Chapter 5: The Design of a Data Processing Engine
Copyright ©® 1978, C.Mead, L.Conway

Sections:

The Overall Structure - - - The Arithmetic Logic Unit - - - ALU Registers - - - Buses - - -
Buarrel Shifter - - - Register Array - - - Communication with the Qutside World - - -
Machine Operation Fncoding - - - Functional Specification of the Machine

Up to this point, we have chosen simple examples Lo illustl;ate the fundamental properties of
integrated systems, and the type of design methodology which can be used to build
hierarchically organized, complex systems. In order to more fully clarify some of these
techniques, we will now study the design of a simple data processing structure: the data path
from a microprogrammed 16-bit machine, undertaken as a university project in
experimental computer architecture. The "Our Machine” (OM) project was started in 1976
by Carver Mead as part of the LSI Systems course at Caltech. Early contributions were
made by Mike Tolle [Litton Industries], while attending this course. Other participants were
Caltech students Dave Johannsen and Chris Carrol, with much inspiration from Ivan
Sutherland. By December 1976, a first design (OMy) was nearly completed. The
participants decided at that time that the design had become "baroque™ and ugly, and it was
scrapped. A new design (OM1) was completed by March 1977 by Dave Johannsen, Chris
Carrol, and Rod Masumoto. Fabricated chips were received in June 1977. It was this chip
which appeared in the September 1977 Scientific American article by Sutherland and Mead.
The chip was fully functional except for a timing bug in the dynamic register array (which
had been designed in departure from the siructured design methodology developed in this
text). A compleie redesign of the chip was undertaken in June 1977, by Dave Johannsen.
By September, a complete set of new cells had been constructed, and the design was
completed by December. Cells from this chip and its companion, the controller chip
described in chapter 6, were used as examples in chapter 3. The redesign included
improvements in the encoding of the microcode control word, and rigorously applied the

siructured design methodology.

The chapter is presented in two separate parts. The first part outlines the architectural
requirements for the chip, and illustrates how the design methodology was applied to satisfy
them. The second part is a precise functional description of the chip, intended as a user
manual for those who microprogram the machine. A more complete discussion of the

overall system architecture is given in chapter 6.

[Ch.5: Design of OM: Secr.1]<Conway>domi.vlsi February 4, 1978 5:51 PM

The Overall Structure

The basic requirements initially established for the machine were that it be gracefully
interconnectable into multiprocessor configurations, that it be microprogrammable, so that
OP code sets can be configured to the application at hand, that it be able 1o do variable
field operations for emulation instruction decoding, assembly of bit-maps for graphics, etc.,

and that its performance be as fast as possible.

In order to satisfy the first requirement, it was decided that the machine would initially
have two poris: one lo be used for a system interconnection, and the other for local
memory, 170, etc. It was perceived that in many systems much time is lost in assembling
two operands for most operations, so it was decided that the machine have two internal
buses. and that any registers in the machine be two-port registers. The requirement for
gracefully handling variable length words required a shifter at least sixteen bits long, and the
tast requirement dictated an arithmetic logic unit of coﬁsiderable fiexibility while not
sacrificing speed. The strategy was adopted initially that the two buses would run through
the actual processing array, from one end of-the chip to the other. One port was to be
located at the left end of the chip, and the other port at the right end, and the two system
buses were to run the full length of the chip between the two ports through the actual

register and data processing array.

The three main central, functibnal blocks in the machine were the register array, the shifter,
and the arithmetic logic unit. It was decided to run the control lines vertically in metal,
and the buses horizontally in polysilicon, and that power, ground, and timing signals would
run parallel to the control signals. At this point, it is already possible to make a rather
detailed sketch of the general layout of the chip. This arrangement is shown in Fig. 1. The
details of these functional blocks will be described in subsequent sections. Included are
descriptions of peripheral circuits needed to interface subsystems with each other and to the

outside world.

{Ch.5., Sect.1]

Left
Port

Registers

Shifter

Arithmetic
Logic
Unit

Right
Port

Figure 1. General Layout of a Microprogrammed Data Processing Structure.

{chStig1 .sil}

[Ch.5: Design of OM; Sect.i]<Conway>doml.vlsi February 4, 1978 5:51 PM

The Arithmetic laogic Unit

It was believed that the carry chain would limit the performance of the system and
therefore, the carry chain and its associated logic was the first functional block to be
designed in detail. Simulations of several look-ahead schemes indicated that they added a
great deal of complexity to the system without much gain in performance. For this reason
it was decided early in the project to implement the fastest possible Manchester type carry
chain (reference 4, chapter 1), similar to that shown in chapter 1, figure 11. The carry
chain and its associated logic were allowed to dictate the fepea[distance of the cells in the
vertical direction. In MOS technology, a Manchester carry chain is particularly limited in
its ability to propagate a high carry signal. However, it is quite fast in its ability to

propagate a fow carry signal.

In any arithmetic logic unit there will be a null period when the OP code for the next
operation is being brought in, Advantage can be taken of this null period to precharge the
carry chain and other sections of the machine where timing is particularly crucial. In this
way, il is not necessary to propagate high signals through pass transistors where the rise
transient would be particularly slow. 1t was decided to apply this strategy to OM's ALU, and

the resulting carry chain is shown in Fig. 2.

The main carry chain runs through the pass transistor from carry-in to carry-out. The
carry-in signal is detected by the gate of an inverter which feeds the signal into the
subsequent logic of the ALU. Three transistors are used to control the state of the carry-out
of each stage. The first one merely precharges the node associated with carry-out during the
null period of the ALU. The second is the carry-kill signal which is derived from the
inputs to the ALU, and simply grounds the carry-out through a single transistor. The third
is a pass transistor which causes carry-out to be equal to carry-in. These last two signals
associated with the carry chain in each stage, carry-kill and carry-propagate, are generated
by two NOR gates which have kill-bar and propagate-bar as one input and precharge as the
second input. Hence, it is assured that the kill signal and propagate signal are disabled

during the null period when the precharging takes place.

Afier some analysis, it was decided that nearly all interesting combinations of carry-in and
the input signals could be generated using propagate and carry-in from each stage. Thus the
carry-chain itsetf may be viewed as a logic block with two inputs, carry-kill bar and carry-

propagate bar, two outputs, propagate and carry-in, a vertical signal carry-in and carry-out,

[Ch.5., Sect1}

Precharge - Carry Qut
S N

(Y —"

1
[

-

\,
ol

——
1

"\

7
-l

A

Cin

.
-+ Cin

——

—d
e Y

Carry In
Figure 2. Carry Chain Circuit for the Arithmetic Logic Unit.

Precharge Carry Out

T

Carry In

Figure 3. Abstraction of the Carry Chain Circuit.

{ch5fig2.sil)

[Ch.5., Sect.i]

> |
T
——

Qut=G{A,B)

» |
Ll

—> G(A,B)

o o

bl

Figure 5. Functional Abstraction of the General Logic Function Block.

ch5tig4.sil)

Fig 4a. Stick Diagram of the Function Block

Go Gl G2 Gl

Fig b, Actual Layout of the Function Block

[Ch.5., Sect.1]

Ont = G(AL)

page 3c

[Ch.5., Sect.l]

B B oA UL B A

-

R A SRR A R RO
g :. . : T :. . :..

NN NN R e RER N

O AR S R S A

Fig. 4a. Stick Diagram of the Function Block

Fig. 4b. Actual Layout of the Function Block

{ch5fda.press)

[Ch.5: Design of OM: Sect.ij<Conway>doml.vlsi February 4, 1978 5:51 PM

and one control wire, precharge, as shown in Fig. 3.

The task of designing the balance of the ALU is now reduced to that of designing
functional blocks to; a) combine the two input variables to form a propagate bar and kill
bar, b} to combine carry bar and propagate to form the output signal, and ¢) drivers for

controlting the logical function blocks and deriving a timing for precharge.

A number of random logic implementations of function blocks for deriving kill, propagate,
and the output were attempted. All seemed to be at variance with the horizontally
microprogrammed architecture of the machine, and required a large amount of area and
power. For this reason it was decided 1o use the general logical function block illusirated in
chapter 3, figure 12a. Such circuits are used to generate carry-bar, propagate-bar, and for
combining carry-bar in and propagate to form the output. The circuit implements sixteen
fogic functions of two input variables, and is shown in Fig. 4. It consists of a set of
transistors which fully decode the input combination of A and B, and connect one and only
one of the vertical control lines to the output, depending on this input combination. Thus,
for example, when A and B inputs are both low, the verti-cal control wire labelled G0 is
connected 10 the output, The truth table entries for the desired logic function are placed on
the G vertical control wires, and the output will then be the desired logic function of the
two input variables. For example, if the Exclusive-OR of A and B is desired, a logic-0 will
be applied to the control wires 0 and 3, and logic-1 will be applied 1o control wires 1 and 2.
Since it is desired to implement the same logic function on all bits of the word, the control
variables G, through G; need not be generated in every bit slice, but may be generated once
at either the top or bottom of the array. The functional abstraction of the circuit of Fig. 4

is shown in Fig. 5.

We are now in a position to form the block diagram for our complete arithmetic logic unit,
as shown in Fig. 6. The functional dependence of the output on the two inputs and the
state of the carry is determined by a 12-bit number: P, through P,, K, through K, and R,
through R, together with the carry-in to the least significant bit of the ALU. The ALU is
quite general, and its detailed operation set may be left unbound until the control structure

of the machine is designed at a later time.

There are two general principles illustrated by this design. First, it is often less expensive in
area, time, and power to implement a general function than to implement a specific one.

Secondly, if a general function can be implemented, the details of its operation can be jeft

A3
A3

B3 —

B3 ——

[Ch5., Sect.1]

Precharge Carry Out o1 2 3

Lodd o1

O e A ST o)
NINPNIND

AZ ——
A2

B2 ——

B2 ——

TILLL

QOut 3

o ™ g™
‘\l.." '\l,.-" "-._1,/’ "t]_.f‘

i T P P Py

LLLL

[\

Carry In

Figure 6. Block Diagram of a 4-Bit ALU.

