The MicroVAX I Data-path Chip

Glenn Louie, Tom (Iu-meng) Ho, and Ed Cheng, Silicon Compilers, Inc., Los Gatos, CA

During 1983, Silicon Compilers, Inc. (SCI) and Digital
Equipment Corp. (DEC) implemented the MicroVAX I
Data-path component, which contains most of the com-
putational logic of the new MicroVAX I computer manu-
factured by DEC. The capabilities of the data path meet
the requirements of system designers who are currently
using bipolar bit-slice components such as members of the
AMD 2901/29116 family. These designers can also cus-
tomize microarchitectural details to fit their applications ex-
actly. This full-custom nMOS chip was developed with the
use of SCI’s silicon compilation tools. The development
strategy shows how systems companies can gain the ad-
vantages of VLSI components in a timely manner.

Project Goals
The goals of the MicroVAX computer project were:

e To ship the product within a year

e To make the product VAX compatible, thus offering
significant cost savings to DEC customers

e To make the MicroVAX I computer reside on two quad
boards

The team formed for this project at DEC in Bellevue,
WA (DEC WEST) consisted of system designers who had
worked on the original VAX design. In developing a low-
cost VAX microcomputer, DEC wanted to take advantage
of VLSI technology to reduce the cost and size of the
entire system. DEC also wanted the performance of the
product to be competitive with that of the aggressive new
high-end microprocessor-based systems that were beginning
to appear on the market. Of course, the product had to be
compatible with the existing VAX product line, in which
the company and its customers had made an enormous
software investment. DEC’s primary aim was to introduce
the product quickly.

A major design goal was to implement the entire VAX
on two quad-size boards (79 in? per board). (The original
VAX 11/780 occupied 27 hex-size boards (123 in? each),
the VAX 11/750 required 5 extended hex-size boards (160
in?), and the VAX 11/730 required 3 hex-size boards.) This
requirement meant that MSI and gate-array technology,
which had been used on earlier VAXs, would not provide
the necessary circuit density. Furthermore, the VAX com-
patibility requirement barred the use of a standard
MiCroprocessor.

At approximately the same time that the DEC WEST
team was beginning to investigate ways to develop the new
VAX product, the management of Silicon Compilers, Inc.

14 VLSI DESIGN December 1983

decided that the company’s prototype tools for full-custom
VLSI circuit design needed to be tested by another chip
project. (The earlier version of the silicon-compilation
tools had been used to develop the first commercial Ether-
net™ controller.)

Our goals were to exercise our prototype tools, and to
obtain working parts within six months.

SCI's Approach to the Project

DEC’s goal of shipping the product one year after incep-
tion meant that a “‘normal” approach to custom-IC devel-
opment would be impossible. There was no way SCI could
design a custom microprocessor chip or chip set that im-
plemented the entire VAX computer, and still meet the
schedule. More specifically, this project did not appear to
permit the enormous development risk of any full-custom
VLSI project, mainly with regard to multiple design itera-
tions and considerable schedule slippage.

However, we believed that we could reach all of the
project’s goals by developing a single custom component
that incorporated much of the VAX processor, but not all
of it. The project began to look feasible and perhaps even
possible. Of course, “‘feasible’’ and ‘‘possible’” were rela-
tive terms. ‘‘Feasible’’ meant that for the end product to be
available in one year, the chip would have to be working
in nine months; the rest of the system design and produc-
tion would have to be done simultaneously. All of these
elements would have to match up at the end, and work
perfectly. Therefore, all component-design work would
have to be done in six months and would have to work
right the first time. ‘“‘Possible” meant that in addition to
fast negotiation of a development contract and agreement
on design details, nothing could be allowed to get in the
way of the schedule: no surprises.

