Chapter 3: Data and Control Flow in Systematic Structures
Copyright © 1978, C.Mead, L.Conway

Sections:

Notation - - - Two Phase Clocks - - - The Shift Register - - - Relating Different Levels of
Abstraction - - - Implementing Dynamic Registers - - - Designing a Subsystem - - - Register to
Register Transfer - - - Combinational Logic - - - The Programmable Logic Array - - - Finite State
Machines - - - Towards a Structured Design Methedology

The process of designing a large-scale integrated system is sufficiently complex that only by
adopting some type of regular, structured design methodology can one have hope that the
resulting system will function correctly, and not require a large number of redesign iterations,
However, the methodology used should allow the designer to take full advantage of the
architectural possibilities offered by the underlying technology.

In this chapter we present a number of examples of data and control flow in regularized
structures, and discuss the way in which these structures can be assembled into larger groups to
form subsystems, and then these subsystems assembled to form the overall system. The design
methodology suggested in this chapter is but one of many ways in which integrated system 'design
may be structured. The particular circuit form presented does tend to produce systems of very
simple and regular interconnection topology, and thus tends to minimize the areas required to
implement system functions. Arrays of pass transistor logic in register to register transfer paths
are used wherever possible lo implement system functions. This approach tends to minimize
power dissipated per unit area, and, with levei restoration at appropriate intervals, tends to
minimize the time delay per function. The methodology developed is applied in later chapters t0
the architecture and design of a data processing path and its controller, which together form a

microprogrammed digital computer.

Computer architects, who usually design systems in a rather structured way using commercially
available MSI and LSI circuii modules, are often surprised o discover how unstructured is the
design within those modules. In principle one can use the basic NAND and NOR logic gates
described in Chapter 1 to implement combinational logic, build latches from these pates to
implement data storage registers, and then proceed to design integrated systems using traditional
logic design methodology as applied to discrete devices. Integrated systems are often designed
this way at the present time. However, it is unlikely that such unstructured approaches to system

design can survive as the technology scales down towards maximum density VLSI

[Chi: Sectl] < Conway > newdcfl.vlsi July 4, 1978 7:14 PM

There are historical reasons for the extensive use of random logic within integrated systems. The
first microprocessors produced by the semiconductor industry were fairly direct mappings of early
generation central processor architectures into LSI. A block diagram of the Intel 4004, the
earliest microprocessor to see widespread commercial application, is illustrated in figure la. The
actual chip layout of the 4004 shown in Figure 1b indicates the complexity of the LSI
implementation of this simple central processing unit. Such LSI systems, directly mapping data
paths and control functions appropriate in earlier component technologies, of necessity contained
a great deal of random logic. However, the extensive use of random logic results in chip designs

of very great geometrical and topological complexity, relative to their logical processing power.

To deal with such complexity, system design groups have often stratified the design problem into
architecture, logic design, circuit design, and finally circuit layout, with specialists performing each
of these levels of the design. Such stratification often precludes important simplifications in the

realization of systemn functions.

Switching theory provides formal methods for minimizing the number of gates required to
implement logic functions. Unfortunately, such methods are of little value in VLSI systems, since
the area occupied on the silicon surface by circuitry is far more a function of the topological
properties of the circuit interconnections than it is of the number of logic gates implemented.
The minimum gate implementation of a function often requires much more surface area for its

layout than does an alternative design using more transistors but having simpler interconnection

topology.

There are known ways of structuring integrated circuit designs implemented using traditional logic
design methods. A notable ecxample is the poly.cell1 technique. In this technique, a group of
standard cells corresponding to typical SSI or MSI functions are gathered into a library of
functions. The logic diagram for the system to be implemented is used to specify which cells in
the library are required. The cells are then placed into a chip layout, and interconnections laid
out between them by an automatic interconection routing system. The polycell technique
provides the logic designér having limited knowledge of integrated systems with a means of
implementing modest integrated circuit designs directly from logic equations. However, a heavy
penalty is paid in area, power, and delay time. Such techniques, while valuable expedients, do
not take advantage of the true architectural potential of the technology, and do not provide

insight into directions for further progress.

[Ch3.: Sect.1] < Conway > newdcflvisi July 4, 1978 7:14 PM

The Intel 4004 Microprocessor; An Early LSI System

BLOIRECTIONAL
0 OATA BUS

[

[Ch.3. Sect.1]

“an)
WWTERNAL DATA B WTEANAL OATA Bl
RCCOWULATOR Towr. Ald ST o Fark
141 1 DIESIS I R ML TR I NER
o e
Fian L] PeOGHA COUIEA)
ELF FLOPS] - -
= tvELMDT 2 2!
M ar
INSTRUCTHOM -
L_afsimcric SreuaA T wirnr S
M Ardy = -
i —1 15 o - -
A ol i wvme 1, E1 I B
EKCODING I s
ADNRESS < . .
— Ll STACK =
! - S
H
g Wl n
D:DL;‘DJA:'I. {t St e
)
.
[} cRarcH
TiMING
1 ann I ey
comtROL
sowtr e gy
LIt et AOM Rt
COMTRGL COMTPOL TEXT EYNC LLOCHS)

SYNC ol o RERET

‘ Clllm l l 1 l YEI“

Fig. 1a, 4004 Block Diagram

v

)

N o p
l Hm»'?%@}mﬁ
e
e

Fig. 1b. 4004 Chip Photomicrograph with Pin Designations

At ek SR T T N

[reprinted with permission of G. Moore, Intel Corp.]

J |

page 2a.

Switching theory not only yields the minimum number of gates to implement a logic function,
but it also directly synthesizes the logic circuit design. Unfortunately, at the present time there is
no general theory which provides us with a lower bound on area, power, and delay time for the
implementation of logic functions in integrated systems. Theoretical lower bounds for certain

special structures and algorithms of interest are given in chapter 9.

In the absence of a formal theory, we can at best develop and illustrate alternative design
methodologies which tend to minimize these physical parameters. Proposed design methodologies
should in addition provide means of structuring system designs so as to constrain complexity as
circuit density increases. We hope that the examples and techniques presented in this text will

serve to clarify these issues and stimulate others to join in the search for more definitive results?.

Notation

There are a number of different levels of symbolic representation for MOS circuits and
subsystems used in this text. Figures 2a., 2b,, 2c, and 2d., illustrate a NAND gate at several such
levels. At times it may be necessary to show all the details of a circuit's layout geometry in order
to make some particular point. For example, a clever variation in some detail of 2 circuit’s layout
geometry may lead to a significant compaction of the circuit’s area without violating the design

rules.

Often, however, a diagram of just the topology of the circuit conveys almost as much information
as a detailed layout. Such stick diagrams may be annotated with important circuit parameters if
needed, such as the L/W ratios shown in figure 2b. Many of the important architectural

parameters of circuits and subsystems are a reflection of their interconnection topologies.

Alternative topologies often lead to very different layout areas afler compaction. The discovery of
a clever starting topology for a design usually provides far better results than does the application
of brute force to the compression of final layout geometries. For this reason, many of the
important structural concepts in this chapter and throughout the text will be represented for
clarity by use of colored stick diagrams. The color coding of the stick diagrams is the same as
that of layout geometries, and is as follows: green symbolizes diffusion and transistor channel
region; yellow symbolizes ion implaniation for depletion mode transistors; red symbolizes

polysilicon; blue symbolizes metal. black symbolizes a contac!.

[Ch3.: Sectl] < Conway > newdcflvisi July 4, 1978 7:14 PM

Later, through a number of examples in chapter 4, we will present the details of procedures by
which the stick diagrams are transformed into circuit layouts, and then digitized for maskmaking.
Note that if this topological form of representation were formalized, one might consider
"compiling" such descriptions by implementing algorithms which "flesh out and compress” the
stick diagrams into the final layout geometries3, according to the constraints imposed by the

design rules.

When the details of neither geometry nor topology are needed in the representation, we may
revert to the familiar circuit diagrams and logic symbols. At times we may find it convenient ta
mix several levels in one diagram, as shown in figure 2e. A commonly used mixture is: (i) stick
diagrams in portions where topological properties are to be illustrated, (ii) circuit symbols for
pullups, and (iii) logic symbols, or defined higher level symbols, for the remaining portions of the

circuit or system.