(ch5fig6.sil)

[Ch.5., Sect.1] page 4b

Figure 6a. Layout of ALU and Input Registers

[Ch.5: Design of OM: Sect.1]<Conway>doml.visi February 4, 1978 551 PM

unbound until later, and hence, provide a much cleaner interface to the next level of design.
The detailed choices of which functional entities to leave unbound and which to bind early
requires d considerable amount of judgment, and is where much of the skill in integrated

system design lies.

Two details need 1o be dealt with before the arithmetic logic unit function block is
complete. Drivers are needed for the P, K, and R terms which will generate signals with the
appropriate timing. In addition, inverters must be interposed in the carry chain occasionally
to minimize the propagation delay through the entire carry chain. The way we have chosen
10 implement the interposition of inverters is to recognize that each carry chain function
block contains two inverters which present at the output carry-in, having been twice
inverted from the actual carry-in signal. If we merely substitute this signal for the carry-
out signal from the pass transistor, we have doubly inverted in buffered our carry-in and
buffered it Lo minimize the propagation delay. This approach avoids putting spaces between
the carry function blocks for inverters. It is illustrated by the dotted connection lines in
Fig. 2. In the actual implementation, the connection through the inverters was made in

every fourth stage.

Drivers for the P, K, and R terms have the following function: At some time during the
null period of the ALU (which we shall call @1}, an OP code specifying each of the terms
arrives al the input to the driver. It must be latched while the ALU itself is being
precharged, and then it must be applied to the P, K, and R terms as soon as the ALU is
activated. The P, K, and R function blocks are themselves composed of pass transistors, and
their outputs are more effectively driven low than high. For this reason, we will precharge
the outputs of the P, K, and R function blocks as well as the carry chain itself. This is most
conveniently done by requiring that all of the P, K, and R control signals be high during the
null period of the ALU. Then, independent of the states of A and B inputs, the outputs will
be charged high by the time ALU active period commences. The control buffer which

implements this function is shown in Fig. 7.

The OP code is laiched through a pass transistor whose gate is connected 1o ¢, and the OP
code runs into a NOR gate, the other input of which is also ¢q. Thus, the output of the
NOR gate is guaranteed to be low during the ¢ period. The NOR gate output is then run
through an inverting super-buffer, so that during ¢ the output is guaranteed to be high.
At the end of ¢, whatever OP code is present at the input of the NOR gate is transferred

[Ch.5., Sect.1]

Figure 7. ALU Control Driver

All outputs high during Phi 1
., (Precharge}
g Selected terms low during Phi 2
QOpcode valid during Phi 1

y 2

P, K, or R

|

Phi 1 * Phi 1 * Phi 1 *) ALU -
Seljc_t 1 Select 2 Setect 3 P:‘Ji_ 5 Figure 8. Input Register.
nput 1 —TT ‘J_ TL
Input 2 T T [5::::::-—{ Hj C+—4— Output
Input 3 j::F ' —-——‘——0utput-

Figure 9. Select Control Driver.

All outputs low during Phi 2

(Precharge)
Selected terms high during Phi 1
Opcode valid during Phi 2

oY
Opcode LI

PhiZT

Phi 2 * Latch ’ _J_ Figure 10. Output Register

Input —-[—_T—~—{~RT}C [\T - Output

(ch5iig7 .sil)

[Ch.5., Sect.1l] page 5b

Phase 2

Phase 1

Phase 2

Phase 1
GND

VDD

GND

VDD

Figure 7a. Figure 9a.

[Ch.5., Sect.l]

phase2

phase2

phasel
vDD

GN

Fig. 9a

Fig. 7a.

{ch5fTa.press)

[Ch.5: Design of OM: Sect.1]<Conway>doml.vlsi February 4, 1978 5:51 PM

1o the particular P, K, or R [elrm being driven. The only interface specification for the
ALU which must be passed to the nexi level of system design is that the P, K, and R terms
be valid before _Lhe end of @y, and that the A and B inputs likewise be valid by the end of
@} and be stable throughout ¢, the active period of the ALU. We are then guaranteed that
afler enough time has passed to allow the carry 1o propagate, the output of the R function
block will accurately reflect the specified function of the ALU and may be latched at the
end of ¢j.

ALL Registers

In order for the arithmetic logic unit described in the last section to be useful, it must be
equipped with a set of registers both for its input variables and for its output. Let uvs
consider the input registers firsi. Inputs 1o the ALU may be derived from either the shifter,
the buses, or other sources. They may be laiched and left unchanged during any machine
cycle or set of machine cycles. This is one of the situations in which combining the
multiplexing function with the latching function simplifies the design and achieves better

performance. A register operating in this manner is shown in Fig. 8.

The input to the first inverter can be derived from four sources: three internal sources such
as shifier output, bus, eic., and a fourth, the output of the second inverter. When it is
desired to latch a new signal into the register, one of the source pass transistors is driven
high during @j. The feedback transistor around the two inverters is always activated during
®y. Thus, with three vertical control wires plus the @3 timing signal, it is possible to select
one of three sources into the register, or none of the three sources, thereby leaving the
previous value of the register stored on the gate of the first inverter during the ¢ period.
Since it is necessary to have two inverters to form the stable pair when the feedback
transistor is on, both the input and its complement are available as required by the P and K
function blocks of the arithmetic logic unit. The OP code signal which selects which source
will be apptied to the ALU input register during ¢ must come in during the previous @1.
Each of the select signals must be low during ¢,, and at most one of them may come high
during the following ¢q. A driver appropriate for these control signals is shown in Fig. 9.
The control OP code is laiched during ¢4, during which time the NOR gate shown disables
the output driver. Since the output driver in this case is non-inverting, the output select
line is held low during all of @5. At the end of @j. the OP code signal is latched and the

particular select line 1o be enabied that cycle is aliowed to go high.

[Ch.5: Design of OM: Sect.1]<Conway>doml.visi February 4, 1978 5:51 PM

Note that this timing allows two incoming OP code bits per external wire per machine cycle.
In particular, if it were desirable to share a microcode bit between the ALU function and
the ALU selector inputs, this could be done by bringing the ALU OP code in during ¢y and
the ALU input selection code in during ¢, as shown in Fig. 10. This technique was

suggested by Ivan Sutheriand.

The ALU output register is similar to the ALU input register, except the timing is reversed.

The result of the ALU operation is available at the end of ¢,.

An OP code bit will, if desired, enable the latch signal to go high during @4. The feedback
transistor is always enabled during ¢, and thus the latch is effectively static even though in
the absence of a latching signal the data is stored dynamically on the gate of the first
inverter through the ¢4 period. Once again, both the output and its complement are

available if desired.

Buses

An early design decision was that data would flow through the machine on two buses which
communicate with all of the major blocks of the system. We have already seen that the
ALU performs its operation during the ¢y period and does not have valid data to place into
its output register until the end- of ¢4. If data are to be transferred from the output register
of the ALU to its input register, this must be done during the ¢; period. If we adopt a
standard timing scheme in which all transfers on the buses occur during ¢, we can make
use of the ¢ period when the ALU is performing its operation to precharge the buses in
the same manner that the carry chain was precharged during the ¢y period. In this way we
solve one of the knotty problems associated with a technology designed for ratio logic. If
we had insisted that the tristate drivers associated with various sources of data for a bus be
able to drive up as well as down, we would have required both a sourcing and sinking
transistor, together with a method for disabling both transistors. While it is perfectly
possible to build such a driver (we shall undertake the exercise as part of the design of the
output ports), it is a space-consuming master to use such a driver at every point where we
wish to source data onto an internal bus. By using the bus precharge scheme, our tristate

drivers become simply two series transistors as shown in Fig. 11

[Ch.5: Design of OM: Sect.1]<Conway>doml.vlsi February 4, 1978 551 PM

Here the dala from one source, for example the ALU output register, is placed on the gate
of one of the series transistors. An enable signal which may come high during @ is placed
on the other series transistor. If one and only one of the enable signals is allowed to come
high during any one ¢ period, the bus can be driven from as many SOurces as necessary.
The performance of such a bus is limited only by the pull-down capability of the two series
transistors. We shall adopt this philosophy for the processor chip we are designing, and

attach such a tristate driver 1o each of the output registers for the ALU.

Barrel Shifter

Since shifting is basically a simple multiplexing function, it might be thought that a shifter
could be combined with the input multiplexer to the ALU. A simple 1-bit, right-left

shifter implemented in this manner is shown in Fig. 12,

It is identical with the three-input ALU register, and the three inputs have been used to
select between the bus, the bus shifted left by one, and the bus shifted right by one. To
support the multibit shifts necessary for field extraction and building up odd bit arrays,
something more is required. One is tempted initially 1o build up a multibit shift out of a
number of single shifts. However, for word lengths of practical interest, the n? delay

problem mentioned in Chapter 1 makes such an approach unworkable.

The basic topology of a multibit shift dictates that any bus bit be available at any output
position. Therefore, data paths must run vertically at right angles to the normal bus data
flow. Once this simple fact is squarely faced, a multibit shifter is seen as no more difficult
than a single bit shifter. A fundamental circuit which allows any bit to be connected to any
output position is shown in Fig. 13a. 1t is basically a crossbar switch with individual MOS
transistors acting as the crossbar points. In principle this structure can be set to interchange
bits as well as shift them, and is completely general in the way in which it can scramble
output bits from any input position. In order to maintain this complete generality, the
control of the crossbar switch requires n? control bits. In some applications, this n? bits
may not be excessive, but for most applications a simple shift would be adequate. The gate
connections necessary to perform a simple barrel shift are shown in Fig. 13b. The shift
constant labelled SC. is presented on n wires, one and only one of which is high during the
period the shift is occurring. If the shift outputs, SHO,1,2.etc., are precharged in the same

manner as the bus, the pass transistors forming the shift array are only required to pull

[Ch5., Sect.1]

.Phi 2 —l

{ . Bus Line
] :

Phi 1 * Phi 1 * Phi 1 *
Enable 1 ——| Enable 2 _{ Enable 3

Source 2 -—I . Source 3 —|

Source 1 —|

".ll_l!_il_.