System Architecture

During the very early discussions of the system architec-
ture, someone suggested that a good starting point would
be to implement the VAX 11/730. This machine was the
smallest VAX available at the time, and its overall size
would need to be reduced by no more than about 56 per
cent to meet the size goal. It is always attractive to attempt
a size and cost reduction by re-implementing an existing
internal architecture in a new technology, instead of start-
ing from scratch with a new implementation architecture.
However, we soon realized just how much an implementa-
tion is affected by the available technology. The VAX
11/730 implementation uses 2901 bit-slice bipolar parts in

its main computational unit. This approach achieves system
performance essentially by using fairly simple circuits run-
ning very fast. MOS VLSI parts, on the other hand, are
most effective when complex circuits are run relatively
slowly. Copying the architecture of the VAX 11/730 would
have meant that the custom VLSI circuit had to run at a
70-ns cycle time—not an attractive prospect for a part that
had to be designed very quickly and that had to be
manufacturable by several commercial foundries.

Fortunately, the VAX architecture was very well docu-
mented, and SCI had access to people at DEC WEST who
could answer any question about the VAX architecture.
Thus, we could proceed knowing what the final design had
to do, what was feasible in MOS, and what the SCI tool
set could do. Most important, we did not have to deduce
the requirements by disassembling logic diagrams. Had this
not been the case, we would have had little choice but to
try to re-implement the same logic in the latest technology.
(We already knew that the technology had not come far
enough since the earlier implementation to meet the goal of
multi-source manufacturing.)

System Partitioning

Once we had decided to implement a new internal archi-
tecture, we also had to decide which portions of it could
best be placed on a single chip. This trade-off had to con-
sider DEC’s constraint of a two-board system. The com-
putation engine of a computer is sometimes called the data
path, because it provides a thoroughfare for information
transfers between the data-processing elements in the com-
puter (e.g., it performs register-transfer operations). Data-
processing elements include arithmetic logic units (ALUs),
shifters, registers, latches, and counters. When a computer
contains many data-processing elements, it is most efficient
to connect these elements through common buses.
Therefore, data paths are usually formed by buses and
other common lines. The elements communicate with each
other not only for direct data transfer, but also while per-
forming various micro-operations. The communicating ele-
ments are controlled by a set of digital signals, which
usually come in from outside the data-path block. We se-
lected a straightforward two-bus data-path structure for the
central processor, and designed the memory-management
system as a separate logical unit operating in parallel.

The key question then became, ‘“What parts go on the
chip?” Random logic is often the first choice for integra-
tion of CPUs and controllers. However, in our case, the
amount of random logic was reduced by the regular
structure of the architecture, and could be implemented
readily with microcode, programmable array logic, and
programmable logic arrays (PLAs). The data path itself ac-
counted for much of the chip count in MSI. The data
path’s regular design and stable functional specification
made it the ideal candidate for quick implementation using
SCI's block compiler. Thus, we selected the data-path sec-
tion of the processor and its control logic for integration on
the custom VLSI chip.

As shown in Figure 1, the control store, which contains
the microprograms that implement the VAX instruction set,
was not integrated onto the chip. Our decision to leave this

ROM or EPROM
Microcode
Store

PN

Control-
store
Sequencer

21-bit

micro-
code
word

MicroVAX
Data-path 5
Chip Vv

32-bit-wide data bus

FIGURE 1. MicroVAX system partitioning.

section outside the chip, for implementation with ROMs,
was based on the following considerations:

e Incorporating the large control store on the chip would
have made the chip prohibitively large.

e The use of standard off-the-shelf EPROMs and ROMs
still offered the advantages of high-density VLSI
technology.

e The VAX design team at DEC WEST would be solely
responsible for coding the VAX instruction set. This
way, they could work on the microcode while the SCI
team worked on the chip design.

e Any late changes in the microcode (e.g. to fix bugs)
could be done easily with EPROMs even after the cus-
tom chip was completed; such changes would not entail
long delays for reworking the IC masks.

We also left the control-store sequencer off the chip,
primarily because of the pin limitations of the package. Pin
limitations also greatly affected the design of the sys-
tem/chip interface. We selected a 68-lead pin-grid array
package because it gave a generous number of pins in a
cost-effective package. We also used a single bidirectional
32-bit data bus, along with a separate 21-bit control bus.
These two buses alone required 53 of the pins, without in-
cluding power and ground.

