I

MEMOREX 7100

SYSTEM REFERENCE MANUAL

7/19/72

MEMOREX CONFIDENTIAL

CONTENTS: This Memorex 7100 System Reference Manual contains the

following papers authored by the members of the 7100 Design Team:

INTRODUCTION

SYSTEM ARCHITECTURE

CPU ARCHITECTURE AND MiCRO-PROGRAMMING
CPU LOGIC DESIGN

MEMORY SYSTEM

SYSTEM CONTROL AND DISPLAY PANEL
1/0 SYSTEM

PHYSICAL DESCRIPTION

POWER SUPPLY

OPSYS1 EMULATION PACKAGE

MRX30 EMULATION AND PERFORMANCE

- MRX30 PHASE "0" COST ESTIMATE

. Gregory

. Miller

. Conway

. Yee, R. Stallman
. Peterson

. Hemel

. Hoehnle, R. Holland,
. Pesavento

. Gregory

. Ewart

. Chueh, R. Hoehnle
. Miller

. Gregory

MEMOREX 7100

INTRODUCTION

M. GREGORY

7/19/72

MEMOREX CONFIDENTIAL

‘ : - !
The Memorex 7100 System is the result of a three month design

effort by the 7100 Design Team. The primary charter given the
team was to "design a processor building block which could be
economically used across a variety of product lines".

The primary design parameter was cost. The cost must be Tow
enough so that the processor can be used in several market
applications. However, performance of the 7100 System when

used as a MRX30 is required to equal an IBM System/3. Thus the
design centered around developing a minimum cost CPU which would
enable the 7100 System to have the required performance.

The 7100 CPU is an inexpensive micro-programmed processor which
gives the 7100 System the required performance. It has been
tailored to operate in a communications oriented environment,
and may be used in non-programmable applications as well as
programmable ones. It contains the hardware necessary to
operate under OPSYS1, thus giving the 7100 System upward compat-
ibility with the MRX40 and MRX50 when used as a general purpose
sma]i commercial batch system.

The 7100 System design is based on implementation in T2L logic.
The use of MOS-LSI for various components of the system is under
investigation.

This Memorex 7100 System Reference Manual is a collection of
papers by the members of the 7100 Design Team which give a
detailed description of the components of the 7100 System.
Included are detailed analyses of system performance and cost.

MEMOREX 7100

SYSTEM ARCHITECTURE

J.A. MILLER
7/19/72

MEMOREX CONFIDENTIAL

INTRODUCTION

|
1
|
|
\

The 7100 system consists‘of four separate subsystems, the;CPU,
| Control and Display (C&D), Memory, and 1/0 (See Figure 1). The
CPU is a microprogrammed general purpose processor using a 16 bit
microinstruction word. It'has a 16 bit data path for 2's complement
binary arithmetic, and several special purpose and general purpose
registers. The C&D subsystem is the panel lights and switcnes used to
ranually control and monitor the system. The memory subsystem consists
of a maximum of 32768°16 bit words of MOS-LSI storage. The memory may be
referenced on either a word or byte basis. The I/0 subsystem consists
of a number of device adapters logically integral with the CPU, each
of which may control one or more I/0 devices. These I/0 adapters .
may access memory directly without going through the CPU. Each of these

component subsystems is described in detail elsewhere.

These subsystems are interconnected via two independent data paths, the
memory bus.and the micro bus. In addition, an interrupt system connects
the I/0 subsystem with the CPU. The purpose of this section is to
describe in general the interaction of the subsections via these busses

and control lines, and to discuss the overall 7100 system timing.

THE MEMORY BUS

The memory bus is the path whereby the elements of the system (the CPU
and the various I/0 adapters) can access the memory subsystem. The
interface to the memory bus is described in detail in the memory sub-

system writeup.

Since several elements may desire concurrent access to memory, these

elements may not access memory directly, but rather must request that

FYNLIILIHNY HILSAS 00TZ °T JWN9I4

_ J.ua_.rzo.m H&I..J&xurz.w 4 - :
: h

WIANOMLINOS : . WalgAg
BITTOYINOD . Adidca
2nn3e 3303 Ad any | soR-oRam
Q31ld¥931N I Q3Lunalnl . P _ Samn ToWiINGD)
. NI NSD
Walsks O/t
SOF AdOoWaw
W3IsAS
Adowaw

|
access firstJhe memory bus controls access to memory on % fixed priority
basis. Since each element cannot control when access to hemory is
granted,the memory bus provides controls back to the e]eménts that
indicate both when access has been granted, and when the requested

operation is complete.

THE MICRO BUS

The micro bus connects the C&D and I/0 subsystems with the CPU. It
provides a direct data and control path-between those two subsystems
and the CPU. The relﬁtionship between the CPU and C&D subsystem is
rather special and is described in detail in the C&D writeup. It is
sufficient to say that the C&D subsystem is permitted some degree of

control over the CPU and the microbus.

The interface between the I/0 subsystem and the microbus is described

in the I/0 writeup. To each of the device adapters, the microbus appears
as an 8 bit address bus, a 16 bit data bus, and read and write control
lTines. There are no interlocking signal sequences nor any bus control
lines returning from the device adapters-to the CPU. The CPU retains
complete control over the micro bus at all times. The device adapters

use the system clock to control their bus operations.

Within the CPU the micro bus becomes the internal CPU microbus.
Operations over the microbus to the I/Q subsystem are the same as
operations between the internal components in the CPU. Indeed, the
CPU contains sets of registers that, for microprogram purposes, may

be dedicated to the individuai I/0 adapters.

The general register address space within the CPU admits of 256 addresses.
These may be viewed as 16 groups of 16 registers each. (16 column
addresses X 16 row addresses). There are not actually 256 registers

in the CPU., Those addresses that have no associated registers become

operations directed to the I/0 subsystem.

The 8 bit register address is formed of two compoﬁents. The 4 low order
bits (row address) reference one of the 16 registers within a group,

and arise directly from a microinstruction. The 4 high order bits (column
address) reference a register group, and arise from either the X (extended

register pointer) register or the P (priority interrupt) register of the

THE INTERRUPT SYSTEM

The priority interrupt system consists of an interrupt request Tine for
each device adapter. These lines enter the CPU where a priority encoder
encodes thg address of the highest priority device adapter whose request
line is active. This address is loaded into the P (priority interrupt)
register under micropgogram control. Since P also controls the register
addressing this action also permits the CPU to direct I/0 operations

at the interrupting device adapter. The column address recognized by

a device adapter must correspond to its interrupt request line.

SYSTEM TIMING

The basic clock that is used throughout the system is a 400 nanosecond

. clock. This clock is available to all subsystems within the 7100.

Within the CPU this clock is used for microcycle timing. It is the

time required to execute one microinstruction.

The memory subsystem works on a 1.2 microsecond cycle time. This

/

1.2 microsegond cycle represents 3 system clock times. The memory

-

may start on any system clock pulse.

The system clock is also sent to the device adapters that comprise the
I/0 subsystem. It may there be used in any way the adapter desires.
It must be used to control information passing between the CPU and tte

adapter via the microbus.

7100 SYSTEM SPECIFICATICNS

MEMORY SIZE

MEMORY WORD SIZE
MEMORY SPEED

DIRECT MEMORY ACCESS
DMA TRANSFER RATE
MEMORY TYPE

PROCESSOR CYCLE TIME
PROCESSOR REGISTER FILE
MICRO-INSTRUCTION WORD
PROCESSOR TECHNOLOGY
1/0 SYSTEM

1/0 CONTROL UNITS
INTEGRATED ADAPTERS
DEVICE ADDRESSING

170 TRANSFER RATE

Up to 64K bytes
(128K bytes with option)
16 bits + 2 Parity bits
1.2us cycle

.Bus access
Yes, up to 7 modules
750K bytes/sec.
MOS-LSI (2048 bit chips)

400 ns

"16-16 bit registers

16 bits
T2L Series 74

Direct & DMA
7 max
Yes, up to 7

Through register file
30KB direct, 750KB DMA

MEMOREX 7100

CPU ARCHITECTURE AND MICRO-PROGRAMMING

L. CONWAY
7/19/72

MEMOREX CONFIDENTIAL

-
o

l-

CONTENTS

INTRODUCTION
7100 CPU ARCHITECTURE

7100 CPU CONTROLS

7100 CPU DISCRETE REGISTERS
7100 CPU ROMS

7100 CPU RAM REGISTERS
MICRO-INSTRUCTION SET

SOURCE AND DEST FIELD CODES

"ALU OPERATIONS

PORT OPERATIONS
BRANCH CONDITION CODES
MICRO-ASSEMBLY LANGUAGE

T S S -~ S S S RS ORI U R SN FICRN O CORY O KT

O N B WM IO D WMNER[OR W8N O

;o
N

(SRS,
= ow

COMMENT CARDS
GENERAL CARD FORMAT

- LABELS

VALUES

ASSEMBLY CONTROL STATEMENTS
DEFINE CONSTANT STATEMENTS
MICRO-INSTRUCTION STATEMENTS

MICRO-PROGRAMMING TECHNIQUES

SOURCE-DESTINATION RESTRICTIONS

SCB BRANCH TIMING

MEMORY PORT OPERATION TIMING

DECIMAL ALU OP TIMING

-
o——
m

0 ~ O O N-N—'l-—-'—ﬁl

oW oW W W W W W W oW W W W N
OC O~ O B W W W N NN = P NN

TABLES PAGE

TABLE 1. .7100 MICRO-INST SET FORMATS 8
TABLE 2. SOURCE AND DEST FIELD CODES 10

- “TABLE 3. ALU OP CODES ' 25
TABLE 4. PORT OPERATIONS 28

-~ TABLE 5. BRANCH CONDITION CODES 29
TABLE 6. SUMMARY OF MICRO-INSTRUCTION FIELD CODES 30
FIGURES PAGE
‘FIGURE 1. 7100 CPU ARCHITECTURE - ' 3
FIGURE 2. CONDITION REGISTER SETTING 26

FIGURE 3. CPU - MEMORY PORT TIMING - a1

1.0

INTRODUCTION

This manual documents and describes the Memorex 7100 CPU architecture,
and the 7100 micro-instruction set. Alsc included is a description
of an assembly language for the symbolic encoding of 7100 micro-
programs, and some examples of techniques for micro-programming the
7100,

The Memorex 7100 is a micro-programmed special purpose processor.
It executes Micro-instructions fetched from a "read-only" memory.

“The 7100 may be micro-programmed to function as a general purpose

processor (MRX/30), in which case it would emulate the execution
of (MRX/30) instructions fetched from a "read-write" memory. The
7100 may also be micro-programmed to serve other special purposes.
For example, it could be micro-programmed to function as a
communications adapter.

The 7100 CPU is designed to rapidly execute (by micro-code emulation)

"16-bit instructions from a main memory, using simply-structured,

minimum-cost hardware.

The purpose of this manual is to document the 7100 CPU design at
the architectural Tlevel, and to serve as a reference manual for
those who design and implement the various micro-programs for the
7100.

2.0 7100 CPU ARCHITECTURE '
This section describes the 7100 CPU architecture diagrammed in
Figure 1.

The 7100 CPU is organized primarily as a set of 16-bit registers
on a 16-bit bus. Many micro-program functions are implemented
simply by gating data from one register (SOURCE) to another

-~ {DEST), via the bus.

~Additionally, a simple ALU which has two input feeder registers
(A and B) may be used to perform logical or arithmetic operations
on data (in A and B} prior to gating the resuiting data to a
register (DEST) via the bus.

Some of the registers are discrete and serve specific functions.
Of these, some may only function as SOURCES or DESTINATIONS of
gating operations but not as both. Figure 1 indicates symbol-
jcally which function{s) each specific register may serve.

Other registers are contained in a RAM. These are used as either
SOURCES or DESTS and serve as registers for MRX/30 register
emulation and MRX/30 Input-Qutput emulation.

The 7100 is controlled by fetching and executing micro-instructions
from a "read-only" memory (UROM).

2.1 7100 _CPU CONTROLS

Each micro-cycle (400 ns), the 7100 fetches a micro-instruction from
an address in UROM determined by the preceding instruction. The
micro-jnstruction is fetched into the micro-instruction register
(UIR). The UIR feeds the control logic which decodes and executes
the micro-instruction. :

SISYNOS WOUS sng
" A
21 H{ on 9 9| g 2 gl e al| 2g| 9
ElI X252 24X 9SZ
+ ol
©1TEha2L36VEDARS %. au_lﬂ Weud WD
4
| I i
o _
] L 12 |
ﬁ =1
[S SAS
21 B
o L - ANl/dd
| | 12 :
o/ &
[o/I | e SMSTIN
| enawia L — 2 ; n.;;\.*M_
1 (R -1
_!||. - Lo 9| 2 | 5 | Z&MD »..2,&
$93y | Wwd 9 X = e AT ap) ‘217 INd
! = oyl 91 8 w; uid 1 9l 9
- { _ﬂ P]
S1saq o4 SOg wp_m _ | o
A - T
A | wow | [0
2] o o\ LPud
T
: gL-6T-L
2% ADMNOD "
X)) HhO
LX) FYN 103 LIHouy NdD 00TL
W3INW .
T 3HNDLS
)))

2.2

Encoded in the 16 bit micro-instruction are its FORMAT, and the
desired SOURCE and DEST registers for gating operations or the

OP and DEST for ALU operations. For gating and ALU type operations,
the address of the next instruction to be fetched into UIR is

formed by incrementing the current address at the time of access

and holding the incremented value in the micro~instruction

pointer register (UPNT). This incremented value is then used

to address the next instruction fetched for execution the

following micro-cycle.

Certain FORMATS, however, indicate a BRANCH instruction. These
instructions may alter the sequence of instruction execution by
specifying a SOURCE for the next instruction address other than
the incremented value stored inm UPNT.

The details of micro-instruction encoding are fully described in
a later section of this manual.

7100 CPU DISCRETE REGISTERS

The 7100 CPU contains a number of discrete registers with specific,
unique functions. These may be functionally separated into 3 groups:
control registers, memory interface registers, and data feeders.

The following registers are control registers: UIR, UPNT, PIR,
UCR, X, P, and PROT.

UIR, the micro-instruction register and UPNT, the micro-instruction
pointer register have already been described (Section 2.1).

PIR, the Program Instruction Register, is used to hold MRX/30
instructions during MRX/30 emulation. An instruction decode read-
only memory (DROM) is used to decode the 8-bit OP field (left 8 bits)
of PIR and provide a 13-bit jump address for emulation micro-code

OP decode jumps. Additionally, Togic decodes the Iy, Ry, Ip, Ro,
fields of the PIR so that conditional micro-code branches may be

/

made on these fields being zero/non-zero. I, = PIR(8), Ry = PIR (9-11),
Ip = PIR (12), R, = PIR (13-15). |

1
The UCR is a 10-bit register, whose bits are set/reset as the result

of ALU logical or arithmetic operations. Conditional micro-code
braches may be made on each specific bit of the UCR (micro-condition
register) being zero/one.

_Registers X and P are used in RAM register addressing which is described
in Section 2.4. PROT is used for memory write protection, described
below.

