2. IC Design Tools

The key to fast-turnaround integrated circuit design is the emergence of powerful tools which
make it possible for the designer to be assisted by computers in an effective manner. To enter his
ideas into the design system, suitable interactive graphics terminals have become available, As
another option, layout languages are being developed which one day will provide a means to enter
designs in a symbolic manner at a rather high level of abstraction. Displays and plots of the
various mask levels of an 1C are important to close the interactive loop beiween man and machine,
and are indispensable in the final debugging phase. There are additivnal ways in which the
computer can assist the designer, A "mechanical” check for design rule violations helps eliminate
potential problem spots in the fabrication of IC's. Circuit and logic simulation can be used to
predict the performa}lce of critical parts of the circuit and to test the correctness and the timing on
a larger scale, respectively. Further, the computer can be a tremendous help in the management

of the large amount of information associated with an IC design.

This chapter provides an overview of the types of {ools available and under devclopment. It also
tries to bring out the point that, with only little expense and effort, a minimal set of tools can be

acquired that makes IC design possible.
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2.1 Automated Design  Aids ,
[section contributed by Stephen Trimberger. UC Irvine]

The role of a design aid is to reduce errors and design time. ‘Therefore, a design aid should first
attack tedious and crror-prone aspects of design.  In addition, the design aid should present the
design 1o the designer so that he can catch errors.  Rather than have a compuier take over the
entire design task, the design cffort should be a cooperative one between the designer and the
design aid, in which the design aid relieves (he tedious and cexacting chores, giving the designer

more time to do what he does best: design.

2.1.1 Plotting

A necessary design aid in any design environment is hardcopy output. Checkplots are absotutely
essential to reduce the number of errors in 1C layouts. . They enable the designer to graphically
check alignment and positioning to catch design rule errors as well as typographical and logical
errors in the design. Such checks cannot be made from examination of CIF code (Caltech

Intermediate Form -- see chapter 4 of [Mead 1978]). See section 2.3 for more on checking.

Good checkplots must distinguish between mask layers and show their overlaps. Checkplots with
filled-in rectangles clearly show the overlap of layers in the circuit. Filled-in color checkplots are
ideal because of their high information density, but plotiers of this type arc new and fairly
expensive. Color line-drawing plotters are nearly as good, especially if the layers are "hatched" in
the appropriate color to show the interior of boxes. Icarus’s stipples [Fairbairn 1978]'. gray-pattern
shading, or differently hatched rectangles can be used in a black-and-whitc environment to

distinguish between layers.

Usable checkplots of low resolution can be obtained from an ordinary lineprinter, using different
characters to represent different layers and separate characters or overstruck characters to show
overlapping layers [Gibson 1976, Larsen 1978].  Storage-tube displays (sometimes with hardcopy
units) are often used 1o display 1C designs, but in a complicated design it is difficult to visualize
overlapped arcas from outlines. 'Their advantages are fast response, relatively small expense and

short development time.
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2.1.2 Implementation of a Basic Design Aid System

A minimum IC design syslem might consist of a text editor to enter a design in CIF code, and
checkplot-generation routines to view the design on the lineprinter.  Although this may sound
tedious to those who have used high-powered CAD systems, this method of IC layout has been
used with acceptable results. However, for just a small investment of time, a much nicer layout

system can be had.

2.1.3 Implementation of a Better Design Aid System

CIF code was not intended to be used as an IC design language, and so it is nol oriented to a
human operator. A more efficient, human-oriented method is needed to enter designs into the
CAD system. There are essentially two ways to build a more efficient system, each of which
addresses a different class of problems in IC design. A more powerful design language reduces
problems of relative positioning of objects and an interactive graphic system reduces problems of
coordinate entry and editing. The implementation of a design language may initially appear to be
a monumental task. However, if approached in the correct manner, for example by embedding it
in an existing language, it can be developed in a few months, This cffort is well spent, since such
a language can serve as an extremely powerful and satisfying design tool. An interactive graphic
system requires more hardware and more complex software, but such a system can reduce the
circuit design time greatly, since even the initial sketches arc made directly within the CAD

system.