We will define logic variables in such a way that a high voltage on a signal path representing that
variable corresponds to that variable being true (logic-1). Conversely, a low voltage on a signal
path representing that legic variable corresponds to the varizble being false (logic-0). Here high
voltage and low voltage mean well above and well below the logic threshold of any logic gates
into which the signal is an input. This convention simplifies certain discussions of logic variables
and the voltages on the signal paths representing them. Thus when we refer to the logic variable
f being high, we indicate simultaneously that f8 is true (logic-1) and is represented on the signal
path named 8 by a high voltage, one well above the logic threshold. In boolean equations and
logic truth tables we use the common notation of 1 and 0 to represent frue and faise respectively,

and by implication high and low voltages on corresponding signal paths.

I Chl: Sect1]1 ¢ Conway > newdefl.vlsi July 4, 1978 7:14 PM

[Ch.3., Sect.1]

Seack 1M A
IL_.._;_ Ly

1LY 546

2=
AB .- AB
A .
? /-
B
f= |/
Fig.2a. NAND Gate: Layout Geometry Fig.2b. NAND Gate: Topology

(Stick Diagram)
VLD

)
ﬁ?- —— R

A ” A — . .
] l »)m———- At
P ___’[N S/ .
=
Fig.2c. NAND Gate: Circuit Diagram Fig.2d. NAND Gate: Logic Symbol
. ¢ vDD
ﬂ - -
3 - - ——
.
GND

Fig. 2e. Example of Mixed Notation

Two Phase Clocks

We will often make use of a particular form of “"clocking” scheme to control the movement of
data through MOS circuit and subsystem structures. By clocking scheme we mean a strategy for
defining the times during which data is allowed to move into and through successive processing

stages in a system, and for defining the intervening times during which the stages are isolated

from one another.

Many alternative clocking schemes are possible, and a variety are in current use in different
integrated systems4. The clocking scheme used in an integrated system is closely coupled with
the basic circuit and subsystem structuring, and has major architectural implications. For clarity
and simplicity we have selected one clocking scheme, namely two-phase, non-overlapping clock
signals. This scheme is used consistently throughout the text, and is well matched to the type of

basic structures possible in MOS technology.

The two clock signals ¢:) and ¢ are plotted as a function of time in figure 3. The signais both
switch between zero volts (logic-0) and a voltage near VDD (logic-1), and both have the same
period, T. Note that both signals are non-symmetric, and have non-overlapping high times. The
high times are somewhat shorter than the Jow times. Thus g9 is Jow all during each of those time

intervals from when g1 rises, nears VDD, and then falls back to zero.

We have adopted a compact convention for transistions of clocking signals. The rising transition
of a signal ¢ is symbolized as t¢, and the fall as @, we also have a similar rule for ¢, namely
g1 = 0 all during each time interval from tq4 t0 4. Therefore, at all times the logic AND of
the two signals equals zero: [q1(t)] » [g5(1)] = O, for all t. For convenience, we will often use
the following equivalence in our descriptions: “during ;" is equivalent to “during the time
period when @; is high". In the next section we will illustrate the use of these two clocking
signals to move data(through some simple MOS circuit structures. A more detailed discussion of

clocking requirements is given in chapter 7.

[Ch3.; Sect1] < Conway > newdefl.vlsi July 4, 1978 7:14 PM

The Shift. Register

Perhaps the most basic structure for movement of a sequence of data bits is the serial shift
register, shown in circuit diagram form in figure 4a. The shift register is composed of level
restoring inverters coupled by pass transistors, with the movement of data controlled by applying

clock signals @] and ¢4 to the gates of alternate pass transistors in the sequence.

Data is shifted from left to right as follows. Suppose a logic signal X is present on the leftmost
input to the shift register when clock signal ¢ rises. Then, during the time when ¢y is high, this
signal will propagate through thé pass transistor and be stored as charge on the input capacitance
of the first inverter stage. .For example, if the signal X is Jow, then the inverter input gate
capacitance will be discharged towards zero volts during the time when ¢ is high. On the other
hand, if X is high, the inverter input capacitance will charge up towards VDD - Viy, during ¢;.

When the clock signal ¢y fails, the pass transistor becomes an open circuit, isolating the charge
on the input of the inverter. The second clock phase is now initiated by the rise of ¢5. During
the time interval when ¢4 is high the logic signal X, now inverted, will flow ti1rough the second
pass transistor onto the gate of the second inverter. This pattern can be repeated an arbitrary

aumber of times to produce 2 chift register of any length.

Note that since the clock signals do not overlap, the successive pairs of stages of the shift register
are effectively isolated from one another during the transfer of data between inverter pairs. For
example, when 1 is low, and @5 is high, all adjacent inverters connected by the ¢4 controlled
pass transistors are in the process of transferring data from the left to the right members of the
pairs. All these pairs of inverters are isolated from each other by the intervening ¢y controlled

pass transistors which are all open circuits when ¢y is low.

It is also important to note that the shortest period, T, we can use for clocks controlling such data
transfers is determined by the time required to adequately charge or discharge the inverter input
gate capacitance through the pass transistor and the preceding stage pullup or pulldown. To this
time must then be added an increment of time sufficient to insure that the clocks do not overlap.
For more complex systems, the minimum clock period may be estimated as a function of basic

circuit parameters as discussed in Chapter 1.

Figures 4b and 4c illustrate the serial shift register using mixed notations. In figure 4b, each

inverter circuit diagram has been replaced by its logic symbol. In figure 4c, the pass transistor

[Chi- Seet 11 < Conwav > newdefl visi Julv 4, 1978 7:14 PM

[Ch.3., Sect.1]

phaset(t)
—l >t
phasez(t)
>t
Fig. 3. Two Phase Non-Overlapping Clock Signals
‘ phase 1 vDD phasa2 vDO phase 1 vDoD
— ! ; e
Fig. 4a Shift Register: Circuit Diagram
phase 1 phase 2 phaséal

> So—7

Fig. 4b. Shift Regisler: In Mixed Notation

(i34 il

[Ch.3, Sect.1]

@

-

Fig.4c. Shift Register: More Mixed Notation

?,

)

'\\ e |\\ -
| 1~
™S

- o S

Fig.5a. Array of Shift Registers

5

/
/

yA
L) [L\
:\‘\\ ! S

e 7 I lL P
o

) / ' '

Fig.5b. Shift-Up Register Array

circuit symbols have been replaced by their stick diagrams, When visualizing the inverter, as
represented by its logic symbol, in a circuit structure containing mainly stick diagrams, two points

should be kept in mind:

(i) The input to the inverter leads directly to the gate, and thus the gate capacitance, of the
inverter's pulldown transistor, This input may be used to store a data bit by isolating the charge
representing the bit with a pass transistor. Note that the input path will end up on the poly level
within the inverter. A contact cut may thus be required to connect the poly gate and the metai

or diffusion path on which the signal enters the inverter.

(ii) Since the connection between the source and gate of the inverter pullup transistor requires a
connection of all three conducting levels, the inverter output signal may easily be routed out on

any one of the three levels.

Identical serial shift registers can be stacked next to each other and used to move a sequence of
data words, as shown in figure 5a. The simple structure in figure 5a anticipates the elegant
topological simplicity of many important MOS integrated system functions. By connecting the
successive inverter stages with diffusion paths, the pass transistors controlled by the clock signals
are formed by simply running vertical clock lines in vpoly. The structure in figure Sa also
anticipates another important point: topological simplification often results when control signals
flow on lines that are at right angles to the direction of data flow. In this way as many bits as

necessary can be processed in parallel with the same control signals.

The example in figure 5a is so rudimentary it is perhaps difficult to visualize the two clock signals
as actually containing control information. Let us consider a slightly more complex example, the
shift-up register array shown in figure §b. In this structure, each data bit moving from left to
right during ¢ has two alternative pass transistor paths through which it can proceed to the next
stage: a straight through path, and a path which shifts it up to the next higher row. If the control
signal SH is low, then [¢7 » SH'] is high, and the straight through pass transistor paths are used
during @5. At the same time, [g9 « SH] is low, thus preventing data flow through the shift-up
pass transistor paths. On the other hand, if SH is high, the straight through pass transistors are
off and the shift-up pass transistor paths are used during g3, resulting in the entire data word
being shifted vertically as well as horizontally, Here the vertical control lines are run in metal,
and the pass transistors are selectively formed by crossing the appropriate diffusion paths with

short poly lines.

[Ch3.: Sect1} < Conway > newdcfl.visi July 4, 1978 7:14 PM

Relating Different Levels of Abstraction

In the discussions in this chapter, we will not have to make extensive calculations of the detailed
electrical behavior of the devices and circuits involved in order to analyze the general behavior of
digital logic constructed with these devices and circuits. Most of the examples presented in this
chapter, and throughout the text, build upon the use of pass transistors coupling inverting logic
stages as a means of structuring designs. The general results of chapter one provide the solutions
to most device and circuit problems encountered, such as ratio and delay calculations, etc. In
most cases, design concepts can be worked out using stick diagrams, and only at the stage of
transforming the circuit topology into the detailed circuit layout geometry will these calculations

need to be worked out, either by hand or with circuit simulation programs.

