79

Appendix 1), ICLIC Manual

[section contributed by Maureen Stone, Xerox ASD]

1. Introduction

2. Designing Circuits in ICLIC

2.1 Type Declaration

2.2 Assignment Statements
2.3 Symbols

24 Function Calls

3. Predefined Functions

il Boxes

32 Contacts

33 Wires

34 Global Variables

335 Positioning Functions

36 Simple IC Example

4. Building Your Own Toels

41 Loops and Conditionals
4.2 Minimum Bounding Box
43 User Defined Functions
4.4 More Circuit Examples

5. Operating Procedures

5.1 Plotting Functions
5.2 Getling In and Getting Out

Acknowledgements

Special credit goes to Ron Ayres for his help with the design and implementation of the original
ICLIC. I would also like to thank the following people for their contributions: Jim Blinn, Carver

Mead, Dave Johannsen, and John Gray.

A Guide to LST Implementation 80

1. Introduction

ICLIC was developed at Caliech in the spring of 1978, The initial goal was to provide a simple
language that could be used by engineers to do 1C design on the DECSystem-20. Previously, all
design had been done in PAL [Auto 1966]. The original description [Stone 1978] was directed
toward the computer novice. Later in the year, ICLIC was expanded and more emphasis placed

on user defined functions and programming.

The system was imp]emehled by Ron Ayres as an exiension of the language ICL [Ayres 1978].
Therefore, such features as looping and conditionals have always been available, though not
described in the original manual. The syntax and much of the underlying structure, such as the

strong and varied data types, very much reflect the structure of ICL.

This section is a rewrite and expansion of the ICLIC users manual done specifically for this
document. That is, it is no longer intended to be a description of the Caltech system. Many of
the details specific to the Caltech implementation have been omitted. The language of this

document has been changed slightly to assume an audience that is already somewhat familiar with

programming.

The purpose of this writcup is to provide an example of an IC layoul language. Most of the

language principles described in section 2.2 of the main document are reflected here.

-

A Guide 10 LS] Iinplementation 81

2. Designing Circuits in 1CLIC

The design of circuits in [CLIC involves creating symbols (i.e. cells, groups, subpictures} and
concatenating them together into larger symbols, up to the chip level. A symbol is described by
either a variable or a function call. A number of primitive symbols have been globally defined,

which means they can be used by any program running ICLIC (see section 3).

To form a program in ICLIC one defines a number of symbol variables and assigns them values
which are strings of function calls and variables. The string, or concatenation operator, is the {}
and is described for symbols in section 2.3, Symbols can be concalenated with themselves as well
as other variables and function calls to build up more complex symbols. The end resull is a

symbol which describes the chip.

Variables may be thought of as places to hold values. In ICLIC, each variable name must be
given a TYPE that describes what sort of value will be assigned to that name. Declaring and

assigning values to variables will be described in sections 2.1-2.3.

A function is a process that is called using the function name and possibly some additional

information, called parameters. Section 2.4 describes how to specify functions and their

parameters,

2.1 Type Declarations

In order to use a variable to hold a value, the place must be reserved with a declaration of the

following form:
VAR <vamame > = <{type>;

example: VAR [LJ=INT; R=REAL; MAINCELL=SYMBOL;

All variables other than the system defined global variables (section 3.4) must be declared in the

user’s source file before any value is assigned to them. The following TYPEs are defined:
INT integer number. ie. one with no decimal point.

REAL real (floating point) number.

POINT describes a point on the layoul as coordinate # coordinate. Each coordinate is either an

absolute value, expressed as a real number, or a relative value, expressed as ". + real” or ". -

A Guide to 1.SI Implementation 82

real”. The " signifies the current X or Y coordinate.
example: { 15#423; 15#18; 2.0#18 }
is equivalent to: { 15#2.3; . #.-5; .+5#.}

The X and Y coordinates of a POINT can be treated separately as REAL numbers by using the
notation: POINT.X and POINT.Y. |