2.1.4 Layout Language

Many errors in IC design stem from mis-positioning of objects due to the movement of adjacent
objects. ‘The mis-positioning problem could be avoided if there were facilities in the language for
parameterization of objects, for example, basing the position or size of one object on the position
or size of another. This is similar to passing parameters to a procedure in a programming
language. In addition, it would be nice to specify a shift register by the number of bits, or a PLA
by its program. ‘This requires loops and conditional statements in the layout language: the
addition of such features makes the layout language look a lot like a general programming

language.

An easy way to get a powerful layout language is to implement the CIF commands of drawing a

box, wire, symbol and so forth as procedure calls in your favorite programming language. Then,
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you can use the enlire power of FORTRAN, PASCAL, SIMULA O WHATEVER to do the conditionals,
the loops, the parameterization of the geometry and any other special constructs that might be
necessary or convenient. Severat systems of this (ype have been buill, and their advantages include
short lead time to a very powerful system as well as infinite cxpandability and an incredible
richness of language [l.ocanthi 1978]. This type of language is recommended as an initial design

system. More specifics on layout languages are found in section 2.2.

2.1.5 Graphic Input

There are two ways to gel graphic designs like 1C layouts into a computer without typing numbers,
by digitizing hand drawings and by drawing the design directly into the computer with an
interactive graphic é}stcm. Digitizing starts with a clean scale drawing of the layout, which is
entered by an operator using a digitizing table or camera; it is less prone to errors than typing
numbers, but leaves the tedious task of editing the design to the layout person with pencil and

eraser. These tasks are performed more easily with an interactive graphic system.

A special purpose interactive graphic editor, engineered for the special needs of IC layout, is a
most effeclive design tool. [deally it should be as easy 1o use as paper and pencil, yet directly
produce precise layouts on a specified grid. An interactive graphic editor enables the designer to
cxperiment with a number of possible designs quickly, shortening the design time immensely

[Fairbairn 1978].

Unfortunately, the ideal system is not yet commercially available, and to develop such a system on
your own is a substantial task. The necessary hardware includes a pointing device with which to
draw the layout, and a graphic display to show the design as it is being entered, allowing the
designer to instantly correct any errors that occur. A discussion of pointing devices and graphic
displays can be found in [Newman 1973}. Even with a good display and pointing device, it is

difficult, for example, to route long wires around a complicated design.

2.1.6 Considerations for an Advanced IC Design System

An unaided graphic system cannot easily handle parameterization and conditional placements. On
the other hand, layout languages have the problem of tedious cell layout. Clearly, the ultimate 1C
design system should allow both interactive graphics and programmatical positioning of objects.
An ideal system would have a near instantancous response from a change in the layout program to

a change on the layout graphics and vice versa. and have both representations interactively
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displayed on a high-resolution video display.

An important idea in design systems is the concept of hierarchical or structured design -- dividing
the given problem into morce easily handled subproblems. This cuts down the amount of
information the human designer must handle at one lime in order to solve the design problem. In
IC design, the clements of the hierarchy are called cells or symbols. An instance, or "use” of a cell
can be embedded within another cell, meaning that the contents of the cell are supposed to be
inserted into the design at that point (see section 2.2). Instances of cells arc embedded in other
cells much the same way procedure calls are embedded within other procedures in a programming
language. This hierarchical design guarantees that all instances of a cell are correct, provided the

original cell is correcl.

Multiple representations allow the designer to include in the description of a cell all the
information relevant to that cell, enabling him to describe cells graphically or programmaticaily or
any one of a number of different ways. Thus an integrated circuit can be viewed as a mask layout,
a stick diagram, a functional description, an electronic circuit, text documentation, and so forth. It

is important to keep this information together because no one piece adequatcly describes the cell.

Representations can be generated from one another, thereby ensuring that the circuit that was sent
to the circuil simulation program, for example, was indeed the same circuit that appeared on the
mask. It would aid the designer greatly if he could visualize the cell with all its representations as
a unit, but it adds tremendously to the expandability of the system if each rcprcscntaiion data
piece is implemented independently of the other representations because we cannot now foresee
what design concepts will be available in the future. For this reason, the design database should

be flexible enough to accommodate new, as yet unspecified, representations.