Figure 11. Precharged Bus Circuit.

Lch*Phi 1
Shu*Phi 1 Shd*Phi 1 Phi 2

) 1 1
1 ' [

_>
=)
Tt

—
l'.l‘
s
L
7
J];
_m

+ | +
lj 1
T 1
A. ; TI1LC | 1 [- =,.._.__[‘“‘-._i:|___8

Ajs1 . ' 'L_,---': |~ B

:I'_J e Bis1
T,

b

Figure 12. A Simple 1-Bit, Right-Left Shifter.

{ch5fig11_sil)

o,

[Ch.5: Design of OM: Sect.1]<Conway>domlb.vlsi February 4, 1978 5:51 PM

down the shift outputs when the appropriate bus is pulled to low by its tristate drivers.

Thus, the delay through the entire shift network is minimized and effective use is made of

the technology.

A second topelogical observation is that in every computing machine, it is necessary to
introduce literals from the control path into the data path. However, our data path has been
designed in such a way that the data bits flow horizontally while the control bits from the
program store flow vertically. In order to introduce literals, sonie connection between the
horizontal and vertical flow must occur. It is immediately obvious in Fig. 13 that the bus is
available running vertically through the shift array. It is then the obvious place to

introduce literals into the data path or to return values from the data path to the controller.

At the next higher level of system architecture, the shift array bit slice may be viewed as a
system element with horizontal paths consisting of the bus, the shifter output, and if
necessary, the shift constant since it appears at both edges of the array, as well. The literal
port is available into or out of the top edge of the bit slice, and the shift constant is
available at the bottom of the bit slice. These slices, of c_ourse, are stacked to form the

entire shift array as wide as the word of the machine being built

One more observation concerning the multibit shifter is in order. We stated earlier that our
machine was Lo be a 2-bus machine. Therefore, any bit slice of a shifter such as the dne
shown in Fig. 13 will of necessity have two buses running through it rather than one. We
chose to show only one for the sake of simplicity. There remains the question of how the
two buses are to be integratéd with the shifter. Since we are constructing a two-bus
machine, we have two full words available, and a good field extraction shifter would allow
us to extract a word which gracefully crosses the boundary between two machine words.
The arrrangement shown in Fig. 13 performs a barrel shift on the word formed by one bus.
For the same number of control lines and pass transistors, only having added the bus lines
which are required for the balance of the machine anyway, we may construct a shifter which
places the words formed by the two buses end to end and extracts a full-width word which
is continuous across the word boundary between the A and B buses. This function is
accomplished in as compact a form as just described with a circuit shown in Fig. 14. Notice
that the vertical wires have a split in them. The portion of the wire above the
corresponding shift output being connected to the A bus, and that below the corresponding

shift output to the B bus.

[Ch.5., Sect.1]

Al

T

SC33

I

w0
O
n
r

T B

]

4& 4EL i1 |

SCOo1 SC11 5C21
T T T
SCoo SC10 SC20 SC30
Figure 13a. 4-By-4 Crossbar Switch,

—l[i 4&

Al

TR T He T B

]

|
|

Figure 13b. 4-By-4 Barrel Shifter.

{ch5fig13.sil)

Bus 3
Out 3

Out 2

Bus 1
Qut 1

Bus O
Qut 0

Bus 3
Qut 3

Shift 3
Bus 2
Out 2

Shift 2
Bus 1
Out 1

Shift 1
Bus O
Out O

Shift O

Shift 3 Shift 2 Shift 1

Figure 14. 4-By-4 Shifter with Split Vertical Wires and 2 Data Buses.

(eh5tig14.sil)

SR
g I I —
—

T I T 1
T T T 1

| !

- - e
L I 1 1

!

A Bus 3
Qut 3

Shift 3
B Bus 3
A Bus 2
Out 2

Shift 2

B Bus 2
A Bus 1
Qut 1

Shift 1
B Bus 1
A Bus 0
Qut O

Shift O
B Bus O

[Ch.5., Sect.1] page 9¢

Bus A.3

Out.3
Shift.3

Bus B.3
Bus A.2

Out.2
Shift.2

Bus B.2
Bus A.l

Out.1
Shift.1

Bus B.1
Bus A.0

Out.0
Shift.0

Bus B.0

Figure 14a,

7

L8

-. \

RN

R

] \\‘\."t‘\\:\g:\.

L NSRS

R

SRS

RSN

Fig. 14a.

B A S

[Ch.5., Sectl]

busA 3

out 3
shift 3

busB 3

busB 0

{ch5f

14, press)

[Ch.5: Design of OM: Sect.1]<Conway>doml.vlsi February 4, 1978 5:51 PM

It can be seen by inspection that this circuit performs the function shown in Fig. 15 which
is just what is required for doing field extractions and variable word length manipulations.
The literal port is connecled directly to the A bus and may be run backwards in order to
discharge the bus when a literal is brought in from the control port. A block diagram which

represents the shifter at the next level of abstraction is shown in Fig. 16.

In order 1o complete the shifter functional block, it is necessary to define the drivers on the
top and bottom which interface with the system at the next higher level. Let us assume that
the literal bus from outside the chip will contain data which are valid on the opposite phase
of the clock from that of the internal buses. In that case, a very simple interface between

the two buses which will operate in either direction is shown in Fig. 17.

The internal shifter output is precharged during ¢,, and active during ¢j. It may be
sourced either from the literal bus or from the shifted combination of the A and B buses
through the shift array, shown in Fig. 15. The external literal bus itself may be sourced
either from the opposite end (the external paths from the program source) or from the end

attached to the A-Bus in the shift array shown.

The bus to the external literal path is precharged during ¢y, and data from the literal port
of the shifier are enabled onto it by a signal active during ¢, as shown in Fig. 17. The two
signals, @ * IN, and @5 * OUT, are derived from buffers identical to those shown earlier.
The shift constant itself is represented by one line out of n, which is high, the others

remaining low. Buffers for these lines are identical to those shown in Fig. 9.

There is one more observation concerning the n-bit shift constant. It is represented most
compactly by a log n bit binary number. However, in order to generate from such a form a
signal that can be used in the actual data path, a decoder is required to convert the binary
number into a one-of-n signal suitable for feeding the buffers. Decoders can be made in a
number of ways in the ratio technology we are discussing. The most common form is the
NOR form, which is merely the fully decoded equivalent of the AND-plane in the
programmable logic array, Chapter 3. It is shown in Fig. 18. Notice that the output is a

high-going one-of -n pattern.

Decoders can also be made in other forms, For small values of n, the NAND form shown
in Fig. 19 is often convenient. We used a variant of this form for the ALU function block

described earlier. Notice that the output of this form, when used as a decoder, is a lowgoing

10

[Ch.5., Sect.1]

A3 TShift Constant (=2}
A2 =
A1l Shift Qut 3
AQ Shift Qut 2
1 B3 Shift Qut 1
B2 Shift Qut 0
B1
4 BO Figure 15. Conceptual Picture

of the Shifter's Operation.

Literal {in/Out)

| |

||

B Bus —
A bus —] Shifter

— B bus
— A Bus

— Shift Output
— Shift Constant Out

L

Shift Constant In

Figure 16. Block Diagram of the Shifter.

Phi 2

Shifter Literal

Phi 1

!

External Literal Bus

Phi 1*in —‘Il:

|- ehi 2+0ut

—_——

Figure 17.

Literal Interface.

{ch5fig15 sit)

" .

[Ch.5., Sect.1]

-
..
— =0
- "--)

|
T

A
1

H +*{

Figure 18. A Nor Form 1-of-N Decoder.

e -~
g S

Out 1

e

JTC

Figure 19. A Nand Form 1-of-N Decoder.

i

il

A
T C

(ch51ig18.ail)

.
’ £
|
]
l .—I__‘ |
1 j']
™

[Ch.5., Seet.1]

T I fr'. 0
Im 1E Lﬂ Lh
. — v | I [
T ! T | i '
1 |‘11 im I‘M
- = [= [
T LF ' L '
S [
out 1 ¥ P 3™V o4
Figure 20. A Complementary Form 1-of-N Decoder.
Literal In/Qut (Phi 2)
out (Phi 1) | In (Phi 2)
1 S |
Phi 1 — Buffers —— Phi 2
A Bus (Phi 1) £ <~ A Bus (Phi 1)
Shift .
———> Shift Control (Phi 1)
Array _
——> Shift Output (Phi 1)
B Bus (Phi 1)] £—+ B Bus (Phi 1)
Phi 2 —H° Buffers
Shift Constant —-—\—5 : Decoder
log n

Figure 21. A Fully Synchronized Shifter.

{ch51ig20.sil)

[Ch.S: Design of OM: Sect.1]<Conway>doml.visi February 4, 1978 5:51 PM

one-of-n pattern. There is also a complementary form of decoder which can be built with
ratio technology, and was suggested by Ivan Sutherland. It takes advantage of the fact that
in any decoder both the input term and its complement must be present. In this case, the
input term can be used to activate pull-up transistors in series, while the complement can be
used to activate pull-down transistors in parallel. This logic form is similar in principle to
that used with fully complementary technologies, and has similar benefits. It can generate
either a highgoing or a lowgoing one-of-n number, and dissipates no static power. A
decoder of this sort is shown in Fig. 20. Once we have added the appropriate buffers and
decoders to our shift array, we have a fuily synchroni‘zed function block ready to be
integrated with the system at the next level up. The properties of ihis block are shown in
Fig. 21.