The Memory Address Register (MAR) and the Memory Data Register (MDR) are
used as interface registers for memory operations. Encoded in certain
micro-instructions are "PORT" operations which initiate/control CPU -
memory data transfers. '

The MAR holds the memory address for these data transfers. The 16-bit
MAR can address up to 64K bytes in main memory. The MDR holds the data
for writes and receives the data for reads. The PROT (protect) register
participates in the control of protected writes. It holds 8-bit fields,
U and L, which are the upper and lower bounds of the high order 8-bits
—of the write address in MAR. If a protected write is attempted out

of bounds; it is not executed and an error condition is set,

The data feeder registers A and B are used to hold the input data
for ALU operations. ’

~--Fhe ‘registers' PNL.LTS. and PNL.SWS. in Figure 1 represents the system
control panel display lights and data-entry switches. During single-
cycle operation of the CPU (under system control panel control) various
CPU registers (UIR, UPNT, MAR, MDR) may be displayed in the lights or
altered via the switches. These functions are described in detail in
the reference manual "MEMOREX 7100 SYSTEM CONTROL PANEL", by A. Hemel.
The panel switches may also be read.as sources by micro-instructions.

2.3 7100 _CPU ROMS

The‘7100 CPU data flow contains three read-only memories (ROMS), the
UROM, CROM, and DROM.

The UROM is 8192 (max) 16-bit words. This is the memory which
holds the micro-instructions which control the 7100. Note that 13
bit addresses are required to address the span of the memory (8K).

The CROM is a smaller read-only memory used to hold 16-bit constants.
Certain micro-instructions may specifiy an 8-bit CROM {constant ROM)
address and thus select one of CROM's 256 constants for gating onto
the bus to a destination.

The DROM (decode ROM) is a small 256 by 13-bit read only memory used

to decode the 8-bit OP field of the PIR to obtain a 13-bit jump
address.

2.4 7100 RAM REGISTERS

The 7100 CPU bontains 80 registers (16-bit) in a small Random Access
Memory (RAM), as indicated in Figure 1.

Micro-instructions may address these RAM registers and use them as

sources or destinations of data to/from the bus. Such micro-instructions

encode the 'row' of the RAM directly into their SOURCE or DEST field
code. This selects one of the 16 rows of the RAM for addressing.

" “The 'column' (one of 16) is selected by the data (4-bits) in the P or X

register at the time the RAM is accessed by a micro-instruction.

If the high order bit in the (5-bit) X register is 0, then P is used for

~RAM column selection. If the high order X bit is 1, then X is used. .

Of the 256 possible RAM addresses (16 rows by 16 columns), only 80
actually contain CPU registers. Certain of the remaining addresses

correspond to registers or command codes for devices external to the
CPU (1/0).

3.0

This organization of the RAM register file enabies the CPU to
communicate with I/0 devices in the same simple manner in which it
uses its own internal registers. It also enables the “state" of the
CPU (corresponding to the value in P) to be switched under control
of a Priority-Interrupt System. These functions are described in
detail in the reference manual "MEMOREX 7100 I/0 SYSTEM".

7100 MICRO-INSTRUCTION SET

The 7100 CPU executes 16-bit micro~instructions. The first 3-bits
of each micro-inst encode its FORMAT. Table 1 lists the various
FORMATS of the micro-instruction set. Seven of the eight possible
are currently defined.

The micro-instruction set logically groups into 3-basic types of
instructions:
(i) ALU operations. FORMATS: ALU
(ii) GATING operations. FORMATS: GSD, GCD, GID
(iii1) BRANCH operations. FORMATS: SCB, ACB, UCB

The ALU type of micro-instruction specifies that the ALU operation
encoded into its OP field be performed on the data in feeder registers
A and B with the result bused to a specified DEST register.

The GATING type of micro-instruction specifies a SOURCE for data and

a DEST to which that data is to be bused. In the GSD FORMAT, the
source is an addressed CPU register. In the GCD FORMAT, the source

is an addressed CROM constant. In the GID FORMAT, the source is

8-bits of immediate data in the micro-instruction itself (R.J. on bus).

The BRANCH type of micro-instruction may alter the sequence of micro-
instruction execution by specifying some address for the next instruction
other than the incremented current address. In the case of the UCB
FORMAT, the BRANCH is “Unconditioné1“ and is always taken.

MNEM

ALU

GSD

GCD

GID

SCB

ACB

ucae

7100 MICRO-INST SET FORMATS

TABLE 1

|

FORMAT
3 5 3 5
000 | DEST | PORTl oOP
3 5 3 5
001 | DEST | PORT| SOURCE
3 5 8
010 | DEST | CROM ADDR
3 5 8
011 | DEST | IMM DATA
3
100
3 1 4 3 5
101 | R | COND| PORT| SOURCE
3 1 4 8
110 | R tcono| ADDR ON PG
3 1 12
111 |'s! ADDR

DESCRIPTION

|
|

ALU 'OP' performed on feeder REGS
‘A’ and 'B', result gated to
destination.

Gate source contents to destination.

Gate the 16-bit constant at 'CROM
ADDR' to destination.

Gate IMM data to destination
(Right justified, zero fill).

Unused.

Conditional branch to ADDR contained
in 'SOURCE' if 'COND' true, and R = 0.
BR on 'COND' false if R = 1.

Conditional branch to ADDR on current
page if 'COND' true, and R = 0. BR
on 'COND' false if R = 1.

Unconditional branch to ADDR in current 4K.
If S =0, then 'BRA'.
If S =1, then 'BSR' (UPNT + 1 gated

to specific implied 'USRT' REG).

/
In that case the micro-instruction contains a 12 bit branch addreés for
the next instruction (within the current half of the UROM as specified
by the high order bit of UPNT)}. A special subroutine bit is also encoded
in the UCB FORMAT. If it is one, then the processor saves the UPNT
register in a specific register in the RAM for use later as a sub-
routine return.

The ACB and SCB FORMATS are “conditional branches". For these instructions
to alter micro-instruction sequencing to their specified addresses,
the indicated condition must be true (if R = 0) or false (if R = 1).
ACB, if taken, causes the next instruction to be fetched at the address
on the current 256 word "page" in the UROM given by the 8-bit "ADDR ON
PG" encoded in the ACB micro-instruction. An SCB type BRANCH, if
taken, specifies as the branch address the contents of the encoded
SOURCE register.

Certain of these basic ALU, GATING, and BRANCH type micro-instructions
have an additional "PORT" field. This 3-bit field in these instructions
encodes memory initiation and control functions. The specific functions
are described in Section 3.3.

3.1 SOURCE AND DEST FIELD CODES

This section describes the encoding of the SOURCE and DEST fields of
the 7100 micro-instruction set. The locations of the fields in the
—micro-instructions are shown in Table 1, while the CODES and MNEMONICS

are listed in Table 2.

. .A11 .the SOURCE and DEST field codes are encoded into 5-bits. If the
‘high order bit is zero, then the SOURCE or DEST is in the RAM registers
“and the low-order four bits form the "row" address for the RAM register.

RAM registers may be either SOURCE's or DEST's, although timing
restrictions preclude gating from one RAM register to another RAM
register in the same micro-cycle.

If the high order bit of the code is one, then one of the CPU discrete
registers or some variation is indicated (See Table 2).

TABLE 2

SOURCE AND-DEST FIELD CODES

CODE SOURCE DESTINATION

00 REGO REGO
‘ ¥ |

I ! .

} - g
} 1 |
OF REGF REGF
10 X X

11 PIR PIR
12 MDR MDR
13 SMDR SMDR'
14 UPNT PROT
15 R11 R11
16 R2I R21
17 SHS A

18 PIRD B

19 . P UIR
1A MAR MAR
1B ST AMAR
1C UCR UCR
1D — —
1E —— e
1F RO NOP

11

Certain of the CPU discrete registers may be either micro-code SOURCES
or DESTS. These are:X,PIR, MAR, MDR, and UCR. Note that UCR, while
it holds 10 bits, has only its left 8 bits gatea to/from the bus when
used as a SOURCE or DEST. In both cases the 8 bits are left justified
(L. J.) on the bus. Also, when UCR is used as a SOURCE, the right-
most 8 bits of the bus are zero. :

‘;
Some CPU registers may only be used as a source. These are UPNT and P.
UPNT is used as an implied destination for the branch address during
the execution of a SCB type branch. Thus, the Figure 1 shows a data
path from the bus into UPNT. However, UPNT may not be directly encoded

as a DEST.

The 'SWS' source code is used to read the system control panel data
entry switches. '

The 'ZRO' source code places all zero's on the bus.

The mnemonic 'PIRD', indicating PIR decode, appears as a SOURCE only.
This code is used to gate the DROM decode of the OP field (8 high
order bits) of the PIR as a SOURCE.

The mnemonic 'CST' appears as a SOURCE only. This is used as a special
function in an otherwise NOP instruction (PORT may be used) to indicate
that the P register may be updated to the new value specified by the
priority-interrupt system (changes CPU ‘state').

Some CPU registers may only be used as destinations. These are PROT, -UIR,
A, B, and AMAR, AMAR is a special DEST only code which enables the

bus data to be simultaneously gated to two destination registers, A and
MAR. A UIR DEST OR's the bus with the next fetched micro-instruction.

‘Note that there is a NOP DEST code. This code disables any gating

to destinations.

'SMDR' is a special use of MDR. The right-justified byte on the bus
is gated to/from the MDR half indicated by MARig (0 = left, 1 = right).

R1I, R2I cause the indirect use of the Rl or R2 fields (3 bits) of the
PIR as SOURCE/DEST codes. This enables indirect use of REGO - REG7 in
the RAM according to value of Rl or R2 field in the PIR.

3.2

12

: |
ALU OPERATIONS (R. Stallman) !

- \
The ALU operations consist of three basic types: arithmetic

functions; logic functions; and word, byte, nybl manipulations.
A1l of these ops are performed on operands in the A and B

registers. The ALU op codes are Tisted in table 3.

Bits 0-7 of the condition register {UCR) are dedicated to
storing the status of the applicable ALU ops. The assignment
of each bit location in the UCR (condition register) is

diagrammed in table 2.

Arithmetic Functions

Arithmetic operations performed by the ALU are either binary or
decimal. These two general categories differ from each other
substantially. Binary ops: require one microcycle for their

execution; involve two-16 bit operands and require binary numbers

" to be represented in 2's complement notation.

- Decimal ops: require two micro-cycles for their execution;

involve 8 bit (two decimal digits) operands and outputs; and

require digits to be represented in packed BCD (8421) format.

Binary Arithmetic Ops

Signed binary values are represented by 15 bits of magnitude

inforﬁation with the 16th bit (MSB) representing the sign.

Negative numbers have a 1 in the sign position, and positive

-numbers, a 0. Numbers are also in 2's complement notation. Negative

numbers are formed by deriving the 1's complement of the positive
representation and adding a 1 to the least significant bit:

+ 17 = 010001

n

- 17 = 101111

In 2's complement addition, the 16 bit numbers (including sigﬁ)
are added and the carry from the most significant (sign bit) is
always ignored. Subtraction is performed by adding the 1's
complement of B to A, and adding a 1 to the least significant bit
position. In either addition or subtraction, the resultant answer
is in 2's complement form, and no correction need be made. The
overflow bit in the UCR is set according to the following:

ADDITION:
(BAD+BADX) [(A =0+B4=0+ALUG=1)+(Ay=1+B =1+ALUy=0)]

SUBTRACTION
-~ (BSB+BSBX) [(Ag=1"B,=0-ALU=0)+(Ag=0-Bo=1-ALUy=1)]

A, = Bit zero of the A Register (Sign Bit)
B, = Bit zero of the B Register (Sign Bit)
ALUy = Bit zero of the ALU Register (Sign Bit)

ADD, SUB
ADD and SUB are ops intended for use with address arithmetic. When

executed, they do not change the condition register. Carries or
borrows from the condition register into the ALU are inhibited
during these ops. SUB is a 16-Bit binary subtraction of B from

A, producing no borrow or overflow in the condition register. ADD
is a 16 bit binary addition of A and B, also producing no carry

or overflow in the condition register.

BAD, BSB

BAD and BSB are ops intended for use in single precision 16-bit
‘binary addition or subtraction. Carries or borrows into the ALU,

from the condition register, are not enabled. Carries or borrows
and overfiow resulting from these ops are, however, stored in the

condition register.

13

14

BADX, BSBX)
BADX and BSBX are ops jntended for use in multiple precision 16-bit
binary additions or subtractions. Carries or borrows initially

in the condition register are included in the addition or subtraction

being performed and carries, borrows, or overflows resulting during

the execution are stored in the condition register.

The following examples use 6 bits rather than 16 for simplicity:

Single-Precision ADDITION (ADD,BAD)

-10 +110110 +10 +001010
- 3 111101 = 3 111101
-13 1 110011 +7 1 000111
1A-Ca\rry—store arry-store
in UCR if BAD in UCR if BAD

Single-Precision SUBTRACTION (SUB,BSB)

+10 4001010
-(-3) 000010 ¢——1"'s complement of {-3) [Done by
+13 + 14——Forced carry-in ALU

1;001101
No borrow - O in UCR if BSB

¥10 001010
-(+3) 111100€—1's complement of {+3) | Done by
+7 + l¢—7Forced carry-in ALU
1 000111

'_L-—Borrow-store in UCR if BSB

Multiple-precision additions or subtractions involve binary numbers
larger than the capacity of the 16-bit A and B registers. If a 32
'bit number is to be added to, or subtracted from, another 32 bit
number, two passes through the ALU must be made. The first pass
would be a BAD or BSB as illustrated, the second pass must include

the carry or borrow produced in the first pass (BADX or BSBX). The

15

/
first pass (least significant word) would not include a sign bit.
The following example uses 12 bits instead of 32 for simplicity.

MULTIPLE-PRECISION ADDITION‘(BAB & BADX)

2nd pass!lst pass

1200 4010010110000 q-——A Reg.
+ 301 000100 101101{—43 Reg.
1501

I
1st pass through ALU (BAD)

, 110000

101101
1 011101

1l-——----C.snrry-s1:ored in UCR

2nd pass through ALU {BADX}

4010010

000100

+ 1 «#—carry from UCR from previous pass.
010111 '

No carry -~ 0 to UCR
Resultant answer: 010111011101 (1501)

MULTIPLE PRECISION SUBTRACT (BSB,BSBX)
2nd pass! 1st pass

+301 - 000100! 101101 4—A Reg.
- (+1200) 0100101110000 —8. Reg.
-899 {

1st pass through ALU (BSB)

+101101

0011114—-c0mp]ement of B
+ 1e—forced carry-in } Done by ALU

0 111101
1‘——No carry - 0 stored in UCR

2nd pass through ALU

+000100

101101 ¢—complement of B:}
+ - () g—carry from UCR Done by ALU

110001

t—-——No carry, 0 stored in UCR

DECHN TANT ANSWER- 110001111101 (2'c ramnlament af -R0Q)

16
/

DECIMAL ARITHMETIC OPS /

Decimal ops are performed on a right-justified byte iﬁ the A and
B register. The data is in packed decimal form. }

|

In the zoned decimal format, a byte is required to hoid each digit,
0-9. The zoné portion of each byte is unused (except for the sign

in the right-moét byte). These zoned decimal fields can be packed
into a fewer number of bytes if the zones are removed; thus a packed
or unzoned decimal format. A1l numeric fields must have a sign, and
in the zoned decimal format the first four bits (0-3) of the right-
most byte are used te hold a sign. A hexadecimal C is a plus sign;

and a hexadecimal D is a minus sign. In the packed format, the 4-bit

sign is moved to the last four bits of the rightmost byte.

The following illustration shows the number 18,634 in a zoned format
and a packed (unzoned) format. Note the difference in placement of
the sign. For easier interpretation, the actual bit patterns are
~not shown. |

ZONED

F 1 F 8 F 6 F 3 + 4

- Zone Digit Zone Digit Zone Digit Zone Digit Sign Digit

PACKED

1] 8 6 3 4 +

Digit Digit Digit Digit Digit Sign

" The decimal digits are represented by 4-bit BCD (8421) code, therefore
each pass through the ALU adds two decimal digits to two decimal
digits and a possible carry from the UCR. A carry from the high-order

digit is stored in the UCR.