Microarchitecture

Data is processed by 32-bit-wide data-path blocks con-
nected via a pair of 32-bit buses. These data-path blocks
provide the register storage and computational hardware for
the data-processing part of the system. The data path con-
sists of the following blocks:

e A 47-register dual-port RAM file to hold 8-, 16-, and
32-bit operands

A 32-bit full-function ALU

A 64-bit-wide barrel shifter

A 32-bit program counter

A 7-level operand-restore stack

A 32-word constant ROM

The two buses and the dual-port RAM allow access to

VLSI DESIGN December 1983 15

Clock Cycle 0 ns 250 ns 500 ns

Instruction Data

loading and transfers and

decoding instruction
execution

Instruction 1

Instruction Data

loading and transfers and

decoding instruction
execution

Instruction 2

FIGURE 2. One instruction is executed every
250 ns in a simple two-stage pipeline.

two operands in a single clock cycle, for processing by the
ALU or by the barrel shifter.

Multiplication can be done via the ALU using one clock
cycle per bit. The barrel shifter can perform a multiple-bit
left or right shift in a single clock cycle. We selected these
computational blocks based on how well the microcode
could use them to implement the instruction set, and on
how efficiently they could be implemented in MOS tech-
nology. The barrel shifter and dual-port register file were
much easier to implement with MOS than with MSI/TTL,
and were attractive facilities for the microcoder.

The chip also has a 16-bit interval timer block, which
can be used as the system’s real-time clock or in
microcode parity calculations to ensure system integrity.

The control section of the chip consists of a control-store
register that is loaded from the external microprogram
ROM with a 21-bit control word. Three separate PLAs
were used to decode the control word and to generate ex-
plicit controls for the data-path blocks.

To minimize adverse effects of control-instruction
latency from an off-chip microcode source, we used a
simple two-stage pipeline for the controls (Figure 2).
While one instruction is being loaded and decoded, the
previous instruction is transferring its operands via the data
paths and activating the block calculations. One
microinstruction is executed every 250 ns, using an inter-
nal 4-MHz clock.

Compilation

The chip design contains 15 blocks, including four pad-
frame blocks. Figure 3 shows the outline of these blocks
and a photograph of the die. The chip was generated by a
chip-specification file that explicitly called up the 15 blocks
and described the interconnections between them. The
chip-compiler executed this specification by calling up soft-
ware routines (called block generators) to form the blocks
from elemental cells in the data base. Once the blocks
were generated, a router was invoked to make the chip in-
terconnections according to the specification.

The chip was fabricated in 3-wm nMOS technology. The
actual layout design rules were a set of composite,
foundry-independent rules adjusted at tape-out time for the
manufacturer. Thus, the rules enable compatibility with
different silicon foundries. The chip was prototyped at two
foundries, with slightly different design rules, to guard
against any unforeseen production problems. The final chip
size is 314 mils square (98,600 mil?).

Data-path Block Design
Logically, the chip has a single 32-bit-wide data-path

18 VLSI DESIGN December 1983

Timer
Buffer Power
3 o))
= Register Barrel
o | |5 File Shifter | Stack
) 1]
= =
2 |1S 5
2<
Q =
9 Literal—s t—!
Qo
% Program Counter E g General o
o ALU S| 5§ | Decoder So
ol 20 >
<0 le) 3
-
[rer] i
IGround IFIag Buffersl Micro-instruction Buffers

L
-
b =
=
g =
=
]
-
-
:
g

FIGURE 3. Floorplan of the MicroVAX I data-
path, and photograph of the chip.

module which consists of many data-path blocks which are
joined together via a pair of buses. Each data-path block
provides a computational resource for the design. These
blocks are designed to be lumped together into a data-path
module, to improve layout efficiency. The buses provide a
two-operand data-path connection between these elements
that makes it convenient to implement the register-
instruction set of the VAX architecture in very few
microinstructions. All of the elements have a common con-
trol interface that lets them be controlled easily by a con-
trol word generated by a PLA structure.