PATH A list of points such as used to describe the location of the center line of a wire. The

following notation is used:
example: { POINT; POINT; .. : POINT }

SYMBOL The name given to a collection of variables and function calls that describe IC mask
elements. SYMBOLSs can be concatenated to create larger SYMBOLs by surrounding them with

brackets as shown below:
example: {SYMBOL : SYMBOL ; .. : SYMBOL}

SYMBOLS are discussed further in section 2.3,

2.2 Assignment Statements

A variable can have a value assigned to it using the following form:

{vamame > = <value>;

Notice the ":=" for assignment, and the terminating ";". The assignment is not made until the
"-* is reached, so nested assignments can be used to build up a the complexity of a symbol. All
variable names must be declared by using VAR before the first assignment. Examples of valid

assignments to the different type variables follow.
[:=1; "l is an INTeger”
R := 3.146; "R is a REAL"
ENDPOINT := STARTX+100#55.6. "ENDPOINT and STARTX are POINTs"
LEFTX := MINPOINT.X; "LEFTX is REAL, MINPOINT is a POINT"
BUSPATH := { 0#0:.+673#. . . #CELLHEIGHT }. "BUSPATH is a PATH"

CELL := { CELL : ENDCELL ;: QUTPAD }: "All variables are SYMBOLs"

A Guide o 1.SI Implementation 83

2.3 Symbols

The basic component of an integrated circuil mask is the SYMBOIL.. Once a variable has been

declared to be type SYMBOIL., it may be assigned a value one of three ways:

1. Calling a function that returns a SYMBOL as a value. All the systemn 1C design functions

described in section 3 fall into this category.

2. Using a variable that already has a symbol value. This includes variables displaced by the

systern posilioning functions,

3. Concatenating together SYMBOLs using the { } notation. This is the way large cells can be

built up out of smaller components. The concatenation syntax is:
{SYMBOL; SYMBOL; .. : SYMBOL}
example: CELL:={BUS; HALFCELL: HALFCELL\MIRX};

Any number of symbols, separated by semi-colons, and surrounded by "{..}" can be concatenated
together into a list of symbols and assigned to a variable of TYPE SYMBOL.

2.4 Function Calls

To use a function, you need to know its name and what parameters, if any, are needed. The
TYPE of the parameters is important, as well as the TYPE of the value returned by the function.
If there is more than one parameter, the order in which they are listed is also important. There

are two notations in ICLIC for caliing functions which have -exactly one or two parameters.

function name paramelers notation 1 notation 2
F X : F(X) X\F
F XY F(X.Y) X\F Y

If the function has more than two parameters, notation 1 must be wused.

ICLIC system functions all have 2 or fewer parameters, so they can be called using cither notation.
One convention that is suggested for readability is to call the functions which describe SYMBOLs
using notation 1, and the functions which do positioning using notation 2. This convention is

followed in the examples in this document.

A Guide to 1.8 Implementation . 84

A function call returns a value. Therefore, function calls can be nested as long as each function
returns the correct TYPE. Note that in notation 2 everything before the "\" is the first parameter,

so function calls are executed from left to right.
example: RB(-1#-1;1#INSIZE 5 \ROT 45

The example makes a red box which is 10 lambda on a side, rotated 45 degrees counterctockwise

around ils center point.

3. Predefined Functions

This scction lists the ICLIC system defined functions useful for the description of IC layouts.
They include boxes, contacts, and wires, some predefined variables for design rule distances, and
the transformation functions. All these functions return a variable of type SYMBOL. Many

names have colors abbreviated in them, using the following conventions:

R = red (for poly)

G = green (for diffusion)

B = blue (for metal)

K = black (for contact cut)
Y = yellow (for implant)

W = brown (for glass)

The definitions given below will use a "c" to indicate that any of these colors can be used.

3.1 Boxes

cB(<low>, <high>)
parameters; lowhigh=POINT

example: TRANS = {RB(-2#-12#1); GB(-1#-21#2)};

The low and high POINTs define the lower left and upper right corners of the rectangle. The box

is defined oriented parallel to the axes. That is, X is horizontal, and Y is vertical.