It is important to simplify our mental model of integrated circuitry, so as to more quickly and
easily analyze or explain the function of a given circuit, and more easily visualize and invent new
circuit structures without drifting too far away from physically realizable and workable solutions.
Of course, it is a dangerous practice to oversimplify our abstractions of electronic circuit behavier,
and there are some nMOS circuits of deceptively simple appearance which have exceedingly
complex behavior. However, throughout large portions of digital integrated systems, if the circuit
and subsystem design is structured as suggested in this text, an extremely simple mental model of

device and circuit behavior will prove adequate to predict circuit and subsystem behavior.

Figure 6a illustrates a simple way of visualizing the operation of successive inverting logic stages
coupled by pass transistors. Assume for the moment that any pass transistors in the paths
between stages are on. To visualize the time behavior of an inverter, and the effect of the pullup
L/W to pulidown L/W ratio, imagine the flow of current from VDD to GND as the flow of a
fluid, and the inverter's two transistors as valves. The basis for thinking of the transistors in this
manner is the fluid model of their internal behavior, as given in chapter 1. Whether a transistor
is on or off depends upon the voltage, and thus upon the charge, on its control gate, and also on
its threshold voltage. The upper “valve" is always open, since the pullup transistor is always on.
However, the "valve” corfesponding to the pulldown transistor may be either open or closed,

depending on the amount of charge on its gate.

In figure 6a, the input to inverter-A is a logic-0, so the pulldown of inverter-A is off, and the
lower valve is closed. Current is thus diverted to the large charge storage site corresponding to

the gate of the pulldown of inverter-B. At this level of diagram we have reverted to the common

[Chi- Sect.11 < Conwav » newdeflvlsi July 4, 1978 7:14 PM

{Ch.3. Sectl]

VDD VDD

"nass
n'agststor"

i " trangistor’

“inverter B"

"inverter A" ot

GND GND

Fig. 6a. A Way of Visualizing the Operation of Successive Inverter Stages

R
-

1
'

L
1

-

v

—{>

Fig. 6b. Successive Inverter Stages: Circuit Diagram and Logic Diagram

P =
1
X() 5 [~ Z() WhieP=1

~ DF L~ Z(t) = X(t- delta)
'P=10
|
¥ i

” : P | IfP +0att=10

: r|>° / N L~ T (1) = Z(tO). fort > 10

Fig. 6c. Successive Inverter Stages Connected Through a Pass Transistor

[Hlustrating effect of the pass transistor "switch"]

{dcfb.press)

convention of positive charge flow from VDD to ground, rather than electron flow from ground
to VDD. If sufficient positive charge has flowed onto this gate, corresponding to a high level of
fluid in the tank representing the gate capacitance, then the pulidown of inverter-B is turned on,
and thus the lower valve of inverter-B is opch. If the lower valve in inverter-B is much larger
than the upper one, corresponding to a practical pullup to pulldown size ratio, then the pulldown
of inverter-B can sink all the source current provided by the pullup. Also, if given sufficient time
and if the connecting pass transistor is on, the pulldown can drain off any charge stored on the
succeeding inverter's input gate. Thus we can visualize the sequence of inversions of a logic
signal propagating through successive inverter stages as an alternation between high and low
levels of fluid in the storage tanks. We can also visualize some of the time behavior of the signal
propagation: the larger the gate capacitance, the longer it takes to build up enough charge to
open the next stage, and the longer it takes to drain charge off the next stage to tumn it off.

Figure 6b represents the same physicai circuit modelied in figure 6a, but on successively higher
levels of abstraction. When analyzing circuit or logic diagrams showing successive inverting logic
stages, as in figure 6b, one should keep the model of figure 6a in mind. Whether one is a novice
or an expert in integrated system design, it is very helpful to compress the details of any given
lower level of abstraction, so as to reduce the complexily of the probilems presented at the next

higher level, and enable the mind to span problems of larger scope.

We are now able to visualize a very simple model for the pass transistor: it is in fact like a valve,
or "switch" in the path between an inverter and the next charge storage site, Le. the input gate of
the next inverter. Figure 6c shows two inverters coupled by a pass transistor, with the pass
transistor informally symbolized as a "switch”. In the upper diagram of figure 6c, the pass
transistor input is a logic-1, and so the "switch” is in the on position, resulting in the output Z
being equal to the input X, after a suitable delay time At. Thus during the time the pass
transistor gate input P = 1, the output Z(t) = X(t - At). Here At is some multiple of the

transit time, r, of the inverter pulldown transistor, as discussed in Chapter 1.

In the lower diagram of figure 6c, the pass transistor "switch” is moved to the off position since P
is a logic-0. Therefore, according to our model, the valve in the path between the inverters is
shut, and the charge, or lack of charge, is isolated in the storage site. Thus, once the pass
transistor "valve” is shut, Z remains at a constant value, independent of changes in X. In other
words, if P — 0, att = t; then Z(H) = Z{ty, for t > 5.

[Ch3.: Sect:1] < Conway > newdefl.visi Iuly 4. 1978 7:14 M

10

These simple visualizations of the inverter and the pass transistor will carry us fairly far into LSI
subsystem design. Several logic circuits in this chapter are drawn first in stick diagram form, and
then informally sketched with pass transistors replaced with ' 'switches", both to clarify the
behavior of the circuits involved, and to further demonstrate the applicability of the model.

Implementing Dynamic Registers

Registers for the storage of data play a key role in digital system design. It is interesting to note
that a group of adjacent inverters, with their gates isolatable by pass transistors, can be considered
a form of temporary storage register. This arrangement is illustrated in figure 7, which shows two
levels of symbolism for this dynamic register. Such a register is very simple in structure. It
consists of only three transistors per bit position: the pass transistor and the two transistors of the
inverter. However, this dynamic form of register will preserve data only as long as charge can be
retained on the inverter input gates. Typically dynamic registers are used in situations where the
input gate updating control signals are applied frequently. They are ideal in a clocked system in

which they are reloaded every clock cycle, as in the shift register.

Suppose we wish (o construct a simple register which can be loaded during the appropriate clock
phase under the control of a load signal, and which will retain its information through an
indefinite number of successive clock periods until it is reloaded using the load signal. A one bit
cell for such a register may be constructed using cross coupled inverters in the configuration
shown in figure 8. This register cell is still dynamic in form, since it uses charge storage on the
gate of the first inverter to preserve its state. However, it need not be loaded on every successive
@1 as was the simple register in figure 7. The pass transistor leading to it from the preceding
stage is switched on only when both ¢ and LD are high. On any following ¢ when LD is low,
the cell updates itself by the feedback path through the second pass transistor. Figure 9
illustrates a selectively loadable register composed of such cells. One important feature of this
type of register is that it provides as output both the true and complemented forms of the stored
data. This feature is often useful when the data is to be processed by a following network of

combinational logic.

While there are more elaborate forms of dynamic and static registers, the above two forms are

sufficient for many of the required data storage applications within integrated systems.

[Ch3.: Sectl} ¢ Conway>newdcflvisi July 4, 1978 7:14 FM

3}

L

e

L

]I=>t

Fig.7. A Dynamic Register

phlLD ‘

I phlLD’

[2

R —
E H
G

é :
T H

E

R _-'>

Fig. 8. A Selectively Loadable Dynamic Register Cell

L
iﬁjF

Y
—{ >0t

phlLD phlLD’

L]

—
—+ —_—
R
E
G
1
S
T
E
R
e 2 —_—

Fig.9. A Selectively Loadable Dynamic Register

[Ch.3, Sect]]

(def7-9.press)

Designing a Subsystem

The ideas used to construct simple dynamic registers in the preceding section may be applied to
the construction of more sophisticated and interesting subsystems. In this section we will describe
the design of a stack. The methodology we use for this specific example we will find appropriate
for a wide variety of functional subsystems. We first invent a "cell” which implements the most
primitive function of the subsystem. This cell dictates a set of "timing" criteria necessary for its
proper operation. The cell geometry together with the timing requirements dictates the design of
contral “circuits” which will surround an array of the basic cells. Once these control circuits are
attached to the cell array, and the necessary “interconnections” are made, the entire assemblage
constitutes a functional "module” with a well defined “interface” to the next higher level of
design. This interface consists of a functional specification, a geometrical specification, and a set

of timing requirements for the control inputs, data inputs, and data outputs.