The single logical data-path module on the chip is
realized physically as three separate but tightly intercon-
nected modules. This design divides the bus into several
smaller buses which, with the use of buffering elements,
improve the data-transfer time on the buses. It also permits
a more flexible arrangement of the floorplan, because the
pitch of the ALU/PC block is different from that of the reg-
ister file and barrel shifter/stack block.

The Layout of the Elements

The basic elements from which the blocks are compiled
are laid out and connected to each other by abutting ele-
ments on all four sides. The data and control-line connec-
tions are located in standard positions to allow this very
dense packaging. The data-bus and control-line routing is

System l Chip
Test Test
Vectors | Vectors
| \
Board-Level |
Simulator
I RTL
Simulator
Model
Behavioral |
Model
of the Chip |

System-Design House Chip-Design House

FIGURE 4. An exchange of test
vectors couples two simulators.

done directly inside the element, so that the data bus
wiring runs in one direction in metal, and the control
wiring runs on a polysilicon layer in the other direction. At
the edges of the block, control elements provide the clock-
ing and buffering for the blocks. The resulting block-layout
density approaches that of manual design.

When the project was started, very few production-
worthy elements had already been designed. However,
layout was required only for the elements used to make up
the blocks. All of these elements were designed by Duane
Hook, who was our single layout designer for a period of
three months. We have added these elements to our library,
and they are now available for future projects.

Interaction between the System-Design Team
and the Chip-Design Team

A proposal for the chip was developed by SCI’s chip-
design team, based on discussions with the system-design
team. The latter team supplied design analysis in terms of
their knowledge of the VAX architecture and the rest of
the board-level system. The chip-design team proposed
chip architectures that could be implemented efficiently in
MOS. A detailed functional specification was drafted, and
the resulting negotiations led to an explicit design
specification to prevent any re-design. Once the
specification was “‘cast in concrete,”” the system hardware-
design project leader and the chip-design project leader
usually communicated one-to-one.

From the start, both design teams focused on the steps
that were necessary to obtain a working chip on the first
try. To keep both groups synchronized and to minimize
delays, meetings were held every other week (alternating
between DEC WEST and SCI). An electronic-mail link es-
tablished during the project encouraged and improved com-

20 VLSI DESIGN December 1983

munications between the two locations. Of course, we also
generated and reviewed schematics and design reports.

However, our most important achievement was a
simulation-linking strategy that eliminated most of the am-
biguities in a functional specification that could cause un-
pleasant surprises late in the project. Top-down chip-design
methods and extensive use of verification tools were re-
quired to ensure design correctness. Physical layout had to
behave as predicted by the simulations. This requirement
made it possible to control the complexity of the design,
and helped to eliminate clerical errors.

Simulation Strategy

One of the most difficult tasks in custom-chip develop-
ment is to specify the chip’s functions precisely enough so
that the system designer is not unpleasantly surprised by
the behavior of the fabricated device. It is extremely
difficult to isolate all of the subtle side-effects of a particu-
lar chip design; in many cases, the chip is not really
wholly defined until after it has been manufactured. At the
beginning of this project, both teams believed that simula-
tion could somehow solve this problem. Both parties had
proprietary simulation tools, and both had a certain success
in using them to validate and debug the behavior of com-
plex digital designs.

The system-design team intended to debug its board-
level design and microcode by modeling the full system.
This model would include a section that modeled the chip
based on its detailed functional specification. The chip-
design team intended to debug its product by developing
an RTL functional model and then validating the functional
simulation. Because the elements had not been debugged
beforehand, it was necessary to correlate the results with
block-level switch simulation and element-level transistor
simulation. The problem was how to get these two simula-
tors to match exactly, so that their results would become
the de facto chip specification.

A simulation strategy was developed whereby each team
would generate test vectors to check its own simulator’s
models. These vectors would then be exchanged and run
on the other model (see Figure 4). This strategy worked
out well, and both teams relied on it heavily.

