaranteed to
work if the individual component blocks are correct, and given the clocking period is sufficient to

allow the slowest functional unit to perform its function.

[ChS.: Sect.l] < Conway > newdomlvlsi July 6, 1978 7:29 PM

Drv A (PHI 2)
Leh A (PHI2)
Load Pad

L

Laft
Port

A

Drv B{PHI 2)
Leh B{PHI 2)
Drv Pad

WrtA Rd A
{(PHI 2) {(PHI 2)

N2

Literal
{(PH12)

\l}a

A Sel

| (PHI 2)

\E

P
{PHI 1)

K

Cout
(PHI 2)

RN

R
{PHI 1)

[Ch.5., Sect. 1]

Leh AlPHI).
Rd A (PHt 2)

L

16
Registers

Shift
Array

ALD
Input
Reg.

Kil

ang
Prop.
Control

Carry
Chain

Result
Control

ALY
Qut
Reg

T

wrtg RAB
(PH1 2) (PHI2)

T

Shitt
Constant
{PHI2)

T

BSel
(PHI 2)

o

Cin
(PHI 1)

s

Lch B{PHI 1)
Rd B (PHI 2}

Figure 27. Block Diagram of Datapath with Control Wires Added.

Drv A (PHI 2)
Lch A (PHI2)
Load Pad

&

Right
Port

T

Drv B(PHi 2)
Leh B(PHI 2)
Drv Pad

{ch51ig27 sil}

Using the approximate capacitance values given at the end of Chapter 2, an estimate can be made
of the minimum clock period for sequencing the data path. The Phase 1 time of the data path is
~507. the same as the general estimate given in the section "Transit Times and Clock Periods"” in
chapter 1. However, the Phase 2 time of the data path is limited by the carry chain, as discussed
earlier in this chapter. The relative areas of metal, diffusion, and gate can be estimated from the
ALU layout shown in Figure 6a. The metal and diffusion occupy ~15 and ~8 times the area of
the propagale pass transistor gate, respeclively. Metal is ~0.1 and diffusion is typically 0.2 times
the gate capacitance per unit area. Thus the lotal capacitance of cach stage of the carry chain is
~4.5 (imes that of the pass transistor gate.- The effective delay time is correspondingly longer
than the transit time = of the transistor itself. The effective delay through n stages of such pass
transistor logic s ~ rn2. In the OM2, n=4 and the effective delay for 4 bits of carry chain is
~45*%16r = 72r. To this must be added the delay of the doubly inverting buffers at the end of
every 4 bits of straight Manchester logic. This delay is (1+k) times the transit time of the
inverter pulldown, properly corrected for stray capacitance in the inverter. Here the inverter ratio
k is ~ 8, since its input is driven through the pass transistors. Conservatively, strays in such a
circuit are always several limes greater than the basic gate capacitance, and we may estimate the
inverter delays at ~307. The total carry time is thus ~100 times the transit time for each block
of 4 ALU stages. The total Phase 2 time should then be ~400-. In 1978, the fastest commercial
nMOS processes yield a transit time 7 of approximately 0.3 ns, and we would expect a minimum

total clock period of ~4507, or ~135 ns.

[ChS.: Sect1] < Conway newdoml.visi July 6, 1978 7:29 PM

17

The Second Half of this Chapter contains a functional specification of the OM2 data path
chip, by Dave Johannsen of Caltech. This specification was originally documented in
Display File #1111, by Dave Johannsen and Carver Mead of the Caltech Computer
Science Department, and copyrighted by Caltech. The specification is reprinted here with
the permission of the California Institute of Technology.

[ChS.: Sect.1] < Conway > newdoml.vlsi July 6, 1978 7.29 PM

Functional Specification of the OM2 Data Path Chip

{Section contributed by David L. Johannsen, Caltech]

introduction

This specification describes a 16-bit data path chip referred to as OM2 [# 986]. The OM2
contains 16 registers, an ALU, and a 32-bit shifter, and is designed as part of a micro-
programmed writeable-controi-store digital computer. The companion chip is the
Controller chip, which contains the program counter, stacks, and so0 on. The Controller is
described in Chapter 6. The entire system is designed to run on a single 5 volt supply.

The OM2 Datachip has two data ports for communication with the external system and a
communication path to the Controller chip. The data ports are tri-state with either internal
or external control. Communication with the Controller consists of a 16-bit literal port and
a single flag bit. Seven control bits come directly from the microcode memory.

The system runs on a single clock, génerating ¢t and @2 internally. When the clock is
high, the internal buses transfer data: when the clock is low, the ALU is performing its
operation. Microcode bits enter the Datachip the phase before that code is to be
executed. Therefore, the bus transfer code enters the Datachip when the clock is low,
and the ALU code enters when the clock is high. Figure 1 sketches a possible OM
system. For a more detailed description of system configurations, see reference 1.

Throughout this section a positive logic convention is used. A "1" refersto a high voltage

level, while a "0" refers to a low voltage level.
Datapaths

A block diagram of OM2 is shown in figure 2. There are two buses which connect the
various elements of the chip together. These buses transfer data while the clock is high,
the period referred to as ¢1. During ¢2, when the clock is low, the buses are precharged.
Each bus can only get data from one source, and give data to one destination during any

one cycle.