The stack subsystem is commonly called a last-in, first-out (LIFQ) stack. It is also known as a
pushdown stack, although we will diagram it horizontally rather than vertically. It is a shift
register array with three basic operations: during each full clock period (1) we can push in a new
data word at one end of the array, pushing all previously entered words one word position further
into the array, or (2) we can leave all words in their current position, or (3) we can pop out a

word from the end of the array, pulling all previously entered words back out by one word

position.

Figure 10a shows the structure of one horizontal row of the stack. Here we have implemented a
shift register which can perform the following three operations: shift data left to right, hold data
in place, or shift data right to left. There are four control signals used, two of them being active
during ¢, and two of them being active during ¢5. The signals ¢ and ¢, are our familiar two

phase, non-overlapping clock signals.

In order for data to be shifted from left to right, the shift right control line (SHR) is driven high
during 7. followed by driving the transfer right control line (TRR) high during ¢4. The bit of
data appearing at the left is thus transferred by this operation onto the gate of the first inverter
during ¢, and thence to the gate of the second inverter during ¢-. In order for data to be held
in place, the signal transfer left (TRL) is driven high during ¢ and transfer right (TRR) is
driven high during ¢4, causing the data to recirculate upon itself without shifting. Note that the

data can be obtained at any time from the output of the first inverter. However, since new data

[Ch3.; Sect1] < Conway > newdcflvisi July 4, 1978 7:14 PM

1

may come to the gate of the first inverter during ¢y, the only safe time to take data out to the
left is during ¢,. The transfer of data from right to left is caused by driving the shift left control
(SHL) line high during ¢4, followed by driving transfer left (TRL) high during ¢1.

Figure 10b illustrates a possible topological structure of one horizontal row of the stack. There
are two horizontal pathways on the diffusion level for shifting bits right or left. The two inverters
for one stage of the row are nested between these paths. VDD, GND, and the four control lines
run vertically in metal. The four pass transistors required for controlling the movement of data
are conveniently implemented by short poly lines which cross the horizontal diffusion tracks at
appropriate positions. Note that the entire row is composed of 180° rotations and repetitions of a

basic cell containing one inverter.

In a typical implementation of the complete LIFO stack, a number of such rows run parallel to
each other in the horizontal direction. The number of rows is equal to the width in bits of the
data words involved. The control lines run vertically across the entire stack, perpendicular to the
direction of data flow. For data words of any substantial width, the capacitive loading on the

control signals would be sufficient to warrant use of super-buffer drivers.

The stack as a whele may be controlled with conly two logic signals: one signalling push, and the
other signalling pop. The activation of neither of these two signals causes data to recirculate in-

place, awaiting the next active instruction.

Let us consider how to derive, from push and pop, the control signals for driving the four control
lines SHR, TRR, SHL, TRL. A possible scheme is shown in Fig. 10c. We use random logic for
this purpose since only a few gates are required to control the large, regular array of circuit cells
in the stack. The operation which determines what the stack will do during the subsequent clock
phase is brought in on the path labeled OP. It is important 1o note in the following that only
one signal path (OP) is required to bring in both push and pop logic signals, since these are active

on mutually exclusive clock phases.

The control scheme is summarized in the timing diagrams in figure 10e. Here we see that
holding OP high during ¢4, followed by low during ¢, implements push Holding OP Jow
during both ¢, and ¢, causes the data to recirculate in place. Holding OP high during @1,
followed by low during ¢+, implements pop. Thus, the single signal path, OP, is sufficient to
carry both stack control signals into the stack.

[Ch3.: Sectl] < Conway > newdefl visi July 4. 1978 7:14 PM

[Ch.3., Sectl]

o

=

7
—
—

[SHR, TRL may be active only
during phase 1; sce fig. 10¢]

: 1 l Ml

[TRR, SHL may be active only
during phase 2; see fig. 10¢]

Fig.10a. One Horizontal Row of the Stack

G VpD GNP

*
I
l

TRR SHL :

Fig.10b. Topology of One Horizontal Stack Row

[Ch.3.,Sect. 1]

phase 2 >
phase 1 non-tny
. K super butfers
Oe ﬁ > > TRR
ol >
1 |> > TRL
S >
Fig. 10c. Generating the Stack Control Signals
] & ————> ph
| TRR & SHL Drivers S>> #h2
<] < op
—_—>
——
[
Array of Stack
data l
n/out ' Shift Register Cells
—
<
<] j—
€D TRL & SHR Drivers pe——————> ph2
<=3 h————————=> ph

Fig. 10d. Stack Geometry and Interconnect Topology

{det10cd sit)

[Ch.3., Sect.1)

e T T T T

N o S B I o R i B

SHL []
A

o L T g By

oP [_l J_I
TRR » |—1:i [1 ; [L

I

SHR

PUSH: POP:
OP: highinphase 2, and QP: highinphase 1, and
then low in phase 1; then lowin phase 2;
Causes: SHR, not(TRL) Causes; SHL, not{TRR)

Fig. 10e. Stack control Signal Timing Diagrams

{dct10e.sil)

During ¢y, the OP signal is fed through the upper pass transistor into the inputs of the two NOR
gates g and g). The outputs for these NOR gates are Jow during this period, since @5’ is high.

If the incoming OP signal is high while gy is high, then the lower input of NOR gate gy will be
low. Thus when ¢y falls low, the output of g, will go high, thereby driving SHL high. If the
OP signal is instead kept low while @1 is high, then the output of the NOR gate gy will go high
on the fall of g, thereby driving TRR high during @. '

During the period when ¢ is high and either the shift left (SHL) or the transfer right (TRR)
operation is being executed, the signal on the OP line is being stored on the corresponding input
gates of the lower two NOR gates, g3 and g4. Thus, if OP is high while ¢4 is high, a logic-C is
stored on the input of the NOR gate g4, and during the subsequent ¢ high period, SHR will be
driven high. Conversely, if OP is low while @9 is high, TRL will be driven high during the
following ¢y high period.

This kind of control scheme recognizes that there must be a luil period between any operation
and its next occurrence. Control information is taken in during this period and set up for the
subsequent operation. The scheme takes advantage of these lull periods, when possible, to
perform other operations which can be done without conflict, It ig an example of a fundamental

design technique which can be extended to larger system structures.

When planning the overall architecture of a larger system, it is often useful to represent
subsystems, such as the stack, using a higher level of symbolism. To be truly useful, such
representations should, in addition to a functional definition, include the topological factors
associated with the interconnection points of the subsystem and the geometrical factors of its

shape and relative physical dimensions.

A system level sketch of one particular implementation of the stack is shown in figure 10d.
Identical driver circuitry is placed along the top and bottom edges of the shift register array. The
transfer right and shift left drivers which are set up during ¢ (and active during ¢5) are placed
along the top of the shift register array. The transfer left and shift right drivers which are set up
during ¢ (and active during q:l) are placed along the bottom of the array. The OP bit and the
clock signals are required on both the top and the bottom of the shift register array.

[Ch3.; Sectl} < Conway > newdcflvisi July 4, 1978 7:14 PM

13

14

The integration of this subsystem into a larger integrated system design will require that the data
in and out paths be matched to those of subsystems to which the array is connected, and that the
@1, 97, and OP signals be available at either the left or right side of the array. By using system
level representations that reflect as closely as possible the dimensions and locations of critical
signals in all major subsystems, the interactions between topologies and dimensions of the
subsystems can be assessed. The feasibility of an overall system architecture can thus be ensured

prior to detailed design and layout.

[Ch3.: Sect1] < Conway > newdcflvlsi July 4. 1978 7:14 PM

Register to Register Transfer

From an implementation point of view it is often desirable to combine logic steering functions
with the clocking of data into registers, since both require pass transistors as their elementary
functional unit. An example is the shift-up register array shown in figure 6. From the next
higher level system view, however, it is desirable to separate the two functions conceptually. In
Fig. 11a we have shown some combination of inputs, X0 through Xn going through some
combination of pass transistors, which may or may not have logic functions attached, into the input
gates of some inverting logic elements. This combination of function is then abstracted into a
register clocked on the phase during which the input pass transistors are turned on. Any logic
function associated with the input pass transistors is considered part of the preceding
combinational logic module. This viewpoint is an extension of the concept of dynamic register

previously developed in figure 7.

Using this notation, any processing function can be built up using blocks of the form shown in
Fig. 11b. Here we have a clocked input register, a block of striclly combinationat logic with ne
timing attached, and an output register clocked on the opposite phase. In this case the inputs are
stored in the input register during ¢7. They then propagate into and through the combinational
logic {C/L.), with the resulting outputs stored in the output register during g,. Any single data
processing step can be viewed as a transfer from one such register to a second through a

combinational logic block.