A Guide Lo LSI Implementation 85

3.2 Contacts

Standard contact definitions are built in as symbols. Fach symbol includes a box on each layer

specified, plus a contact cut (see [Mead 1978] for a complete description of contact cuts).

RTOB red o blue square contacl, 4 lamhda/side
GTOB green to blue square contact, 4 lambda/side
RTOG red to green bulling contact, 6 by 4 lambda oriented horizontally, with red on

the lefl, lThe 6 by 4 metal layer is included.

33 Wires
A wire is described by a PATH, a WIDTH and a LAYER.
LAYER The layer is a description of the layer the wire runs in.

WIDTH The width is width of the wired measured in lambdas.

Default wires widths have been defined for each layer.

PATH The PATH describes the location of the center line of the wire.

3.3.1 Single-Layer Wires

To express a wire on a single layer, the following set of functions have been defined in ICLIC.

cW(< width>,<path>)
parameters: path=PATH, width=REAL (opticnal)
example: RW({0#0; .+13#27. +.T#.}):

BUS: =BW(6,{-1#-1; 10#10}):

The path defines the center line of the wire. The actual wire wiil be expanded a half-width all
around the path. even at the endpoints. The global variable for wire width on that layer will be
used if the width parameter is omitted. If present, the width paramecter applies only for the given

wire.

A Guide to LSI Implementation 7 86

3.3.2 Multi-Layer Wires

In many cases, a wire as an electrical path is not defined on a single layer. Thercfore, the

following syntax has been defined to describe such wires.

{ LAYER; POINT; POINT; .. ; LAYER: POINT: .. : POINT }

example: { RED: 0#0; 10#0; BLUE: 12#0; RED: 14#0 }
POINT is either an absolute or relative point, as described in section 2.1
LAYER is the word RED or GREEN or BLUE, subject to the restrictions presented below.

The overall path in the multi-layer wire is the sequence of points with the layer definitions
omitted. The width of each section of wire is the standard width for that layer. Each new layer
definition inserts a contact at the last point specified before the layer mnemonic. This point is
called the feed-through point. For various reasons, only transitions involving the metal layer have

been implemented. An illegal transition generates an error message at execution time.

At each feed through point, one of the system defined square contacts, RTOB or GTOB is
generated. The center of the contact is aligned with the feedthrough point.

3.3.3 Cables

To facilitate design using multiple wires following roughly parallel paths, the CABLE function has

been defined. The syntax is:

CABLE(< layer >, < #wires >, {nexl start >, <{next end >, <sample path>}

parameters:
layer = LAYER specification, RED or BLUE or GREEN.
#wires = The integer number of wires in the cable

sample path = { STARTP; POINT: ... ; ENDP}. This path describes the center line of
one of the end wires. STARTP and ENDP are the starting and ending POINTSs for the
path,

next start = The starling point for the wire next to the sample path is given as either an

-

A Guide to 1.8] lmplementation 87

absolute or relative POINT.

end start = The ending point for the wire next to the sample path is given as either an

absolute or relative POINT.
example: CABLE(RED, 3, .#.-RWSPACE, .#.-10, {0#10; .+5#.; .#0, 10#0})

All wires will be parallel to the sample path at the globally defined minimum spacing except where
the start and end points are connected. Default values for the minimum spacing on each layer are

given in section 2.4,

No test is made for crossed wires, Whatever wiring pattern is generated by the above algorithm is

drawn without comment.

Figure D.I shows an example of a CABLE.

34 Global Variables

Global variables are a means to ensure that commonly used distances remain uniform across the
layout. Furthermore, global changes can be made by simply rcassigning a variable. Therefore, it

is strongly recommended that the user use variables for distances wherever possible.

The following system defined global variables have been built in to reflect the design rules

described in [Mead 1978).