The Left and Right Ports communicate between the datachip and the outside world. The

[ChS.: Seet.?] < Conway » newdom.vlsi July 8, 1978 1:18 PM

19

20

Right Port has been traditionally known as the memory bus port while the Left Port has
been the system bus port, but sincé the fwo ports are identical, this is an arbitrary
convention. Each port has both an input latch and an output latch to provide facilities for
synchronizing the datachip to the outside buses. Under program control either of the two
buses can load the output latch-during ¢:1. There are three modes of driving data from
the output latch to the pins, two of which are under program control and one of which is
under hardware control. The first method is to output the data as soon as it comes from
the bus, during the same ¢:1. The second methad is to latch the data from the bus during
¢'1 and drive it out during the following ¢2. The final method is to latch the data from the
bus during ¢1, but output the data when an enable pin is pulled low. The enabie pin
would be controlied by a bus manager, and can be asynchronous with respect to the
datachip. Inputting from the port is similar. By pulling down on another enable pin, data
from the external bus is loaded into the input latch, which can be read later under
program control. Alternatively, the microcode can force the data currently on the external
bus into the internal bus during the current ¢1. With this scheme, many types of
synchronous and asynchronous buses may be interfaced to OM2s. For internal control

only, the external enable bins can be left floating.
Registers

The registers are static and dual port. Any one of the 16 registers may source either or
both of the buses, while any one of the 16 may be the destination for either bus, but not
both. There are only two restrictions to the use of the registers:
1. One register may not be the destination for both buses on the
same cycle, and
2. One register may not be both the source for one bus and

the destination for the other bus on the same cycle.
Shifter

The shifter concatenates the two buses, resulting in a 32-bit word, with the A bus being
the more significant half. The shift constant then selects the bit position where the 16-bit

output window starts. The shift constant specifies the number of bits from the B bus

“present in the output {ie. a shift constant of 0 returns the A bus. while a shift constant of

15 returns the LSB of the A bus in the MSB of the output, foliowed by all but the LSB of

| ChA.: Sect 7| < Conway > newdom? vist July BO1978 1118 'M

[Ch.5., Sect2]

System
Bus
Microcode
fem—————— Controller Memory
I . -
170
Bus
5| OM2 Datachip
Main
Memory
Memory
Bus

Figure 1. One Possible OM2 System Configuration

{tig1 .sil}

[Ch.5., Sect.2]

Literal Port Flags
WL Bus A
I~ AT
n Qut
Left . T 7 . T Right
r ALU
Port Memory Shifte 1 5 Port
. o T n — Out I~ AN
b &4 s g A
Bus B

Figure 2. Block Diagram of OM2

Shift Constant
1 2 3 456 7 8 9101112131415

o

MsB

Bus A

I T T N T S S N N Y e
T 1T T 08 1T 5T rryrrr
| Y T N O N I Y O T Y S |

LB L L L B L

i

1

MS8 i 1 _'I:_ i_ T
1 iii T
1 EE Qutput
Bus B T T
EE _’LLSB
LSB

Figure 3. Shifter Operation.

(Fig2 -3.sil}

the B bus in the rest of the word). A conceptual picture of the shifter is shown in figure 3.
The ALU can select as inputs either the bus, the shift output, or shift control. If shift
control is selected, the entire word is O except where the LSB of the A bus appears in the

shift output. The shifter operates on ¢1: it may be viewed as an extension of the buses.

ALU

A block diagram of a single bit of the ALU is shown in figu're 4. The ALU operates on the
data which is contained in its two input latches. Input latch A may be loaded from the A
bus, the shifter output, or the shift controf, while the input latch B may be loaded from the

B bus, the shifter output, or the shift control.

The outputs of the two latches become the inputs to two function blocks which determine
what will happen on the carry chain. Function block P determines whether the carry chain
propagates, while K decides if it is to kiil the carry. |If neither are true, the carry chain
generates a carry. Each function block has four control inputs, which, for the Propagate
function block, are referred to as PFF, PFT, PTF, and PTT. If PFF is enabled, the P block
output is high if both input latches are false (contain 0). Enabling PFT activates the output
if input A is false and input B is true, and so on. If, for example, both PFF and PFT are
enabled, the output is active if input A is false, regardless of the state of input B. To
further illustrate the operation of the function blocks, consider addition. If both inputs
contain a 1, the carry is to be generated, while if both inputs are 0, the carry is killed. If
the two inputs‘ are different, the carry is to be propagated (carry out«-carry in). To do this
operation, the kill output should be active if both inputs are false, so KFF is enabied. Both
PFT and PTF should be enébied to propagate properly. Therefore, K=(KFF, KFT, KTF,
KTT)=(1,0,0,0), and P =(PFF, PFT, PTF, PTT)=(0,1,1,0).

The result of the ALU is produced by the R function block, which has as inputs P block
out and Carry in. For the addition example above, the output should be the exclusive-or of
P and Cin, so R=(0,1,1,0). P, K, and R values for common ALU operations are listed in

the programming section.

Two ALU output latches (A and B) can be loaded from the R block output; either one may

later be used to source either bus.

| ChS: Sect.?] < Conway > newdom? visi July & 1978 1118 PM

Flags

The carry input to the LSB of the ALU is a logical combination of a flag bit and two control
inputs. The two control inputs can force the carry in to be either 1 or 0, or they can select

either flag or flag bar as the input.