A sequence of Such operations can be performed on a data stream by a series of such
combinational blocks separated by registers as shown in Fig. 1lc. Since different sets of data
words in the stream may be operated upon at the same time, but at different locations, this data
path is a type of pipelined processing structure. Such pipelined processing structures offer the
opportunity for improved processing bandwidth by performing many different operations
concurrently. Notice that the throughput rate of such a pipeline system of register to register
transfer operations is limited by the delay time through the slowest of the combinational logic
blacks. If no regisiers had been interposed between the function blocks, and each operand set
separately run through the entire sequence of combinational logic modules, the throughput rate

would be much lower.

In line with the ideas developed earlier in this chapter, the detailed functions performed by the

combinational logic modules may often be implemented in circuit structures of very simple and

[Ch3.: Sect.2] < Conway > newdef2.visi July 4, 1978 7:32 PM

16

regular topology. Control signals will in general cross the data path at right angles to the
direction of data flow. Figure 11c illustrates sets of such control inputs as nj lines carrying the

control function OPy into the first C/L. module, n9 lines carrying OP2 into the second, ete,

The idea of data being processed while passing through combinational logic interspersed between
register stages in a sequence of register to register transfers is 2 basic and important concept in
the hierarchy of digital system architecture. We have already described the implementation of

registers. The next sections will describe some ways to implement combinational logic functions.

Combinational Logic

Combinational logic modules contain no data storage elements. The outputs of a combinational
logic module are functions only of the inputs to that module, provided that sufficient time has

been allowed for those inputs to propagate through the module’s circuitry.

In integrated systems, combinational logic design problems will typicaily fall within one of three
general classes. The first is when a small amount of simple logic is required, for example to
derive control signals at the periphery of a system module (as in the stack control signal
generation) or to implement a simple function within a single circuit cell (which may then be‘
replicated in a regular array). In these cases, traditional logic design procedures using static
NAND and NOR gates can be applied. Such designs involving a few gates are usuaily rather
simple, and can be produced by inspection rather than by use of formal minimization and
synthesis procedures. Even in these simple cases, the minimum static logic gate implementation
does not necessarily result in either the most regular, the minimum area, the minimum delay, or
the minimum power design. In fact, we often find alternative techniques to the use of static logic
gates, which in specific instances lead to "better” designs by one of these measures than would
minimum pate implementations. For example, figure 12a shows a selector logic circuit (L
Sutherland), in which one of the inputs Sy, S5, S3, 84 is selected for output by the control

variables A, and B according to the function:
Z = SIA'B' + SzAB' + S3A'B + S4AB

This selector circuit is composed simply of poly paths crossing diffusion paths. Where depletion

i Ch3.c Sect.2 | < Conway > newdef2.visi July 4. 1978 7:32 PM

[Ch.3.,Sect.2]

phasel ' phaseli

)
5|
Y
M
k=
B Vv

|
omm:Dn

-

Fig. 11a. A Register

phase 1 phase2
hvi \/
> > > >
| | I {
R Combinational R
| E I . | E i
G Logic G
| |] }
> P e >
Fig. 11b. A Section of a Data Path
phase 1 OF1 phase 2 ap2 phase 1
n1 n2
Avi A4 Avd
> > = > —
| [{ | i
r| | c/L | rR| | C/L | rR| |
I | | I |
=1 = > >

Fig. 11c. General Form for a Data Path

{dct19 811

mode transistors are placed, the diffusion level path is always connected, thus placing control in
. the selectively located enhancement mode pass transistors, which function as simple switches.
Figure 12c¢ shows the circuit’s paths from inputs to outputs using the "switch" abstraction for each
of the pass transistors. For each possible combination of values of A and B, there is a path
through the selector to Z from only one of the inputs ;. For the specific inputs shown in the
example in figure 12c, the signal S, propagates through to Z since both A and B' are high. Note
that no static power is consumed by the circuit, and the area occupied by the circuit is minimal
since no contact cuts are required within it. In chapler 5 we describe a very general and powerful
arithmetic logic unit (ALU) which uses an array of such selector blocks to control a pass iransistor

carry network.

The second general class of combinational logic design problems are those rather complex
functions for which clever ways of structuring topologically regular implementations have been
discovered. As an example, consider the implementation of a tally function. This function has n
inputs and n+1 outputs. The k™ output is to be high, and all other oulputs Jow, if k of the

inputs are high. The boolean equations representing this function for the simple case of three

inputs are:

X;Xa'X3'

H
il

Zl = X1X2'X3' + X1'X2X3' + Xl'X2'X3

X1X2X3' + XIXZ'Xg + Xl'X2X3

N
)
]

Z3 = X1XpX3

If this function were designed with random logic consisting of active pullup, static logic gates, it
would result in a topological kludge. Figure 12b shows a topologically regular implementation of
the tally function. A major portion of the function is implemented using a regular array of
identical cells each containing only two pass transistors. The design is based on the shift-up
register idea presented earlier. A high signal propagates through the array from the puilup at the
lower left. Whenever one of the variables X; is high, the propagating high signal moves up to the
next higher horizontal diffusion levcl path. Thus the number of paths it moves up equals the
number of inputs X; which are high. Logic-0 signals propagate through the array from the
ground points to all other outputs.

[Ch3.: Sect.2] < Conway > newdef2 visi July 4, 1978 T:32PM

17

18

Figure 12d shows the paths from inputs to outputs for this tally circuit, using the "switc "
abstraction for the pass transistors. The figure shows a specific example of a set of inputs
controlling the pass transistors of the circuit. Since two of the inputs are high, the logic-1 signal

is shifted up two rows and emerges at Z.

This tally function design can be easily expanded to handle more than three inputs by simply
extending the array structure upwards and to the right. However, remember that the delay
through n pass transistors is proportional to n?. Thus it may be necessary to insert level
restoration prior to such extension. Similar comments apply to the exiension of the selector

circuit previously shown, or other pass transistor logic arrays one might invent.

The electronic logic gates traditionally used in digital design are unilateral elements: they allow a
ldgic signal to propagate in one direction only. It should be noted that the pass transistor is a
bilateral circuit element. It permits the flow of current, and thus the passage of a logic signal, in
either direction when its gate is kigh. While this property of the pass transistor is not necessarily

of fundamental importance in integrated systems, it is an inleresting and occasionally useful one.

Early relay switching logic used switching contacts which were bilateral elements. Interesting
discussions of relay switching logic are contained in both references R4 and RS, The tally array
example just given is a basic symmetric network mapped directly into nMOS from relay switching
logic (see RS, p.241). The mathematics of switching universally used in digital systems today was
proposed by Claude Shannon (R7) in 1938. Shannon demonstrated that the calculus of
propositions, based on the algebra of logic developed by Boole (R38), was directly applicable to

relay switching circuits.

A third combinational logic design situation occurs when a complex function must be
implemented for which no direct mapping into a regular structure is known. Methods for

handling this situation are the subject of the next section.

In the design methodology developed in this text, the combinational logic between stages in the
register to register transfer paths is often done by operations on the charge moving between
stages, using pass transistors to perform these operations. Many researchers at the present time
are searching for alternative structures and techniques for performing elementary logic functions,

including the use of charge transfer devices®.

[Ch3.: Sect.2] < Conway > newdef2.vlsi July 4, 1978 7:32 PM

[Ch.3., Sect.2]

Fig.12b. A Tally Circuit

S,
SZ
Ss
'S‘t
Fig.12a. Selector Logic Circuit
I I G
T T H 2 Z
ER e B e B e
R] P = s g = e g Z,
\ /N \
X, X2 X

[Ch.3., Sect 2]

51 ‘ o Qo)
: A=1B=0

S2 O o ——— thus:

N - —>z=%2
53 o / o
4 —om /5

Fig. 12c. Example of Operation of Selector Circuit

2=1

vDD
Z1 =10

Fig. 12d. Example of Operation of Tally Circuit

(visualizing where the switches are)

{dcfI2ed press)

The Programmable Logic Array

On many occassions it is convenient to implement the combinational logic interspersed between
register stages with regular structures of pass transistors. However, we will often encounter
important combinational logic functions which do not map well into such regular structures. In
particular, combinational logic used in the feedback paths of finite state machines is often highly
complex and inherently irregular. Also, we may wish to delay binding the details of the logic
functions used in finite state machine sequencing until most of the design is complete. If the
combinational logic were implemented in an irregular structure, such changes could require a

major redesign.

Fortunately, there is a way to map irregular combinational functions onto regular structures, using
programmable logic arrays (PLA’s) as described in this section, This technique of implementing
combinational functions has a great advantage: functions may be significantly changed without

requiring any major design or layout changes of the PLA structure.