Register Array

In any microcoded machine designed for emulating an instruction set at a higher [evel, it is
convenient to have a number of miscellaneous registers available, both for working storage
during computations and for storing pointers of specific significance in the machine being
emulated: stack pointers, base registers, program counters, etc. Since the machine is a two-
bus machine and the ALU is a two-operand device, it is convenient if the registers in our
machine are two-port registers. Using the design philosophy we have been discussing, a
typical two-port register cell is shown in Fig. 22. This register is a simple combination of
the input multiplexer described earlier, the ¢, fedback transistor, and two tristate output
drivers, one for each bus. The registers can be combined into an array m bits long and n
bits wide, the buses passing through the array. Each cell of the array is defined at the next
level up, as shown in Fig. 23. Drivers for the load inputs and the read outputs are identical
to those shown in Fig. 9. While we could immediately encode the load and read inputs to
the registers into log n bits, we shall delay doing so until the next level of system design.
There are a number of sources for the A bus besides the registers, and we will conserve

microcode bits by encoding them together:

Before we proceed, there is one mundane detail which must be taken care of in the overall
topological strategy. The routing of VDD and Ground must generally be done in metal,
except for the very last runs within the cells themselves. Often the metal must be quite
wide, since metal migration tends to shorten the life of conductors if they operate at current

densities much in excess of 1 ma per square micron cross-section. Thus, it is important to

i1

[Ch.5., Sect.1]

-

/

3 | _)
LdA * Phi 1 ——IH Phi 2 :II— RdA * Phi 1

Bus A {

-u
-
-

ALY

1
RV

[
—
LdB * Il;hi 1 —|[:‘ L L E“— RdB{" Phi 1

] Bus B J

Figure 22. A Two Port Register Cell.

LdA * Phi 1 Phi 2 RdA * Phi 1

J | e

RN AN
A — Bus A
- > s ™~
E— < Bus B

LdB * Phi 1 RdB * Phi 1

Figure 23. Block Diagram Definition of the Two Port Register Cell.

(chSfig22 sil})

[Ch.5., Sect.1] page 11b

Id A Phase 2 Rd A

VDD

Bus A

Bus B

GND

Bus B

Bus A

VDD

Ld B Rd B

Figure 22a.

[Ch.5., Sect.1]

RdA

LdA

7Y

m < o3 W @ < [}

> 2 2 0 2 £ g

~_."_..um¢u L \..._..... .\\ Al : : A A \.\.....\\\ \nw‘.
Qa0 'S Wy L

R

(et Rt
‘.C.\\ \.v\\v\\\.“\.u\\.h\

g
7
s
S w

e

P

. o~
7

R

orrereTy

7
<

Aty

i

O
e i
N\\\\\\ﬂ.....\“\\\\\\\.“ o

ettty

iy
7

v\vv..s\.\\\\s\\s e

PR

s

LA A
7 x&\

S

STttt

Yy

A,
e

““
7
. 7

A

L

RdB

phase2

LdB

Fig. 22a.

(¢chS5f22a.press)

[Ch5., Sect.1]

3 F DA A S S AR e AR T A S S R R A s g e ST il 8 T B, e AR

Figure 24. VDD and GND Net for the Data Processing Structure Shown in Figure 1.

(chsl,igu.eil)

[Ch.5 Design of OM: Sect.1]<Conway>domlvlsi February 4, 1978 5:51 PM

have a strategy for routing ground and VDD to all the cells in the chip before doing the
detailed layout of any of the major functional blocks. Otherwise, one is apt (o be faced
with topological impossibilities because certain conductors placed for other reasons interfere
with the routing of the VDD and ground. A possible strategy for the overall chip layout

shown in Fig. 1 is shown in Fig. 24.

Notice that the VDD and ground paths form a set of interdigitated combs, so that both
conductors can be run to any cell in the chip. Any strategy will do, but it must be
consistent, thoroughly thought through at the beginning, and rigidly adhered to during the

execution of the project.

Communication with the Qutside World

Although in particular applications the interface from a port of the machine to the outside
world may be a point to point communication, the ports will often connect to a bus. Thus
it is desirable to use port drivers which may be set in a high impedance state. Drivers which
can either drive the output high, drive the output low, or appear as a high impedance 10 the
output are known as rristare drivers. Such drivers allow as many potential senders on the

bus as necessary. Figure 25 shows the circuit for a tristate interface to a contact pad.

Here, either bus A or bus B can be latched into the input of a tristate driver during ¢j.
Likewise the pad may be latched into an incoming register at any time independent of the
clocking of the chip. Standard tristate drivers are enabled on bus A and B. The only
remaining chore is the design of the tristated buffer which drives the pad directly. Details

of the tristate driver are shown in Fig. 26.

The terms out and outbar are fed to a series of buffer stages which provide both true and
complement signals as their outputs, and are disabled by a DISABLE signal. Note that this
DISABLE signal does not cause all current to cease flowing in the drivers, since the pull-up
transistors are depletion type, but reduces the current to a value where it can be handled by
the disable transistor of the following buffer stage. In general there will be a number of
super buffer stages of this sort. The very last stage of the driver is shown in Fig. 26b. It is
not a super buffer but employs enhancement mode transistors for both pull-up and pull-
down. These Lransistors are very large in order to drive the large exlernal capacitance

associated with the wiring attached to the pad. They are disabled in the same manner as the

12

LchA * Phi 1

1

Phi 2J_

" Qutbar

Bus B .-

Bus A f::-——i’_L| I—
- - I
’]

L
T

LchB * Phi 1

]
1

Bus A J

DrvA * Phi 1 —|LJ

———

| broron—s

[Ch5., Sect.1]

Disable (asynchronous)

-
-\"--
Tri- .
St_ate ~ e Pad
Driver
"
_ff’

o -
M e

Bus B é——— ;
AL il
DrvB * Phi 1 — B [_ -
VLA i
1 Latch Pad (asynchronous)
Figure 25. Data Port Tristate Pad Circuit
1 Disable N
- ’\\)
4
' N
[
t 4
"‘\: \5 ..
>

Figure 26a.

1
—-'—I[EI—

Pad Buffer Stage.

Figure 26b. Pad Output Driver.

(chStig25.sil)

[Ch.5., Sect.l] page 12b

Disable
GND

vDD

Disable

GND

VDD

VDD

GND

Figure 25a.

[Ch.5: Design of OM: Sect.1]KConway>doml.vlsi February 4, 1978 551 PM

super buffers, except that when the gates of both transistors are low, the output pad is truly
tristated. Once again the two output transistors are a factor of approximately ¢ larger than

the last super buffer in the buffer string.

As we have seen, the inverter string necessary to transform the impedance from that of the
internal circuits on chip to that sufficient for driving a pad attached to wiring in the
outside world is quite large, and imposes a delay of some factor times a logarithm of this
impedance ratio upon communications between the chip and the outside world. Any help
which can be obtained in making this transformation is of great value. For example, the
latch and buffers associated with the input bus circuit to the pad drivers can themselves be
graded in impedance level, so that by the time the out and outbar signals are derived, they
are at a considerably higher current drive capability than the buses. Note that the buses are
a considerably larger capacitance than minimum nodes on the chip, and thus the initial
latch buffers can be larger than typical inverters on the chip. All such tricks help to
minimize the number of stages between the bus and the outside pad, and thus the total delay

in going off chip.

Machine Operation Encoding

By now we have defined a complete functional data path with ports on each end and
functional blocks through the center, as shown in Fig. 27. The op code bits required to
control the data path and the phase of the clock on which they are latched are shown.
There are forty-nine such bits together with the four asynchronous bits for latching and
driving the pad to the external world. In addition, there are the carry-out wire and the
sixteen literal wires. These sixty-six wires together with the thirty-two from the left and
right port must go to and come from somewhere. Schemes for encoding internal machine
operations into OP codes of various lengths are well known, and will not be discussed here.
At one extreme all the OP code wires can be brought out to a microcode memory driven by
a micro program counter and controller, in which case all operations which can be done by
the machine may be done in parallel. The opposite extreme is to very tightly encode the
operations of the machine into a predefined OP code set. In the present machine, this
encoding would be most conveniently done by placing a programmable logic array or set of
programmable logic arrays along the top and the bottom of the machine data path. A
condensed OP code could then be fed to the programmable logic arrays which in turn

sequence the data path through the microinstructions required for executing machine code.

13

Drv A (PHI 2)
Lch A {PHI 2}
Load Pad

L2

Left
Port

T

Drv B (PHI 2)
tch B (PHI 2)
Drv Pad

[Ch.5., Sect.1]

Dev A (PHI 2)
Leh A (PHI 2}
Load Pad
\La
Wrt A Rd A Literal A Sel p Cout R Leh A (PHI 1) i
(PHI 2) {PHI 2) (PH 2} (PHI 2) (PHI 1} (PHI 2) {(PHI 1) Rd A (PHI 2)
Ji2 J2e NS N - R J2
16 Shift ALU Kill Carry Result ALU Right
Reagisters Array Input and Chain Control Qut Port
Reyg. Prop. Reg
Control
x'T‘x xT'-‘ ,-‘T'\ -~]\ .]‘\ .-"T's
4 4 4 2 1 3
wrt B Rd B Shift 8 Sel Cin Lch B (PHI 1}
(PHI 2} (PHI 2) Canstant (PH 2) {PHi 1} Rd B8 {PH 2)]\
(PHI 2) 3
Drv 8 (PHt 2)
Lch B (PHI 2}
Drv Pad

Figure 27.

Block Diagram of Datapath with Control Wires Added.