2.1.7 Conclusions

With the advent of VESI, our circuits will have the capability of being orders of magnitude more
complex than they are now. The use of cells and instances will help ease the complexity with
which the individual must cope. Representations will coable us to keep all the relevant
information together. The computer will case the task of deuling with this complexity, handling

the enormous housekeeping chores and organizing the overall design cffort.
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2.2 1C layoul languages
[section contributed by Maureen Stone. Xerox ASD]

The most desirable format of a language that describes 1C mask layouts depends strongly on the
point in the IC design process where a description of the IC is needed. At the end, in the mask
generation process, the format of the description is entirely determined by the needs of the pattern
generator employed. At an intermediate level, it is most desirable to have a description in a form
that is most suitable for casy conversion into the many different formats needed by different
output devices. An cxample of such a language is Caltech Intermediate Form (CIF), described in
[Mead 1978]. For the original creation of an IC design, the human engineering aspect is most
important. That is, the language description should reflect the design process. Repetitive and
redundant information should be compressed, and the syntax should scem straightforward to the

designer.

This section will describe how languages can be used in IC design, what constitutes a basic set of
functions for a simple description language and how such systems should be organized. The last
section will discuss more advanced layout languages, especially in reference to using the power of
programming languages as a design tool. Appendix D contains a description of ICLIC, a layout
language that was originally developed at Caltech this spring (1978). This language and the design

examples presented in the Appendix will be referenced throughout this section.

2.2.1 Designing with a Layvou! lLanguage

The issuc of describing a mask can be examined in from two different points of view. At the
lowest level is a geometric description of cach tayer. The shape and position of cach element is
described with respect to some coordinate system. The design process is then just a matter of
digitizing the layout or typing in the coordinates for cach shape. However, a layout language
should not be just a digitizer in test form. It should, ideally, approximate the way the designer
thinks about the layoul, in terms of its function and its contraints. Even very simple languages can

be organized in a manner that is more descriptive of a design than just its geometry.
The process. of using a language in a CAD system involves the following steps:

First, the design is partitioned into cells and subcells. The more the layout is partitioned

into repetitive modules, the less language it will take to describe it.
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Second, each cell is sketched, or drawn {o scale as much as is necessary. At this point the
coordinale system for the layout will have to be defined. Critical points and distances are
defined and labeled. In general, the more primitive the language, the more will have to

be drawn 1o scale.

Third, for cach section the description is entered into the system. Some sort of graphical
output must be produced Lo verify the correctness of the description.  Corrections are
made to the source file until the cell is completed. Lower level cells are then combined to

describe upper level cells until the whole chip is defined.

The response or turnaround of the CAD system will determine how the designer is going to use it.
For example, if the facilities are baich mode processing with a four hour turnaround, the designer
will be likely to draw most of the circuit to scale and painstakingly check the source code. The
other extreme could be a color interactive graphics terminal with very fast translation from input

to display.

2.2.2 Basic Features of a Layout Language

This section describes the features of a simple layout language and how they might be organized.

An example of such a language is in the first 3 chapters of the ICLIC description given in

Appendix D.

Most simple layouts use only a few basic shapes, predominantly rectangles and wires. These can
be described on a unit square coordinate system or grid and constrained to right and 45 degree
angles. Therefore, a layout language can begin with a description of these shapes, and a way to

designate their layers.

A simple rectangle or bex is a rectangular arca with the sides aligned parallel to the axes. It can
be specified by two opposing corner points, or by one point (¢.g. cenler or corner) with a width

and a height.

A wire is a track of uniform width defined by its center line and width. The path of the wire is
defined as a list of coordinates. In general, a shorthand notation is used for paths that only make

right angle turns. That is, only one cuordinate changes at once so only that change is specified.

For example: X=x1, Y=yl § Y=3y2 § X=x2 § X=x3Y=y3 §
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The "$" means make new wire section. A more powerful symtax uses an infix notation for points

and has a symbol for the current X and Y.
For example: x1#yl 1 .#y2 : x2#. : x3#y3

The "." means cutrent coordinate, and ";" is a delimiter. Having a notation for the current

coordinate means that it is possible to compute with it, thus leading to relative coordinates.
For example: x1#yl : .#.+dl : .-d2#. . x3#y3

The notation ".+d1” means use the current coordinate plus the distance dl for the new

coordinate.

The mask layer to which a particular shape belongs is specified by some mnemonic. ICLIC uses
color codes, such as red for polysilicon, green for diffusion, as suggested in [Mead 1978). Some
languages associate a layer specification with each item. Others make it a global switch that affects

all subsequent objects, as does CIF.