One very general and regular way to implement a combinatorial logic function of n-inputs and m-
outputs is to use a memory of 21 words of m-bits each. The n-inputs form an address into the
memory, and the m-outputs are the data contained in that address. Such 2 memory implements
the full truth table for the output functions. Many systems are in fact built using memories as
combinational logic elements. A common form of memory for this purpose is the read-only
memory (ROM) where the data is permanently placed in the memory by a mask pattern, or by
electrically altering the individual bit positions. There is one major difficulty with this approach:
it is often the case that most of the possible input combinations cannot occur, due to the nature
of the specific problem. Stated another way, many combinational logic functions require only a
small fraction of all 2% product minterms for a canonical sum of products implementation. In

such cases, 2a ROM is very wasteful of area.

The programmable logic array (PLA} 1s a structure which has all the generality of a memory for
implementing combinational logic functions. However, any specific PLA structure need contain a
row of circuit elements only for each of those product terms that are actually required to
implement a given logic function (see R4, Ch.4). Since it does not contain entries for all possible
minterms, it is usually far more compact than a ROM implementation of the same function. To
achieve full compaction, the various output functions must be jointly minimized before the PLA

layout pattern can be defined. However, such minimization is not essential. Less than fuil

[Ch3.: Sect.2] < Conway > newdef2.visi July 4, 1978 7:32 PM

19

compaction increases the independence of the different entries, so that changes in function may

require only local changes in the PLA.

An illustration of the overall structure of a PLA is shown in figure 13a. The diagram includes
the input and output registers, in order to show how easily these are integrated into the PLA
design. The inputs, stored during ¢ in the input register, are run vertically through a matrix of
circuit elements called the AND-plane. The AND-plane generates specific logic combinations of
the inputs and their complements. The outputs of the AND-plane leave at right angles to its
inputs and run horizontally through another matrix called the OR-plane. The outputs of the OR-

plane then run vertically and are stored in the output register during 4.

The circuit diagram of a specific programmable logic array is shown in figure 13b. This diagram
will help to clarify the structure and function of the AND and OR-planes of the PLA. The input
register bit for each input path is formed by a pass transistor clocked on ¢ leading to both
inverting and non-inverting super buffers. These buffers drive two lines running vertically
through the AND-plane, one for the input term and one for its complement. The outputs of the
AND-plane are formed by horizontal lines with pull-up transistors at their lefimost end. The
function of the PLA's AND-plane is then determined by the locations and gate connections of:

pull-down transistors connecting the horizontal lines to ground.

Each output running horizontally from the AND-plane carries the NOR combination of all input
signals which lead to the gates of transistors attached to it. For example, the horizontal row
labelled Ry has three transistors attached to it in the AND-plane, one controlled by A, one by B
and one by C'. If any of these inputs is high, then Ry will be pulled down towards ground and

will be low.
Thus, R3 ={(A + B + Cy = A'B'C. Similarly, Ry = (A + B + Cy = ABC.

The OR-plane matrix of circuit elements is identical in format to the AND-plane matrix, but
rotated 90 degrees. Once again, each of its outputs is the NOR of the signals leading to the gates
of all transistors attached to it. In figure 13b for example. both Ry and Ry lead to the gates of
transistors leading from the output line Z,' to ground. If either Ry or Ry is high, Z,' will be low.
Thus, Z,' = NOR(R3,R4) = (A'B'C + A'BC'Y . Up to this point the PLA implements the
NOR-NOR canonical form of boolean function of its inputs.

The output lines of the OR-plane matrix are run into an output register formed by pass

[Chi- Sect? 1 < Conwav > newdef2.vlsi July 4, 1978 7:32 PM

[Ch.3., Sect2)

"AND"] IIORII
1
PLANE PLANE
1
T
phasel —» REGISTER REGISTER bi——— phase 2
T ~ Inputs T l “ Outputs ~ l

Fig. 13a. Overall Structure of the PLA

AND “"_l_’ OR

Plane ' Plane _ VDD
vDD
; }_’j]Jh
_L) :
-’li : -ll—fl"-« “'_,-l—_“ 1
L] =) i
ol TR IR T
I -Hi "{i lr-li l“__‘{;_“ -u—"I'L- R
H - = = B
H HO) "“é‘*::
‘ t ‘ e
phase 1 i 4 | ? ?
TLI TL‘ | Z1 Z2 Z3 Z4
A B c

Fig. 13b. Circuit Diagram of PLA Example

{dcfl3ab.press)

[Ch2. Sect.2]

|) I | ,
ST SR |
| I |
‘ —e - —e - . J
- iu‘ '.. ® -
— AN I I T] III‘ -‘Rl
v l' 1 - _ _ -
S ! 1 ! Ra
- 3 L —
B
e e Rs
" v\.".'»“‘[T ‘T R‘I’
) L + 1 N
=) \ = i - }:’\
AN ARV AREYANY AN ¢?_
, B
? v
[
A B c

2. -21_ 23 ZL'.

Fig.13c. Stick Diagram of PLA Example

Product Terms:

(A') = A

= =
() —_—
1] "

(B+C)' = B'C

~
(5]
"

(A+B+C")" = A'B'C
A'BC'

=
i
"

(A+B+CY

Quiputs:

/.1 = A
A+ A'B'C

~
[pe]
"

B'C

~
(v
"

/.4 = A'B'C + A'BC

transistors (clocked on ¢9) leading into inverting drivers. Note that the output Z4 at this point
is: Zg = ABC + A'BC. This expression illustrates why the two PLA planes, each implementing
the NOR function, are usually referred to as the AND and OR-planes. Following the output
register, the outputs appear directly as the sum of products canonical form of boolean functions of

the PLA inputs, that is, the OR of AND terms. Each horizontal line of the PLA carries one

product term.

Figure 13c shows one possible layout topology for implementing the PLA in nMOS circuitry.
The example is the same circuit itlustrated in figure 13b. The input lines crossing each plane are
run in poly. The output lines from each plane are run in metal. Paths running to ground are
placed between alternate poly lines, on the diffusion level, It is then a simple matter to form the
pulldown transistors connecting the metal output lines to ground. They are selectively located

diffusion lines under the appropriate input poly lines.

Although the PLA may implement a very irregular combinational function, the irregularity is
confined to the irregular locations of pulldown transistors which "program” the function. The
overall structure and topology of the PLA are very regular. Note that its overall shape and size is
a function of the parameters: (i) the number of inputs, (ii) the number of product terms, (iii) the

number of outputs, and (iv} the length unit A.

Finite State Machines

In many cases in the processing of data, it is necessary to know the outcome of the current
processing step before proceeding with the next. Results of the current step may be used as
inputs in the next step. The configuration shown in figure 14a can be used to implement a
processing stage having this requirement. A typical register to register transfer stage has been
modified by simply feeding back some of its outputs to some of its inputs. This structure

implements a form of sequential machine known as a finite state machine.

The feedback signals. form a binary number which may be regarded as identifying the state of the
machine. The value of this number is stored, along with the external inputs, in the first register
during ¢y. These combined inputs then propogate through the combinational logic. The
resulting outputs are stored in the second register during ¢5. The falling edge of ¢ must occur
a sufficient time later to insure that all signals have propagated through the combinational logic.

[Ch3.: Sect.2] < Conway > newdef2vlsi July 4, 1978 7:32 PM

Each complete machine cycle, consisting of ¢ followed by gy, results in two new sets of
outputs: (i) the external outputs which are typically used for controlling other units of the system,
and (ii) a new feedback number, which defines the next state of the machine. This process
repeats during each clock period. The number of possible states is determined by the number of
bits in the feedback path, and is finite.

There are a number of ways of abstractly representing the states, the required state transitions,
and the outputs of sequential machines under given input sequences. Possible representations
include state diagrams, transition tables, boolean or numerical difference equations, etc. A large
body of theory has been developed concerning sequential machines. The serious reader will
benefit from a further study of the results of switching theory on this subject (R3, R4).

Implementations of simple finite state machines are used to produce the very lowest level of
system control sequencing, since they can autonomously generate control sequences. The
sequential machine having a finite number of states is a very important element in the hierarchy

of fundamental concepts used in integrated system architecture,

The configuration shown in figure 14a implements a synchronous machine, since the feedback
loop is oniy activated at times determined by the clock signals. In any cleck period k, the output
terms Zj and the next state terms Yy are valid during (k). They are functions of the external’
inputs X; and feedback terms Y which were valid during ¢(k-1).

