VLSI 81

Very Large Scale Integration

John P. Gray

AP

Academic Press

A Subsidiary of Harcourt Brace Jovanovich, Publishers

London New York Toronto Sydney San Francisco

Proceedings of the first International Conference on Very Large Scale Integration held at the University of Edinburgh from 18-21 August 1981, organised by the University of Edinburgh Departments of Computer Science and Electrical Engineering and the Wolfson Microelectronics Institute, with the assistance of CEP Consultants Ltd, 26 Albany Street, Edinburgh EH1 3QH

VLSI81

Very Large Scale Integration

Edited by

John P. Gray

Department of Computer Science University of Edinburgh

1981

ACADEMIC PRESS

A Subsidiary of Harcourt Brace Jovanovich, Publishers
London New York Toronto Sydney San Francisco

ACADEMIC PRESS INC. (LONDON) LTD. 24/28 Oval Road, London NW1

United States Edition published by ACADEMIC PRESS INC. 111 Fifth Avenue New York, New York 10003

Copyright © 1981 by ACADEMIC PRESS INC. (LONDON) LTD.

All Rights Reserved

No part of this book may be reproduced in any form by photostat, microfilm, or any other means, without written permission from the publishers

British Library Cataloguing in Publication Data
VLSI 81.

1. Integrated circuits – Large scale integration –
Congresses

I. Gray, John P. 621.381'73 TK874

ISBN 0-12-296860-3

LCCCN 81-68035

Printed in Great Britain by Whitstable Litho Ltd., Whitstable, Kent

PREFACE

VLSI 81 is the first European Conference dedicated to all the subjects involved in the exploitation of silicon as a systems implementation medium. It has only recently become apparent, due to the pioneering work of Mead, that this emerging area of research embraces a very wide range of disciplines from device physics to branches of discrete mathematics.

One of the goals of the Programme Committee was to reflect this diversity by putting together a broad programme. Interestingly, many of the papers also reflect this diversity by bridging a number of apparently disparate subjects. Special emphasis has also been given to the more theoretical aspects of the subject. This is to give increased visibility to the areas which hold, the Committee believe, the more challenging problems, and more fundamental results, for progress in this subject.

John P. Gray Chairman Programme Committee

PROGRAMME COMMITTEE

- J P Gray, Chairman, University of Edinburgh, UK
- W Laing, Secretary, University of Edinburgh, UK
- P Antognetti, University of Genoa, Italy
- J Borel, EFCIS Grenoble, France
- B G Bosch, Ruhr-Universität Bochum, FRG
- A N Broers, IBM, USA
- I Buchanan, University of Edinburgh, UK
- D D Buss, Texas Instruments, USA
- J Clark, Stanford University, USA
- H de Man, Catholic University of Leuven, Belgium
- D Eglin, International Computers Ltd, UK
- W Heller, IBM, USA
- S Kelly, General Instruments Ltd, UK
- D Kinniment, Newcastle University, UK
- F M Klaasen, Philips Research Laboratories, The Netherlands
- D W Lewin, Brunel University, UK
- J Mavor, University of Edinburgh, UK
- D McCaughan, GEC Hirst Research Centre, UK
- A D Milne, University of Edinburgh, UK
- R Milne, Inmos Ltd, UK
- R Milner, University of Edinburgh, UK
- J P Mucha, University of Hanover, FRG
- J C Mudge, CSIRO, Australia
- M Newell, Xerox PARC, USA
- D O Pederson, University of California, Berkeley, USA
- F Preparata, University of Urbana, USA
- D J Rees, University of Edinburgh, UK
- M Rem, Eindhoven University of Technology, The Netherlands
- J G L Rhodes, Pye TMC Ltd, UK
- N Weste, Bell Laboratories, USA

ORGANISING COMMITTEE

From the University of Edinburgh Departments of Computer Science, Electrical Engineering and the Wolfson Microelectronics Institute:

- S Michaelson (Chairman)
- G Plotkin, D J Rees (Joint Secretaries)
- J P Gray, W Laing, J Mavor, A D Milne
- P D Schofield, J B Tansley