/ 17

Subtraction of decimal representations are performed using 10's
complement addition. This method of subtraction by addition is
somewhat analogous to using 2's complement addition when performing
binary subtraction. When using 2's complement notatioh, binary
numbers are left in 2°'s complement form in memory. When decimal
data is processed, however, it is stored in true form. When
_.Subtracting one ﬁumber from another number, by adding the 10's
complement of one to the other, the addition may or may not have
produced a carry. The carry, if it occurs, {s dropped and the
difference is in true form. If no carry occurs, the difference
is in 10's complement form and must be corrected to place it in
true form. No carry indicates that a larger number was
subtracted from a smaller number, and thus a negative difference
has resulted. To put a BCD number in 10's complement form, the
9's complement is first derived by subtracting each digit from 9
and adding 1 to the LSB. In a similar fashion, taking the 10's
complement of a number in 10's complement form, places it back in

.true form. Where reference to BCD is made, 8421 code 1is implied.

DAD,DSB _

DAD and DSB are ops intended for use in 8 bit BCD addition (DAD) or
~sobtraction (DSB). Specifically, these ops are to be used for the

first pass, of a series, through the ALU. Thét is, when the two

Jeast significant decimal digits of a number are added. Carries

or borrows from the condition register are ignored during these

bps, however, if a carry or borrow is produced during the execution

of the op it is stored in thé UCR.

18
DADX, DSBX /
DADX and DSBX are ops used in 8 bit BCD addition (DADﬁ) or subtraction
(DSBX). These ops are used after the first pass through the ALU, and
‘include a carry or borrow from the UCR that the first§pass may have
produced. If a carry or borrow is produced during the execution of

these ops, it is stored in the UCR.

The following are examples of the decimal Add ops:
(It should be noted that these are BCD additions, not Binary)

2nd pass| 1st pass

- ¥, f)

, 0056 0000 0000 | 0101 0110

1234 0001 6010, 0011 0100
T1290 ' l

|
1st pass through ALU: (DAD)

0«4—Carry inhibited by ALU

10 .
+§2 +gégig%00 }- ALU performs BCD addition
90 0 10010000

T——No carry, 0 stored in UCR

2nd pass through ALU (DADX)
0Oe«—<Carry from UCR resulting

00 00000000 from previous pass
+12 00010010
12 00010010

T——No carry, 0 stored in UCR

Resulting Answer: 0001 0010 1001 0000 (1290)

Z2nd pass : 1st pass

hl-—-—\\{—._ﬁ.———-ﬁ

~9999 ,1001 1001' "1001 1001

3999 1001_1001! 10011001
|

1
1st pass through ALU (DAD) -

99 0 @—Carry from UCR inhibited
+99 10011001
1 98 10011001}» BCD add done by ALU

t 1 10011000

Carry to 4 carry, 1 stored in UCR
next decade

19

//
2nd pass through ALU (DADX)
leCarry from le—Carry from UCR resulting
99 previous 10011001 from previous pass
+99 decade 10011001
1 99 1 10011001
tCarry L—Car‘ry, 1 stored in UCR
Resulting answer: 1 1001 1001 1001 1000 © 19998
The following are examples of the decimal subtract ops:
2nd pass | 1st pass
— NI A
1234 0001 0010' 0011 0100
-0056 0000 0000] 0101 0110
1178
|
1st pass through ALU (DSB)
34 ,00110100
-56 010000114——9's complement of 56
1 78 + ~ l4——orced carry-in to get Done by
4 sorrow from 0 01111000 10's complement ALU
' next'decade t——-—Borrow, (no carry) - 0 stored in UCR
2nd pass through ALU (DSBX)
12 +00010010
00 orrow from 16011001 «-9's complement of 00 Done by
- lg-previous decade + 0 4—borrow from previous ALU
1 1 ~ 00010001 decade (no carry)
No borrow, {carry) - 1 stored in UCR
Resultant answer: 1 0001 0001 0111 1000 1178

Since there was a carry (no borrow} in this answer, it is to be

ignored, and the answer considered to be in true BCD form.

20

l /
b 2nd pass | 1st pass 1 /
0056 0000 0000 lOlOl 0110 ’ |
-1234 -0001 0010 ' 00110100
1 8822 T }
1ifborrqw j
[
1
1st pass through ALU (DSB)
56 401010110
-34 0110010L4—————-9 s comp]ement of 34 Done by
22 1 g—rForced carry-in to ALU
1 00100010 get 10's complement

No borrow {carry), 1 stored in UCR

2nd pass through ALU (DSBX)

b
00 ;00000000
-12= 10000111€—9's complement of 12
1 88 + 14——Carry (no borrow) from
I 0 10001000 from previous decade
borrow LBor‘row (no carry) 0 stored in UCR

Resultant answer: O 1000 1000 001C 0010

Since there was a borrow (no carry) in this answer, the answer is
negative and is 10's complement form. It must be corrected (recomplemented).
This is accomplished by taking its 10's complement, equivalent to
subtracting the answer from all zeros with an implied high order

borrow available.

21

!
/
Correction {Recomplementing)
b 2nd pass l 1st pass
0000 0000 0000 | 0000 0000
-8822 1000~ 1000 10010 0010
-1178 ' LR ‘
|
1st pass through ALU (DSB)
00 00000000
-22 01110111 4————9's complement of 22
1 78 1 4——Forced carry-in to get Done by
I 0 0111 1000 10's complement ALU
Borrow T
Borrow (no carry), O stored in UCR
2nd pass through ALU'(DSBX)
b
00 : +00000000
-88 000100014——————-9'5 comp]ement of 88
-1 O4————2Borrow (no carry) from
T =11 00010001 previous carry

Resultant recomplemented answer: (0001 0001 0111 1000

It should also be remembered that this answer is negative.

22

Logic¢ Functions .

The logical ops include compare, right and left shifts, inclusive

OR, exclusive OR, AND, and invert.

CMP

The execution of an ALU instruction with a CMP op results in a

logical and an arithmetic comparison of A to B. The results of
_this comparison are stored in the condition register. The DEST
field of the instructions is not used during.this op. Bits 1-3
of the UCR reflect the results for Arithmetic compare ({includes
sign) of A and B. Bits 5-7 of the UCR indicate the results of

.a logical (maginitude of 16 bits) compare of A and B. UCR bits

0 and 4 are reset during the execution of this op.

SLO, SRO

The shift ops define 1-bit linked, end-off shifts. SLO is a 1-bit
serial left shift through the 32 bits of A and B. The resulting
contents of the A register are gated onto the bus. SRO is a 1-bit
serial right shift through the 32 bits of A and B. The resulting
contents of the B register are gated onto the bus. Bits 0-7 of

the UCR are not changed during the execution of this op.

I10R |
10R is the inclusive GR (logical summation) of A and B. The
results of the OR are gated onto the bus. Bits 0-7 of the UCR

“are not changed during the execution of this op.

23

XOR
XOR is the exclusive OR (modulo - 2 sum) of A and B. The results
of XOR are gated onto the bus. Bits 0-7 of the UCR are not

changed during the execution of this op.

AND.
-AND is a Togical AND (logical product) of A and B. The results of
-AND are gated onto the bus. Bits 0-7 of the UCR are not changed

during the execution of this op.

NV
INV, performs a logical complementation. This op, inverts the
state of each of the-16 bits of A, onto the bus. The contents of
A remain undisturbed. Bits 0-7 of the UCR do not change during the

-execution of this op.

WORD, BYTE, and NYBL Manipulations:

BCB:

Gates onto the bus the combination of the right byte of A and the
left byte of B. UCR bits 0-7 are not changed.

IN1:

Gates onto the bus the insertion of NYBL 1 of A into B. UCR bits

0-7 are not changed.
' " NYBL 1

.

NON-DESTRUCTIVE

Bus

24
| /
INZ; Y
Gates onto the bus the insertion of NYBL 6 of A into B. UCR

bit 0-7 are not changed. 1

|

NON-DESTRUCTIVE .

Bus

DBT

Bit test DBT is an op in which any one of the 16 bits in the A
register may be tested. The location of the bit to be tested

is encoded in the low-order 4 bits of the DEST field of the
micro-instruction. The state of the bit tested is placed in UCR
bit zero. Bits 1-7 of the UCR are reset. No data is gated on

to the bus during the execution of this op.

BT
Bit test BBT is an op identical to DBT in with the exception of the
location of the address of the bit to be tested. The low-order 4
bits of the B register are encoded to hold this address. As with
DBT, the results of the test are stored in Bit 0 of the UCR. Bits
1-7 of the UCR are reset. No data is gated onto the bus during

the execution of this op.

A0B, BOB
The contents of the A register (AOB) or B register (BOB) are gated
onto the bus. UCR bits 0-7 are not changed.

25
TABLE 3 /

ALU-OP_CODES

CODE - MNEM OPERATION

00 SLO Shift B to A, left open, 1 bit, A onto bus.
01 DAD BCD add, right half A to right half B, no CI, CO.
02 BADX Add A to B, CI, CO.

03 DADX BCD add, right half A to right half B, CI, CO.
04 CMP Compare.

05 DSB BCD sub, right half B from right half A, no BI, BO.
06 BSB Subtract B from A, no BI, BO.

07 BSBX Subtract B from A, BI, BO.

08 ADD Add A to B, no change to UCR.

09 BAD Add A to B, no CI, CO.

0A

0B

0c

0D DSBX BCD sub, right half B from right haif A, BI, BO.
4]3 ~ SUB Subtract B from A, no change to UCR.

OF BCB Combine right byte A, left B, onto bus.

10 INV Invert A (1's complement), onto bus,

11 SRO Shift A to B, right open, 1 bit, B onto bus.
12)

13

14

15 IN1 Insert 'NYBL1' of A into B onto bus.
16 INZ Insert 'NYBL 0' of A into B onto bus.

17

18

19 XOR Exclusive OR (A, B)

1A BOB Gate B onto bus.

1B I0R ~ Inclusive OR (A, B)

1c . DBT Bit test. (address in DEST field)

1D BBT Bit test. (address in B}.

1E AND AND (A, B)

1F ACB Gate A onto bus.

NOTE: CI = carry-in, CO = carry-out, BI = borrow-in, BO = borrow-out.

26

=1 N

/
/
FIGURE 2
CONDITION REGISTER SETTING
6171819
{
4 1 t—Bus< Zero Result of all non-branch
micro~instructions.
—— Bus =Al11 Zero (those with FORMAT OXX)

Carry from MSB —=> Result of BAD,BADX,BSB,
BSBX,DAD,DADX ,DSB ,DSBX.
(binary and decimal add
and subtract)

Overflow ———— Result of BAD,BADX,BSB,
and BSBX.
(binary add and subtract)

Result of Bit Tests DBT and BBT.

‘\

A=18 -
Logical
- A < B »Compare CMP op RESETS bits 0,4,
Result and SETS/RESETS bits
A>B) ~ 1-3,5-7 according to
- the logical and arith
A=B compare results.
Arith.
A < B >Compare
Result
A>B -

3.3 PORT OPERATIONS

The 3-bit PORT field contained in certain types of micro-instructions is
used to encode the initiation and control of CPU-memory data transfers.
Table 4 lists the PORT operation codes and mnemonics.

Those PORT ops which initiate memory requests all use the MAR to hold
“the memory address to be read/written. The MDR ho]dg the data for
writes and receives the data during reads. During FULLWORD ops, the
high-order 15 bits of MAR select the word address. During byte ops,
all 16 bits of MAR are used {see below).

It should be noted that the CPU must compete for memory accesses with
other devices of higher prid?ity on the Direct Memory Access bus. Thus,
a PORT memory initiation may not result in completion within a fixed
number of micro-cycles. The actual completion delay time is a function
of the interference on the DMA. Interlocking in the micro-code is
accomplished by the use of the HDM port operation. This 'HOLD-ON-MEMORY'
op is used following a memory operation to hold up micre-code execution
until the -memory operation is completed. Refer to section 5.0 for
memory operation micro-programming techniques.

FMR, FMW are the port ops for READ and WRITE of a full 16-bit memory
word. BMW is the op for a byte memory write with the left/right byte
written depending on the low-order bit of MAR (0 = left, 1 = right).
FPW and BPW are the same as FMW, BMW except that the protect Tlogic

is enabled, and upper(U) and lower(L) bounds are placed -on MAR(0-7).

"TSR (test read) is a special PORT op which performs the same function
as FMR, but additionally raises a control line to the memory system
which causes the CPU to have top priority during the following memory
cycle. This enables the CPU to perform a READ followed immediately
(locking out any interference) by a WRITE, and thus perform a

"TEST and SET" programming function.

27

CODE

000
001
010

011
100
101
110
111

MNEM

NOP
FMR
BMW

FMUW
HDM
TSR
BPW
FPW

TABLE 4

PORT OPERATIONS E

DESCRIPTION

No operation
Full memory word read

Byte memory write. If MAR,z = 0,

left byte. If MARy5 = 1, r?ght byte.

Full memory word write.
Hold on memory.

Test read.

Protected BMW.
Protected FMW.

28

CODE

o

m MmO O W@ B W 00~ O D AW N =

TABLE 5 l

BRANCH CONDITION CODES

MNEMONICS

TRU
117
122
R1Z
R2Z
Z0B
NOB
ERR
ucz
Uc1
ucz
UC3
INT

29

[0
(o]
o
m

e b D et ek e e e el fed fd e b i e
Mm M S Om > W 00NN W N - O

ﬂmCJF)WJ?LDCD‘HJU\m-hWNHﬁl

SUMMARY OF MICRO-INSTRUCTION FIELD CODES

TABLE 6

SOURCE

REGO
REG1
REGZ
REG3

. REG4

REGS
REGE
REG7
REGS
REGI
REGA
REGB
REGC
REGD
REGE
REGF
X
PIR
MDR
SMDR
UPNT
R1I
R21
SWS
PIRD
P
MAR

CST

UCR

—

ZRO

DEST
REGO
REG1
REG2
REG3
REG4
REG5
REG6

REG7

REG8
REGY
REGA
REGB
REGC
REGD
REGE
REGF
X
PIR
MDR
SMOR
PROT
R1I
R21
A

B
UIR
MAR
AMAR
UCR

- NOP

opP
SLO
DAD
BADX
DADX
CMP
DSB
BSB

BSBX

ADD
BAD

DSBX
SUB
BCB
INV
SRO

IN1
INZ

XOR
BOB
IOR
DBT
BBT
AND
AOB

_PORT
NOP
FMR
BiMW
FMW
HDM

TSR

BPW
FPW

COND COND
TRU NTRU
112 NIlZ
127 NI2Z
R1Z NR1Z
R2Z NR2Z
Z0B NZOB
NGB NNOB
ERR NERR
ucz NUCZ
ucl NUC1
ucz NUC2
uc3 NUC3
INT NINT

30

31

/

3.4 BRANCH CONDITION CODES |

4.0

Table 5 Tists the condition codes and mnemonics for the BRANCH CONDITIONS
encoded in and tested by the SCB and ACB conditional-branch micro-instructions.
Mnemonics are listed for both R=0 and R=1 for each condition code. If R=1
(mnem. prefix N), the inverse condition is tested. |

11Z, 12Z, R1Z, R2Z conditions are true if the corresponding field in the
PIR=0.

The conditions UCZ, UC1l, ---, UC3 are true jif the corresponding bit in
the UCR=1. ’

Z0B condition is true if the previous non-branch micro-instruction bused ZERO
to a DEST. NOB conditicon is true if the previous non-branch micro-instruction

bused negative data to a DEST.