Attempting to define a layout with just these simple primitives will result in an explosion of data.
Therefore, it is essential to have some mechanism for grouping and reusing sets of shapes. Such a
collection of shapes is often called a symbol or cell. A layout language needs some way of defining
and using symbols. It should be possible to nest symbol calls, and to use symbol calls in

definitions of other symbols. However, it is not necessary to be able to nest symbol definitions.

Using symbols implics some wéy to position cach instance of the symbol. In general, the call will
map the symbol origin to the current X.Y. A rectangular array of symbols is such a basic layout
feature that some method for easily generating it should be a part of any layout language. The
syntax of such a construct needs only the starting position, the number of symbols in the Xand Y
directions, and the spacing in the X and Y dircctions. Such a construct is described in scciion 3.5

of the ICLIC manual in Appendix D.

Besides being positioned, symbols may also be transformed. Standard transformations are: scaling.
mirroring, translation, and rotation (see [Newman 1973] for a full discussion of (ransformations).
For a simple layout language, translation, rotations by increments of 90 degrees, and mirroring
about the axes are sufficient. Scaling, which is changing the size of a symbol, and rotation by

arbitrary angtes are rarely used.
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The use of transformations brings up the issue of nesting transformations.  The order in which
transformations are performed is important, and even the simple case of combining a rotation with
a translation can produce very different results depending on the order in which the operations are
exccuted. Therefore, the syntax for calling transformation routines should be very clear about the

order in which the functions are performed.

Besides the issue of the user interface, there are many difficulties involved with the definition of
general transformations for integrated circuits. One example is the problem of how to adjust the
results of a transformation back to a grid (rounding of coordinates) without causing unintendend
breaks or overlaps. Sce the description of CIF in [Mcad 1978} for a more complete discussion of

the problems of (ransformations in integrated circuit design.

2.2.3 Variables, Parameters, and Relative Positioning

A variable is simply a name which can be assigned a value. The benefits resulting from the use of
variables within an IC design language are equivalent o those oblained in a general purpose
language. That is, once a name is used for a value, all instances of that value can be changed
simply by changing the assignment to that variable. Furthermore, a name can be descriptive, such
as "InverterCenterX™. It is much easicr to make changes and find crrors in a list of descriptive

names than among a mass of anonymous numbers.

A symbol whose definition is controlled by a set of named values is said to be parameterized, and
the names are said 1o be its parameters. A simple example of this is a symbol which uses variables
for size and positioning information. Such a symbol can be changed by assigning different values
10 the variables used in its description, In a language which supports more advanced programming
constructs, such as subroutinges. loops and conditionals, parameters can be used more extensively to
control the propertics of the symbol.  For example, the parameters of a PLA subroutine could

describe its size and function.

The use of relative coordinates involves defining symbol parameters with respect to other elements
in the cell, instead of with respect to the absolute coordinate system for the layout. Changes made
in a symbol ‘which is defined in this manner can ripple through the layout, keeping design rules

intact.

For example: RW({OUT1 : .+RWFRMG#. . .#IN2Y ; IN2})
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This example draws a red (poly) wire from the point OUTT (o the point IN2. The path followed
is: horizontal from QUT! to the minimum distance a red wire can be from a green area: vertical
10 the Y coordinate of IN2; horizontal to IN2. This wire will remain connected and running at

the minimum design rule distance from the first device whenever OUT1 and IN2 are changed.

2.2.4  Program Organizalion

Methods of organizing a language description for a design are similar to techniques used in general
purpose programming languages. They also relate strongly to methods discussed in reference to
the design process as a whole. The following points will be summarized here: documentation,

modular design, parameterization, defaulls and conventions.

Documentation includes not only comments on the source code, but the use of descriptive names

for variables. All programs should be thoroughly documented, of course.

Modular design is the process of coding and debugging each cell separately, then combining the
working cells to make larger ones, as has been emphasized throughout this document. By making
large programs out of a collection of small ones, not only is the design cleaner, but the process of
coding, exccuting and debugging the programs is simplified. Uniformity reduces the complexity,
and hence the ecrrors, in a layout. Therefore, using standard symbols for circuit elements is highly
rccommended. Some symbols, such as contacts, are common enough to be defined in the

language. Other symbols could be kept in library files, sce Appendix E.