There is also a method for doing conditional ALU operations under the contro! of a two-bit
conditional OP field. A conditionai operation performed by the ALU is not only a function
of the control inputs, but also of the flag bit. The conditional operation control forces
some of the control inputs low, regardless of what the P, K, and R miérocode says. The
coding for conditional operations allows the use of operations like multiply step and divide
step without the necessity for branching in the microcode.

There is a 16-bit flag register which can also be a source or destination of the A bus. This
register can aiso be loaded with the ALU flags during ¢2. The ALU flags include carry
out, overflow, carry in to the MS8B, zero, MSB, LSB, Less than, Less than or equal to, and
Higher (in unsigned value). The last three flags are comparison fags used after a
subtaction. For exampie, after subtracting ALU input latch B from latch A, the "less than”
flag is true if the value in ALU input latch B was larger than the value in ALU input iatch
A.The MSB of the flag register is called the flag bit, and this bit may be modified every ¢l
by loading it with the value of one of the other bits of the flag register. The flag bit is used
in the calculation of carry in and modification of conditional ALU Ops. This bit is also sent
to the controller chib to be used for conditional branching, etc.

Literal

The one remaining datapath is the literal port. It is used to send data from the datachip to
the controller, and vice versa. it is a source or destination for the A bus. When the literal
port is being used, standard bus operations are suspended for that cycle.

Programming

The Datachip requires 23 bits of microcode on each phase of the clock. This section of
the memo specifies the encoding of the fields within that microcode. Figure 5 shows the
arrangement of the microcode word.

[Cha.: Sect 2] < Conway > newdom?.visi July R, 1978 1:18 PM

[Ch.5, Sect.2]

QOut

n

A -—| .:)
N

In _I

B

Figure 4. Block Diagram of one bit of the ALU

T T O A I

K P R Flag Select Latching Fields
Conditional Carry in
Op Fieid Select
Figure 5a. Phi 2 Op Code (in on Phi 1)
1
1 I T e A I O
Literal Literal Bus A Destination
Control
Figure 5b. Phi 1 Literal Transfer Op Code (in on Phi 2)
0.0
ot 1 T T T T A I I
Literal Bus B Source Bus B Destination flus A Source Bus A Destination
Control

Figure 5c. Phi 1 Normal Op Code (in on Phi 2)

(figa -5 sil}

Qut

Bus Transfer

The bus transfer control bits enter tﬁe datachip during ¢2 and are used during the
following ¢1. There are two buses, the A bus and the B bus, which interconnect the
modules of the Datachip. These two buses are similar in many respects; however, there
are a few asymmetries as to sources and destinations. Also, when a literal is being
transferred, the only bus transfer field which is active is the A bus destination, which

stores the literal entered on the A bus. A listing of bus sources and destinations follows:

A Bus Source A Bus Destination
onnnn Register n Onnnn Register n
10000 Right port pins 10000 Left port, drive now
10001 Right port latch 10001 Left port, drive ¢2
10010 Left port pins 1001x Left port, no drive
10011 Left port latch 10100 Right port, drive now
10100 ALU output latch A 10101 Right port, drive ¢2
10101 ALU output tatch B 1011x Right port, no drive
10110 Flag register 11000 ALU input latch A
11001 ALU input latch A gets shift out
11010 ALU input latch A gets shift ctl.
11011 Flag Register
B Bus Source 8 Bus Destination
Onnnn Register n 00nnnn Register n
10000 Right port pins 010000 Left port, drive now
10001 Right port latch 010001 Left port, drive ¢2
10010 Left port pins 01001tx Left port, no drive
10011 Left port latch 010100 Right port, drive now
10100 ALU output latch A 010101 Right port, drive @2
10101 ALU output latch B 01011x Right port, no drive
0110xx ALU input latch B
10nnnn ALU input latch B gets shift
output, shift const.=n
11nnnn ALU input latch B gets shift

control, shift const.=n

ALU Input Selection

The two ALU input latches are destinations for the two buses, as shown in the Bus
Transfer section above. In addition to being loaded directly from the buses, these two
latches can be loaded from the outputs of the shift array. The shift constant always comes

from the 4 least significant bits of the B Bus Destination fietd, even though the destination

FChS: Seet? | < Conway > newdom? visi July 8. 197K 1:18 PM

23

of the B Bus is not the ALU input latch B. For example, the B Bus may be transferring the
contents of register 3 into register 5 while the A Bus is transferring the contents of register
4 to the ALU input latch A through the shifter. In this case, the shift constant would be
"5", because the 4 least significant bits of the B Bus Destination field contain "0101".

ALU QOperations

The following table shows coding for ALU operations that are commonly found useful.
The user is encouraged to enco.de other operations if these are not suitable.The numbers
given are the decimal representation of the 4 bit control word. For P and K,
AB =1AB=2AB" =4AB=8. For R, PC'=1PC=2PC' =4PC=8. Cin is the cary in
select, and Cond is the conditional OP select.