The INT condition is true if the output of the PRIORITY/INTERRUPT SYSTEM
is not equal to the current value of the P register.

The TRU condition always results in a branch.
The ERR condition branches if any error has been detected. For now, only

a PROTECT error is detected.

MICRO-ASSEMBLY LANGUAGE

The 7100 MICRO-ASSEMBLY LANGUAGE is used to write symbolic micro~programs
for the MEMOREX 7100 processor. Programs written in this language are
processed by the 7100 Micro-Program Assembler to produce listing and
object files.

"The following sections describe the structure of the language. Many of

the mnemonics and symbols used to actually construct symbolic micro-
instructions are not listed in these sections. Those mnemonics which
referenced actual 7100 CPU registers and operations are listed in the
earlier chapters of this manual.

4.1

32
The input file for the Micro-Program Assembler consists of 80 f
character records, usually punched cards. There are four (4)
types of input cards: (1) comment card, (2) assembly contro]

statement card, (3) define constant card, and (4) micro-
instruction card.

COMMENT CARDS

4.2

Comment cards have an * in column 1. These cards are listed on the
output Tisting but have no effect on the object code produced. None
of the restrictions on the remaining card types apply to comment cards.
Columns 2-80 may contain any alphanumeric or special characters.

GENERAL CARD FORMAT

4.3

The following specifications apply to all card types except comment
cards.

Blanks are in general ignored, unless some explicit rule is mentioned
for blanks for a specific statement type. The scan and processing of

a card will stop with the last card column, or with the first semicolon.
Any characters on the card past the semicolon will not be processed,
but will appear on the output listing. Thus comments may be inserted
on any card.

The general card format is:

Columns 1-5; Label Field
- ~Lolumn 6: Blank
Columns 7-80: Dependant on card type.

.3 LABELS

A 1abe]‘consists of 1 to 5 alphanumeric characters in the label field
of a card.

/ 33

4.4 VALUES
A 'value' is one or more 'value elements' separated by the delimiters
+ or -, A value element is any of the following:
1) Label
2) X 'xxxx! a hex constant
3) D 'dddd® a decimal constant
4) * the present location counter

4.5 ASSEMBLY CONTROL STATEMENTS

There are three assembly control statement ops: (1) ORG, (2) EQU,
and (3) END. For these statements card columns 7-9 must contain
the op, and columns 10-80 may contain a value field.

The ORG statement controls the setting of the program counter. A
label may be used. The program counter is set to the 'value' of
the value field. Any labels in the value field must be pre-defined
(appear before the ORG statement). A label on the ORG card will be
assigned the value of the value field.

The EQU §tatement is used to define a symbol. A label must be used
or the EQU statement will be ignored. The EQU card causes the
~assignment of the ‘value' of its value field to its label. Any labels
appearing in the value field must be pre-defined.

~-—The- END card signals the end of the input deck. The label and value
fields are qignored.

4.6 DEFINE.CONSTANT STATEMENTS

In addition to the UROM memory which holds micro-instructions, the
7100 CPU has a CROM memory which holds up to 256 16-bit constants
which may be referred to by the GCD type micro-instructions.

!
The output of the assembler, in addition to micro-instruction
object code, must therefore contain an object file to initialize the

CROM. |

This file will be constructed during the assembly process byiadding a
new constant on each use of a GCD type micro-instruction with a
previously not encountered CROM literal value field, and on each use
of a DEFINE CONSTANT (DC) statement which specifies a previously not
encountered CROM value field (if previously encountermgthen an equate
of CROM labels is established).

The DEFINE CONSTANT statement contains the DC op in columns 7-8 and a

value field in columns 10-80. The DC statement may have a label. The
label field symbol, if present, causes the assignment of the assembled
CROM address and DC statement value to the label field symbol.

4.7 MICRO-INSTRUCTION STATEMENTS

If the assembler finds that a card is not a comment card, assembly
control card, or define constant card, it assumes that it is a micro-
instruction statement card.

Each micro-instruction statement results in the generation of one
.micro-instruction in the output object file. The micro-instruction

statement may have a label in columns 1-5, while.columns 7-80 are a

free form field area into which the micro-instruction is symbolically
_._encoded.

A1l micro-instruction statements have the same basic free form field
structure. The FORMAT type of the instruction is impiied by the specific
7100 MNEMONIC symbols used by the instruction. The basic symbolic
micro-instruction structure is:

X =Y, modifier;
where X = primitive
or X = primitive.modifier

/

Following are simple examples of the encoding of micro-instructions
of each format type, which will serve to approximately define the
language at this time. At a later date when the 7100 architecture
is more fixed, a more formal description will be constructed.

The following examples should be sufficient to provide guidelines
for the construction of sample emulation programs, etc., and to
indicate the level of logic required in the micro-program assembler
itself.

FORMAT EXAMPLES FUNCTION ENCOﬁED

ALU: MAR = ADD; A+ B— MAR
14 = SUB, FMR; A - B — REGE, also FMR
6SD: PIR = MDR; " MDR —>_ PIR
15 = MDR, XRA; MDR —— REGF, with X rather than P
used for col. addr.
GCD: MAR = C (X'40'}); The constant X'40' from the CROM —s MAR.
' MAR = C (LABEL); The constant value {assgnd to LABEL)
from the CROM -—= MAR.
GID: A=1(X'F1'); X'F1' —> A -
MDR = I (CHAR); YALUE (CHAR) —= MDR
SCB: BRA.UCZ = 15, FMW; Branch if UCRO = 1 to UROM ADDR in
REGF. Alsoc FMW.
ACB: BRA.I1Z = *+D'3'; Branch if Il = 0 to current location
plus 310
UCB: BRA = TEST; Branch to location given by value of
label 'TEST'
BSR = TEST; Same, but store UPNT return into

assigned register in RAM.

NOTE: If PORT modifier is used alone, then prefix with a comma.
For example, the following symbolic instruction assembles
into a GSD format with HDM Port field and NOP DEST field:

» HDM;

MICRO-PROGRAMMING TECHNIQUES

In_order to properily and efficiently micro-program the 7100, certain
basic techniques, restrictions, and timing information must be under-

5.0
stood. This chapter provides such information.
5.1 SOURCE-DESTINATION RESTRICTIONS

A number of restrictions exist on the use of sources and destinations
for ALU, Gating, and Branch type operations.

Animportant restriction is that any one micro-instruction may make
only one access (either SOURCE or DEST) to the RAM register file.

A large class of restrictions is implied by the data flow {Figure 1)
and table of source and destination codes (Table 2): a number of the
CPU registers may serve as only a SOURCE or DEST but not both. For
example UPNT may only be a SOURCE (see Table 2} even though Figure 1.
shows an input from the bus into UPNT {that path is used only by the
SCB type instructions which have UPNT as an implied DEST).

Caution must be used in gatings from SOURCE's to DEST's when dissimilar
width registers are involved. Justifications and unfilled bit positions

must be verified {some of these have not yet been specified in this

manual).

36

5.2 SCB BRANCH TIMING . l

The ACB and UCB format type branch instructions function completely
within one micro-instruction cycle. In other words, as expected we
find the next instruction (if the branch is taken) is fetched from
the specified branch address location in UROM:

EXAMPLE: ' e

BRA = LOCN;
To

Next
I Inst

LOCN /

A

However, due to the time required to obfain the branch address from
a source, the SCB format type branch actually functions one cycle
after the SCB itself. In other words, the instruction following the
SCB is always executed. The next instruction after that is at the

branch address obtained from the source if the branch is taken:

EXAMPLE : '
: REG 8

LOCN

1l
(0]

BRA.TRU

LOCN -

The SCB op enables branching across the entire 8K UROM span because a 13-bit
address is Toaded into UPNT from the bus to effect the branch. Note that an
SCB branch followed by an ACB (both testing the same condition) enables a
conditional branch to an 8-bit address specified by the ACB on the 'page’
specified by the SCB.

37

5.3 MEMORY PORT OPERATION TIMING i

Various memory port ops are described in Sectjon 3.3, where it was
noted that, due to possible interference on the DMA bus, a memory op
initiated by a CPU port op does not necessarily complete within a
predetermined time.

Thus the micro-code must interiock memory access initiation with "Hold-
on-Memory" port ops so that compietion of the access is insured before
using the result of a READ or overwriting MAR or MDR for a write.

A "HOLD-ON-MEMORY" (HDM) port op in a micro-instruction causes subsequent
micro-instruction execution to be inhibited if a CPU memory request is up
and not yet completed. The micro-instruction containing the HDM is always
-completely executed before the hold takes effect.

The 7100 micro-instruction cycle is 400 ns. The 7100 main memory cycle
is 1.2 pus. Thus there are three (3) micro-cycles per memory cycle.

' The concept of the Hold-on-Memory (HDM) interlocking micro-instruction,
and the timings which result if interference is present is displayed in
Figure 3, EXAMPLE 1.

In this example, the CPU requests a memory read at the same micro-cycle
as a higher priority device on the DMA. Thus, when the subsequent CPU
_HDM.micro-instruction is executed, the CPU enters a HOLD state and
micro-instruction execution is disabled while the memory request remains

up.

In memory cycle 2 of example 1, another higher priority (than CPU)
request is serviced and the CPU remains in HOLD.

38

Finally, jn memory cycle 3, the CPU memory read is serviced, and the CPU
leaves HOLD and its request line falls.

This example displays the ratio of three {3) micro-cycles per memory
cycle.

_Note, however, that the memory is not restricted to accesses which are
synchronous to 1.2 ps time boundaries.

The memory may be accessed on any micro-cycle in which it is not busy.
This feature is termed "zero-latency" accessing. This feature will be
described in more detail later in this section.

2

5.3.1 WRITE OPS (see FIG.3, EX.2)

A main memory WRITE operation is requested by the CPU when any of the
PORT codes FMW, BMW, FPW, FBW are decoded and executed by the CPU.

The MAR and MDR must be loaded with valid data before {or by) the
micro-instruction which initiates the write.

Following the write micro-instruction and prior to and including the
interlocking HDM, neither MAR nor MDR should be changed.

39

5.3.2

/ 40

1
!
|
|

Following the HDM micro-instruction, the write has comp1et§d and MAR

- and MDR may be changed.

Example: » FMW; initiates WRITE
— ’ any OP
, HDM; interlocks ti1l WRITE complete
—3 MAR, MDR may now be changed
READ 0PS (see FIG.3, EX.2)

A main memory READ operation is requested by the CPU when the port
codes FMR or TSR are decoded and executed by the CPU.

The MAR must be loaded with valid data before (or by) the FMR or
TSR micro-instruction. Both MAR and MDR must be held fixed prior to

and including the interlocking HDM micro~instruction,

The new MDR value is available in the instruction following the HDM.

- Example: -, FMR; initiates READ

5.4

5 any OP
, HDM; interlocks till READ complete
Y = MDR; new MDR value available for use

DECIMAL ALU OP TIMING

The decimal ALU operations DAD,DSB,DADX,DSBX, require two micro-
cycles for their execution (see section 3.2).

The preferred technique for micro-coding these operations to insure
two micro-cycle execution timings is to consecutively execute two
identical micro-instructions for each decimal ALU op to be encoded.
The first micro-instruction of the identical pair will initiate the
execution of the op, and the second will place valid data onto the
bus to the selected destination.

41

eL-SV-D

¥

ONTWI| 1¥0d AYWOWIW -NdD ‘E 3¥nsI14

_ A _Q_ 183003y AYyoway

_ [_ _ _ [ASOE ABOW3IW

_ [a-oH

| _) 3194 ABOWIW A D

I [ian] [avay] do L¥od ned

U U U U U uUu ououou : : 1] PIT1D
ol oL 24 1L oL 2L 1L ol 2L . 1n oL

—_u.m. ANOAD AdOW AW + o 3T10AD AMOWIW \T T 232AD Auowaw L u._.. MJ&E,QX.W

! v/ /7 _ V7777 1530031 ABow3wW

| [_ | ASOQ AYOWIW

) aroH

_] I B 31940 A¥OWaW NdD

_ * _ _ [NaH]| ENEL _EQI_ _ DmmW_ 40 A¥od Q4D

L L U U L U L L L] U i . X201
oL oLl TL TA oL oL 2L 'L oL

2 4k | ke S ERCIACNE

IMVAD AU s Vzu ANO I SUOQYy

)

MEMOREX 7100

CPU_LOGIC DESIGN

6. YEE
R. STALLMAN

7/19/72

MEMOREX CONFIDENTIAL

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

CONTENTS

INTROBUCTION
MICRO-INSTRUCTION DECODE
MICRO-ROM ADDRESSING
MICRO-PROGRAM STORE

PROGRAM INSTRUCTION REGISTER
ARITHMETIC LOGIC UNIT
CONDITION REGISTER

REGISTER FILE AND I/0 CONTROL
MEMORY INTERFACE

1.0

Introduction

This manual describes the logic design of the Memorex 7100 CPU.
It is intended that t his manual will provide all the basic
information necessary to understand the CPU block diagram

and the second-level logic diagrams of the CPU organization.

The implementation discussed is in TTL, and employs MSI elements
and ROMS, where applicable, to reduce parts count. The CPU
requires a clock frequency of 400 nsec. and a pulse width of
approximately 50 nsec. Because of this speed, bipolar ROMS
and RAMS were chosen. The design chosen eliminates the need to
employ Schottky or high speed elements.

The btock diagram has been partitioned for convenient board sizes
based on the TTL implementation.

The design, as implemented, is of the architecture detailed
in the architecture/microprogram manual.

2.0

2.1

2.2

Micro-Instruction Decode (Ref. 7100 CPU Block Diagram)

|
The micro-instructions are loaded into the u-instructioﬁ register
and held there for one clock cycle. Normally, u-instructions
are loaded into the UIR from the UROM, however the UBUS may be
used to Toad the UIR during halt. The UROM output is or'ed
with the UBUS when the UIR is specified as a destination by the
micro-program. Micro-instruction modification is accomplished
with this capability.

The conlents of the UIR are preserved during a halt unless the
operator loads a new u-instruction from the control panel.

Micro-op Decode

The micro-op field is 3 bits wide which allows a maximum of 8
micro-instruction formats that may be specified. The micro-op field
is in bit positions 0-2 in all 8 micro-instruction formats. Refer
to Table 1 of the CPU Architecture/Micro—programmihg Manual.

Each micro-op is decoded and used to enable the field decoding
that applies to the particular instruction in the UIR. An example
would be one in which the source field is found in micro-ops 1

and 5 only. Thus the source decode is enabled only for these two
micro-op formats. When the system is in halt the micro-op

decode is disabled.

Register Source and Destination Decode (Ref Table 2, CPU Arch/Micro-

programming Manual)

The micro-instruction format contains a 5 bit field which is the
address of the source for information to be placed on the UBUS and
a 5 bit field for the destination of information from the UBUS.
There are a maximum of 32 possible sources and 32 destinations.
The 16 least significant source and destination decodes, address
the register file, and the most significant 16 are either discrete
registers, not assigned, or special operation codes. A source

2.3

2.4

2.5

/

/
or destination of R1I/R2I implies that the source/destination
address can be found in the R1I or R2I field of the PIR. The
R1I or R2I field can specify only one of the first 8 registers in
the register file.

Memory Port Decode: (Ref. Table 4 of the Architecture/micropro-

gramming manual}

The memory port decode is a three bit field in the ALU, GSD and

SCB micro-instructions. There are eight possible commands that

can be decoded. Al1l port commands are memory-related., The

decoded port field has the capability of providing 8 commands.