The advantages of parameterization can be broken into two main arcas. First, changes to a cell
can be more easily made: for example, if the parameters are defined as relative coordinates, the
cell can be somewhat self-adjusting with respect to small changes. Second, the same code can be
used to produce similar, as opposed to identical, cells. Therefore, there is less code to debug,

reducing errors,

One of the initial steps in writing any program is defining defaults and conventions for variable
names and parameter values. An example of this is the convention in ICLIC of specifying all
design rule distances as ¢FRMc, where the ¢ is replaced by a layer mnemonic.  For example,
RFRMG or GFRMR is the minimum design rule distance between red and green areas. The
default value is 1 lambda (3 microns in 1978). Defaults and conventions should be documented at
the start of the program, and adhered to throughout. It is useful for the language to contain a set

of defaull parameters and naming conventions for wire widths, wire spacings, minimum design rule
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distances, etc.

225  Advanced layout Languages

There are wo ways to make extensions to the basic language concepts outlined in the previous
sections.  One is 10 continue to treat the design process as a set of calls to pre-defined functions,
and to extend the language by increasing the complexity of the functions. For example, ICLIC
has a function for defining wires which run on more than one layer which automatically inserts the
contacts between layers.  The second, more powerful method invelves treating 1C design as a
programming process.  Thercfore, the design language needs to be cxtended to include
subroutines. loops. and conditionals. The issues then become those of conventional language

design.

A good way to implement a layout language is to define-a set of procedure calls within an existing
language. The elegance of the finished set will depend somewhat on the base language used, but
it scems safe to say that something akin to CIF with variables could be implemented in any
language that allows dynamic storage allocation, A language like ICLIC depends heavily on the
concepts of concalcnaling symbols together, and the ability to compute relalive coordinates
symbolically from the current coordinate. ICLIC was implemented as a set of procedures in ICL
[Ayres 1978] which alrcady supported these concepts. A similar system has been implemented at
Xerox PARC in SMALLTALK as a programming example for a forthcoming book. A different
system, which contained a basic layout language plus some automatic wire routing routines, has
been implemented in SIMULA at Caltech [Locanthi 1978].

There are a number of advantages to basing a layout language on an existing language.
Development time, compared to writing a compiler from scratch, is much reduced, and the
programming environment is one that is already familiar to the user community. In addition, the

resulting layout language has the full power of the underlying language.

The concept of a language description provides a means for a functional description of the circuit
being designed. At the layout level, one could imagine the process of developing cells that are
passed a sel of input specifications and return the layout plus a sct of outpul specifications. Such
modules could then be connected by running wires from an oulput definition to an input
definition, cither by hand or by an automatic wire routing system. The point being made here is
thal a programn which describes a design clement can be extended to provide a much richer

description than just (he data for the mask. Therefore this description can be used for a variety of
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purposes, such as wire routing, design rule checkers, and simulation,

2.2.6 Conclusions

While the use of a set of basic functions to describe a layout is straightforward, there are important
issucs with regard to the design and use of such languages. These issues have been discussed in
sections 2.2.1-2.2.4. Even such simple systems can be very useful for design. However, the real
power of a language description comes not from the cxpansion to fancier functions, but from

invoking the power of a general purpose programming language as a design tool.

2.3 Checking Your Design
[section contributed by Wayne Wilner. Xerox PARC]

Integrated circuit design requires near-perfection. Certain flaws, such as a short between two clock
lines, can render the whole chip useless. Checking your design adds a week of tedium to your

project, but without that week, four months can go down the drain (to say nothing of cost).

Checking can be done by eye and by computer, Since sight-checking is available to all, we'll

discuss it first. Actually, sight-checking is superior to automatic checking in several ways.

2.3.1 Checking by the designer

Many fatal errors in a design do not exhibit themselves as violations of design rules. Consider
logic crrors. Consider state machines which are initialized to terminal states. Consider transistors
which are wired incorrectly, but within the design rules. Consider an array of cells which are
supposed to abut and do not; if the space between them is farger than the minimum spacing for
all layers, design rules may be observed while the array is grossly in crror. Consider the placement
and continuity of busses. These errors are representative of flaws for which the designer is

singularly responsible.

Many of these can be spotted on checkplots of relevant subsets of layers. A plot of metal and
conlacls can reveal errors in conlinuity which would otherwise be lost in the details of a full plot,
A plot of poly, diffusion, contacts and implants enables one to check their all-important overlap.
The effectiveness of this technique is very high when the plots are large, clean, and of high

contrast.
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A plot of cach individual layer should be sight-checked by someone besides the designer. 1It's

amazing how many design crrors look odd on such plots, even (o those who don’t know the circuit.