If a sequential machine contains a feedback loop which is continuously active, then it may begin
a response to a change in inputs or state at any time, rather than just at fixed clock times. Such
a sequential machine is referred to as an asynchronous sequential machine. The analysis of
asynchronous sequential machines and their implementation is far more complex than that of
synchronous ones. Great care must be exercised to avoid any difference in state sequencing'and
outputs under arbitrary differential delays of signals through the circuit paths of such machines
(R3. Ch.5). There will be only a few special cases where we use the asynchronous form of

sequential machine (Chapter 7), and these will be subject to detailed analysis.

Where sequential machines are required within integrated systems, we will generally implement
them in synchronous form. Synchronous machines are rather easy to implement correctly, and fit

naturally into the two phase clocking scheme used for moving data around within our systems.

However, the reader should carefully note that an implementation of a synchronous sequential

[Ch3.: Sect2] < Conway > newdef2.visi July 4, 1978 T:32 PM

[Ch.3., Sect.2]

phase 1 phase 2
Vv v

> > > >

r | i i] [r ts Z

inputs X i e | combinational ‘ e outputs i

g logic g >

> I | 2,
—>
> A =
feedback paths Yf
Fig. 14a. Feedback in Register Transfer Path,
implementing a Finite State Machine
_—
|
"ANDUU IOORII
plane | plane
——
! (R !
phase 1 phase 2
register register st
inputs T L—J J/ outputs
state v v

Fig.

14b. PLA Implementation of a Finile State Machine

(det1d.sil)

machine functions correctly only if the delays in the circuit paths are sufficiently short compared
to the clock period. If we were to implement many copies of a particular machine, the
probability of correct function for any given copy is thus a function of (i) the clock period used,
and (ii) the distribution of differential delays in that copy’s signal paths. Our estimate that a
particular copy will function correctly is thus based in part on assumptions about the ratio of
likely deviations in circuit delays to the clock period. A discussion of delays in MOS circuits is

given in chapter 1.

There is a very straightforward way to implement simple finite state machines in integrated
systems: we use the PLA form of combinational logic and just feed back some of the outputs to
the inputs, as illustrated in figure 14b. The circuit’s structure is topologically regular, has a
reasonable topological interface as a subsystem, and is of a shape and size that are functions of
the appropriate parameters. The function of this circuit is determined by the “programming” of
its PLA logic. If, for example, early in a design cycle there is some uncertainty in the details of
the desired sequencing of such a circuit, it is easy to provide layout space for extra, unused

inputs, minterms, or outputs as contingencies.

The following simple example will help illustrale the basic concepts of finite state machin.es and
their implementation in nMOS circuitry. A busy highway is intersected by a little used farmroad,
as shown in figure 15a. Detectors are installed which cause the signal C to go high in the
presence of a car or cars on the farmroad at the positions labelled C. We wish to control traffic
lights at the intersection, so that in the absence of any cars wailing to cross or turn lefl on the
highway from the farmroad, the highway lights will remain green. If any cars are detected at
either position C, we wish the highway lights to cycle through caution to red, and the farmroad
lights then to turn green. The farmroad light is to remain green only while the detectors signal
the presence of a car or cars, but never longer than some fraction of a minute. The farmroad light
is then to cycle through caution to red, and the highway light then to turn green. The highway

light is not to be interruptible again by the farmroad traffic until some fraction of a minute has

passed.

A state diagram model of a finite state machine to control the lights is sketched in figure 15b.
This diagram identifies four possible states of the machine, and indicates the input conditions
which cause all possible state transitions. A block diagram of the PLA circuit implementing the
machine is shown in figure 15c. The circuit uses the signal C as an input, and provides outputs

HL and FL which encode the colors of the highway and farmroad lights it controls. Note that a

[Ch3.; Sect.2] < Conway > newdef2visi July 4, 1978 7:32PM

23

4

timer is used to provide, as controfler inputs, the short and long timeout signals (TS, and TL), at
appropriate times following a start timer (ST) signal output from the controller. This timer could
be implemented as a digital counter in the same nMOS circuitry. Another abstract model
describing the desired function of the controller is given in the state transition table in figure 15d,

which contains similar information to that in the state diagram.

The detailed sequencing of the machine under various input sequences is described by both the
state diagram and transition table models of the controller. Consider starting in the state HG,
where the highway lights are green. The machine remains in state HG as long as either no cars
are detected or the long timeout has not occurrred, in other words as long as (C)AND{TL) = C.
After the long timeout occurs, if any cars are detected, the machine restarts the timer and changes
state to HY, where the highway lights are yellow. It remains in state FY only until the short
timeout occurs, and then restarts the timer and changes to state FG, where the farmroad lights
are green. It remains in state FG until either no cars are detected or the long timeout occurs, 1.e.
(CYOR(TL) = 1. Then it restarts the timer and changes to state FY, where the farmroad light is
yellow. It remains in state HY only until the short timeout occurs. It then restarts the timer and

changes to state HG, the starting state.

The locations of transistors in the PLA light controller circuit can be determined by "hand
assembling" the "program” specified in the "symbolic” transition table in figure 15d, resuiting in
the encoded state transition of figure 15¢. First we assign codes to the states. In the example:
state HG is encoded as (Yp,Yy) = (0.0) HY as (0,1); FG as (1,1); and FY as (1,0). Next, we
assign codes to the output light control signals: green is encoded as (0,0), yellow as (0,1), and red
as (1,0). We now form the encoded state transition table by constructing one row for each
product term implied by the symbolic table of fig. 15d. A row in 15d specifying a state transition
as a function of a single input variable or single product term of input variables produces a single
row in table 15e. A row in table 15d specifying a state transition as a function of a sum or sum

of products of input variables, leads to a corresponding number of rows in table 15e.

Placement of the transistors within the PLA matrices follows directly from the encoded state

transition table:

(i) For each logic-1 in the next state and output columns in the table, we run a diffusion path
from the corresponding next state or output line in the PLA OR-plane, under the corresponding

product term line, to ground. This creates a transistor controlled by the product term line. Then,

[Ch3.: Sect.2] < Conway > newdef2.visi July 4, 1978 7:32 PM

[Ch.3., Sect.2]

Lﬂ . V
Fig. 15a. A Highway Intersection]
e

road
(Cland(TL)=0
(Cand(TL)=1 AND OR
/ o 1 plane plane
TS=0 (— T8=10 _ .
L ' /, phl ; inreg outreg - ph2
N C+AL=1 21 statg 3 X
TL TS ST
| timer |
+TL=0 c HL FL
Fig. 15b. Light Controlter State Diagram Fig. 15c. Controller Block Diagram
*) and Qutputs are:

In Present State: If Inputs are: Next State will be:
HL FL ST
Highway Green |(Cars)and(TimeoutL) = Highway Green Green Red No
{Carsjand(TimeoutL) = 1 Highway Yellow Green Red Yes
Highway Yellow TimeoutS = 0 Highway Yellow Yellow Red No
TimeoutS = 1 Farmroad Green Yellow Red Yes
Farmroad Green { (Cars)'or(Timecutl) = 0 Farmroad Green Red Green No
(Carsyor{Timeoutl) = 1 Farmroad Yellow Red Green Yes
Farmroad Yellow TimeoutS = 0 Farmroad Yellow Red Yellow No
Timeout§ =1 Highway Green Red Yellow Yes

Fig. 15d. Transition Table for the Light Controller

* Inputs notlisted = don’t cares

{dcfl5a-d.press)

[Ch.3., Sect.2]

Stored during @y in INREG Stored during @, in OUTREG
e ; = N A -
r Inpuis: | Present } Next Outputs: | Product
; State: | State: | terms:
%c TL TS | YpoYp | YnoYnr | ST Hig HLp Flg FLj
i | |
0 X X 0,0 (HG) || 0,0 (HG) | 0 0 0 1 0 | Rl
[X 0 X 0,0 (HG) | 0,0(HG) | 0 0 0 1 0 R2
1 1 X 0,0(HG) | 0, 1(HY) | 1 0 0 1 0 | R3
X X 0 | 0 1(HY) | 0, 1(HY) | 0 0 1 1 0 R4
X X 1 | 0, 1(HY) | 1,1(FG) | 1 0 1 1 0 | RS
1 0 X 1,1(FG) || L1(FG) | 0 1 0 0 0 | R6
0 X X 1, 1 (FG) || 1, 0 (FY) 1 1 0 0 0 | R7
X 1 X 1, 1 (FG) | 1,0 (FY) 1 1 0 0 0 RS
[X X 0 1, 0 (FY) 1L,0(FY) | 0 1 0 0 1 R9
| X X 1 1,0 (FY) | 0,0 (HG) | 1 1 0 0 1 R10

Fig.15e. Encoded State Transition Table for the Light Controller

|
=7 ! t Tt T -
|] - . | R,
»':V—I T T 1 L LIS 4 -4 -4 4 -4
| . .
W\ ' * *) I 1,,{ Rl
A ’ R
A 1 ! T 1 THH A4 4 HHE - '
DL = ”
AR | 1 1 1 1 g Rs
Iy .