BMW, TSR, FMW, BPW, FMR, and FPW are decoded in the memory interface
control logic. FMR, TSR, and HDM are decoded elsewhere. Since
memory operations take more than one.cycle the port field is retained
in a latch by the CPU memory interface control logic until the memory
operation is complete.

Branch Condition Decoding: {Ref. Table 5 of the Architecture/
Microprogramming manual).

The condition field is a 4-bit field which selects a maximum of 16
possible status conditions for a micro-instruction branch. There

is also a reverse sense bit that is used in conjunction with the 4
bit condition field for micro-instruction branching on the not-true
condition. The conditions are described in the architecture/
microprogramming manual. The decoding of the condition field is
enabled by UOP 5 and UOP 6, the conditional branch micro-instruction
formats.

ALU Control Decode

. The ALU up field of 5 bits allows definition of 32 types of

arithmetic/logic functions. The ALU control decode uses these
5 bits along with UOP 0 to generate all A & B register and ALU
controls.

2.6

3.0

4.0

5.0

CROM Address

The GCD instruction, UOP 2, has an 8-bit field which is an address
for a table of 16-bit constants stored in a read only memory {(CROM).
The output of the CROM is always sourced onto the bus for this

type of micro-instruction. The CROM may contain 256 16-bit constants.

Micro-ROM Addressing (13 bits)

The micro-instructions stored in the UROM are nhormally executed in
consecutive order. The UROM address is incremented by one and the
incremented address is stored in the UPNT register.

There are several ways to branch to a different UROM address.

For the unconditional branch the 12 least significant bits of

the UIR and the most significant bit of the UPNT are used to

generate the UROM address. The 8 LSBs of the ACB micro-instruc-

tion are combined with the five MSBs of the UPNT to produce

another type of branch address. A branch address can also be loaded
into the UPNT from the bus as a result of a SCB type micro-instructicn.

The UPNT register is 13-bits wide and has the capability of addres-
sing'8k x 16 bit words of UROM. The UPNT register can be loaded

by the control panel when halted or during normal operation from
the incrementer.

Micro-program Store (UROM)

+ The micro-program store is 8K maximum by 16 bits of ROM. The

UROM consists of bipolar ROM elements with a worst case access
time of 60 nsec. The UROM is accessed every 400 nsec.

Program Instruction Register (PIR)

The PIR is a 16 bit register that is used to hold macro-program
instructions. It is loaded from the UBUS when selected as a
destination. The 8 MSBs are used to address a decode ROM {DROM)

6.0

6.1

6.2

/
which is 256 x 13 bits and contains branch. addresses for the/UROM.
The 8 LSBs of the macro-instruction field are designatéd as Rl and
RZ2 fields and are used as register file addresses when specified
as a source or destination. |

- \
\

Arithmetic Logic Unit

General

Included in the arithmetic-logic unit are the A & B feeder registers;
the ALU logic; the control for the ALU logic; -the control for setting/
resetting bits related to Arithmetic-logic unit functions in the
micro~condition register; and logic required to perform word, byte,
and NYBL manipulation,

A1l ALU ops are performed on 8 or 16-bit operands previously loaded
into the A & B registers. Results of the ALU operations are gated

to the destination specified in the destination field of the
micro-instruction. Results of these operations also set/reset

related bits in the micro-condition register. In some ALU instruction
formats the destination field is unused.

Arithmetic operations performed by the ALU are either binary or
decimal. These two general categories differ from each other
substantially. Binary ops: require one micro-cycle for their
execution; involve two 16-bit operands; and require binary numbers
to be represented in 2's complement notation. Decimal ops: require
two micro-cycles for their execution; involve 8 bit (two decimal

—--digits) operands and outputs; and require digits to be represented

in packed BCD (8421) format.

Control

When an ALU instruction is decoded, if it is of a format having a
destination, the arithmetic-Togic unit gates to the bus are enabled.
A1l other micro-instruclions disable these outputs to the bus.

6.3

6.3.1

6.3.2

6.3.3

/

The five least-significant bits of the ALU micro-instruction
determine the operation to be performed (Ref. Table 3 of the
Architecture/Microprogramming manual). It is the decode of these
5 bits that control all functions of the arithmetic-logic unit.
(Ref. Togic diagram - “ALU op Decode")

Detailed Functional Description

(Ref. Table 3 of the Architecture/Microprogramming manual)

A & B Registers: (Ref. logic diagram - "A & B Registers")
The A & B Registers are 2-16 bit registers serially linked. Each

is composed of 2-8 bit MSI Registers serially linked. They perform;
right shift, left shift, parallel load, or do nothing. Control for
them is via two mode control lines. Broadside loading of the
registers is allowed when either is selected as a destination
during execution of a micro-instruction. ALU ops SRO and SLO
(shift right or left one bit) are Tinked (32 bit) end-off shifts.
The actual shifting of the data in the A & B registers will not be
accomplished until the end of the micro-cycle. Since the shifted
data must be present at the destination specified in the micro-

instruction prior to the end of the cycle, the outputs of the

registers must be scaled one position left or right with gates.
The. resultant output then appears at the destination shifted.
Right shifts are scaled through discrete gates. Left shifts are
scaled through the MSI ALU.)

WORD, BYTE or NYBL Manipulation: (Ref. logic diagram - "A & B Registers")
ALU, ops IN1, INZ & BCB, insert nybles or bytes from the A register
into corresponding fields in the word from the B register. AOB & BOB

are ops which allow the A or B register contents to be gated to a
destination without modification. These ops are performed with gates

~for IN1, INZ, BCB, and through the MSI ALU for AOB & BOB. INV gates

the 1's complement of the A register onto the bus. This function is
performed with the MSI ALU.

Bit Test: (Ref. logic diagram ~ "A & B Registers")
ALU ops BBT and DBT nondestructively test the state of any one of the
16 bits in the A register and stores the state of that bit in bit zero

of the micro-condition register. This function is performed with a

/

/
1 out of 16 decoder. The address of the bit to be tested is encoded
in the low-order 4 bits of the dest field of the micro-instruction
for DBT and in the low-order 4 bits of the B register for BBT. This
op has no data destination, therefore, when it is executed, destination
decoding must be disabled.

6.3.4 Arithmetic Functions:
ADD, BAD, BADX, SUB, BSB, & BSBX are binary arithmetic ops and are
performed on the two 16-bit operands with an MSI ALU. (4-74181,
1-74182). The MSI ALU is controlled with 5 mode control Tines.
Additional control circuitry is required to handle carries and
overflows. Carries may be stored in the micro-condition register
for use in multiple-precision additions or subtractions. Algorithms
and logic for the control of carries and overflow are included on
Togic diagram - “UCR & UCR CONTROL". Two's complement notation is
used in these operations,
DAD, DADX, DSB, & DSBX are decimal ops performed on a right-justified
byte in the A and B register. The data is in packed decimal form.
The decimal digits are represented by 4-bit BCD (8421) code, therefore
each pass through the ALU adds two decimal digits to two decimal
digits and a possible carry from the UCR. A carry from the high-order
digit is stored in the UCR.

Subtraction of decimal representations are performed using 10's
complement additions. This method of subtraction by addition is
somewhat analogous to using 2's complement addition when performing
binary subtraction. When using 2's complement notation, binary
numbers are left in 2's complement form in memory. When decimal

data is processed, however, it is stored in true form. When
subtracting one number from another number, by adding the 10's
complement of one to the other, the addition may or may not have
produced a carry. The carry, if it occurs, is dropped and the difference
is in true form. If no carry occurs, the difference is in 10's
complement form and must be corrected to place it in true form.

No carry also indicates that a larger number was subtracted from a
smaller number, and thus a negative difference has resulted. To

put a BCD number in 10's complement form, the 9's complement is first
derived by subtracting each digit from 9 and adding 1 to the LSB.

6.3.5

/

In a similar fashion, taking the 10's complement of a nUmber‘%n
10's complement form, places it back in true form. When reference
to BCD is made, 8421 code is implied. |
!
DAD, DSB
DAD and DSB are ops intended for use in 8 bit BCD addition {DAD)
or subtraction (DSB). Specifically, these ops are to be used for
the first pass, of a series, through the ALU. That is, when the
two least significant decimal digits of a number are added.
Carries or borrows from the condition register are ignored during
these ops, however, if a carry or borrow is produced during the
execution of the op it is stored in the UCR.

DADX and DSBX are ops used in 8 bit BCD addition (DADX) or
subtraction (DSBX). These ops are used after the first pass
through the ALU, and include a carry or borrow from the UCR that
the first pass may have produced. If a carry or borrow is produced
during the execution of these ops, it is stored in the UCR.

The Decimal ops are passed through a separate ALU {in parallel

with the MSI ALU) composed of 7483 ADDERS and the necessary control
circuitry to place it in the Add or Subtract mode. The basic
circuit consists of a BCD adder which corrects for illegal BCD
counts {over decimal 9). A 9's complementer at the input to the
BCD adder is enabled during subtraction. With a forced carry into
the low-order decade, a 10's complement addition is performed to
effect a subtraction.

Remaining Logic Functions:

(Ref. Table 3 of the Architecture/Microprogramming manual).

XOR, IOR, and AND are performed in the MSI ALU. The only control
circuitry for these functions is that involved in decoding the
5-bit ALU op field.

6.3.6

7.0

7.1

7.2

7.3

Compares : f

CMP, the compare op simultaneously does both an arithmetic (signed)
and a logical (unsigned) comparison of the A & B register contents.

The results of the comparison are placed in the micro-condition
register (Ref. Fig. 2 of the Architecture/Microprogramming manual).
Algorithms for the control of the micro-condition register are
included on logic diagram - "UCR & UCR Control".

Condition Register (UCR)

General: (Refer to Fig. 2 of the Architecturé/Microprogramming
manual)

The condition register is a 10 bit register used for: storing the
carries and overflows resulting during arithmetic ops, holding the
results of compare and bit test instructions, and for holding the
relative arithmetic (signed) magnitude of the results of all
non-branch instructions (BUS = 0, BUS < 0). These 10 bits form a
part of the condition set used by the branch instructions.

Controls for Clocking the Condition Register: (Ref. Togic

. diagrams - "UCR & UCR Control", "ALU & Control", "UCR & Control")

Bits 0-7 of the UCR are clocked only during ALU instructions with

ops requiring bits to be set/reset, or when‘a micro-instruction
specifies the UCR as a destination. The remainder of the instructions
and instruction formats do not affect this part of the condition
register.

Bits 9 & 10 of the condition register are clocked with all non-branch
micro-instructions. These 2 bits are not included as destinations
specified in the DEST field of micro-~instruction formats.

Set/Reset Controls for the Condition Register: {Ref. Table 2 of

 the Architecture/Microprogramming manual)

The algorithms and logic required to set bits 0-9 of the condition
register are detailed in logic diagram - "UCR & UCR Control".

8.0

“to communicate with I/0 devices in the samé manner in which it uses’

Register file and I/0 Controil

General (Ref. Logic diagram - “Reg. File & I/0 Interface")

The register file contains 80 16-bit RAM registers as shown in

Fig. 1 of the architecture/microprogram manual. Addressing of

the register file's 16 rows by 16 columns (256 locations) may select
one of the 80 registers as a source or destination of data to/from
the bus. Certain of the remaining 256 addresses are assigned to
registers or command codes external to the CPU (I/0) while other do
not exist. This organization of the register file enables the CPU

its own registers.

Addressing the register file

There are 256 possible address locations in the partially-populated
register file, arranged in a 16 row by 16 column configuration.

The MSB of the source or destination field in the micro-instruction
determines whether the address is of a register in the register
file or is of another register in the CPU. -If a register file
address is being decoded, the register to be used is selected by

a 4-bit row and 4-bit column address. -

The -4-bit row address comes from the source or destination field

in the micro-instruction or from the R1, R2 Tields in the PIR.

The selection of the proper address source_is done with a 4~input
mux. This mux js controlled by a source/dest signal and a decode/
R1I, R2I signal. The source/dest signal determines whether the
source field or the Dest field from the UIR will be the row address.
A decode of 15 or 16 in the UIR source or dest. field indicates
that the address 1is not in the UIR, but will be in the 3-bit Rl

or R2 field of the PIR. When the 3-bit field of the PIR is used

to address the register, the MSB of the resultant 4-bit address is "0".

The 4-bit column address may originate from one of two sources,

the "X" or "P" register. Normal column addressing is done
VIA the "P" register. "P" is loaded, by instruction from the
CPU, with the output of the priority encoder. The priority encoder

encodes data and service requests from 16 I/0 Lines. A comparator

/
/

compares the existing "P" register contents, with the output of the
priority encoder. When a data or service request of higher priority
than the one in the “P“vregister exists, an "interrupt" is routed

to the sense demux. As the microprogram checks for "interrupts”,
"P" may be loaded with a new address if it exhibits higher priority.
The other source of column address is from the "x" register. The
“x" register may be loaded from the bus when used as a destination in
a micro-instruction. The x register is 5 bits wide. Only the four
LSB's may be used as a column address, The MSB of the x register

is used to select, via a mux, either the x or P register as the
column address. ’

The &-bit Row and 4-bit column addresses are extended to various
1/0 devices as previously described.

9.0

/

Memory Interface /

The CPU may access memory via a micro-instruction port operation.
The main memory takes three CPU micro-cycles for one memory cycle.
The CPU shares the memory with other devices and each device has a
fixed priority. If the CPU is not the highest priority device
requesting memory, the port operation must remain latched up until
the CPU memory request is satisfied. The memory interface control
1atches'up the port request, decodes the port request, and controls
the reading or writing from the memory.

The micro-program has the ability to halt the machine until a CPU
memory operation is completed by executing a hold on memory (HDM)
port command.

The 16-bit memory address register (MAR) is gated onto the bus by
"CPU Memory Enable" at the beginning of the memory cycle. The 16-bit
Memory Data Register (MDR) is either gated to, or from the memory on

- a bi-directional bus depending on whether or not, the operation is a

write or read. A CPU memory operation may be initiated from the
control panel while the CPU is halted. The MAR & MDR may be loaded

or displayed by the control panel. The MDR may be loaded one byte

at a time from the 8 LSB's of the UBUS. The LSB of the MAR is used to
determine which MDR byte is loaded when the DEST. field is SMDR. The
8 LSB's of the MDR may be sourced either onto the left or right byte
of the UBUS depending upon the LSB of the MAR when the source field

is SMDR., A full 16 bit word may be loaded into the MDR or placed onto
the bus from the MDR when DEST./SOURCE MDR is used.

The memory protect function works as follows: The protect register
is loaded from the UBUS and contains two bytes. Each byte represents
a page limit of the 8 MSBs of memory addressing. The high order byte
of the protect register represents the highest protected page and the
low order byte represents the lowest protected page. An error
condition is set when the protect control is activated by the proper
port operation and may be selected as a branch condition,

MEMOREX 7100

MEMORY SYSTEM

R. PETERSON
7/19/72

MEMOREX CONFIDENTIAL

1.0 SYSTEM MAIN MEMORY) |

2.0

|

The system main memory (memory)} is a MOS RAM data storage device. The
memory system utilizes a memory bus configuration, servicing up to eight
different devices on the bus. The highest priority on the bus is dedicated
to the memory refresh circuitry,

The MOS RAMs that comprise the memory are 8K 9 bit byte modules that can
be expanded to a total memory size of 128K bytes. One bit of each byte
is for odd parity. Memory access time is 800 nanoseconds. Memory cycle
time is 1.2 us. The memory cycle starts on the first system minor cycle
after a memory request is raised* by any device on the memory bus.

MEMORY PRIQRITY '
Any one of eight different devices can request a memory cycle. However,

the highest priority (0) has been dedicated to the memory refresh circuitry,
the purpose of refresh is explained in 5.4. The remaining seven devices
are assigned priorities as listed in Table 1.