K P R Cin Cond
A+B 1 6 8 0 0 Add
A+B+Cin 1 6 6 1 0 Add with carry
A-B 2 9 6 2 0 Subtract
B-A 4 9 6 2 0 Subtract reverse
A-B-Cin 2 9 6 1 0 Subtract with borrow
B-A-Cin 4 9 6 1 0 Subtract rev. w/borrow
-A 12 3 6 2 0 Negative A
-B 10 5 6 2 0 Negative B
A+1 3 12 6 2 0 Increment A
B+1 s 10 8 2 0 Increment B
A-1 12 3 9 2 0 Decrement A
B-1 10 5 9 2 o Decrement B
AAB 0 8 12 0 0 Logical And
AVB 0 14 12 0 0 Logical Or
ADB 0 6 12 0 0 Logical Exor
—A 0 3 12 0 8] Not A
-B 0] 5 12 0 0 Not B
A 0 12 12 0 0 A
B 0 10 12 0 0] B
Mul 1 14 14 0 1 Multiply step
Div 3 15 15 0 2 Divide step
A/Q 0 14 12 9; 3 Conditionat And/Or
Mask 10 5 8 2 0 Generate mask

Carry In Select

The Carry in select field determines what the carry into the LSB of the ALU will be,

[ChS: Secl) | < Conway > newdom2.vlsi July 8 1978 118 PM

according to the following table:

og o

o1 Flag bit

10 1

11 . Flag bit complemented

Conditional Op Select

The conditional op select field is used to generate 3 basic conditional type operations:
Muiltiply, Divide, and And/Cr step. In a great many cases, the conditional op allows
functions dependant on a flag to be perfarmed in one cycle, rather than sending the flag
to the controller and branching to two separate instructions depending upon that flag.
When a conditional OP is selected, certain ALU control bits are forced to zero. Which bits
are zeroed depends on the conditional OP selectand the flag bit, as follows:

Select Flag bit K P R
0 x ---- Unconditional
1 0 -0 --0- --0- Multiply step
1 0--- 0---
2 0 0--0 00 -00- Divide step
1 -00- 0--0 0--0
3 0 - And/Or
1 -00-
Flags

The flag select field determines which of the ALU flags becomes the new flag bit. The

following table lists the selection options.

Select New Flag Bit
0 Old flag bit
Carry out
MSB
Zero
Less than
Less than or equal
Higher (in absolute value)
Overflow

~N ;WU h W~

] Chas Seet?] ¢ Conway > newdom® vlsi July & 1978 118 PM

The ALU flags are loaded into the flag register under the control of the latching field, bit 3.

They are loaded into the following posi‘tions:

Bit . Flag

Not changed

Not changed:

Not changed

Not changed

Not changed

Previous value of Flag bit
- Carry into MSB stage
Less than or equal
Higher (in absolute value)
Less than
LSB
Zero
MSB
Overflow
Carry out
Current Flag bit

t et DO ONODO AN = O
AP LN O w
i J 1 1

Latching Field

The latching field specifies which of four registers should be loaded, as shown in the

following table:
Latching Field Register Loaded

1xxx Flag register loaded with current AL flags

x1xx ALU output latch A loaded with the ALU output

xx1x ALU output iatch B loaded with the ALU output

xxx1 The Literal field during the next ¢2 is loaded with
the contents of the A Bus during the last ¢2

0000 None of these registers are affected

[Chs.: Sect.? | < Conway > newdomXvlsi Tuly 8, 1978 L8 'M

Literals

The two bit literal field specifies when a literal is to be used and which direction it goes. If
both bits are 0, no literal transaction will occur. If the first bit is 1, a literal will be
transfered. If the second bit is 1, the literal goes off chip, while if the bit is 0, the literai

comes on chip.

Programming Examples

This section of the memo contains 3 programming examples which should provide a better

understanding of the various datapaths within OM2.

The first example is 16-bit integer muitiplication. The two inputs, X and Y, are multiplied to
produce the result, Z. in the multiply loop, the number X is shifted left and the MSB is
stripped off. Z is shifted left, then Y is added to the new Z if the MSB of X was a 1. The
sequence of instructions is repeated 16 times, using the counter in the controller to signal
when the 16 iterations have been performed. Figure 6 illustrates each step of the loop,
which is listed here:

@2 ALU.Qut. A«ALU(Shift left)«ALU.In.A;
Latch Flags;
p1: ALU.In.A«Shift.out, Bus.A«ALU.Qut.B;

Bus.B<Rf1]; ~This gives a shift constant of 1.
2 ALU.Out.B<ALUMultiply Step); «conditionally add.
FlageCout; -

el ALU.In.A«Bus. A«ALU.Qut.A

The second example will be to generate a parity flag, which is not directly available from
the ALU. Parity is generated by exclusive-oring all of the bits of the data together. If the
data are loaded into both ALU inputs, with the B input rotated by 1, performing an
exclusive-or operation will give an output that is the exclusive-or of adjacent bits; bit / of
the output will be bit i of the input @ bit /-7 of the same input. If this same operation is
performed, this time rotating the B input by 2, bit / becomes i & /-1 & i-2 @ i-3. By
doing this 2 more times, rotating B first by 4 and then by 8, every bit of the output is equal
to the parity: the exor of all of the bits. The MSB flag is the Parity Odd flag, while the Zero

[ChS.: Seet.?] < Conway > newdom?2.vist July R 1978 1118 M

i}

fiag is the Parity Even flag. The program is listed here, and illustrated in figure 7:

gl ALU.In.A«Bus.A «R{0}; ~generate the parity of register 0.
ALU.In.B«§hift.out(1); Bus.B+R[0];