2.3.2 Checking by computer

Some flaws are violations of design rules. Two basic taclics can be employed to avoid them: (1)
the use of programs which check he final mask descriptions for certain violations, and (2) the use
of programs which generate layouts in a manner that guarantees that there are no violations. At
present, there are no programs which generate layouts completely. An intermediate step in thal
direction is the "Sticks” approach [Williams 1977] which starts with a grossly-spaced circuit which
is then trimmed mechanically to minimum spacing by the CAD system.

2.3.3 Error-checking programs

Frror-checking programs embody the rules for a particular process and examine pattern generation
tapes for violations, reporting each instance in terms of coordinates or patterns, along with the
nature of the violation. Design rules typically assign minimum distances to:

dimensions of features, such as breadth of runs or size of contact cuts,

spacing between features in the same layer, such as distance between runs;

spacing between features in different layers, such as overlap of metal and contact windows.
For example, suppose unconnected areas of polysiticon must be 2A apart. In the diagram below, a
circle of radius 2\ centered at the upper right corner of the lefi-hand area reveals that the right-

hand area is too close.

Design file contains: Error file receives:
/ | -~
| /
\\'\-.. . ’

This design rule violation may be reported in terms of a line segment, that is, two points, one at
the periphery of cach arca, and their (insufficient) separation. It is a non-trivial problem to

present violations to the designer in the most convenient way.
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2.3.4 Inherent limitations

An inherent limitation of design rules comes from their pertaining solely to the lowest level of
detail. Consider the following diagram. Two arcas are separated by less than their minimum

spacing.

Broken
connection? Encroachment?

It is clearly a design rule violation, but is it a broken connection or is it an encroachment? The

designer will have to decide and fix it appropriately.

Checking for design-rule violations appears to be a problem of geometry, of a well-defined,
computationally-tractable naturc. This is an illusion. Checking design rules requires so many
computations that the problem is really one of managing main and secondary storage, in other

words, an operating system problem, not well-defined, and different for each individual computer.

2.3.5 Design rule checking in the context of structured design

Another point of view on design rule checking is that of structured design. Using structured
design, most projects are constructed from a few basic cells which are very simple. Their

simplicity makes sight-checking design rules adequate.

Automatic checking is quite useful, still, for several situations. Assembling systcmé from cells
introduces errors in cell placement. Cells which interconnect must abut, not overlap or be
separated.  Cells which overlap maiz introduce design rule violations, even though the cells
themselves are correct. Cells which provide alternale interconnections for a given signal must
dispose of all unused connections. Wide-ranging interconnections between cells are often hard to

scan thoroughly and show up small and indistinct on checkplots which span their extent.
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2.3.6 Parameterizable design rule checking

In laboratories which experiment with different processes, the critical distances may vary from
month to month. In experiments with custom circuits, the objective may be to find how
exceptions to the design rules can be exploited. Therefore, while the types of rules may be rigidly

bound into a checking program, specific distances should not be.

Is it feasible t0 make a design rule checker in which the design rules arec paramcters? A
fundamental problem is that the nature of design rules varies. Some involve unconditional
distances: "metal runs must be at least seven microns wide." (Of course, verifying this can be
extremely difficult.) Others involve conditions: "polysilicon must extend at least four ticrons
beyond diffusion, unless the gate dimensions are small, where six microns are required”. It is an
unsolved problem to mechanically create a program which can efficiently verify geometrical
constraints of varying nature. It would seem harder to mechanically generate checkers tha;1 to
mechanically generate layouts. The latter is clearly preferable because of the greater range of

errors which are detected or eliminated.

2.3.7 Summary

Unless circuits are generated mechanically, they must be checked thoroughly.  Sight-checking of
critical distances is astonishingly cffective when done on a large, clean, high-contrast plot, due to
the pattern-recognition power of the brain. Mechanical checking can serve as a further check; it is

limited by machine resources and imprecise or insufficient descriptions of the rules.
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24 Simulation as an IC Design Tool
[section contributed by Richard Lyon, Xerox PARC]

Simulation is a design technique widely used in a variety of cngineering disciplines. When it is too
difficult 1o verify the correctness of a design by inspection, by proof, or by test, simulation may
help. Simulation allows the designer to test a design before building it, by modelling in detail the
components from which the design is built, and by computing their interactions under various
conditions. Simulation is useful at many levels in integrated circuit and system design; system-
level, register-transfer-level, logic-level, and circuit-level simulators are useful at various stages of
the IC design process. A related activity is the design of 1C fabrication processes, which can benefit
from process simulation; the simulation of process variations may become more important as VLSI
approaches the physical limits of device sizes, where the set of devices used by the system designer

must be carefully matched to the technology.