ADDITIONAL REFEREES

B Ackland, N F Benschop, G Brebner M R Hannah, R P Kramer, P Rashidi L Smith, L Valiant, M C Van Lier R Vervoordeeldink, R Wynhoven

CO-SPONSORS

British Computer Society
European Association for Theoretical Computer Science
Institution of Electrical Engineers
Institute of Electrical and Electronics Engineers
(Region 8)
Institute of Physics

ACKNOWLEDGEMENT

This International Conference is organised with the support of the following:

Burroughs Machines Ltd
Compeda Ltd
Hewlett Packard Ltd
IBM (UK) Ltd
Inmos Ltd
Prestwick Circuits Ltd
Scottish Development Agency
Standard Telecommunication Laboratories Ltd
Plessey-UK Ltd

AUTHORS

Ackland, B	117	Lyon, R F	131
Ahmed, H M	43	Marques, J A	53
Banatre, J-P	141	Mayle, N	183
Barton, E E	25	Mead, C A	3
Batali, J	183	Mikhail, W F	301
Blahut, D E	35	Miller, G L	289
Bryant, R E	329	Molzen, W W	95
		Monier, L	269
Cardelli, L	173	Morf, M	43
Chang, H	95	Mosteller, R C	163
Chazelle, B	269	Mudge, J C	205
Colbry, B W	35	Mueller-Glaser, K D	319
Collins, B	107	Myers, D J	151
Courtois, B	341	11,013, 00	20000000
Denyer, P B	151	Nair, R	257
Donath, W E	301	Parker, A C	357
Foster, M J	75	Plotkin, G	173
Frison, P	141	Quinton, P	141
Gordon, M	85	Rem, M	65
Gray, A	107	Roth, J P	351
Hafer, L J	357	Rupp, C R	227
Harrison, M	35	Séquin, C H	13
Hong, S J	257	Shapiro, E	257
Hwang, J P	95	Shrobe, H	183
		Smith, K F	247
Kinniment, D J	193	Snyder, L	237
Krambeck, R H	35		35
Kuhn, R H	279	So, H C	35
Kung, H T	75	Soukup, J Sussman, G	183
Larkin, M W	313	Sussiliali, G	103
Law, H F S	35	Weise, D	183
Leighton, F T	289	Weste, N	117
Lerach, L		Whitney, T	217
Deracii, L	319	Wu, J C	95

CONTENTS

Preface Programme Committee, Organising Committee	vii
Additional Referees, Co-sponsors, Acknowledgement Authors	viii ix
SESSION 1	
VLSI and Technological Innovation C A $Mead$	3
Generalized IC Layout Rules and Layout Representations $C\ H\ S\acute{e}quin$	13
A Non-Metric Design Methodology for VLSI E E Barton	25
Top Down Design of a One Chip 32-Bit CPU R H Krambeck, D E Blahut, H F S Law, B W Colbry H C So, M Harrison and J Soukup	35
Synthesis and Control of Signal Processing Architectures Based on Rotations H M Ahmed and M Morf	43
Mosaic: A Modular Architecture for VLSI System Circuits $\it J$ A $\it Marques$	53
SESSION 2	
The VLSI Challenge: Complexity Bridling $M \ Rem$	65
Recognize Regular Languages with Programmable Building-Blocks	
M J Foster and H T Kung	75
A Very Simple Model of Sequential Behavior of nMOS M Gordon	85
Magnetic-Bubble VLSI Integrated Systems H Chang, W W Molzen, J P Hwang and J C Wu	95