92 ALU.Out.A«ALU(Exor);

pl: ALU.In.A«Bus.A«ALU.QuLA;
ALU.In.B «Shift.out(2); Bus.B+ALU.OutLA;

¢2: ALU.OQut.A«ALUWUExor);

@l: ALU.InA«Bus.A<ALU.OQuLA;
ALU.In.B«Shift.out{4); Bus.B+ALU.QuLA;

¢2: ALU.Out.A«ALU(Exor);

@l: ALU.In.A«Bus.A<ALU.Out.A;
ALU.In.B+Shift.out(8); Bus.B+ALU.Out.A;

2 ALU(Exor); '

The third example adds all of the registers to what is in ALU.Out.A. By executing and
modifying a literal, the registers can be indirectly accessed, which makes this routine
possibie. Figure 8 illustrates the operation of the following code:

@1: ALU.nAeLiteral "Bus.A«R(1]; ALU.In.B+Bus.B«ALU.Out.B";
@2: ALU.Qut.B+ALU*ALU.InA; -
el ALU.in.A«Bus.A+R[0];

P ALU Qut.B«ALU~ALU.IN.A; «This is just setup, now the loopl
pl: Bus.AcALU.OuLB;
ALU.In.B+Bus.B+ALU.Out.A;

@2 ALU.Out.A«ALU{add});
Execute Literal;
gl ALUW.In.A«A Bus; «The rest of this instruction is the literall
@2: ALU.Out.B«ALUfincrement)«ALU.In.8; «point to next register.

[Chs.: Sect.? | ¢ Conway > newdom).vlsi July 8 1978 1:18 PM

[Ch.5, Sect.2]

Cout
T]
' i i N
NE ~ L
X - X'
A
Shift Left
Y zZ
- S
’T\ "'l-’ - .,
Figure 6a. Shift X in the ALU, putting the Cout flag into Flagbit. {Phi 2)
4 ™
w1 T
P T \I T :‘\ -
- z |- X
Shift 5,)
Const. .
= 1 b -) R
. . v z M
“Lr T 'T *-.Lr S ,
Figure 6b. Put Z on Bus A, and shift 1 left in shifter. {Phi 1)
T~ T~
s '\‘-’
TM P .
wf ~, s
X
T
Muitiply
Step
FANEE
T~ T
g WL _\L e
Figure 6c. Conditionally add Z and Y. (Phi 2)
T ™.
1. =
X I X
Y — Z —
F T L
Figure 6d. Bring X back around to the ALU input. (Phi 1)

(tigh.sil}

[Ch.5., Sect.2]

ALU
+inA

RO EXOR —

[Jauo

‘inB

T

Figure 7a. Shifting by 1: Result is Exclusive-Or of Adjacent Bits.

b

EXOR —

Figure 7b. Shifting by 2: Result is Exclusive-Or of 4 Adjacent Bits

(lig_;?ob,sil)

[Ch.5., Sect.2]

]
1
|

[]

T

Figure 7¢. Shifting by 4: Result is Exclusive-Or of 8 Adjacent Bits.

b

EXOR -

Figure 7d. Shifting by 8. Result Has All Bits identically the Parity Flag.

(fig7 cd.sit)

[Ch.5., Sect.2]

g N S
‘l-’ ,-T-\
Lit —1—
T N
Figure 8a. Bring in Control Literal
= -
e J-
[x T
wJr
T
i Lt |
T L .
Figure 8b. Store in ALU.Out.B
T\. T~
e 2
P32
T I .
Figure 8c. Fetch Register O
T T
I T T
. R ™ Sum
Zero
— Lit
T T
Figure 8d. Clear Sum

(fig8abed.sil)

[Ch.5., Sect.2]

g N AT '\L‘_ I _!.., 1
R Sum
S 5 - .,
— Lit -
AT= AT T~ . i |
Figure 8e. Bring Around Sum and Put Control Literal on Bus A
Litaral to Lit
Lz 7 2 i r i1 0 B] - Ty -
Controi Decoders b .
P oS T NB - T~
Ao “ . 4
R Sum
Add
o 2
Lit [~
T ™ ., #
e . .
Figure 8f. Add Current Numbers
[=
; R
] b .
] : A
] L
~ g . f'- 3.! ~)r]
Figure 8g. Register Loaded by Literal Goes to ALU Input A
T~ \]f T ~
Inc
). T WL e

Figure Bh.