{ch51ig27 .sil)

[Ch.5: Design of OM: Sect.1]<Conway>dom].visi February 4, 1978 5:51 PM

The important point of the design strategy we have chosen is that we can orthogonalize the
design of the data path and the design of the OP code set in such a way that the interface
between the two designs is very well defined, very clean, and can be described precisely, in a
way that system designers at the next higher level can understand and work with
comfortably. The data path can then be viewed as a component in the next level system
design. As time progresses and it is possible to construct chips with larger and targer
functional density, blocks of the sort shown will form components in even larger
geometrical arrangements which will form even larger components and a whole hierarchy
will emerge which will implement a system function at a much higher level than
contemplated here. However, if the design strategy we have described is followed, it is
possible to construct arbitrarily targe and complex systems which are guaranteed to work if
the individual component blocks are correct, and given the clocking period is sufficient to

allow the slowest Tunctional unit to perform its function.

Using the approximate capacitance values given at the end of Chapter 2, an estimate of the
minimum clock period for the machine can be made. The -Phase 1 time of the machine is
~507, the same as the general estimate given in the section "Transit Times and Clock
Periods" in chapter 1. However, the Phase 2.time of the machine is limited by the carry
chain, as discussed earlier in this chapter. The relative areas of metal, diffusion, and gate
can be estimated from the ALU layout shown in Figure 6a. The metal and diffusion occdpy
~15 and ~8 times the area of the propagate pass transistor gate, respectively. Metal is ~0.1
and diffusion is typically 0.2. times the gate capacitance per unit area. Thus the total
capacitance of each stage of fhe carry chain is ~4.5 times that of the pass transistor gate.
The effective delay time is correspondingly longer than the transit time r of the transistor
itself. The effective delay through n stages of such pass transistor logic is ~ rn. In the
OM2, n=4 and the effective delay for 4 bits of carry chain is ~4.5*167 = 727. To this must
be added the delay of the doubly inverting buffers at the end of every 4 bits of straight
Manchester logic. This delay is (1+k) times the transit time of the inverter putldown,
properly corrected for stray capacitance in the inverter. Here the inverter ratio k is ~ 8,
sinice its input is driven through the pass transistors. Conservatively, strays in such a circuit
are always several times greater than the basic gate capacitance, and we may estimate the
inverter delays at ~307. The total carry time is thus ~100 times the transit time for each
block of 4 ALU stages. The total Phase 2 time should then be ~4007. In 1978, 7 ~ 0.3 ns,

and we would expect a minimum total clock period of ~450r, or ~133 ns,

14

[Ch.5: Design of OM: Sect.1}<Conway>doml.visi February 4, 1974 5:51 PM

The Second Half of this Chapter contains a functional specification of the OM2
machine, by Dave Johannsen of Caltech. This specification was originally documented
in Display File #1111, by Dave Johannsen and Carver Mead of the Caltech Computer
Science Department, and copyrighted by Caltech. The specification is reprinted here

with the permission of the California Institute of Technology.

15

Functional Specification of the OM2 Muachine

[Section contriblited by David 1. Johannsen, Caltech]

Introduction

This specification describes a 16-bit data engine referred to as OM2 [#886]. The OM2
contains 16 registers, an ALU, and a 32-bit shifter, and is designed as part of a micro-
programmed writeable-control-store machine. The companion chip is the Controller chip,
which contains the program counter, stacks, and so on. The Controller is described in

Chapter 6. The entire system is designed to run on a single 5 volt supply.

The OM2 Datachip has two data ports for communication with the external system and a
communication path to the Controller chip. The data ports are tri-state with either internal
or external control. Communication with the Controller consists of a 16-bit literal port and

a single flag bit. Seven control bits come directly from the microcode memory.

The system runs on a single clock. When the clock is high, the internal buses transfer
data: when the clock is low, the ALU is performing its operation. Microcode bits enter the
Datachip the phase before that code is to be executed. Therefore, the bus transfer code
enters the Datachip when the clock is low, ard the ALU code enters when the clock is

high. Figure 1 shows a possible OM system.

Throughout this section a positive logic convention is used. A "1" refers to a high voltage

level, while a "0" refers to a low voltage level
Datapaths

A block diagram of OM2 is shown in figure 2. There are two buses which connect the
various elements of the chip together. These buses transfer data while the clock is high,
the period referred to as ¢1. During @2, when the clock is low, the buses are precharged.
Fach bus can only get data from one source, and give data to one destination during any

one cycle.

System
Bus

Controller

Microcode

Memory

OM2 Datachip

[Ch.5.. Sect2]

/70
Bus

Memory

Bus

Main

Memory

Figure 1. One Possible OM2 System Configuration

(tig1.sil}

[Ch§., Sect.2}

Literal Port - Flags

n [’ Out

Left
Port

Right
Port

Memory Shifter : ALU

n — Out |

Bus B

Figure 2. Block Diagram of OM2

Shift Constant
1 2 3 4 5 6 7 8 9101112131415

o

MSB] 1
4 4 —_—
Bus A T T T —
PEIEESEEREEREERE TN
MSB | i__ ii 1 1 1
T ii T T1 Qutput
Bus BT T TT
T T3
T T 1 use
wse T

Figure 3. Shifter Operation.

{fig2 -3 sil)

[CILS. Sect.2 OM2 Spec., by 12 L Johannsen [<Conway>dom2.visi February 2, 1978 808 PM

The Left and Right Ports communicate between the datachip and the outside world. The
Right Port has been traditionally known as the memory bus port while the Left Port has
been the system bus port, but since the two ports are identical, this is an arbitrary
convention. Each port has both an input latch and an output latch to provide facilities for
synchronizing the datachip to the outside buses. Under program control either of the two
buses can ioad the output latch during @1. There are three modes of driving data from the
output latch to the pins, two of which are under program control and one of which is under
hardware control. The first method is to output the data as soon as it comes from the bus,
during the same ¢1. The second method is to latch the data from the bus during @1 and
drive it out during the following ¢2. The final method is to latch the data from the bus
during ¢1, but output the data when an enable pin is pulled iow. The enable pin would be
controlled by a bus manager, and can be asynchronous with respect to the datachip.
Inputting from the port is similar. By pulling down on another enable pin, data from the
external bus is loaded into the input latch, which can be read later under program controi.
Alternatively, the microcode can force the data currently on the external bus into the
internal bus during the current 1. With this scheme, many types of synchronous and
asyncronous buses may be interfaced to OM2s. For internal control only, the external

enable pins can be left floating.
Registers

The registers are static and dual port. Any one of the 16 registers may source either or
both of the buses, while any one of the 16 may be the destination for either bus, but not
both. There are only two restrictions to the use of the registers:
1. One register may not be the destination for both buses on the
same cycle, and
2. One register may not be both the source for one bus and

the destination for the other bus on the same cycle.
Shifter

The shifter concatenates the two buses, resulting in a 32-bit word, with the A bus being
the more significant half. The shift constant then selects the bit position where the 16-hit
output window starts. The shift constant specifies the number of bits from the B bus
present in the output (ie. a shift constant of 0 returns the A bus, while a shift constant of
15 returns the 1L SB of the A bus in the MSB of the output, followed by ali but the LSB of

the B bus in the rest of the word). A conceptual picture of the shifter is shown in figure 3.

[CN5, Sect.Z OM2 Spec. by 131, Johannsen J<Conway>dom2.vlsi February 2, 1978 808 PM

The ALU can select as inputs either the bus, the shift output, or shift control. H shift
control is selected. the entire word is 0 except where the LSB of the A bus appears in the

shitt output. The shifter operates on ¢l; it may be viewed as an extension of the buses.
ALL

A block diagram of a single bit of the ALU is shown in figure 4. The ALU operates on the
data which is contained in its two input latches. Input latch A may be loaded from the A
bus, the shifter output, or the shift control, while the input latch B may be loaded from the

B bus, the shifter output, or the shift control.

The outputs of the two latches become the inputs to two function blocks which determine
what will happen on the carry chain. Function block P determines whether the carry chain
propagates, while K decides if it is to kill the carry. If neither are true. the carry chain
generates a carry. Each function block has four control inputs, which, for the Propagate
function block. are referred to as PFF, PFT, PTF, and PTT. If PFF is enabled, the P block
output is high if both input latches are false (contain 0). Enabling PFT activates the output
if input A is false and input B is true, and so on. If, for example, both PFF and PFT are
enabled. the output is active it input A is false, regardless of the state of input B. To
further illustrate the operation of the function blocks, consider addition. If both inputs
conilain a 1. the carry is to be generated, while if both inputs are O, the carry is killed. If
the two inputs are different, the carry is to be propagated (carry out~carry in). To do this
operation, the kill output should be active if both inputs are false, so KFF is enabled. Both
PFT and PTF should be enabled to propagate properiy. Therefore, K=(KFF, KFT, KTF,
KTT)=(1.0,0.0). and P=(PFF, PFT, PTF, PTT)={0,1,1,0).

The result of the ALU is produced by the R function block, which has as inputs P block out
and Carry in. For the addition example above, the output should be the exclusive-or of P
and Cin, so R=(0,1,1,0). P, K, and R values for common ALU operations are listed in the

programming section.

Two ALY output latches (A and B) can be loaded from the R block output; either one may

later be used to source either bus.
Flags

The carry input to the LSB of the ALU is a logical combination of a flag bit and two control

inputs. The two control inputs ¢an force the carry in to be either 1 or 0, or they can

select either flag or flag bar as the input.

[Ch.5, Sect.2]

NN

Out

Figure 4. Block Diagram of one bit of the ALU

1 O I B

K P R Flag Select Lafching Fields
Conditional Carry In
Op Field Select
Figure 5a. Phi 2 Op Code (in on Phi 1)
1
T e O O A A
Literal Literal Bus A Destination
Control
Figure 5b. Phi 1 Literal Transter Op Code (in on Phi 2)
0,0
N N O o o
Literai Bus B Scource Bus B Destination Bus A Source Bus A Destination

Control

Figure 5c. Phi 1 Normal Op Code (in on Phi 2)

(figd -5 sil}

Out

[Ch5 Secl.2r OM2 Spec., by D. L. Juhannsen]1<Conway >dom2.vlsi February 2, 1973 8:08 PM

There is also a method for doing conditional ALU operations under the control of a two-bit
conditional OP fieid. A conditional operation performed by the ALU is not only a function
ot the controt inputs, but also of the flag bit. The conditional operation control forces
some of the control inputs low, regardless of what the P, K, and R microcode says. The
coding for conditional operations allows the use of operations like multiply step and divide

step without the necessity for branching in the microcode.