LAMBDA Definition of the basic measurent unit, in microns. The default value is 3 microns.
cWIDTH width of colored wire
cFRMc design rule distance between colors

c¢WSPACE minimum spacing between wires (R, G, B only)
cWFRMc minimum spacing between a wire (R, G) and an area

that is, the design rule distance plus half the wire width

These variables have the following defaults:

BWIDTH 3 lambda
c¢WIDTH 2 lambda (all other colors)
RFRMR 2 lambda
RFRMG 1 lambda

38

L

#.-20; . +11#.; . +10#.-10;.+20#.})

'

=CABLE(RED, 4, .#.-RWSPACE, . #. -RWSPACE,

{O#70; .+18#.

€1

SN

W
R
W
N

%
N
S
R

L a2
7 7%
“ 7
e =
] s
s i
v i
7 7

P

",

7

)
!
G 7
A e
YA SN, A5 \M‘\\.\\..‘\A.‘\\. A&.\\.
e A “,
T R 7
7
A e s
T T
nogm
T v
LA
A A

Figure D.1. An Example of a CABLE

A Guide to 1.8] Implementation 89

GFRMG

3 lambda
RWSPACE 4 lambda
GWSPACE 5 lambda
BWSPACE 6 lambda
RWFRMR 3 lambda
RWFRMG 2 lambda
GWFRMR 2 lambda
GWFRMG 4 lambda

These variables can be assigned new values by using them on the left hand side of an assignment

slatement, just like any varable in ICLIC.

3.5 Positioning Functions

These funclions are used to position symbols, and can be used on any variable of type SYMBOL.

Displacement
< symbol >\AT < point >
<symbol > \AT {<string of points >}
< symbol >)\AT [IX:<real> 1IY:<real> NX:<int> NY:<int>]
example: INVERT\AT 4#4
INVERT\AT {0#0 : .+5#37 : 0#.}

CELLNAT [IX: 20.7 IY: 447 NX: 5 NY: 3]

AT translates the symbol by the amount point.x, pointy, i.e. it adds these values to all XY values
in the symbol. If a string of points is given, the symbol is duplicated at each of the locations

specificd. Note that the rclative point notation can be used, just as in wire PATHs.

The third form of the AT command specifies a regularly repeated pattern. The square bracket
notation defines an array of positions, with increment (I1X, 1Y) and count (NX, NY} parameters in
X and Y. The origin of the lower left cell is positioned over the current X,Y. The example

describes a 5 by 3 array of cells, spaced 20.7 lambda apart in X and-44.7 lambda apart in Y.

-

A Guide 10 LS Implementation 90

If the parameter is not specified, IX,1Y default to 0.0 and NX.NY default to 1. This is useful for

making single rows or columns of symbols.

example: CELL\AT [IX: 20.7 NX: 3]
This makes a single row of the previous cxample.

Note that to position an array at an arbitrary point instead of using the current XY it is possible

to use nested AT commands.

example: CELLNAT 55.5#25 \AT [IX: 20.7 NX: §]

This example makes the previous example starting at X=555 and Y=25 lambda.

Rotation

<{symboal > \ROT <angle >

example: INVERT\ROT 90

Rotate the symbol by the value of the angle. The angle is a real number, given in degrees.

Positive angles are counterclockwise.
Scaling
< symbol >\SIZE <real >
{symbol >\SIZE < point >
example: GTOB\SIZE 2
TRANS\SIZE 1#2

Scale (multiply all XY values) by the parameter value. If the SIZE parameter is a real number, it
is used 1o scale both the X and Y coordinates. If the parameter is a point, the SYMBOL is scaled

by the value of the X coordinate in X, and by the value of the Y coordinate in Y.

Mirroring

<symbol > \MIRX

A Guide to LSI Implementation _ 91

< symbot > \MIRY
¢ symbol > \MIRXY

These funclions mirror (reflect) the symbol around the X axis, Y axis or both axes respectively.

example: [LATCH :={ HLATCH :; HLATCH\MIRX }.

36 Simple IC Example

The following is a description of a 2 input NAND gate. The pullup length has been made a
variable so the pullup ratio can be easily modified.