TABLE 1

MEMORY PRIORITY ASSIGNMENTS

PRIORITY : DEVICE
0 k Memory Refresh
1 =
2
3 .
4 L To Be Determined
5
6
7 .

*The use of the words "raised" or "goes up" should be interperted to _
mean the subject signal or condition becomes true. In order to determine
actual Togical voltage levels reference must be made to the first level

logic diagrams.,

3.0

4.0

/

The memory priority logic determines the highest priority device wi th
and active memory request and gates its address out on the Select
Address Bus. This notifies the requesting device that a memory cycle
has been granted and the memory cycle begins,

MEMORY MODE CONTROL
The two signals WR HI and WR LO are generated by the memory user and

places the memory in the proper mode as shown in Table 2. In a

byte write mode memory address bit 15 is decoded into WR HI and WR LO.
A full memory write (FMW) or a read are also encoded into WR HI and
WR LO. This encoding is done by the user. Memory address bit 15
does not go to the memory. WR HI and WR LO are treated as part of
the Memory Address Bus (MAB),

TABLE 2
ENCODING OF WR HI AND WR LO

RESULT
MAB 15 WR HI WR LO
BYTE {_ 0 0 1
WRITE 1 1 0
FMW X 1 1
READ X 0 0

MEMORY ADDRESSING

During normal CPU operation, the address of the desired memory
Jocation is placed in the Memory Address Register (MAR) of the

device requesting a memory cycle. When a device is selected, the
contents of its MAR are placed on the Memory Address Bus which goes

to all the memory modules and selects the appropriate module and byte.
The format of the memory address is shown in Figure 1.

5.0

. b1

|

|

!

' MAR-J 0112 |314516};7|8|9{10111{12(13 14 15

i |
FIGURE 1 ‘

MEMORY ADDRESS FORMAT

Word (Byte)

O=Left Half
Word (Byte)

— AN —
| X X {1 Right Half

Chip Address

1=High 2K Chip
Select
O=Low 2K Chip

Select

Memory Module
Select

MEMORY OPERATION

The following paragraphs and Figure 2 provide a functional description

of the main memory operation.

READ

The address of the memory location to be read is placed in the MAR of
the device requesting a memory cycle. The requesting device also
generates a memory request (MEM REQ), that is sent to the PRIORITY
ENCODER LOGIC. The address of the requesting device with highest
priority is placed on the Select Address Bus. The select address is

decoded by the requesting device and is interpreted to mean that a

cycle is granted. After a device is selected, its MAR is gated to

. the MAB to address the desired memory location. When the Memory is

ready to transfer data, the memory control logic generates MEM DATA

GATE. The generation of MEM DATA GATE cuases the contents of the

Z 3dn9Id
weabeig 3o0[g paLSLIduULS ‘WILSAS AYOWIN 00TL
‘90l pue gyl
3yl 03 PIJIBUUOI 3G ULD SIILARP [BUOLILPPR /
4O unwixew e ‘axojouayl () ArrdoLad 3ssybry
3y1 03 pa1dduuod A[jusuewsdd sI HSIY4Id AYOWIA T
— *SILON
N An
73S 31A4 IH
73S 31A9 MO
NI ALI¥Yd
. WIW 0L 9au
: TO4INOD 20W 0L WiH
AJOWIN :
T 310N
IO 219071
HS3Y4 T
123738
HOWIW
21907 ¥300INT ALIMOIUd =RTETR A0
A ' SINIT
$S34aay
HSFY4 3
YYVY _vvew |
123738) 03y W3W sng 1o313s DY | "WIW
31hg Mo |a1hg Mo JarAg moq[®
I||........|I-|.k|.|llll!.|._ - = - = s
ﬁq% | i ndo “ SUNRN UNDSIDRIPI S—
t |
| U |)1kQ UBLH $34g ubLH PaAg ybiy[¢
| (byw)¥3Ls1ozd] (faw)e3isIon I (HYW)HILSTOIY (HAW)HILSIDIY _
| SSaay vivap _ $S34aay ¥1vd l 2 37N00W f1 360N b 31NA0K
_ A ONIN ABOWIN || AOWINW MIOWIW A OWIW AJOWIW | AYOWIW
T B N S S i 2 i A I
TIlNd i (4aW) SNg v1¥a AYOWIW

(dYW) SNg SSIUAAY AJOWIW

5.2

5.3

5.4

/
/

addressed memory location, to be placed on the Memory Data Bus (MDB).
Parity is checked by the memory control logic to ensure that the data
has correct odd parity. If incorrect parity is detected, READ PARITY
ERROR is generated. At the fall of MEMORY DATA GATE the data on the
MDB is read into the appropriate device MDR. The memory always reads
a full word.

MEMORY WRITE

After the user's MDR and MAR are loaded, the user dgenerates a memory
request (MEM REQ) that is sent to the PRIORITY ENCODER LOGIC. The
address of the highest priority requester is placed on the SEL ADR BUS.
When the user decodes his address, the appropriate MAR and MDR are
gated to the memory buses. The memory control logic then examines

the data on the MDB and generates the correct odd pairty for one or
both bytes, depending on the type of write operation. After the
correct parity is generated, MEMORY DATA GATE causes the data on the
MDB and generated parity bit(s) to be written into the addressed
memory location. When MEMORY DATA GATE returns to the inactive level,
the selected device is disconnected from the memory buses and the
write operation is complete.

WRITE HALF WORD

The half word write operation is similar to the full word write except
MAR 15 is decoded to determine which half of the memory is to be written.
The decoded MAR 15 generates either WR HI or WR LO and the appropr1ate
byte with correct parity is written into memory.

MEMORY REFRESH

The memory stores a bit by charging or discharging a capacitance.
Because these charges leak off the memory must be rewritten or

for”

6.0

/

/
“refreshedf every 2 ms. To accomplish ;efresh the 32 Tow order
addresses must be generated and a write cycle with the WRITE signal
inactive is executed. This is accomplished by the memory refresh
logic. Every 128th cycle, the Refresh Address Flip Flop (REF ADD FF)
is set. This generates the highest priority memory request, which

is sent to the PRIORITY ENCODER LOGIC.

The address of the refresh requestor will bg placed on the Select
Address Bus. The column address is generated by the REFRESH ADR

CTR and is placed on the low order memory address lines (MAB 10

thru MAB 14). A memory cycle is executed with chip enable and write
inactive. T5 resets the REF flip flop. The trailing edge of REF
increments the REF ADR CTR by one, leaving it ready for the next

Refresh Cycle in 60 microseconds.

MEMORY TIMING

Figure 4-3 contains the timing of all memory operation. The memory
is able to interface to the various users because it is time

bound to them by the system clock shown at the top of Figure 4-3.

-~ PH1, PHZ, PH3, and chip sel, are signals which are used for "house-

keeping".within the memory chip itself and will not be treated in

this document.

When .a user desires to access the memory that user raises MEM REQ
during the shaded time shown in the figure. A1l MEM REQ's

must be stable 200ns before the next clock pulsei The priority

" encoder places the address of the highest priority requester on

the SEL ADR bus. The 200ns is required to allow SEL ADR to settle
and be decoded by the users. At the fall of the next clock pulse

the highest priority requestor may begin memory access. The memory

7.0

8.0

/

control activates MEM BUSY. MEM BUSY is used internally to disable the
priority encoder once a user has been given memory access. A selected
user must have a valid address on the MAB and WR HI and WR LO stable

50 ns after selection, this allows 100 ns bus settling time. WR HI
and WR LO are explained in Section 3, MEMORY MODE CONTROL.

MEM DATA GATE is used internally to gate the memory to the MDB in the
case of memory read of gate the MDB into the memory in the case of

memory write. Determination of memory mode (read or write) is explained
in Section 5.

The signals labeled DATA IN TO CHIP and DATA OUT OF CHIP are for
reference only showning the time relationship of the actual data
transfer. The times at which data msut be on the MDB for a system
concept are noted on the MEM DATA GATE as- explained previously in
this section.

DOUBLE ACCESS

DOUBLE ACCESS provides two consecutive memory cycles either read or
write. DOUBLE ACCESS is initiated when the CPU executes a TEST READ
(TSR) port operation. The purpose of DOUBLE ACCESS is to enable
micro-coﬁe implementation of a TES and SET function. To accomplish

DOUBLE ACCESS the user raises double access request (DBL ACS REQ)

after selection. DBL ACS REQ must be held up until the MEM BUSY line
goes up for the second memory access cycle. The SEL ADR lines will
operate normally during the first memory cycle, but no address will
appear on the SEL ADR lines for the second cycle. It is not necessary
for the user to raise his memory request for the second memory access.
Once a doublé access has been granted the second cycle will usurp any
requestor including refresh.

SECOND LEVEL LOGIC

The following second level logic prints are included:

MEMORY MODULE 40.10
MEMORY CONTROL 40.20

M+ 24-9-L

ONUNLL AHOW3N

DONIWIL AdowW3ayww €-+¥9d

Uy o
VYDA MG T

He=1ke)

NOI233 3avD 1L NOG FLvIan! S3NIT IYnoovIa-z
PHEuuwn Sy .q:.m_....,n_..m

Y / /7 /4

i

1

m
,

H\\\\\\\\\\\\\\\\\\\\\\\5 “

m\\\\\\\\\\\\\\\\\s

v/ /7/7A

L5

_\\\\\\\\\\\\\\\\\\\\\\\5

\\\\\\\\\\\\\\\\\\\\\\QL

54
33 sov 18d
22vD wilvd waw

(P VANG WaW

[(dup)nay waw

AsSNg Waw
2av =2S

LIE WKW

— — |

TR ¢.<A./V//f|;|¢_

l.lﬂhlrmwmwhu . kovaB

BN L
JZMJA SiHD 1Y WiV ON

Huuj

[~ —r-rg 7/

ooz

ooz

o0k

o

coz-
!’

och-~

W’

m%@in

otm v
FLAMATVER
SHd

THg

IHa

A

MEMOREX 7100

SYSTEM CONTROL AND DISPLAY PAHEL

A. Hemel
7/19/72

MEMOREX CONFIDENTIAL

1.0

2.0

INTRODUCTION

The system control and display panel has seven basic functions:

a)
b)
c)

g)

To control the mode in which the CPU operates or else halt it.
To display the contents of various registers on 16 data lites.
To alter the contents of any of four registers with 16 data
switches.

To read and write into the main memory.

To control the loading of initial programs for variocus 1/0
devices.

To display a parity error condition and allow the operator to
reset it and restart the CPU.

To allow the operator to reset the system.

rd

These functions are described in more detail in the subseguent

sections.

MODE ROTARY AND START TOGGLE SWITCHES

a)

b)

The PROCESS position allows the proﬁessor to run uninterrupted

by the panel as soon as the START switch is actuated.

The MICROADDRESS HALT (MUX} position causes the processor to
run as soon as the START switch is actuated. Prior to this,

the DATA SWITCHES should be set to_the sum of the desired

- halt micro address plus one. The processor will then halt one .

minor cycle after the MUX reaches the desired address. This
leaves the Micro Instruction Register (UIR) loaded with the

micro code of the desired address.

If the START switch is then actuated, the processor will

/

/
continue running and again stop one minér cycle aftef the MUX
reaches the desired address i.e., one less than the DATA SWITCH
 setting. If the DATA SWITCHES are changed while thé processor is
halted, nothing happens until the START switch is re-actuated. The
processor then runs and again stops one minor cycle after the MUX
reaches the new desired address which is one less than the new DATA
SWITCH setting. If a memory cycle is still in process after the
last step of the above run, it will continue until completion,

including the Toading of the MDR in a read operation.

¢} The MEMORY ADDRESS HALT (MAR) produces the same operation as
in 1 b) above except that the MAR replaces the MUX and the
DATA SWITCHES are set to the exact halt address rather than

one increment higher.

d) The SINGLE MICRO CYCLE position causes the processor to halt.
The START switch gates 1 minor cycle clock to the progessor
each time that it is actuated. If a memory cycle is started
by any one of these single steps, it will continue until
.completion, including the loading of the MDR in a read opera-

tion.

e) ‘The SINGLE MACRO CYCLE position causes the processor to halt.
- Actuating the START switch gates as many minor cycle clocks as
are required in the microcode to execute the macro insturction.
When the processor halts , it leaves the Micro Instruction
Register (UIR) loaded with the micro code of the next macro

instruction start address. All memory cycles are completed.

3.0

4.0

5.0

HALT SW
The HALT switch stops the processor until the START or IPL switch

is actuated.

ALTER REG/MEMORY WRITE TOGGLE SWITCH WITH DISPLAY/ALTER ROTARY
SWITCH IN 1 OF 4 REGISTER POSITIONS

If the processor is in the halt condition and the DISPLAY/ALTER

rotary switch is in any one of the four register positions --

UPNT, UIR, MAR, or MDR -- then

a) If the ALTER REG/MEMORY WRITE switch is reset, the DISPLAY/ALTER
rotary switch reads the contents of the selected register on to

the 16 DATA LITES. An 'on' lite indicates binary 1.

b) If the ALTER REG/MEMORY WRITE switch is actuated, the contents
of the 16 DATA SWITCHES are loaded into the register selected
by the DISPLAY/ATLTER rotary switch.

ALTER REG/MEMORY WRITE AND MEMORY READ. TOGGLE SWITCHES WITH

DISPLAY/ALTER ROTARY SWITCH IN MEMORY POSITION

If the processor is in the halt condition and the DISPLAY/ALTER
rotary switch is in the MEMORY position, then the DATA LITES will

display the source addressed by a GSD or SCB micro instruction in

“the UIR. If neither of these insturctions is present, the Tights

will be out. No destinations will be enabled.

a) If the ALTER REG/MEMORY WRITE switch is actuated, the MDR

contents will be written into main memory at the MAR address.

b) If the MEMORY READ switch is actuated, the MDR will be loaded

by the contents of the main memory at the MAR address.

6.0

7.0

8.0

9.0

10.0

IPL SWITCH

Prior to actuating tﬁe IPL switch, the operator is expected to set
the DATA SWITCHES to a code corresponding to the selected I/0 device.
The IPL switch halts and resets the system and then sets the UPNT

to a ﬁre-determined starting address for the initial program loading

routine. The processor starts running again after actuation of the

START switch.

HALT LITE
The HALT Tite (LED) goes on whenever the system is in the halt

condition regardless of what caused fit.

PARITY ERROR

A main memory read parity error causes the processor to stop and
the MEMORY PARITY CHECK lite (LED) to go on. Actuation of the CHECK
RESET switch turns the 1ite off. The processor continues immediately
after the START switch is actuated. Dgring the un-reset parity error
period, the MODE, START, ALTER and MEMORY‘READ, and IPL switches
are disabled but th®ISPLAY/ALTER SW may be used for display only.

DATA LITES

Light emitter diodes {LEDs) are used for the 16 DATA LITES. When
the processor is in the halt condition, they display various
sources, a2s described in Section 4 a) and 5, above. If the
processor is running, the DATA LITES dynamically display the data

on the processor source and destination BUS.

SYSTEM RESET

The SYSTEM RESET switch resets the processor registers, latches and

flip flops. The main memory is not reset.