There is a 16-bit flag register which can alsc be a sourée or destination of the A bus.
This register can also be ioaded with the ALU flags during ¢2. Thé ALU flags inctude carry
out, overflow, carry in to the MSB, zerc, MSB, LSB, Less than, Less than or equal to, and
Higher (in unsigned value). The last three flags are comparison flags used after a
subtaction. For example, after subtracting ALU input latch B from ALU input latch A, the
"less than" flag is true if the vaiue contained in ALU input latch B was larger than the value

in ALU input latch A.

Tne MSB of the flag register is called the flag bit, and this bit may be modified every ¢l
by loading it with the value of one of the other bits of the flag register. The flag bit is
used ir the calculation of carry in and modification of conditional ALU Ops. This bit is also

senl to the cantroller chip to be used for conditional branching, etc.
Literal

The one remaining datapath is the literal port. It is used to send data from the datachip to
the controller, and vice versa. H is a source or destination for the A bus. When the literal

port is being used, standard bus operations are suspended for that cycle.
Programming

The Datachip requires 23 bits of microcode on each phase of the clock. This section of
the memo specifies the encoding of the fields within that microcode. Figure 5 shows the

arrangement of the microcode word.
Bus I'ransfer

The bus transfer control bits enter the datachip during g2 and are used during the
foilowing ¢1. There are two buses, the A bus and the B bus, which interconnect the
modules of the Datachip. These iwo buses are similar in many respects; however, there
are a few asymmetries as to sources and destinations. Also. when a literal is being
transterred. the only bus transfer field which is active is the A bus destination. which

stores the literal entered on the A bus.

[Ch.5, St OM2 Spec. by DL L Juhannsen J<Conway >dom2.ylsi February 20 1978 808 '™

A listing of the bus sources and destinations follows:

A Bus Source A Bus Destination
Onnnn Register n Onnnn Register n
10000 Right port pins 10000 Left port, drive now
10001 Right port latch 10001 Left port. drive ¢2
10010 Left port pins 1001x Left port, no drive
10011 Left port latch 10100 Right port, drive now
10100 ALU output latch A 10101 Right port, drive ¢2
10101 ALU output latch B 1011x Right port, no drive
10110 Flag register 11000 ALU input latch A
11001 ALU input latch A gets shift out
11010 ALU input latch A gets shift
control
11011 Flag Register
B Bus Source B Bus Destination
Onnnn Register n 00nnnn Register n
10000 Right port pins 010000 Left port, drive now
10001 Right port latch 010001 Left port, drive ¢2
10010 Left port pins 01001x Left port, no drive
10011 Left port latch 010100 Right port, drive now
10100 ALU output latch A 01001 Right port, drive @2
10101 ALU output latch B 01011x Right port, no drive
0110xx ALU input latch B
10nnnn ALU input latch B gets shift

output, shift const.=n
11nnnn ALU input latch B gets shift

control, shift const.=n
ALL Input Selection

The two ALU input latches are destinations for the two buses, as shown in the Bus
Transfer section above. In addition to being loaded directly from the buses. these two
tatches can be loaded from the outputs of the shift array. The shift constant always comes
from the 4 least significant bits of the B Bus Destination field, even though the destination

of the B Bus is not the ALU input latch B. For example, the B Bus may be transferring the

[Chs, Seet.2r OM2 Speg., by DL Jolannsen J<Conway >dom2.visi February 20 1978 §:08 PM

contenis of register 3 into register 5 while the A Bus is transferring the contents of
register 4 to the ALU input latch A through the shifter. In this case. the shift constant
would be "5", because the 4 least significant bits of the B Bus Destination field contain

"0101".
ALl Operations

The following table shows coding for ALU operations that are commoniy found useful. The
user is encouraged to encode other operations if these are not éuitable.The numbers given
are the decimal representation of the 4 hit control word. For P and K,
A'B'=1A'B=2 AB'=4 AB=8. For R, P'C'=1,P'C=2,PC'=4,PC=8. Cin is the cary in select, and

Cond is the conditional OP select.

K P R Cin Cond
A+B 1 6 6 0 0 Add
A+B+Cin 1 6 5] 1 0 Add with carry
A-B 2 g 6 2 0 Subtract
B-A 4 9 6 2 0 Subtract reverse
A-B-Cin 2 9 5] 1 0 Subtract with borrow
B-A-Cin 4 9 5] 1 0 Subtract rev. w/borrow
-A 12 3 6 2 0 Negative A
-B 10 5 6 2 0 Negative B
A+1 3 12 5] 2 0 Increment A
B+1 5 10 6 2 0] Increment B
A1 12 3 9 2 0] Decrement A
B-1 10 5 9 2 0] Decrement B
AAB 0 8 12 0 0] Logical And
AVB 0] 14 12 0 0 Logical Or
ADB 0 6 12 0 0] Logical Exor
—A 0 3 12 0 0 Not A
-B 0 5 12 0 8] Not B
A 0 12 12 0 0 A
B 0 10 12 0 0 B
Mul 1 14 14 0 1 Multiply step
Div 3 15 15 0 2 Divide step
A/O 0 14 12 0 3 Conditional And/Or
Mask 10 5 8 2 0] " Generate mask

6

[Ch.5, Seet.Z: OM2 Spec., by D. L: Johannsen J<Conway ydom2.visi February 2, 1978 5:08 PM

Carry In Select

The Carry in select field determines what the carry into the LSB of the ALU will be,

according to the following tabie:

00 0

01 -Flag bit

10 1

11 Flag bit complemented

Conditional Op Select

The conditional op select field is used to generate 3 basic conditional type operations:
Multiply, Divide, and And/Or step. In a great many cases, the conditional op allows
functions dependant on a flag to be performed in one cycle, rather than sending the flag to
the controller and branching to two separate instructions depending upon that flag. When
a conditional OP is selected, certain ALU control bits are forced to zero. Which bits are

zeroed depends on the conditional OP selectand the flag bit, as follows:

Select Flag bit K P R
0 X -==- --=- ---- Unconditional
1 0 ---0 --0- --0- Multipty step
1 - 0--- 0---
2 0 0--0 -00- -00- Divide step
1 -00- C--0 0--0
3 0 ---- ---- ---- And/Or

[Ch.5. Set.2: OM2 Spec., by DL Johannsen 1<Conway >dom2.visi February 2, 1978 8:08 M

I'lags

The flag select field determines which of the ALU flags becomes the new fiag bit. The

following table lists the selection options.

Select New Flag Bit
0 Old fiag bit

Carry out

MSB

Zero

—

Less than
Less than or equal

Higher (in absolute value)

i N o - B & 1 B - N 4 B 0

Overflow

The ALU flags are loaded into the fiag register under the control of the latching field, bit 3.

They are loaded into the following positions:

Bit Flag

0 Not changed

1 Not changed

2 Not changed

3 Not changed

4 Not changed

5 Previous value of Flag bit
3] =1 Carry into MSB stage

7 Less than or equal

8 -1 Higher {(in absolute value)
9 =1 Less than

10 LSB

11 — Zero

12 MSB

13 Overflow

t4 = Carry out

15 Current Flag bit

TCR.S, Sect.2: OM2 Spec., by DL L. Johannsen J<Conway>dom2.visi February 2, 1978 8:08 PM

fatching Field

The latching field specifies which of four registers should be loaded, as shown in the

following table:

Latching Field Register Loaded

1xxX Flag register loaded with current Al flags

x1xx ALU ouiput latch A loaded with the ALU output

XXX ALU output iatch B loaded with the ALU output

xxx1 The Literal fieid during the next ¢2 is loaded with
the contents of the A Bus during the last ¢2

0000 None of these registers are affected

Literals

The two bit literal fieid specifies when a literal is to be used and which direction it goes.
f both bits are 0, no literal transaction will occur. If the first bit is 1, a literal will be
transfered. if the second bit is 1, the literal goes off chip, while if the bit is O, the literal

comes on chip.
Programming Examples

This section of the memo contains 3 programming examples which should provide a better

understanding of the various datapaths within OM2.