VAR LEN=REAL;

LEN:=35.5: "LENGTH OF ACTIVE AREA OF PULLUP"
PULLUP=SYMBOL: "VARIABLE LENGTH PULLUP”
PULLUP: = {
RTOG \ROT -90: "CONTACT TO PULLDOWN"
GW({ 0#0 ; #LEN+4}) “ACTIVE AREA"
YB(-4#-15 4#LEN+25) "DEPL MODE IMPLANT”
RB{ -3#0, 3#1LEN+1) "GATE"
GTOB \AT O0#LEN+4 "VDD CONTACT"
b
VAR NAND2=SYMBOL; “TWO INPUT NAND GATE"
NAND2: = {
GTOB; "CONNECT TO GND AT Q#0"
RW({ d4#4; 4.}) “INPUT 1"
RW({-448: 4#.} % "INPUT 2"

GB(-3#0. 3#11).
PULLUP \AT 0#13

b

The checkplot of this example follows.

A Guide to 1.81 Implementation _ 92

4. Building Your Own Tools

The functions described in section 3 provide a way of digitizing a layout. A more powerful
approach to description is to actually compute the layout. This section describes the tools in

ICLIC that are directed toward that goal,

41 Loops and Conditionals
The form of the conditional statement in ICLIC is;
IF ¢(BOOL> THEN <EXPR> ELSE <EXPR> Fl

where <BOOL > is some boolean expression, and <EXPR> is one or more assignment

statements.

example: IF N=3 THEN ARRAY:= { ARRAY: INVERTER; CELL},
ELSE ARRAY:={ ARRAY : CELL}: FI

The example inserts an extra inverter when N equals 3.
The basic form of the loop control in ICLIC is:

DO
< computations >
FOR <loop counter > FROM <start> TO <end> BY <increment>;

The loop counter must be a variable of type INTEGER or REAL, and start, end, and increment
must reduce to numerical values of the same type. The BY value is optional. The loop counter is
tested at the end of the block, so all loops arc exccuted at least once.
example: DO
NEWROW: =ROW(NBITS,1): "MAKE A NEW ROW, | IS A FLAG"
Y:=Y+INCY;
SRA:={SRA: NEWROW \AT X#Y}. "ADD THE NEW ROW TO SRA"
FOR 1 FROM 2 TO NBITS;

This example is taken from the barrel shifter example in section 4.4 and builds an array of similar

rows as dictated by the flag L

-

A Guide to 1St Implementation 93

4.2 Minimum DBounding Box

A function is provided that returns the minimum bounding box of any SYMBOL. The return in
in the form of the minimum and maximum XY for the symbol. The casiest way to use the

function is to assign the return to two separate POINT variables as shown in the example,

MBB(< symbol >)

parameter: SYMBOL
example: LOWPOINT:=MBB(CELL).LOW:;
HIPOINT: = MBB(CELIL).HIGH;

LEFTX: =LOWPOINT.X; "LOWPOINT is POINT, LLEFTX is REAL"
TOPY:=HIPOINT.Y; "HIPOINT is POINT, TOPY is REAL"
SIZE:=HIPOINT-LOWPOINT:; "SIZE is a POINT"

WIDTH: =SIZEX +1; "WIDTH is REAL"

4.3 User Defined Functions

The most basic type of function takes a parameter list and returns a value. While this value could
be of any defined TYPE, 1o produce SYMBOLs it must be of TYPE SYMBOL. Parameters to

functions are passed by value,

DEFINE <name>(<parm list>)= {return type>:
<body >

ENDDEFN

Note the colon afler the return type, and the lack of semi-colon afler the ENDDEFN. The
<{name > is the name used in the function call (section 2.4}, The < parm list > is the parameter
list definition. and must contain the dummy parameters and their TYPEs in the order they will be
called. The <return type> is the TYPE the function returns, usually SYMBOL. Some examples

of the first line, or header, of a function definition follow.
DEFINE RB(LOW HIGH:POINT}=SYMBOL.:
DEFINE ROT(SYMB:SYMBOL R:REAL)=SYMBOL.:

It is possible to define more than one function with the same name as long as the parameter lists

A Guide to LSI Implementation 94

are different. ‘That is, the parameters must be of different TYPEs, or in a different order. The
value of this is that it is then possible to define several functions of the same name that do

different things, depending on what TYPE of parameters are passed to them. For example:
DEFINE SIZE(SYMB:SYMBOL R:REAL)=SYMBOL:
DEFINE SIZE(SYMB:SYMBOL P:POINT)=SYMBOL.:

The <body> of the function contains ICL statements just as in the main program. In the
simplest case, this will be just a symbol definition. Notice that there is no semi-colon after the

symbol description.