Point to Next Register, Loop to Figure 8e

(figBefgn.sil}

ISP Description of the OM2 Datachip®

Pin States
Ip<0O:17>
pL 017>
new.code < 0:22 >
Hag.pin <0 >
power < :3>

Pin Formats
left.port.data < 0:15>
left.out.async <0 >
feft.in.async <Q>
right.port.data<0:15>
right.out.async < 0>
right.in.async <0 >
literat < 0:15>
clock <0>

Mp State
reg[0:15] < 0:15>
abus<0:16>
a.bus.old<:15>
b.bus<G:15>
left.out< 0:15>
left.in < 0:15>
right.out<0:15>
right.in{0:15>
left.out.later <>
right.out.later<0>
aly.in.a<0:15>
alu.in.b<>®:15>
aly.out.a< ;15>
alu.out.b<x15>
old.code <(:22>
flags < 0:15>

instruction format
asource<0:4>
b.source < 0:4>
a.destination < 0:4 >
b.destination <0:5>
fiteral.in< 0>
old.literal <0115 >
alu.p.op<Q:3>
alu.k.op< 03>
alu.rop<9:3>
alu.conditional < 0:1 >
flag.select<0:2>
carry.in.select<O:1 >
latch.flags < 0>
latch.alu.out.a<0>
latch.alu.out.b <Q >
literal.controt <0 >
reg.select.1 <0:3>
reg.select.2<2:3>
reg.select.3<0:3>

i u

L T T | | S | { T ¢ I | A | A (Y O I | I

feft port

right port

microcode

flag to controfler

power, ground, clock, substrate

lp<2:155
Ip<16>

ip<17>

p <015
m<16>

17>
new.code < 5:20 >
power<3>

registers

bus a

bus a latched for a literal

bus b

left pad output latch

lfeft pad input latch

right pad output latch

right pad input latch

for output during @2 operations
for output during g2 for right port
alu input latch a

alu input latch b

alu output latch a

afu output latch b

microcode that came in last phase
flag register

old.code <{5:9>
oid.code < 16:20>
old.code <0:4 >
pid.code < 10:15>
old.code<22> :
old.code < 5:20 >
old.code < 19:22 >
old.code < 15:18 >
old.code<11:14>
old.code {$:10>
new.code < 6:8>
old.code< 45>
old.code<3>
old.code<2>
old.code<1>
old.code<{0>
a.source < 0:3>
a.destination <0:3 >
b.source<0:3>

[Ch&: Seet 2] < Conway > newdom?.vlsi July 8 1978 1:18 PM

29

reg.select.4<0:3> b.destination < 0:3>
select.1<0> a.source<4>
select.2{0> a.destination<4>
select.3<0 > b.source<4>

b.destination < 4:5>
b.destination <0:3>
b.bus <0:15> Oa.bus {O:15>

select.4<0:1>
shift.constant < 0:3>
sharay < (:31>

0dannhon#

Temporary State
kill.control < 0:3>
propagate.control < 0:3>
result.control < 0:3 >
kill<0:15>
propagate < 0:15>
carry <O:16 >
alu.out <0:15>

instruction Execution
Instruction.execution: ={ -
left.out.async = 0=>{left.port.data«~left.out);next
left.in.async = 0=>(left.in~left.port.data);next
right.out.async = 0=>(right.port.data«right.out);next
right.in.async = 0=(right.in~right.port.data);next
phil(; = clock = 1)=>(
left.out.later+Q;next
right.out.later+Q;next
literal.in = 1=>{a.bus +old.literal};next
literal.in = 0=>(
select.1 = 0=>(a.bus-reg{reg.select.1});
select.1 = 1={
reg.select.1 = 0=>(a.bus+right.in+right.port.data),
reg.select.1 = 1=e{a.bus+right.in};
reg.select.1 = 2=>(a.bus+left.in+left.port.data);
reg.select.1 = 3=>(a.bus«+left.in);
reg.select.1 = 4= (a.bus+alu.out.a);
reg.select.1 =5=>(a.bus+alu.out.b);
reg.select.1 = 6=+(a.bus+flags);next);next
select.3 = 0==(b.bus+reg[req.select.l]);
select.3=1=>(
reg.select.3 =0=>(b.bus+right.in«right.port.data);
reg.select.3 = 1=(b.bus«right.in);
reg.select.3 = 2= (b.bus +left.in~left.port.data);
reg.select.3 = 3=>(b.bus+ieft.in),
reg.select.3 = 4=>(b.bus+alu.out.a);
reg.select.3 = 5= (b.bus«alu.out.b);next);next
select.4 = 0=*(reg[reg.select.4}+ b.bus);
select.4 = 1=%(
reg.select.4 = 0= (left.port.data+left.out b .bus);
reg.select.4 = 1=
left.out+b.bus;next
left.out.later+ t;next);
reg.select. 4 = 2==(left.out+b.bus);
reg.select.4 = 3=>(left.out+b.bus);
reg.select.4 = 4=>(right.port.data«right.out«b.bus);

{ Chs.: Seet.? | < Conway > newdom2.visi July R 1978 1:18 PM

)