SESSION 3

The Inmos Hardware Description Language and Interactive Simulator	
B Collins and A Gray	107
A Pragmatic Approach to Topological Symbolic IC Design N Weste and B Ackland	117
A Bit-Serial VLSI Architectural Methodology for Signal Processing R F Lyon	131
A Network for the Detection of Words in Continuous Speech	
J-P Banatre, P Frison and P Quinton	141
Carry-Save Arrays for VLSI Signal Processing P B Denyer and D J Myers	151
SESSION 4	
REST - A Leaf Cell Design System R C Mosteller	163
An Algebraic Approach to VLSI Design L Cardelli and G Plotkin	173
The DPL/Daedalus Design Environment J Batali, N Mayle, H Shrobe, G Sussman and D Weise	183
Regular Programmable Control Structures D J Kinniment	193
SESSION 5	
VLSI Chip Design at the Crossroads J C Mudge	205
A Hierarchical Design Analysis Front End T Whitney	217
Components of a Silicon Compiler System ${\cal C}$ R Rupp	227
Overview of the CHiP Computer L Snyder	237
Implementation of SLA's in NMOS Technology $\textit{K F Smith}$	247
A Physical Design Machine S J Hong, R Nair and E Shapiro	257

xiii

SESSION 6

Optimality in VLSI B Chazelle and L Monier Chip Bandwidth Bounds by Logic-Memory Tradeoffs R H Kuhn Optimal Layouts for Small Shuffle-Exchange Graphs F T Leighton and G L Miller			
		Wiring Space Estimation for Rectangular Gate Arrays W E Donath and W F Mikhail	301
		SESSION 7	
Impact of Technology on the Development of VLSI M W Larkin	313		
A General Cell Approach for Special Purpose VLSI-Chips K D Mueller-Glaser and L Lerach	319		
A Switch-Level Model of MOS Logic Circuits R E Bryant	329		
Failure Mechanisms, Fault Hypotheses and Analytical Testing of LSI-NMOS (HMOS) Circuits B Courtois	341		
Automatic Synthesis, Verification and Testing $J\ P\ Roth$	351		
Automating the Design of Testable Hardware A C Parker and L J Hafer	357		

The term VLSI, as an acronym for very large scale integration, is an apparent contradiction, describing as it does the superimposition of complex electronic circuits onto the silicon chip — an object which is anything but large. Nevertheless, as the size of individual device features become smaller, the scope of systems it is possible to integrate onto these chips increases. The progress of basic integrated circuit technology has caused the fusion of ideas from previously separate subjects so that a base of principles and theory for the implementation and application of VLSI is emerging. Thus, although the subject matter has been gestating in computer science and microelectronics for a number of years, it is only recently that the study of VLSI has become a discipline in its own right.

This book contains the papers delivered at the Edinburgh International Conference, VLSI 81, the first meeting to be devoted exclusively to this subject. Rather than a formal organization under traditional subject headings, the papers are grouped to reflect the multidisciplinary nature of the topic of very large scale integration. Within this arrangement the fields of interest covered are the application of discrete mathematics to VLSI systems, novel architectures, design methodologies, design tools, applications of VLSI systems and the design of circuits. Throughout the contributions special emphasis is given to theoretical aspects of the subject and to work which bridges the gap between disciplines.

As the first book of its kind, VLSI 81 will be an invaluable reference work for professional engineers, research workers and postgraduate students in both hardware and software disciplines. The heterogeneity of the subject matter means it will also be appreciated by mathematicians, and by undergraduates in computer science and engineering.

Academic Press

A Subsidiary of Harcourt Brace Jovanovich, Publishers
London New York Toronto Sydney San Francisco

Academic Press, Inc. (London) Ltd: 24-28 Oval Road, London NW1 7DX, England Academic Press, Inc: 111 Fifth Avenue, New York, NY 10003, USA
Academic Press Canada Ltd: 55 Barber Greene Road, Don Mills, Ontario M3C 2A1, Canada
Harcourt Brace Jovanovich Group (Australia) Pty Ltd: PO Box 300, North Ryde, NSW 2113, Australia
Academic Press, Japan, Inc: Iidabashi Hokoku Bldg, 3-11-13, Iidabashi, Chiyoda-ku, Tokyo 102, Japan
Academic Press do Brasil Editora Ltda: Praca Jorge de Lima 14, 05503 Sao Paulo, SP, Brazil