"VARIABLE LENGTH PULLUP"
"LENGTH IS IN LLAMBDAS"
DEFINE VPULLUP(LEN:REAL)=SYMBOL:

{
RTOG \ROT -90; "CONTACT TCO PULLDOWN"
GW({ 0#0 ; . #LEN +4 })»: "ACTIVE AREA"
YB(-4#-1.5 4#LEN+25). "DEPL MODE IMPLANT"
RB(-3#0 ,3#LEN+1); "GATE"
GTOBNAT O#LEN+4 "VDD CONTACT"
}
ENDDEFN

If local variables are required, the following form is used.

DEFINE <name>{<{pamm list>) = <{return type>:
BEGIN
VAR <variable declarations > ;
DO
< computations >
GIVE <return value > -
END
ENDDEFN

Notice the lack of semi-colons afler the DO, BEGIN, GIVE, and END statements. Following is

an example of this form of function definition.

“GIVEN THE WIDTH OF THE PULLDOWN, MAKE A 2 INPUT NAND"
"US1EE MINIMUM WIDTII RED WIRES FOR INPUT GATES"

"C'AILS VPULLUP, WHICH 1S DEFINED ABOVE"

"USES SYSTEM DEFINED GLOBAL VARIABLES RWIDTH AND GWIDTH"

A Guide to LSI Implementation 7 95

DEFINE NAND?(PDWIDTH:REAL)= S5YMBOL:

BEGIN
VAR NAND: SYMBOL: LEN,W1= REAL:
DO
LEN: - (8*RWIDTH*GWIDTHY/PDWIDTI: "COMPUTE 8.1 RATIO"
W1: - 14+ PDWIDTH/2: "HMALF WIDTH OF INPUT GATE"
NAND; = {
GTOB; "CONNECT TQ GND AT 0#07
RW({{ Wl#4: -Wl# }n "INPUT 17
RW({ -W1#8 W1# }»n “INPUT 27
GBi -PDWIDTH/2#0, PDWIDTH/2#11)
VPULLUPIEN) MAT 0#13
}:
GIVE NAND
END
ENDDEFN

(This NAND gate is the same as the one in scction 3.6, for PDWIDTH=6.)

44 More Circuit Examples

The code for two larger circuits is shown here. The first circuit is the 4 bit inverter shift register
shown in figure D.2. The inverter shift register is a single function, SR(NBITS), that takes as its
parameters the number of bits desired. The array form of the AT function (see section 3.4) is used
to duplicate the clements. Placement of wires is achieved by using pre-defined size constants such

as cell width.

"INVERTER SHIFT REGISTER. PARAMETER 1S NUMBER OF BITS"
"NUMBER OF CELLS = 2*NUMBER OF BITS"

DEFINE SR{NBITS:INT)-=SYMBOL:
BEGIN i
VAR PULLUP?, CELL, ENDCELL, CELL1=:8YMBOL:
INX, CINY. COUTX, COUTY =REAL:
CELL. SRA=5YMBOL.:
1, D2, D3, SRWIDE, CWIDE, CIIIGH. DFRMBT, DFRMPAD=REAL:

PULLUP2: = {
RTOGNAT 0#0\ROT -90;
RB(-1020, 44 7).
GTOBNAT -7 #10:
YW(S {120 #3; -T#. #8}%
GW({1#0: #3; -T#.. . #8})
N

CINX:=-10: CINY:=9;

COUTX:=-CINX: COUTY:=CINY:

CELLL: = {
PULLUPAAT 3#11:
GB(-1#60, 5#10):
GW({5#9. COUTX#COUTY})
RW({-2#6: b#6})
b
CELL: =

{
RTOG\ROT 18MNAT -5#7;