reg.select.d = 5=
right.out«b.bus;next
right.out.later« 1;next);
reg.select.4 = == (right.out<b.bus);
reg.select.4 = 7=> (right.out+b.bus});
reg.select.4€{8,9,10,11}=>(alu.in.b «b.bus);next);
select.4 = 2= (alu.in.b < 0:15 > +sharay < 16-shift.constant:31-shift.constant > };
select.4 = 3=>(aiu.in.b«2tshift.canstant);next);next
select.2 = 0=>(reg[reg.select.2] <a.bus);
select.2 = 1=>(
reg.select.2 = 0=>(left.port.dataleft.out~a.bus);
reg.select.2 = 1=>(
left.outea.bus;next
left.out.later+ 1;next);
reg.select.2 = 2=>(left.out+a.bus}
reg.select.2 = 3=>(left.out+~a.bus);
reg.select.2 = 4=>{right.port.data<right.out+a.bus);
reg.select.2 = 5=>(
right.out+a.bus;next
right.out.later+ 1;next);
reg.select.2 = 6=+ (right.cut+~a.bus);
reg.select.2 = 7=>(right.out+a.bus);
reg.select.2 = 8=>(alu.in.a+a.bus);
reg.select.2 = 8=>(alu.in.a < 0:15 > «sharay < 16-shift.constant:31 -shift.constant >);
reg.select.2 = 10==(alu.in.a« 2tshift.constant);
reg.select.2 = 11=>{flags~a.bus);next);next
flag.select = 1=>(flags < 15 > «flags < 14 >);
flag.select = 2=>{Hlags < 15> «flags <12>);
flag.select = 3=>(flags { 15> «flags < 11 >);
flag.select = 4= (flags { 15> «flags <9 >);
flag.select = 5=>(flags (15> «flags <7 >);
flag.select = 6=>(flags {15 > +flags < 8>);
flag.select = 7=>(flags < 15 > +flags < 13 >);next

phi2(: = clock = 0)=>(
ieft.out.later = 1=>(left.port.data«left.out);next
right.out.later = 1 ==(right.port.data+ right.out};next
kiil.control + alu.kK.op;next
propagate.control € alu.p.op;next
resuit.controlealu.r.op;next
alu.conditional = 1=>(
flags< 18> = 1=>(
propagate.control <G> «Q;next
result.control < 0 > «0O;next);
flags < 15> =0=>{
kill.control < 3 > «0;next
propagate.control < 2 > «0;next
result.control € 2 > «0;next);next);
alu.conditional = 2=»(
flags <152 =1=(
kill.control € 2 > «O;next
kitl.control <1 > «0:next
propagate.control < 3> «0;next
propagate.control < 0 > «0O;next
result.control <3 > «0;next
result.control <0 > «0;next);

[CTs: Seet.? T €< Conway > newdom?.vlsi July 8 1478 1:18 PM

flags < 15> = 0=>(
Kill.control < 3 > +0;next
kili.control < 0 > +0;next
propagate.control < 2 > +0;next
propagate.control < 1> «+U;next
result.control < 2 > «0;next
result.control < 1> «0;next);next);
alu.conditional = 3=
flags < 15> =1=(
propagate.control < 2 > «0;next
propagate.control < 1 > «0;next};next);next
kill <Q:15 >
kill.control < 3> A(alu.in.a < 0:15 >)A(Taluin.b <G:15>}V
kill.control < 2> A(alu.in.a<0:15>)Aalu.in.b <15 >V
kill.control < 1 > Aalu.in.a < 0:15 > A(—aluinb <0:15>)V
kill.control <0 > Aalu.in.a< 0:15 > Aalu.in.b < 0:15 >);next
propagate < ;15> «{
propagate.control < 3> A(—alu.in.a<0:15 > 1A (Malu.inb <0:1
propagate.control < 2 > A{—alu.in.a <0:15 >)Aalu.in.b <0:15 >
propagate.control < 1> Aalu.in.a < 0:15> A{™alu.inb <0:15>)
propagate.control < 0> Aalu.in.a < 0:15 > Aalu.in.b <0:15 >);next
carry <0 > «carry.in.select <1 > @(carry.in.select <0 > Aflags < 15 >):next
for k=1 step 1 until 16 do:
(carry <k > « —(kill Ck-1> + propagate < k-1> *—carry Ck-1>) + kil <k-1>*
propagate < k-1 > *x);next in OM2, x is undefined
It kill(i) and propagatefi) are both high, the carry chain does funny things.
We represent that here by use of the "x" in the carry tunction.
alu.out <0:15 > «{
result.control < 3 > A(—propagate < 0:15 >)A(—carry <0:15>)V
result.control < 2> A(—propagate <0:15 >)Acarry <0:15> V
resuit.control < 1> Apropagate <0:15> A(—carry <:15>)V
result.control < 0 > Apropagate < 0:15 > Acarry <0:15 > };next
latch.alu.out.a = 1=>(alu.out.a+alu.out);next
latch.alu.out.b = 1 =>{alu.out.b+alu.out);next
literal.control = 1=*(iiteral + bus.a.old);next
latch.flags = 1=*(
flags < 5> «flags < 15 > ;next
flags < 6> «carry < 15> ;next
flags < 10 > «alu.ocut< 0 > ;next
flags < 11 > «(Q;next
alu.out = 0=*>(flags < 11 > «1};next
flags < 12 > +alu.out < 15> ;next
flags < 14 > «carry <16 > ;next
flags < 13> +flags < 14 > Dflags <6 > ;next
flags <9 > «flags < 12 > Bflags < 13 > jnext
flags < 7 > «flags < 11 > Viiags <9 > ;next
flags < 8 > «=(flags < 14> VHags < 11>);next);next);next
) end of instruction execution

5>V
v
v

References:

1. D. L. Johannsen, "Qur Machine: A Microcoded LSI Processor”, Display File #1826,
July 1978, Dept. of Computer Science, California Institute of Technology.