2L/22/9 | Y Ad7, % %

TIANVYd AV1d4SId 3 1TIVH Y3IMOod
~ 10"LNOD 0014 | :

4 ¢ / g

a«mam.b%imoim: E«Pw . ,.::.._
ANOWIW /23Y W3V -

3194 B I1OAD

Hq .._.Zn.u_D .0&0(8 Faleir-eliN
FI9NIS | 379NIS % %
) | wo LEIOAS Soons
wn e HEESAS
| ABO W B OUIIW
. AYOWAN | 5535044 O O
MSYILVAVIdSia S IAON ITIWH MO3HD
_ . - Alldvd
| INIOIREIN
0900000030 493397400 0 J sanaimsviva
ST YL &7 2T WOl 6 8@ L 9 & % € 2 1 0 f
O0000000 00000000 s3inviva

MEMOREX 7100

I/0 SYSTEM

R. HOEHNLE

-

R. HOLLAND
D. PESAVENTO

7/19/72

MEMOREX CONFIDENTIAL

1.0

2.0

3.0

II
ITI
v

CONTENTS

INTRODUCTION

7100 I/0 ARCHITECTURE

Integrated Adapters

Micro-Bus Interface

Memory Bus Interface
Micro-Processor Control of Adapters
I/0 Timing Considerations

RN N
O M=

7100 I/0 ADAPTER DESCRIPTIONS

80 Cotumn Card Equipment
96 Column Card Equipment
Printer

Console

Communications

Selector Channel

[FLRTURFUR FUR NN)
T O L) DN =

FIGURES

Integrated Adapter Interconnection to 7100 System
7100 System Register File

Integrated Adapter Block Diagram

Detailed Adapter-CPU Interface

.0

2.0

INTRODUCT ION

This section will discuss the 7100 |/0 Subsystem. The /0 Subsystem
has been designed to make maximum use of CPU resources. The 1/0
Subsystem consists of ﬁeripheral devices that are connected to the
CPU and main memory through control Qnifs that are integrated into
the mainframe design. These inftegrated control units, or adapters,

are directly controlled by a common micro-processor in the CPU.

7100 1/0 ARCHITECTURE

Peripheral devices on the 7100 System connect to the system through
integrated adapters (control units). These adapters are controlled
by the micro—processof in the CPU and make use of common resources in
the CPU such as AlLU, address and data registers and a scratch pad

memory used as a register file.

AFigure | outlines the basic interconnection of integrated adapters

to the system. All |/0 adapters connect to the micro-bus. The

micro-bus provides basic control to the adapters for 1/0 initiation,

termination and data transfer. The exceptions to this general rule

are the disc adapter and the selector channel adapter, which, due
To their high rate of data fransfer, go directly fo the memory bus

for data transfer.

Each peripheral |/0 adapter is assigned a processor state as seen
in Figure I1. Each processor state is assigned a column in the

system register file. The system register file contains registers

-

WILSAS COTZ OL NOTLOINNCOWILINT d3LdVAY GILYHIIINI

I ADI4

! ‘ : e T9eayt & udldyay | HE! H&43<m A 1z;;isrw;¢
| ¢3Lavay W M M¢Wrutum w SNOT quw R ERERYE B i M eV mmmhm:md :
i ;) Y ! i Cm . w H i ¥al) M ST IRITS A F= ‘
C acrg [¢ A0l ayyD /43093y Y\ odIlNINd .u 05000 |
TR B Rt i i A T boEsn
T i
P , , M
w SNg~0Y3IN ;
i
~ Nad
M M
1 , M
!
!
SNG AdOWINW ,
WILSAS
AYOWIM

- s

%\
\
-"RESER‘IED«-——"—?#\‘\%

| S -

[S

L. L & W m < ¢h O M~ W in = O N — O

d3gunN 331ST93Y

Ag C D

g
F
-0

S

PROCESSOR STATES

FIGURE TI

7100 SYSTEM REGISTER FILE

8-F in Columns 0-7 and 0--F in Coiumn F. Coiumns 8-t are reserved

for future use.

Fach 1/0 adapter has varying numbers (up to 8) of discrete registers
located in the adapter. These registers can be addressed by the
micro-processor as though they were located in the system register
file. Thus, the micro-processor has 8 working registers plus up

.
to 8 discrete adapter registers for each 1/0 processor state.

Register F is reserved in each processor state for the micro-
processor program counter. Thus, each tTime a processor state
change occurs, the entry point in the micro-program is obtained

from Register F of the newly selected state.

%

2.1 Integrated Adapters

Integrated adapters on the 7100 System provide data buffering
and contrel to the peripheral devica., Because different types
of devices have different characteristics, adapters are
designed specifically to meet The-needs of each type of

peripheral device.

Figure ||l shows grossly what is required for most types of
adapters. Fach 1/0 device requires a certain amount of
discrete logic to control it. This, in general, is in tThe form
of latches that set and remember comnands or condiTiéﬂs during
an 1/0 oﬁerafion. During data Transfér, buffering of data is
required betwsen the 1/0 device and the CPU or memory. Each
adapter must have logic fo sequence the work flow through the
adapter, (i.e;, moving data in and cut of the adapter, re-

to.).

questing CFU service, e

WyddYIQ #2079 d3LdVaY d31vd9dINI

ITI 3ANSI4

A w
: _ _ _ NdJ %044
m B 0LKCD |, 108 LNOD Ly
w { e 397430 1 39NINVIS SONTHHOD I TH.
* ‘ Y1 Ldyay w
! a
W /
: /
| /
M S,
W P— 11434408 H
i , : B a.iiis:;im@ria % ¥

d3Ld7ay C3LVHO3ANT

I

2.2

H

[n the 7100 Systom, the adaptler:

o

s are passive In nature and
depend on the micro-processor to contirol them. In certain
cases where The wicro-processor is not fast enough fo respond
to paripherail naeds (eg. serializa+ion/deserializaTion of bit
stream data on disc sterage devices) discrete logic Is provided
in the adapter to perform these functions. In general, when

. | r
a status change fTakes place in an adapter, the adapter requests
service froem The micro-processor and waits for The micro-
processor to respond. Examples of this will be covered in

Section 2.4, Micro-Processor Control of Adapters.

Atl 1/0 adapters contain certain common elements such as

registers to hold status, device commands and buffer data.

Thesa registers are directly accessible by The micro-processor
which can read or write Tthese registers. In addition, the
micro~processor can issue certain commands that cause the

adavter To perform a function, such as, master clear, drop

request line, initiate operation fTo device, efc,

Micro-Bus |Interface

The micro-bus interface provides the vehicle to initiate 1/0

operations, transfer data and terminate 1/0 operations.,

Figure |V shows a diagram of the micro-bus infterface. This

intferface consists of:

2)

3)

4)

5)

Biudir"ec‘i‘io:m_{_,___!6 oit Data Bus

This bus interfaces between the regisferslin the CPU
(i.e., MOR, A feeder, B feeder, etc.) and one of eight
registers in the adapter.(NOTE: Most adapters only
require 2 or 3 registers.)

Register Address Line

These {ines decode off of the micro-instruction register
source and destinaticn fields and selecl one of eight
registers referred to above as ltem 1.

Read/VWrite Lines

The read/write line signals the |/0 adapter whether the
selected register is to be a source or destination.
The read line indicates a source, the write line indicates

a destination.

Adapter Selsct lines

These lines select | of 8 possible 1/0 adapters. 1/0
adapters should respond to signals on the micre-bus
interface only when their assigned address is present
on The adapter select !ines.

Service Reguest Line

Each adapter has a unique service request line. The
service request line is used by The adapter to signal the
CPU that it needs the services of the micro-processor.

At én appropriate time, the CPU will use the service
requast line, through a priority network to select a new

CPU state which will affect the adapter select lincs.

d31dvay

Y31 dyay

FOVA4IIND NdY - ¥3Ldva¥ G37IV.L3C

AL FdN9I4

T3

. T ———

[| o

(1) 3INIT LS3NDT¥ 321A43S

=

_>HHmonu

L s rnmre ot

4.«

BLY1S
| 2044

&

n;xat:s“

mn}!;x‘ iy

S

300034

i
H
l
f
H
H
E

err e

et O

£

.

(b)) SINIT 1D3T13S ¥3L

qmﬁ

{2) S3INIT ILIYM/CY3

LT

{$#) SANIT SSIHACY ¥3ILSIS3Y

ﬁlllnl

SECIREICI A

oo

L 0 By T 4125 A ST] (TP T,

(81) SnNa IWNOILO3YIG-Id

SAgE Gdd Il

G

11S:d

ISAVIER

:

)
S (1) 3INTT L53nDaY m
H (91} <317 Yiva "
H (9T) S3INIT SSIMaay i’
e e [—— e

SAg Ad0WIW

2.4

Memory Bus tnterface
the memory bus Interfoce is used by certain adapters that

have high speed (¥ 27K byte) data transfer reguirements

such as the disc storaas unit and the selector channe!.

o3

The memory bus interfacs consists of:
() |6 Address lines

2) {6 Data Lines

3) | Request Line per Adapter

4) 3 Select Lines

Refer to "Memorex 7100 Memory System" description for

Timing and interfacing recuirement.

5

Micro-Processor Control of Adapters

The micro~processor, as described in previous sections, can
access registers in each of the adapters on the 7100 System.
tn addition to loading and reading these adapter registers,
the micro-processor can instruct the adapters fTo perform certain

progammed sequencaes.

These insTructed seqguences ffom The micro-processor can be
interpreted in two ways. One, the act of loading adapter
registers can be used by Tha adapter fo initiate certain
operations. For example, assume That one register in the
adapter fs assigned to be a command régisfer for @ peripheral
device, then, The act of loading the register could signal the
adapter to start a procedure with the peripheral device the
exact operation being dependent on the content of The register

Just tosded.

Ancther methed of instructing fthe adapier can be through The
use of register address decodes of regisiers not present in 1he
adapter. For example, assume that a pariicular adapter hasz 3
discrete registers. Since each adapter has an addressable
range of 8 registers, b register addresses would normally

be unused. tf These unused addresses were deccded and intfer-
Preted by the adepter as commands then 10 anigue (5 read and S
Write) instructions would be decoded through normal micro-
progran %ccess to adapter registers. Refer To adapfer decode

block 1n Figure 1V,

During a normal /0 seguence at the point of 1/0 initiaTion
the system will switch to the procesgsor state asscciated

with the pertinent adapter (see Figure 113},

The micro~processor will access memory fto obtain the"command
word™ which describes the /0 operation thet is to take place.
The micro-processor will make any necessary error checks for
format and content of the "command word.," [f no errors are
detected, the micro-processor will begin an |/0 command sequence

with the adapter.

Once the operation is underway, the micro-processor will
relinguish control to anoTher processor state until dats

transfer is required (this time varys with the peripheral device).

wlhen the adapter detects that an access fo memcry is eminent,
it will raise The service request lins To The micro-processor

pricrity network.

In due time, the micro-processor wiil respond by again switching
+o the processor state for the requesting adapter. Because

the micro-program initiated the /0 operation, it usually knows

what Type of response will be required to &n ensuing request
and wilt have the micro-program counter pocinting To the proper

(i.e., read or write) micro-program routine.

Once The switch has taken place, Tthe micro-program will access
memory and send the data fo the adapter data buffer (write
sequenée) or access The adapter datd buffer and send The data
to memory (read sequence). In either case, the micro-program
witl update the memory address pointer and the data block
counter. The micro-program will defect for end of block.

[f the end of block specified by the "command word" and the end
of record specified by the peripheral device do not coincide

an error status condition will occur.

After each byte of data is transferred, The micro-processor

relinquishes contro! to another processor state.

2.

5

When all of The requested dala has been transferred, 1he micro-

i

program goes through a clean up procedure to fterminate the 1/0
operation. | command chaining was roquested by the Mcommand
word' in memory, the micro-program will access The next "command

word" and the procedure starts all over again.

1/0 Timing Consideration

[) Adapter Selectlon Address Lines

The 4 adapter selection address lines indicate fo the 1/0
adapter which blcck of extended registers the proceséor
wishes to communicate with., The 4 |ines make it possible
o address 16 separate register blocks. These address
ines must be stable 130 n sen. after the tralling cdge

of the system clock for a write request and 90 n sec. after
the traiiing edge of the system clock for a read request.

23 Register Address Lines

The 4 register address lines Indicete to the /0 adapter
which reglster in the block of extended registers fhe
processor wishes the address. The 4 lines méke it possibie
to address 16 different registers. The address |ine must
be stable 170 n sec. after the frailing edge of the system
clock for a write reguest and 130 n sec. after the trailing

edge of the system clock for a read request.

N
o

53

170 drite Line

The t/C write line indicates To the /0 adapter that the
processor wishes to perform a register write function,
The write tine must bLe stable 130 n sec. after the

trailing edge of system clock.

|/0 Read Line

¥

The 1/C read line indicates to The 1/0 adapter that the
processor wishes to read the contents of a register.

The read |ine must be stable 130 n sec. affer the trailing
edge of system clock.

Micro Bus

Tﬁe 16 line micro bus is a bi-Hirsctional communication
link between the processor and the /0 adapters. In a
write operation, the /0 adapter must have the bus ctable
|70 n sec. after the trailing edge of sysTem clock. In

a read cperation, The bus witl be stable 230 n sec.

atter the trailing edge of system clock.

3.1 ETOHEY COLURN CARD INTEGRATED READUR PUHCH ADAPTER {IRPA£D)
1.1 CEnERAL
The TRPABG 1s the Integrasted Adapter/Controller which contains the
herdvare interface and control logic reguired to operate the MRX £205
Card Reader Punch (Contr01 Data Corp. Model 9280). The IRPAEOD may
atso be used as the Adapter/Controller for MRX 6010 models 1, 2, and
3 {Documation Inc., models M300L, MAOOL, and MICOOL).
3.1.2 PERIPHERAL DEVICE DESCRIPTION '
3.1.2.1.1 The CDC Hodel 9285 will both read and punch eighty column cards
in one pass. It is capable of reading at 500 ¢pm or punching
at 100 c¢pm. The Model 9280 consists of a column oriented, card
read-punch unit complete with Hopper, Stacker, internal Control
Unit, and Power supply.
3.1.2.1.2 The Model 9280 uses fiber optics to accomplish the photo-electric
reading. The read system is resynchronized on each punched column
to insure reliable reading of "old" or mutilated cards. An added
feature is the punch “Skip-Out" capability which aliows a card to
be fed at transport rates after thc final desired column is
punched. It also has a stacker card "Offset” capability.
3.1.2.2.1 The Documation M Series readers will read eighty column cards,
column-by-~column. The M300 L reads at a rate of 300 cpm, the
MEOOL reads at 600 cpm, and the FMIOOOL reads at 1000 cpm.
3.1.2.2.2 The M Series Mochanisms consist of a Hopper, Read Station, and
stacker. A1l units use long-life LEDs to accomplish the
photo-electric reading.
3.1.3 IRPA8D DESCRIPTIOM
3.1.3.1 The Eighty Cotumn Intienrated Rezder-Punch adspter logic is contained

on two plug-in boards. This logic 1s divided between a "Register”
board and a "Controt" bosrd. The IRPA interfaces to the micro-

nreeessor via the /0 wicro-bus, the row and caluinn addrezs lines, ths

read/write contrel Tines, and the service vrequest line. For additional

~

information on the T/0 interfece, vefey to Seciion 2.0,

3.1.3.2

3.1.3.2.1

IRPASD Reuister Board

The IRPABO Reoister Board contains the Command Register, Invaiid
Command detection logic, Punch Data ragister, Input Data register,
Hollerith conversien legic, and Heollerith Validity check Togic.
(Refer to IRPASO Togic diagram or Bleck Diagram 3.1.4)

The Command Register is 8 bits in length. During the I/0 initiation

procedure the micro-processor fetches the Command Byte from the SI/O
instruction and Touds it into this register. The Command Byté is
then availeble to the wicro-processor for testing and, normally,
will remain in the command register for the duration of one I/0
operation, Tne bits in this register corrvespond to bits 8 thru

15 of the micro-bus and their meanings are assigned as follows:

IEBEIENEREE 13 [10 [15 | sn)

. h;>n<——}.l--..-._ [P i

3
i
ot}

i K

b URITE (PUKCH)
e READ

mememeee NOT USED INTERNALLY
S BINARY INAGE

OFFSET

NOT USED INTERNALLY

3.1.3.2.2 The invalid Command Detection logic tests the four least significant

hits of the Command register. Three of the sixteen possible combinations

will be sensed as an invalid cemmand. Thece are:

1) G000 Invatid
2) 1000 Transfar in Channal
3) 1100 Read Backward

Tha Invalid Command term is one of the inputs to the Command Reject
legic on the Control board. However, the Tnvalid Command term will
not cause a "Command Foject" to ocour unless 1t is present when the

i cro-procossor exccutes a "Stert I/0" (TEED) control function.