]
]
 p——

H
i g i

T

|

|
-y

|

|

|

%

Figure D.2 Four Bit Inverter Shift Register

A Guide o LSI Iinplementation %

GW({CINX#CINY: . +3#.}):

CELL1
}:

DCELL: = {
C'ELLA\ROT 180}
CELL:
GTOBNAT -1#0
1

ENDCELL: =

{

CELLAROT 180:
CELL];
GTOBMAT -1#0
}:

CWIDE: =20 CHIGH:=21;

"MAKE THE ARRAY PART"
SRA:= {

ENDCELLAAT CWIDE/2#0;

DCELLAAT [NX:NBITS-1 IX:CWIDE NY:1 1Y:0]
MAT L3*CWIDE#0

i

“PUT IN THE WIRES"

DFRMBT:=5: "DISTANCE FROM BUS TERMINATOR"™
DFRMPAD: =12 "DISTANCE FROM PAD"

D1:=7; "FROMLAST CELI TO VDD CONN"

D2:=3: "FRM LAST CELL TO FEED AROUND WIRE"

SRWIDE: = CWIDE*NBITS: "DISTANCE TO END OF SR ARRAY"

SRA:= {
SRA:
Bwid, { DFRMBT#0: (SRWIDE + DFRMPAD)#0}); "GND"

" VDD..2 BLUE WIRES CONNECTED BY A RED ONE"
{BLUE: 14#-CHIGH: SRWIDE+ D1#.: RED; .#CHIGH: BLUE:
- DFRMBT#.}:
"CONNECT UPPER TO LOWER AND SHORT ONE QUT”
GW({(SRWIDE)# COUTY: .+ D2# .1 . # -COUTY: -D2# 1%
YB(SRWIDE + D?-5# COUTY-1.5, SRWIDE + DD2- 5 # COUTY + 1.5):
"QUTPUT WIRE"
{GREEN: 0#-COUTY: #-CHIGH: BLUE: _# -BWSPACE:
SRWIDE+D1#.: RED: .+{DFRMPAD-DL)# }:

"INPUT WIRE"
RW({-DFRMBT# CHIGH-1: 0% .. #6: 8% 1)

“NOW PUT IN CLOCK LINES NEED NBITS OF THEM"
RW({0#-CIHIGII-13: 0#CHIGH + 6] NAT CWIDE#4
VAT [IX:CWIDE 1Y:0 NX:BITS NY:1]
GIVE SRA '
END
ENDDEFN
The second circuit is a barrel shifier. The layout is shown in figure D.3. The barrel shifter is
structurcd in similar, but not identical rows. The rows differ in the placement of one special cell.
The barrel shifter function, SHIFTR(NBITS), takes the number of bils as its parameter, and calls a
subfunction once for each row., The subfunction, ROW(NBITS NPOS), takes the number of bits

and an integer indicating which position the special cell sits in the row and generates one row of

] N ~ M 1
HITF ﬁ [H I

i s i 1 £ S 10 W =2

z & = i R % e .
UH _ |_|~ b = L lmlﬂ E r._._

S — L) ___f_;.T ! T

= i o _" H

pimmd

S
‘ME!
wal
1

H TIEREET - T
TN B=oH T
i M__mm/wl_ THEE BT T TTHE
O L0 iEH e
[NS |2 S | I S o w11 I I B
{] | o b o ". P
- o n —L ~ S - FFJE —_.l “ i A@ o_-l_

Figure D.3 Four Bit Barrel Shifter

A Guide to LSI Implementation 97

the layout. The outer function computes the minimum bounding box for the row to determine the
displacement in y.