. YT T . e
i — r—o = —e -4
"“\/\(‘V\T T 1 1 f 1II|_ Rr
’ w‘-\L'_\ “ L 2 L 2 4 4 R
F_T 1 1 I W |) e+ o Lo Lo 4 B !
T e TER T T R"
= . - & R
YTy TP 9 38 8 4 490

/\ /; / ') /\ : 3

y r 2/ rAl--él_’\ b W.,'\‘g;
| Yo NV
Cos { V140
o Tu TS Y, ST HL, HL, FL, FL,

Fig L SE PEA Sequential Circuit Tmplementing the Fight Controller

if that controlling product term line is ever high, the path to the output inverter will be low, and

the output will be high. The output line will be Jow unless some product term line controlling it is

high.

(i) For each logic-1 in the input and present state columns in the table, we run a diffusion path
from the corresponding product term line, under the corresponding inverfed input or state line in
the PLA AND-plane, to ground. The transistor thus created is controlled by the inverted input or
state line. Whenever that controlling line crossing the AND-plane is high, the product term line

will be Jow.

(iii) For each logic-0 ih the input and present state columns in the table, we run a diffusion path
from the corresponding product term line, under the corresponding non-inverted input or state line
in the PLA AND-plane, fo ground. The transistor thus created is controlled by the non-inverted
input or state line. Whenever that controlling line crossing the AND-plane is high, the product

term line will be Jow.

Note that if all lines which control the transistors connecting a given product term line to ground

are low, then that product term line will be high Otherwise it will be low.

The PLA circuit in figure 15f is programmed from the transition table in figure 15e, according to
the rules above, and implements the traffic light controller. Note that this LSI implementation
does not exactly strain itself to meet the time response requirements of the control problem: it
can run at a clock rate at least 107 times as fast as required. Also, note that the PLA controller is
roughly (150)\}2 in area. Using the 1978 value of A = 3um, this controller is (450,um)2 ~ 0.002
cm2 in area. A PLA controller this size may contain over 150 transistors, but occupies only
1/125% of the area of a typical 0.25 cm? silicon chip in 1978. By the late-80's, as A scales down
towards its ultimate limits, such a controller will require only ~ 1/25,000% of the area of such a
chip.

As we will see in later chapters, a data processing machine of any desired complexity can be
created by interconnecting register to register data processing paths constructed along the lines of
that shown in figure 1lc, such paths being controlled by finite state machines implemented as
shown in figure 14b. The data paths form the "highways” for the movement of data, under

control of the finite state machine "traffic controllers”,

| Ch3.: Sect2] { Conway > newdef? visi July 4. 1978 7:32 PM

Towards a Structured Design Methodology

The task of designing very complex systems involves managing, in some highly structured way,
the space and time relationships between the various levels of system building blocks so that the
entire system will function as intended when it is finished. The beginnings of a structured design
methodology for VLSI systems can be produced by merging together in a hierarchy the concepts
presented in this chapter. Designs are then done in a "top down" manner, but with a full

understanding by the architect of the successive lower levels of the hierarchy.

To begin, we plan our digital processing systems as combinations of register to register data
transfer paths, controlled by finite state machines. Then the geometric shapes, relative sizes, and
interconnection topologies of all subsystem modules are collectively planned so all modules will
merge together snugly, with a minimum of space and time wasted by random interconnect wiring.
Storage registers are typically constructed by using charge stored on input gates of inverting logic.
The combinational logic in the data paths is typically implemented using steering logic composed
of regular structures of pass transistors. Most of the combinational logic in the finite state
machines is typically implemented using PLA’s. All functioning is sequenced using a two-phase,

non-overlapping clock scheme.

When viewed in its entirety, a system designed in this manner is seen as a hierarchy of building
blocks, from the very lowest level device and circuit constructs, on up to and including the high
level system software and application programs in which the intended functions of the system are
finally expressed. Individuals who understand the key concepts of each level in this hierarchy
will recognize that the boundaries between levels are rather elastic ones. Each level of activity
might best be optimized not on its own as a specialty, but as it fits into an overall systems
picture. For example, the activity "logic design" in integrated systems might best be
conceptualized as the search for techniques and inventions which best couple the physical,
topological, and geometric properties of integrated devices and circuits with the desired properties
of digital VLSI systems. The search for alternative components for any given design hierarchy,
and the search for alternative hierarchies, will be done best by those who span more than one

specialty.

A particularly uniform view of such a system of nested modules emerges if we view every module
at every level as a finite state machine or data path controiled by a finite state machine. At the

lowest level, elements such as the stack and register cells may be viewed as state machines with

[Chi- Seet? 1 €< Conwav > newdef2.vlsi July 4, 1978 7:32 PM

one feedback term (the output), two external inputs (the control signals), and a one bit state
register. These rudimentary state machines are grouped in a structured manner to form portions
of a state machine, or data path controlled by a state machine, at the next level of the hierarchy.
Structured arrays of identical state machines often provide a mechanism for distributing
processing among memory cellsRﬁ, thus enabling vast increases in processing bandwidth.
Although in some cases the feedback paths are used in rather specialized ways, the state machine
metaphor still provides a precise description of module behavior. The entire system may thus be
viewed as a giant hierarchy of nested machines, each level containing and controlling those below

itt A detailed quantitative treatment of certain hierarchically organized machines is given in

chapter 9.

In chapters 5 and 6 we will apply the design methodology developed in this chapter to the design
of a digital computer system. A one chip implementation of the data path portion of this
computer system is illustrated in the frontispiece. Consistent use of the described design
methodology resulted in a design of great regularity, short delay times, low power consumption,
and high logical processing capability. As we will see in chapter 4, regular designs, with small
numbers of basic circuit cell types replicated: in two dimensions to form subsystems, also have

significant implementation advantages over less structured designs.

References
1. - - - polycell reference: - - -

2. 1 E. Sutherland, C. A. Mead, "Microelectronics and Computer Science”, Scientific
American, September 1977, pp. 210-228.

3] D. Williams, "Sticks - A New Approach to LSI Design”, M.S.EE. Thesis, Dept. of
Flectrical Engineering, M. 1. T., June, 1977.

4. W. M. Penney, L. Lau, Eds., "MOS Integrated Circuits”, Van Nostrand, 1972. Chapter 5.

5. C. H. Sequin, M. F. Tompsett, "Charge Transfer Devices", Academic Press, 1975, Ch. VIIL

- [Ch3.: Sect.2] < Conway > newdcf2.visi July 4, 1978 7:32 PM

27

Reading References

R1l. C. G. Bell, A. Neweli, "Computer Structures: Readings and Examples”, McGraw-Hill,

R2.

R3.

R4.

RS.

R6.

R7

R8

1971, contains an excellent discussion of the levels in the hierarchy of computer

architecture, and many specific examples of computer structures.

B. Soucek, "Microprocessors and Microcomputers”, John Wiley, 1976, is a good
introductory reference containing sections on basic digital design, and on the

interfacing and programming of a number of present day microprocessors.

D. L. Dietmeyer, "Logic Design of Digital Systems”, Allyn and Bacon, 1971, is a

comprehensive text on switching theory and logic design.

7. Kohavi, "Switching and Finite Automata Theory”, McGraw-Hill, 1970, is another
good text on switching theory.

S. H. Caldwell, "Switching Circuits and Logical Design”, John Wiley, 1958, is an early

text containing interesting material on relay contact networks.

S. H. Unger, "A Computer Oriented Towards Spatial Problems”, Proc. of IRE, vol. 46,
no. 10, pp. 1744-1750, Oct. 1938, is an early paper describing a spatially distributed -

processor, anticipating present strategies for commingling processing and memory.

C. E. Shannon, "Symbolic Analysis of Relay and Switching Circuits”, Trans. of AIEE,
Vol. 57, 1938, pp. 713-723, is the classic paper proposing a method for the

mathematical treatment of switching circuits,

G. Boole, "An Investigation of the Laws of Thought”, London, 1854, reprinted by Dover
Publications, contains a presentation of the algebra of logic on which Shannon

based his switching algebra.

[Ch3: Sect?] < Conway > newdcf2.vlsi July 4, 1978 7:32 PM