2 C. G. Bell, A. Newell, "Computer Structures: Readings and Examples”, Chapter 2,
McGraw-Hill, 1971.

[Ch5.; Sect.2] < Conway > newdom?2.vlsi July 8, 1978 1:18 PM

[Ch.5., Sect.2]

13 12
14 11
15 10
16 ' 9
17 8
18 : 7
19 6
20 I ' | -5

=< 1t OOt o /4 el

LP15]+ az [l Flag
LP14 (] JRP15
P13 [TRP14
P12 1RP13
P11 1RP12
LP1c L 1RP11
tP9 [1RP10Q
tr8 [{1RPY
Lp7 [1RP8
LP6 (] . " [QRP7
Lps O - [1RP6
LPa {1 [1RP5
LP3 L RP4
P2 RP3
Pt [1RP2
LPO Eﬂ 16 PRP1

T e = T d T L

LP Out - — RPO
LP in ——J l I RP Out
' RP in

CLK
Gnd vdd
21 4
22 3
Substrate 2
Q 1

Figure S. Pinout of the OM2 Datachip

(tig9 .sit)

Summary of Commands

{Ch.5., Sect2]

OoM2

Transfer Phase: PHI 1

Literal Bus B Source Bus B Destination Bus A Soqurce Bus A Destination

Controt
Bus A Source Literal Control Bus B Source
Gnnnn Register n 000 Microcode In Onnnn Register n
10000 Right - Port Pins Qo1 lHegal 10000 Right Port Fina
10001 Right Port Latch [oh{+] Literai In 10001 Right Port Latch
10010 Lett Port Pins Qi1 l=gal 10010 Left Port Pina
10011 Left Port Latch 100 Execute old A Bus 10011 Left Port Latch
10100 ALU Oulput Latch A 101 lNlegal 10100 ALY Output Lateh A
10101 ALU Output Latch 8 110 A Bus gets old A Bus 10103 ALU Qutput Latch B
10110 Flag Register 111 Literal Qut other - No Source
------- Literal {see Literal Control)
other No Source LSB of the Latching Field

Bus A Destination

during fast PHI 2.

Bus B Destination

Onnnn Register n QGnann Register n
10000 Leit Port, drive now 010000 Left Port, drive now
10001 Left Port, drive PHI 2 Q10001 Left Port, drive PHI 2
1001x Left Port, no drive 01001x Left Port, no drive
10100 Right Port, drive now Q10100 HAight Port, drive now
10101 Right Port, drive PH 2 410101 Right Port, drive PHI 2
1011x Right Port, no drive o1011x Right Port, no dirve
11000 ALY lnput Latch A 0110xx ALU Input Latch B
11001 ALU tnput Latch A gets Shift Out Ot1ixx No Destination
11010 ALU Input Latch A gets Shift Control 10nnnn ALU Input Latch B gets shift
11011 Flag Register output, shift constantsn
other Do DCeslination 11nnnn ALU Inpul Latch B gets shift
control, shift constantan
Operation Phase: PHI 2
ALL Operation Flag Select Carry In Latching
Select Fieid
ALU Operation Carry In Select
1000 Ot10 0110 00 00 Add 00)
1000 0110 0110 00 01 Add with Carry o1 Flagbit
0100 1001 0110 00 10 Subtract 10 1
0010 1001 0110 00 10 Subtract Reversed 11 Flaghit Complimented
0100 1001 0110 00 Q1 Subtract with Borrow
0010 100t 0110 00 01 Subtract Reversed with Borrow
0011 1100 0110 00 -10 Negative A Flag Select
0101 1010 0110 00 10 Negative B
1100 0011 0110 00 10 Increment A Qo0 Old Flagbit
1010 01C1 Q110 00 10 Increment 8 Q01 Carry Out
0011 1100 1001 00 10 Decrement A 010 MSB
0101 1010 1001 QO 10 Decrement B o111 Zero
0000 0001 O00t1 0C Q0 Logicai AND 100 Less than flag
0000 0111 0011 00 00 Logical OR 101 Less than or equal flag
0000 0110 0011 00 00 Logicat Exclusive Or 110 Higher flag
Q000 1100 0011 Q0 00 Not A 111 Overtlow
0000 1010 0011 00 QO NotB
Q000 0011 0011 Q0 Q0 A . .
0000 ©101 001t 00 00 B Latching Field
1000 0111 0717 91 90 My Seo
0000 0111 0011 11 00 Conditional AND/OR xlxcLoad AL e L 8
0101 1010 0001 00 10 Generate Mack xxix Loud ALU Output Lot
’ xxx1 Literal bits get old A Bus next PHI 1
uuuL ULy Ul w uy User Defined Op 0000 Nop

Carry'In Select Field

{fig10Q.sil)

Coding Form : OM2 [Chs, Sect2]

B T &
e N o
" - T T- >y -
. “,) o
T \ T
7
“
S p 4 .,
- e d
T~ AT ST -
-,
- T 1: . w i

T ™
b .,
T~ T~ \l/ ‘I"\. K E
" fo ~J w1 ol
T
- A T
o
"
o Tl - S
— | —
- r A s
A~
A ~J 1 -\L w1 ~]r
- + s
N -
" f-. l‘_ .-r . B
- . NE
E . L Y
7
Ry
B 5 .,
~ ™~ G
#
J- N T" \.lr ~lr .,

~ T I~
i o
y . l - I -
NP

Jo o b o i

Ry

”

o ~

— —

T = = =
- J I\ “"l" N ~)

(tigt t sil)