"THIS 1S THE CODE IFOR THE BARREL SHIFTER”
"UPPER LEVEL FUNCTION IS SHIFTR{NBITS)"
DEFINE SHIFTR(NBITS:INT) - SYMBOL:
BEGIN
VAR NEWROW, SRA=3YMBOL:

X, Y. INCY =REAL:

P1, P2=POINT;

I=INT:

DO
X:=0: Y:=0;
SRA: =ROW(NBITS, 1k
“COMPUTE THE Y INCREMENT FROM THE MINIMUM"
"BOUNDING BOX OF ROW"
Pl: =MBB(SRA)Y.LOW: P2:=MBB(SRA)HIGH:
INCY:=(P2-P1).Y-1:

DO
NEWROW: = ROW(NBITS, I}
Y: =Y +INCY:
SRA: = {

SRA;
NEWROWMNAT X#Y

|5
FOR 1 FROM 2 TO NBITS:
GIVE SRA
END
ENDDEFN

"DEFINES ONE ROW OF THE SHIFT REGISTER"™

DEFINE ROW(NBITS:INT POS:INT)==SYMBOL.:

BEGIN

VAR SUBCELL. CELL, CELL1. CELLN, ONEROW =SYMBOL.
BUSA. BUSB, OUT. SHIFT, RCONL RCON2, GATES,
GCON, X1, X2, X3, CWIDTH, CTOP=REAL;
IX=REAL;

DO

"SET UP THE DEFINED COORDINATES
IF WE DO THIS RIGHT. THE REST IS EASY”

BUSB: =2: SHIFT: =18:

OUT: =SHIFT + RFRMG + RWIDTH/2 + GWIDTH/2;
GATES: =0UT + RFRMG + RWIDTI/2 + GWIDTH/2;
RCONL: =GATES +1: RCON?: =RCON1+8:;

GUON: -~ RCON2+1:

BUSA: = GCON+4;

CTOP: =BUSA +2:

X1:=3.5:; X2:=X1+7. X3}=X2+75

CWIDTH: =X3+2:

"BASIC CELL"
SUBCELL: = { .
RW{{0#BUSB: CWIDTH#BUSB}):
RW{{X1#SHIFT; CWIIDTH# SHIFT}):
GW({X1#0UT: CWIDI1i# QUT})
RW{{0# BUSA: CWIDTH# BUSAD:
{RED: X1#GATES; X2+25#.0 #.+45:
X3#RCON2: BLUE: . #(TOP}
{GREEN: X2-5#0UT: .#GCON; .+.5#.: BLUE: .#CTOP}:
{BLUE: X3#0; . #RCONI: RED}:
GR(X1+3.5#0UT. X2-5#RCONI1+2)
,}:

A Guide to LSI Implementation

"SPECIAL CELL"

CELLL: =

CELL:=

{

SUBCELL:

RTOGA\ROT9MAT X2#GCON+1;
{BLUL: X2#0. #BUSB+1: RED}
b

{
SUBCELL;
BW({X2#0: X2#CTOP}H

¥

"COMPUTE THE SPACING IN X"

IX:=X3-X1+ 1t

"X3 ALIGNS WITH X1”

"POS IS THE POSITION OF CELL1"

ONEROW: =

GIVE ONEROW
END
ENDDEFN

CELLNAT [IX:IX 1Y:0 NX:POS-1 NY:1);
RW(X1#GATES: -2# . #SHIFT: .+2#.})
CELLIVAT (POS-1)*1X #0;
CELLNAT POS*IX#0

SAT [IX:IX 1Y:0) NX:NBITS-POS NY:1};
RTOBMAT NBITS*IX + 2.5# SHIFT-1
}

98

-

A Guide 1o .81 Implementation 99

5. Operating Procedures

This section should contain information specific to the system and facililics available. Important

features are listed under each topic.

5.1 Plotting

The following functions are needed:
Mapping from the layer specification to the plotter (colors, stipples, whatever).
Specifying what layers and what circuit elements will be included in the plot.
Specifying circuit size and location relative to the plolting device.

If facilities dictate, how to pre-process plot files off-line from the plotter to optimize plotter

usage.
How to abort plots.

5.2 Getting In and Getting Out

The areas that need to be discussed are:
File creation and storage.
Operating the compiler.
Errors and their explanation.

Conversion of finished circuit to CIF or other intermediate description form.