Unfortunately, not many generally useful simulators are readily available. Even when such a
program is available to run on your computer, the problem of preparing data in a form suitable to
the simulator can be formidable. It is easy to write a register-transfer-level simulator, for example,
but the hard part that makes it useful is to provide an automatic link from the design language to
the simulator input language. There is not yet enough commonality of design methods in the
digital system design ficld to result in wide availability of such a program. In the circuit design
field, on the other hand, the method of design has traditionally been standardized to drawing by
hand on paper the interconnection of standard types of lumped circuit elements. From here it is
logical 1o assume hand translation to the language of a circuit simulator. For this reason, circuit
simulators have been developed in standard languages (Fortran IV) and are widely available. Two
such simulators, somewhat tailored for IC simulation, arc SPICE from U. C. Berkeley, and MSINC

from Stanford; their input languages are similar, and one example should serve to illusirate both.

Circuit simulation can, be very useful to the integrated circuit/system designer if it is applied to
those problems that require it, but should not be rclied on to verify the correciness of a
complicated system design. In digital system design with a consistent design philosophy, it is
usually possible to identify the critical parts of the design (for examnple the longest chain of pass
transistors, the new RAM cell, or the node with the highest fanout); in this way, critical parts can
be identified for simulation (sec {Mead 1978] chapters 1 and 7 for infonnation on critical timing:
see chapter 4 for more on shmulation and testing). Of course, even simulation will not verify that '
the design will run fast enough if the simulation parameters and models do not realistically reflect

the process used to make the circuit.
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As an example, we have simulated the oulput pad driver called PadOut, which was designed in
fearus (Integrated Circuit ARtwork Utility Systemn, an interactive layoul desigh systemn) according to
the Mead and Conway design rules, with lambda equal to 3 microns. This is a driver intended lo
interface NMOS chips to other popular logic families, at speeds and voltages comparable to TTL.
It uses push-pull cnhancement-mode output drivers, driven in turn by super-buffers (sce {Mead
1978] chapter 1). The fanouts are generally somewhat higher than the theoretical optimum of e, to
reduce space and power at the cxpense of speed. Figure 2.4.1 is the lcarus layout picture of
PadOut; notice that the outpul transistors are both wrapped around the pad. The schematic
diagram is shown in Figure 2.4.2; it includes node numbers and clement names which are needed

for translation to the simulator input language.

The simulator SPICE was used at Xerox PARC, on the MAXC2 computer, which has no floating-
point hardware; therefore, the execution of the Fortran program was blindingly slow. Figure 2.4.3
shows the input deck, an ASCII text file. The SPICE program, like most widely available
programs, was written for the card-reader/line-printer/batch-computing environment which is found
at the typical university computing center. Therefore, be careful of input formats: only 72 columns
of 80-column cards are used -- long lines use continuation marks in column 1, as in Fortran. The
documentation is sparse, but keep in mind that you should not do anything you could not do on a
keypunch, such as lower case letters. See User’s Guide to SPICE by E. Cohen and D. O. Pederson,

from U. C. Berkeley Dept. of Flectrical Engineering and Computer Science.

In the input listing, each line is called a card. The first line is the title card, and lines starting with
* are comment cards. FEach element card names a component (the first letter of the name
determines the element type, such as M for MOSFET), tells what nodes it is connected to (in
order, such as drain, gate, source, substrate), and gives a few parameters (such as width and length
in centimeters). There are also model cards and control cards, which will not be described here, but

can be scen in the listing.

We have described in the element cards the circuit of Figure 2.4.2 (some of the parameters are
estimates, such as AS and ADD, areas of source and drain). The first inverter is not part of PadOut,
but represents a typical signal source, which is in turn driven by a 3.5 voli, 20 Mhz square wave

generator with 2 nsec rise and fall times.