First, a common test-vector format was defined for the
chip/system interface. Each team then instrumented its own
simulator to be driven by these test vectors. Several
benefits were derived from a comparison of discrepancies
in the behavior of the two models. At first, ambiguities in
the specification came to light and were cleared up. Later,
the chip-design team benefited from the early availability
of additional test vectors to debug the chip design before
committing it to silicon. The system-design team benefited
through the refinement of its simulator to match the tar
geted chips, so that microcode debugging could be done
more confidently. As the design of the microcode
progressed, more and more test vectors were run on both
models, and reinforced correct chip behavior. Thus, the
system simulator could actually execute microcode long
before the chip was manufactured. Finally, the test vectors
and expected responses from the simulations became the
nucleus of the chip-evaluation tests. Therefore, when the
chips passed these tests, the probability that the system

would perform properly was virtually 100 percent.
Summary

The MicroVAX I Data-path chip has been deemed a suc-
cess by both DEC and SCI. Its development met the pri-
mary goal of developing a custom chip in a very short
time. The development contract was signed in January
1983. The operating system was running (with first-pass
parts) by August 1983. The use of silicon-compilation
tools provided a worthwhile trade-off between chip size
and design time. The key to obtaining a working chip on
the first pass was the close interaction of the system design
team and the chip design team, and the use of verification
tools and a comprehensive simulation strategy.

Of course, no project ever runs- perfectly. We re-learned
the following truisms:

e The tools will never be quite up to expectations when
you need them (especially when you are expecting
prototypes to stabilize right on schedule).

e The schedule is always optimistic no matter how well
things go. - Ll

Acknowledgment

We wish to thank the design team at DEC WEST in Bellevue,
WA.

About the Authors

Glenn Louie received the BSEE degree
from City University of New York in
1964 and the MS degree in electrophysics
from the Polytechnic Institute of New
York in 1968. He spent over 10 years at
Intel Corp., where he worked on micro-
processor peripheral chips and led a small
design team in the logic design and RTL
simulation of the iAPX-286 micro
processor chip. He joined Silicon Com- L.
pilers, Inc. in late 1982, where he is Project Manager of the
MicroVAX I Data-path chip effort.

Tom Ho received the BSEE degre
from UC Berkeley in 1978. After gradua
tion he worked at Intel Corp., where he |
was project leader for circuit and layout |
design of the iAPX-286. He joine
Silicon Compilers, Inc. in November}
1982 where he was responsible for circui
design of the MicroVAX I Data-pat
chip. Tom is currently involved in the de
velopment of various VLSI design tools.

Edmund Cheng is the Vice President [
of Engineering at Silicon Compilers, Inc.|
He received the BSEE degree from Ohio
University and the MSEE and Ph.D.
from California Institute of Technology. |
For six years he worked in the microcom-
puter design engineering department at
Intel, where he developed the A/D conver
ters for single-chip microcomputers, and
managed automotive-engine-controll
projects.

&

PinGrid Array Sockets
An ADVANCED World of Low Insertion Force Sockets
64 Pin thru 289 Pin on .100 Grid Spacing Available
Insertion Force of 3.5 ounces (average) per line
Four-Fingered Contact for High Reliability

Designed for 100% Anti-Wicking of Solder

Tapered Entry Assures Easier Insertion

Available with Standard Profile, Super
Low Profile and Wire-Wrap Terminals

e Insulator of .062 Thick Glass Epoxy
or in Kapton® Peel-A-Way

Call or Write for Brochure and Prices

ADVANCED INTERCONNECTIONS

5 Division Street, Warwick, RI 02818 e (401) 885-0485
CIRCLE NUMBER 9.

H 962-8080

Call OCTAL for:

A Wide Variety of CAD Database
Conversion Software and Services

Nationwide Timeshared Circuit and Logic Simulation
on VAX/VMS and VAX/UNIX

octal

INCORPORATED
1951 Colony Street
Mountain View, CA 94043

(415) 962-8080
Telex: 172933 OCTAL INC MNTV

CIRCLE NUMBER 10.
VLSI DESIGN December 1983 21