The first example is 16-bit integer muitiplication. The two inputs. X and Y, are multiplied to
produce the result, Z. In the multiply loop, the number X is shifted left and the MSB is
stripped off. Z is shifted left, then Y is added to the new Z if the M3B of X was a 1. The
sequence of instructions is repeated 16 times, using the counter in the controlier to signal
when the 16 iterations have been performed. Figure 6 illustrates each step of the loop,

which is listed here:

¢2: ALU.Qut. A<ALU(Shift left)<ALU.IN.A;
Latch Flags;
¢l ALULIn.A«<Shift.out, Bus. A«ALU.Out.B;

Bus.B«R[1], .«This gives a shilt constant of 1.
¢2: ALU.Out.B+ALU(Multiply Step); cconditionally add.
Flag+«Cout;

¢1: ALU.nA«Bus.A«ALU.Out.A

[Ch.5. Sect.2]

Cout I

1 'I T
X P X' i
Shift Left
Y — Z
Y
Figure 6a. Shift X in the ALU, putting the Cout flag into Flagbit. (Phi 2)
-, b
Z X
Shift
Const.
= 1
Y [— Zz r-
Figure 6b. Put Z on Bus A, and shitt 1 left in shifter. (Phi 1)
i 4 _ X
ik 1 Multiply
Step
: Y [2
Jd- 2 I R 1 R
Figure 6c. Conditionally add Z and Y. ‘ (Phi 2)
¥
X X
S Y [zZ I
Figure 6d. Bring X back around to the ALU input. {Phi 1)

{fig6 sil}

[Ch.s, Secl.2: OM2 Spec.. by D, 1. Johannsen J<Conway ddom2.visi February 2. 1978 8:08 PM

The second example will be tb generate a parity flag, which is not directly available from
the ALU. Parity is generated by exclusive-oring all of the bits of the data together. If the
data are Ioaded into both ALU inputs, with the B input rotated by 1, performing an
exclusive-or operation will give an output that is the exclusive-or of adjacent bits; bit i of
the output will be bit i of the input @ bit i-1 of the same input. If this same operation is
performed. this time rotating the B inpul by 2, bit i becomes i @ i-1 @ i-2 @ i-3. By doing
this 2 more times, rotating B first by 4 and then by 8, every bit of the output is equal to
the parity: the exor of all of the bits. The MSB flag is the Parity Odd flag. while the Zero
flag i1s the Parity Even flag. The program is listed .here. and illustrated in figure 7:

g1 ALU.In.A«Bus.A«Rf0O]; «generate the parity of register O.
ALU.In.B+Shift.out(1); Bus.B+«R[O],

¢2: ALU.Out A+ALU(Exor);

g1 ALU.In.A+Bus. A+ALU. Out.A;
ALU.In.B+Shift.out(2}; Bus.B«ALU.Out A;

g2 ALU.OQut A-ALU(Exor);

pl: ALULINA+Bus A«ALU.Out A;
ALU.In.B+«Shift.out(4); Bus.B«ALU.OutA;

g2 ALU.Cut AcALU(Exor);

@l ALUIN.A«Bus. A«ALU.OutA;
ALULIn.B+Shift.out{8);, Bus.B<ALU.OutA;

G2 ALU(Exor),

The third example adds all of the registers to what is in ALU.Qut.A. By executing and
modifying a literal, the registers can be indirectly accessed, which makes this routine

possible. Figure 8 illustrates the operation of the following code:

¢l ALU.In.A«Literal "Bus.A«R[1]; ALU.In.B«Bus.B+ALU.Out.B";
g2 ALU. Out.B+ALU+ALU.In.A;
¢1: ALU.In.A<Bus.A<R[O];
2 ALU.OutB«ALU<ALU.I.A; «This is just setup. now the loop!
gl Bus.A«ALU.Out.B;
ALU.In.B«Bus B+ALU.Out.A;
Q2 ALU.Out A«ALU(add);
Execute Literal
¢l ALU.InAcA Bus; «The rest of this instruction 1s the literall

g2 ALU.Out.BeAlLU{increment)+«ALU.In.B; epoint to next register.

[Ch 5. Sect2]

ALU
“+inA

RO EXOR —

IALU
'inB

Figure 7a. Shifting by 1: Result is Exclusive-Or of Adjacent Bits.

iR

U

EXOR

Figure 7b. Shifting by 2: Result is Exclusive-Or of 4 Adjacent Bits

(fig7 ab sil)

[Ch5 . Sect.2]

EXOR —

lllllllllllll|l|

tl!llllllllllllll

Figure 7c. Shifting by 4: Result is Exclusive-Or of 8 Adjacent Bits.

EXOR - —

Figure 7d. Shifting by 8. Resull Has All Bits Identically the Parity Flag.

{1ig7 cd sil)

[Ch.5., Sect.2]

Lit

xT

Figure 8a.

Bring in Control Literal

L 1' J . .
Figure 8b. Store in ALU.Out.B
[“ g 8 T 7 =
J .
— Lit —
T ™~
wls "T' I ~. ~1r
Figure 8c. Fetch Register ©

T T
R I/ Sum
Zero
= Lit [—

Figure 8d.

Clear Sum

(figBabcd sil)

fCh.5., Sect.2]

R Sum
G
— Lit =
3 1. .
Figure Be. Bring Around Sum and Put Control Literal on Bus A
Literal to Lit
Control Decoders
-l T+ ~
R = Sum
Add
o Lit —
'[-. ‘l
Figure 8f. Add Current Numbers
R! -
— Lit
N f 3.* -,

Figure 8g.

Register Loaded by Literal Goes to ALU Input A

-
Inc
- — th L] |
T T .

Figure Sh.

Point to Next Regisler, Loop to Figure 8e

{figBelgh sil)

[ClL3, Seet.2 OM2 Spec., by D, L Johannsen J<Conway >dom2alsi February 2, 1978 8:08 PM

ISP Description of the OM2 Datachip

Pin States
lp<B:17>
rp<0:17>
new.code<0:22>
tlag.pin<0>
power<0;3>

Pin Formats
left.port.data<0:15>
left.out.async<0>
feft.in.async<0>
right.port.data<0:158>
right.out.async<Q>
right.in.async<0>
literal<0:15>
clock<0>

Mp State
reg[0:15]<0:15>
a.bus<0:15>
a.bus.old<0:15>
b.bus<Q:15>
left.out<0:15>
left.in<0:15>
right.out<0:15>
right.in<0:15>
left.out.later<0>
right.out.later<Q>
alu.in.a<0:15>
alu.in.b<Q:156>
alu.out.a<0:15>
alu.out.b<0:15>
old.code<0:22>
flags<0:15>

instruction format
a.source<0:4>
b.source<0:4>
a.destination<0:4>
b.destination<0:5>
literal.in<0>
old.literal<0:15>
alu.p.op<0:3>
alu.k.op<0:3>
alu.r.op<0:3>
alu.conditional<0:1>
flag.select<0:2>
carry.in.select<0:1>
latch.flags<0>
latch.alu.out.a<0>
latch.alu.out.b<0>
literal.control<0>
reg.select. 1<0:3>
reg.select.2<0:3>

L1 | Y S [A | N [NS 11 'II' '|I- 'II. 'Il. 'II' ‘Il' .II' 'Il' 'II‘

H U n -ll‘ -'ll‘ ‘Il. 'll- -II.

feft port

right port

microcode

flag to controller

power, ground, clock, substrate

Ip<O:15>

Ip<i1g6>

Ip<17>
rp<0:152
rp<16>

rp<i17>
new.code<5:20>
power<3>

registers

bus a

bus a latched for a literal

bus b

left pad ocutput latch

left pad input latch

right pad cutput latch

right pad input latch

for output during @2 operations

for output during @2 for right port

alu input latch a

alu input latch b

alu output latch a

alu output latch b

microcode that came in last phase
© flag register

old.code<5:9>
old.code<16:20>
old.code<C:4>
old.code<10:15>
old.code<22>
old.code<5:20>
old.code<19:22>
old.code<15:18>
old.code<11:14>
old.code<9:10>
new.code<{6:8>
old.code<4:5>
old.code<3>
old.code<2>
old.code<1>
old.code<0>
a.source<:3>
a.destination<0:3>

i1

[Ch.5. Secl.2: OM2 Spec., by DL 1. Jobannser J<Conwayddom2.visi February 2, 1978 8:08 PM

b.source<0:3>
b.destination<0:3>

reg.select.3<0:3>
reg.select.4<0:3>

select.1<0% a.source<4>
select.2<0> a.destination<{4>
select.3<0> b.source<l4>

b.destination<4:5>
b.destination<0:3>
b.bus<0:15>Oa.bus<0:15>

select.4<0:1>
shift.constant<0:3>
sharay<0:31>

Won oM ou oW w

Temporary State
kitl.controt<0:3>
propagate.control<0:3>
result.control<0:3>
kitl<0:15>
propagate<0:15>
carry<0:16>
alu.out<:15>

instruction Execution
Instruction.execution:={
left.out.async=0=>(teft.port.data<lett.out);next
left.in.async=0=>(ieft.in+left.port.data);next
right.out.async=0=>{right.port.data+right.out);next
right.in.async=0=>(right.ineright.port.data);next
phit{:=clock=1}={
left.out.later<0;next
right.out. later<0;next
literal.in=1=>{a.bus+old.literal};next
literal.in=0=>{
select. 1=0=>{a.bus+reglreg.select.1]);
select. 1=1=>(
reg.select.t=0=+(a.bus<right.ineright. port.data);
reqg.select.1z=1=>{a.bus<right.in},
reg.select.1=2={a.bus«!left.in-left.port.data);
reg.select.1=3=>(a.bus<left.in);
reg.select.t=4=>(a.bus+«alu.out.a);
reg.select.1=5=(a.bus<alu.out.b});
reg.select.1=6=>(a.bus+tlags);next),next
select.3=0={b.bus+reg[reg.select.3]);
select.3=1=%(
reg.select. 3=0={b.bus«right.in«right.port.data);
reg.select.3=1==(b.bus+right.in);
reg.select.3=2=(b.bus«lett.in~left.port.data);
reg.select.3=3=(b.bus«~left.in);
reg.select.3=4=>(b.bus+alu.out.a};
reg.select.3=5=>(b.bus«alu.out.b);next);next
select.4=0={reg[reg.select.4] <b.bus),
select.4=1=>(
reg.select.4=0=>(left.port.data<left.out<b.bus};
reg.select.d=1=(
left.out+b bus;next
left.out.later« 1;next);
reg.select.4=2=>(lett.out+bh.bus);
reg.select.4=3=(lett.out+b.bus);
reg.select.4=4=>(right.port.data«right.out+b.bus),
reg.select.4=5=
right.out«b.bus:next
right.out.later+ 1:next);