The output file produced by SPICE from the input shown was 100 long to include here. The most
interesting part of it is shown in Figure 2.4.4, the graph of the time response of the various nodes,

which is plotted line-printer style by typing the node numbers in appropriate columns. To make it
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PAD DRIVER STMULATION

* RF LYON -- JULY 13,

*

VDD 10 0 DC 5VOLTS
VITL 7 0 DC 2VOLTS

VIN 9 0 PULSE 3.5VOLTS OVOLTS 2NS 2NS 2NS 23NS 50NS

*

MDO 1 9 0 O ENH W=12E-4 L=06E-4 AS=144E-8 AD=144E-8
MUO 10 1 1 O DEP W=06E-4 L=24E-4 AS=144E-8 AD=144E-8
MD1 2 1 0 O ENH W=24E-4 L=06E-4 AS=144E-8 AD=144E-8
MU1 10 2 2 O DEP W=06F-4 L=06E-4 AS=144E-8 AD=144E-8
MD2 3 2 0 O ENH W=24E-4 L=06E-4 AS=144E-8 AD=144E-8
MU2 10 3 3 0 DEP W=06E-4 L=06E-4 AS=144E-8 AD=144E-8
MD3 4 2 0 0 ENH W=96E-4 L=06E~4 AS=600E-8 AD=600E-8
MU3 10 3 4 0 DEP W=24E-4 L=06E-4 AS=144E-8 AD=144E-8
MD4 5 3 0 O ENH W=96E-4 L=06E-4 AS=60CE-8 AD=600E-8
MU4 10 2 5 0 DEP W=24E-4 L=06E-4 AS=144E-8 AD=144E-8
MD5 6 5 0 O ENH W=768E-4 L=B6E-4 AS=4000E-8 AD=4000E-8
MU5 10 4 6 0 ENH W=768E-4 L=6E-4 AS=4000E-8 AD=4000E-8
CLOAD 6 0  50P

RLOAD 6 7 2K

*

1978

_MODEL ENH NMOS (NGATE=1E20 TPS=1 XJ=1E-4
+ CGD=4E-12 CGS=4E-12 CGB=2F-12 TOX=95E-7
+ NSS=-22E10 NSUB=8E14 )
.MODEL DEP NMOS (NGATE=1E20 TPS=1 XJ=1E-4
+ CGD=4E-12 CGS=4E-12 CGB=2E-12 TOX=95E-7
+ NSS=80£10 NSUB=8E14 )

.TRAN 1.0NS 8ONS

.PLOT TRAN V(1) V(2) V(3) V(4) V(5) V(6) (0,8)
WIDTH OUT=72

.END

Figure 2.4.3. SPICE input Deck for PadOut
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readable, take a bunch of colored markers and draw in the curves for the nodes of inferest. You
will see that the response from node 1 to node 6 is noninverting, with ty, ,; of 13 nsec and t,);; of
9 nsec, measured at a 2 volt threshold (or more necarly symmetrical at 11 nsec if measured

somewhere below 1 volt)

Is PadOut really this fast? Probably not on most processes; the model cards used here have
estimates of the Spice model parameters which were felt to be realistic, but which gave results that
are probably too optimistic for most typical 1978 processes. The inverter-pair delay from node 1 to
node 3 is seen to be 6 nsec, where the inverter ratios are k=4 and the fanouts are f=35 (actually 6
for the first inverter). The delay estimate according 1o [Mead 1978] is then (k+1)fr =257 =6 nsec,
so we may conclude that we have simulated a process with +=0.24 nsec (tramsit time), which
certainly is optimistic. 'The actual performance of PadOut will have to be determined by test, and

will depend on where it is fabricated: some lines would be three times slower than this simulation.

IC designers have relied on simulation as a design tool for years. When the performance of a part
being designed is critical (as is typical in manufacturing for sale), and the production/test
turnaround is slow (also typical in the IC manufacturing business), circuit simulation is a necessity.
However, in the preliminary topological design phase, circuit simulation is not needed: and if
turnaround is fast, measurement may be a better way to determine performance than simulation is.
Thus, we are now at the point of being able to design complicated digital systems without the aid
of circuit simulation, by following strict design conventions; however, circuit simulation is still
useful for the analog and interface aspects of system design, and is a valuable aid in understanding
circuit behavior. We encourage the use of circuit simulation where it is appropriate. We also

encourage the development and use of higher-level simulation tools to aid the design of digital

systems.