[CILS, Sect. OM2 Spec, by D0 L. Johannsen]<Conway >dom2.visi February 2, 1975 8:08 PM

reg.select.4=6=>(right.out«b.bus);
reg.select.4=7=>(right.out+«b.bus);
reg.select.4€{8,9,10,11}=(alu.in.b+b.bus);next),
select.4=2=(alu.in.b<0:15>«
’ sharay<16-shift.constant:31-shift.constant>),
select.4=3=>(alu.in.b+«21shift.constant);next);next
select.2=0=>(reg| reg.select.2]~a.bus);
select.2=1=+(
reg.select.2=0=>(left.port.data+~left.out~a.bus);
reg.select.2=1={
left.out«a.bus:next
left.out.later«1;next);
reg.select.2=2=>(left.out<a.bus},
reg.select.2=3=(left.out«a.bus);
reg.seiect.2=4=*(right.port.data«right out<a.bus};
req.select.2:5=(
right.out«a.bus;next
right.out.later+1;next);
reg.select.2:6=>(right.out+a.bus);
reg.select.2=7=>(right.out+a.bus);
reg.select.2=8=>(alu.in.a~a.bus);
reg.select.2=9=>(alu.in.a<:15>+
sharay<16-shift.constant:31-shift.constant>});
reg.seiect.2=10=>(alu.in.a«21shift.constant),
reg.seiect.2=11=(flags~a.bus);next) next
flag.select=1=>{flags< 15> «flags<143);
flag.select=2=(flags<{15> «flags<12>);
flag.select=3=(flags<15> «flags<11>};
flag selectz=4=>(flags (15> «1flags<9>);
flag.seiect=5=>(llags< 15> «flags<7>);
flag.select=6=>(flags< 15> «flags<8>};
flag.sefect=7 =(flags< 15> «flags<{13>);next

phi2(:=clock=0)=+(
left.out.later=1=>(left.port.data«left.out);next
right.out.later=1=>(right.port.data<r:ght.out);next
kill.control+alu.k.op;next
propagate.control«alu.p.op;next
result.control«alu.r.op;next
alu.conditional=1=>(
flags<15>=1=(
propagate.control<0>«0;next
result.control<0> «0;next);
flags<15>=0=(
kill.control<3%«0;next
propagate.control<2>» «0;next
result.contral{2>«0:next);next);
aiu.conditional=2=>(
flags<15>=1={
kill.control<2>+«0;next
kill.control<1>«0:next
propagate.controi<3>«0;next
propagate.controi<0>«0;next
result.control<3> «0;next
result.control<0>+«0;next);
flags<15>=0=(
kill.contro!<3>«0:next
kill.controi<0>«0;next
propagate.controi<2> «0;next

[Ch.5. Scct.2: OM2 Spec, by DL L: Johannsen <Conway >dom2.¥Isi February 2. 1978 8:08 PM

propagate.control<15«0;next
result.controi<2>«0;next
resuit.contrai<1>«0;next);next};
alu.conditional=3={(
- flags<15>=1={
propagate.control<2> «0;next
propagate.conirol<1>«0;next};next);next
Kiltl<0:152 «(
kill.control<3> A{alu.in.a<0:15> YA (alu.in.b<0:15>)V
kill.control<2>A(™alu.in.a<0:15>) Aaluinb<0:15>V
kilt.control<1>Aalu.in.a<0: 15> A(Malu.in.b<0:15>)V
kill.control<0> Aalu.in.a<0:15> Aalu.in.b<0:15>);next
propagate<0:15>«(‘
propagate.control<3> A(™alu.in.a<0:15>)A(Dalu.in.b<0:15>)V
propagate.controt<2> A(alu.in.a<0:15>}Aalu.in.b<0:15>V
propagate.control<1> Aalu.in.a<Q:15>A(Malu.in.b<0:163)V
propagate.control<0> Aalu.in.a<0:15> Aalu.in.b<0:15>);next
carry<0>«carry.in.select<{1>®(carry.in.select<0> Aflags<15>);next
tor k=1 step 1 until 16 do;
(carry<k>«=1(kili<k-1>+propagate<k-1>*carry<{k-1>)+kill<k-1>*
propagate<k-1>*x);next in OM2, x is
undefined
if kill(i) and propagate(i) are both high, the carry chain does funny
things.
We represent that here by use of the "x"
alu.out<0:15>+(
result.control<3> A(—propagate<0:15>)YA{Dcarry<0:15>)V
result.control<2>A(propagate<0:15>)Acarry<Q:15>V
result.control<1> Apropagate<0:15>A{carry<0:15>)V
result.control<0> Apropagate<0:15)> Acarry<0:15>);next
latch.alu.out.a=1=>(alu.out.avalu.cut);next
latch.alu.out.b=1=>(alu.out.b+alu.out);next
literal.control=1=*(literal<bus.a.old);next
latch.flags=1==>{
flags<5> «tlags<{15>;next
flags<{B>«carry<{15>;next
flags<10> «alu.out<0>;next
flags<11>«0;next
alu.out=0=>(flags<11>«1)next
flags<12>«alu.cut<{152;next
flags<14><«carry<16>;next
flags< 13> «flags< 14> Dtlags<e>;next
flags< 2> «flags< 12> Pflags<{13> next
flags< 7> +flags<11>Vilags<{9>;next
flags<8> +(flags< 14> Vilags<11>};next);next);next
) end of instruction execution

in the carry function.

Reference:

1. C. G. Bell, A. Newell, "Computer Structures: Readings and Examples”, Chap. 2.
McGraw-Hill, 1971,

13

14

15

16
17

18
20 | !

[Ch5.. Sect 2]

12
11
10
9

In

s DO e N s A i N s A s A s Y oy T s O o N s S s N e Y s 0 v OO s

LP15[] 48
LP14 [
LP13 (]
LP12 [
LP11 [
LP10 [
Lpo O
Lr8 [
LP7
LPs
LP5 [}
LP4 [}
LP3 [
LP2 [
LP1 [

32

16

Flag
ﬁRp15
1RP14
IRP13
1RP12
1RP11
1RP10
[1RP9
[1RP8
[1RP7
1RP6
[1RP5
[1RP4
[1RP3
1RP2

[1RP1

LPO R[L
1 b4 7 7 T J LT . 1T 1T [1T L 1T 11 1 LT L.

LP Cut -
LP In
CLK

Gnd
21

e

22

Substrate

0

Figure 9. Pinout of the OM2 Datachip

{rig9 sil}

RPO
RP OQut
RP In
Vdd

- NW A

Summary of Commands
Transfer Phase:

PHI 1

[Ch.5., Sect2]

om2

I I I O O

I 1]

111]

Literal Bus B Source Bus B Deslination

Control

Bus A Source

Bu

s A Deslination

Bus A Source Literal Control Bus B Source
Onnnn Registler n 000 Microcode In onnnan Regisler n
10000 Right Port Pins 001 lilegal 10000 Right Port Pins
10001 Right Porl Laich 010 Literal In 10001 Right Port Latch
10010 Lefl Port Pins o111 Negal . 10010 Left Porl Pins
10011 Left Port Latch 100 Execute oid A Bus 10011 Left Port Latch
10100 ALU Output Latch A 101 Inegal 10100 ALU Qutput Latch A
10101 ALU Qutput Latch B 110 A Bus gets cld A Bus 10101 ALU Qutput Latch B
10110 Flag Register 111 Literal Out other No Source
------- Literal (see Literal Control)
other No Source LSB of the Latching Fiald
during last PHI 2.
Bus A Destination Bus B Destination
Onnna Register n Q0Onnnn Register n
10000 Left Port, drive now G10000 Left Port, drive now
10001 Left Port, drive PHE 2 010001 Left Port. drive PHI 2
1001x Left Port, no drive 0100tx Left Port, no drive
10100 Right Port. drive now 310100 Right Port. drive now
10101 Right Port, drive PHI 2 310101 Right Porl, drive PHI 2
1011x Right Post, no drive Q1011x Right Port, no dirve
11000 ALU Input Latch A G110xx ALU input Latch B
11001 ALU Input Latch A gets Shift Qut 01 11xx No Destination
11010 ALU Itnput Latch A gets Shift Control 10nAnn ALU input Latch B gets shift
11011 Flag Register . oulput, shift constant=n
other Do Destination 11nnnn ALU Input Latch B gets shift
control, shift constantzn
QOperation Phase: PHI 2
ALU Operation Flag Select Carry in Latching
Select Field
ALU Operation Carry In Select
1000 0110 0110 00 QO Add [a]s} o
1000 0110 01t0 00 01 Add with Carry 01 Flagbit
0100 1001 0110 00 10 Subtract 10 1
0010 1001 0110 00 10 Subiract Reversed 11 Flagbit Complimented
0100 1001 0110 00 Q1 Subtract with Borrow
0010 1001 0110 00 Q1 Subtract Reversed with Borrow
0011 1100 0110 00 10 Negative A Flag Select
0101 1010 0110 00 10 Negative B
1100 0011 0110 00 10 Increment A 000 Old Flagbit
1010 0101 0110 00 10 Increment B oo Carry Qut
0011 1100 1001 00 10 Decrement A 010 MsB
0to1 1010 1001 00 10 Decrement B 011 Zero
Q000 0001 0011 00 00 Logical AND 100 Less than flag
0000 0111 O©C0t1 Q0 00 Logical OR 101 Less than or equal flag
0000 0110 ©0O011 Q0 00 Logical Exclusive Or 310 Higher flag
Q000 1100 0011 00 (00 Not A 111 Overflow
Q000 1010 0011 00 Q0 Not B
Qo000 0011 0011 00 00 A - .
0000 0101 0011 00 00 B Latching Field
1000 0111 Q111 Q1 QO Multiply Step 1 xxX Latch Flags
1100 1111 1111 10 QO Divide Step . |
0000 0111 0011 11 00 Conditional AND/OR oo road AL 85:53: Lateh 2
0101 1010 0001 00 10 Generate Mack xxx1 Literal bils get old A Bus next PHI 1
uuuu uLuy LUy e uu User Defined Op 0000 Nop

Carry In Select Field

{tig10 sil}

Coding Form - OM2 {Ch.5., Sect2]

i

T 4

{tig11.sil}