SENSE 7 Used only for Invalid
INVALID,f Command detection logic.

3.1.3.2.4

The Punch Bets Heoister is the outhound date buffer during Card

Punciy operations, 1t s 12 bits in Tenoth, and they corrvoespond

to bits 4 thru 1bh of the micro-bus. This register is lcaded by
the Write Decoder "Load Punch Data” term. The register outputs are
connected to the inputs of the EBCDIC/Hollerith ROM converter.

A punch multiplexer is used to select either the converted
hollerith character or the Punch regisier outputs (bypassing

the converter lomic) and to present the resultant Punch data

to the peripheral interface. The punch wultiplexer data selection
is controlled by ihe Binary image bit of the Command register.
Either an "lmage" character or a "converted" character is always
present on the Punch Data lines. This Punch Data is also
availablie to the Input Multiplexer, thus providing the capability
for diagnostic testing of the outbound data paths.

The Input Data Register is the inbound data buffer during Card Read
operations. It is 12 bits in lengthy and they correspond to bits

4 thru 15 of the micro-bus. HNormally, this register is Toaded

with data read from one column of the card in the device reaa

station, and is loaded on the leading edge of the Busy signal
(data index) from the peripheral device. This register may also
be toaded {rom the wicru-bus, thus providing the capability

for diagnostic testing of the inbound data paths. The register
outputs are connected to the Hollerith/EBCDIC conversion Togic.
A Binary Read multiplexer is used to select the converted EBCDIC
character or the Input Data register (bypassing the converter
Togic) and to present the resultant input data to the Input

Multiplexar.

i Hollerith Validity Check is perforied on inbound data if tne
IRPA is not in Binary Image mode. The Validity check logic inputs

are cennected to the seven Teast significant bits of the Input
Data register. If more than one of these seven bits 1s set, the
Hollerith Valid term will be not true. If the Hollerith character
is not valid, and the 1FRPA is not in Binary Image mode, the Data

Check flag will be sct.

3.1.3.3.2

TRPASD Control Board
The TRPASD Control Board contains the Head Controi and Write Control

ra

decodors, the Trput Multiplexer, the Data Trensfer Centrol lLogic,

L.

o
Ll
o
(”W

heck logic, Adapter Status legic, and the Peripheral Device

Stotus Togic.

vder to perform an I/0 operaticn related to the IRPABO or the
attached peripheral device, the micro-processor nmust first establish
the corvect Column Address to select this Adapter. The micro-
procassor must then execute an I/0 micro-instruction: which will
establish the 1/0 Row Address for the register, or control function,
desived; and which must raise either the 1/0 Read signal to specify
that the IRPABD is the information source, or the /0 Write signal
to specify the IRPABD for a control function or as an information

destination.

The 1/0 Row Address is presented to lhe Read Decoder, the Write
}

Decoder, and the Input Multiplexer. The Input Multiplexer seiects

the informatioh specified by the I/0 Row Address and, if it i5 a
Read cperation, the output drivers are enabled, placing the
information on the I/0 micro-bus. The selected tnformation is

one of the foliowing:

1) Input Data (sourced from the Input Data register or the
Hollerith/EBCDIC converter)

2) Punch Data (sourced from the Punch Data 1ine)

3} Comnand Byte (sourced from the {ommand register)

4) Status (Attention, Busy, Device End, Unit Check, Request In)

5) Sense (Command Reject, Intervention, Data Check, Overrun,

Not Ready, Device Status, CPU Data- Request)

The ﬁgjte Decoder is enabled by the I/0 write term and, depending

on Row Address contents, decodes cne of the following Register

ne
Load or Conivyol Function terms:

register load)

o

Load Input Data
register loed)

]

Load Commend DByte

ontrol function)

2
g g g e
o
o
[l

(
(
Punch lata (VG§ tor load)
(¢
(

control function)

T

3.1.3.3.4

3.1.3.3.5

3.1.3.3.6

3.1,

3.7

6) Clear Status (control function}
3y
)

7} Reset Cevice {control function

There is cne Write address function and three Read address functions
not used by the IRPABC. These are interpreted as illegal addresses
and, should the micro-processor attemnt to execute one of these
when the Column Addrass is pointing to the IRPASO, the Command
Reject Flag will be set fo indicate an erroy condition.

The Active Flip Flop is set if the perﬁphefa? device is "Ready"

ang the micro-code issuss a Start [/0 control function to the
IRPASO. It is reset by the Halt I/C control function. When the
Active FF is reset, all service requests are inhibited except
"Attention". Also, all data transfers between the IRPABD and the
peripheral device are inhibited. However, all Controi functions
and data transfers between the IRPABD and the micro-processor

are allowed in order to provide for diegnostics, adapter testing,

and 1/0 initiation/terinination procedures.

If the peripheral device is "keady", and an lnvalid Command is

not present in the Command register, execution of a Start I/0
conirol Tunction will set the Feed Flip Flop. This FF provides

the Feed Command to the peripheral device to begin a new card cycle.
A Start I/0 control function must be cxecuted for each card. The
Feed FF is reset if the Aclive FF is raset, or upon detection of
the trailing edge of the End of Card signal from the peripheral
device. For card cycle timing, refer fo Figure 3.1.1.

Control of Inbound Data Transfers is as follows: The peripheral

device pulses the Busy line once for each card column, as it is

read and the column deta 15 stable on the twelve Card Data lines.
The Busy line leading edge is detected and used to strobe the

data into the Input Data register. This same strobe is used to
sot the CPU Data Pequest FF and the Register Full FF. The Register
Full FF is reset when the micro-processor reads the Input Data
Recister, or when it executes a Clear Status control function.
Reier ta Timing Dicoram 3.1.2 for inbound deta Crensfer timinc.

In tie event thqt the dusy line is pulsed Tor a now data transter

and the Pegistor Tull TR 7s elready set, loading of the Input

31547

INIAIL 304D dd¥3

AR 231047
BN pded
34815 34213

i

b e e m e [R—— U009 JM

f

Y11 o) \m w B

JUlLl UoUnRg ; :

— P !wﬁ m

i

” 1
AN
B10AD Usund wdd 0z
m
e e e e e - R SWNZT — 1_
“
n - sune s ~SL/G - .
_ ceed T : m
‘ | SiwL] pesy | |
. | |
Stitli 08 I 31340
poo] "Lo3 1102 peg
isese] 34L3E

TL-51-9 (AayridiTTvd)
{nwnied 08)

CEz 4L T302W Viva TRYINGT ¥D4d

JILATY HOMOLfdTavIy OF Xyu

DONIWIL T9YLNOD vivd LAJN]

21 WYJIVIQ ONIWIL

INFANIJIq FAP2 QUOIW = JOW r3lew

4

aiW

£ MLSNI 3329
A yIvd Lhdnl

FEIR LI E B CED

AN

I
m .
|
_ - ——
. L53IN03y VLYG N7
N
I

Yivd 2 NwiTeD

ViVG | NWNT9D =/ Twivd ¥3L5152¥ Lranl

! dY WTys

X3CNI ASFE

2354

Y

Y

., 3K SIL

gL-51-2 O LLIRELED

(nifmT23 08)
C&ZH 71300 ViV Te¥LNeD dod
¥ILAUIY HOnNd Sy3avid 08 XyW
INIWIL T04LNGD YIVA LAGLAP
€1E WYYoVIg oNIWIL

[

vivd H3oiod cvoil

LAa3anidag 3092 g¥dlw = a2 (318N
Yivg £ 120 vivd z 102 V.V | 790 _
mnu.\:c\ Jdy SI!vi JY SHYL dY
. . {3snodsay 3.y7) . e . "t i
¢ _1 g2k “ SASkh “a sw 9 mj FELIv _7 S35 SW gL . _
i I b > | o — I j >
St [ew 1%
e _ ? | | ;@ | _ | 3
R [I I - | i ! Y . J | dN wWris
— \ 2P PSR
e~ _ ~— [_ulr./ _ > | | X301 Az
{ t
i /i\l/ | _ dy ¢l
_ _ i 1 Adysy S5
lf_, /ﬁnuzﬂ) 1
N a - | I Y LSEN] JTIT W
17 _
~\|

W dy WiYs
w QavD 30 Gl
- 1L : —
5T i 73 X ViYa Z NWn7eo X TN viva YILS)OZY. Honimd
. L =

3.1.3.3.8

3.1.3.3.¢

3.1.3.3.10

e will be dnhibited end the Cverrun FF will be sct,
signuling a data loss error. he Overrun TF can be reset only

be executien of & Clear Status coniro? fTunctich.

Control of Quthound D:ota Transfers is as follows: The peripheral

device will set the CPU Date Request FF upon recegnition of the
trailing edge of the End of Card signal. The micro-processor

will respona by leoading the first character into the Punch Data
register. The Load Punch Data strobe also resets the CPU Data
Roquest FF and sets the Info Ready FF. The Info Ready term signals
the peripheral device that Punch Data is aveilable. The peripheral
davice signals the IRPABO that it has taken the Punch Data by
pulsing the Busy line. The treiling edge of this pulse is

detected and is used to resect the Info Ready FF, and to again

set the CPU Data Reguest FF. The micro~processor then responds
with new data and the sequence is repeated until all punch data

for one card has been transferred. (Refer to Timing Giagram 3.1.3
for outbound date transfer timing.) This data transfer scguence
1wy be terminated eartier than 80 columns, if desired, by execution
of a new Start 1/0 (Feed) contrel fuaction. Overrun cannot occur

on outbound data fransfers

The Busy FF derotes that a peripheral device card cycle is in
process. It is set by the Feed Command and is reset by detection
of the End of Card {¥0C) leading edge, or upon resetting of the
Active FF,

The peripheral device raises the Ready line if it is on-line and
there are ho crror conditions. The device raises the Status fine
if it is Ready, the motor is on, and cerds ave present in the

Read Ready and Punch Ready stations. IF both of these lines are
true, the Ready Latch will be set. If either Tine is false, the

Ready Latch will be reset.

fhe Teading edge of the Ready Latch is detected and is used to
CF, The Attewiion FFois reset by the Clear

ction, The attention signod raises the Service
Pequest Tine to.signe! the wicre-processor that the pevipheral

dovice ic On-1ine and ready for uen.

3.1.3.3.13

3.1.3.3.14

3.1.3.3.15

r

The Device Ind IT 75 set by the Teading edge of the Ready lLatch,

o

)
5
:")—
{ Y)

> leading edge of the End of Card signal. It is vresetl by
the Clp Status control function. The Device End signal denotes
that the peripheral device has completed its card cycle and is
avaitable for a new Feed Command or, in combination with the
Attention signal, that the device has come On-Line and is ready
for usec.

The peripiieral device will pulse the Error §tr0be if it detects

a "Tight or dark probe error” during read node, or if it detects
an "echo check ervor" during punch mode. This Error Strobe line
will, if pulsed, set the Data Check FF. I the IRPAZD is not in
Binary Imace mode this flip flop will also be set by the Hollerith
Mot Valid signal. The Data Check FF is reset by the Clear Status

control funciion.

The Command Reject FF will be set by ‘an illegal Read or Write Row

address, or i7 a Start 1/0 is exccuted when the peripheral device

is not ready, or if a Stert 1/0 is executed when the Command Register
contains an invalid command. It is reset by the Clear Status control
function. The Command Reject signel inhibits the Feed Command logic

and the CPU Data Recuest logic, and signals the micro-precessor

that an operational error condition exis

The Service Request line provides the IRPABD with the capability

to signal the micro-processor that service is required. This line
is raised by setting the Attention FF. Also, if the Active FF

is set, this line will be raised by setting of the CPU Data Reguest
FF, Device nd FF, Overrun FF, Command Reject FF, Data Check FF, or

by the Recdy Tatch baing reset.

AT Bl At rilve 1 12U AQY3IY
CEZL TI05w 30D v <Hmo ,
L ATE SN/ ATIVEY S4YD 08 X o MV
e . _ PYLN —
AE WvyovId NOQTY 1530034 V1va X30A1 457D
YLV
nd3 .
A
— Lre
ATISY gAN FAILDY
YT L3073 yivd IUA3G] ,
A avay /1
N , a9rid d
— T CNVWOD G734 ; 7 mmomuu _
L i
TPYLNGD ’ T 55390y Mo
Asng &3LIVAY .
T |¥20¢03d
Liam T E T
17aray
* OwWo ¥30¢73d e o i e e
NWed 'e SSTHAQY NWN3ED
" agnz
’ FDINEQ _
T CE T LY Ve /L|_
IPYLNGD ? ALVLS 301734 AN
SrlyLs h SALYLS 30173
ITVES 7 VILVAiS
. ¥
£ -
4} ¥FLYINNGI X ; IF\V
Y i :
. i VD Cavo
- T 203 9T Viva - v
TIng 2T /T ANy ,.M 1Agn? 7 i
v.LivYq . , . wv
: "z 72 G
93y
= w < Two
| oay
A P B e B o
2 = b k] = N3 vive ¢71
=TT 1y HTAAd 3 Iaq Hanrtd 2 3 va i
R .

fhe TRPASE s the Intenrated Adapter/Controller which centains the

pla
£

arawave interfece and control logic required to operate the Decision
Date Corn. 08 column card oguipment. The models which this adapter

will control are:

<7
L]
0

0 Data Recorder

e}

Co
oy Oy
—
[y

e
o
[
(o)

Data Recorder/Printer

1200 cpm Reader

300 cpin Reader

8643 300/120 cpm Reader/Punch

8653 200/120 cpm Reader/Punch/Printer
8655 L00/240 cpm Readev/Punch/Printer
8660 1000/500 cpm HFCU

o
fu]
LFs)
<o
= g 3O
s S e
[
w
ot ooy Oy

o]
o

C.rJ

2
RV

T2
Lol
Wow

j)
[ap]

o~ —_—— —— ——— Py - — ———
o O O O

[

L I

[SaRN el

[T >

In A

[

-]
!
w0
<9
<

3.2.2 DEVICE DESCRIPTION

3.2.2.1 The functions, intertace, and-control of ail DDC models are
compatible sub-sets of the DDC 9650 MFCU. Therefore, all peripheral
equipment references in Section 3.2 will be in respect to this
MFCU.

3.2.2.2 The DDC 9650 MFCU s 2 96 column Multifunction Card Unit which
consists of two input card hoppers, two read stations, two pre-
punch wait stations, a celiating junclure, one punch station, one
print station, six output stackers, and associated mechanical and

n.-o

electronic contral., Also, included are three "full card" buffers

for the read, punch, and print stations. The MFCU interface

signals are DTL/TTL coupatible.

3.2.3.1 The Hinsty Six Column Integraied Reader-Punch Adapter logic is
contained on two plua-in boerds. This logic is divides between
H

4 i - . I P R T R P O Snd ot o em
o “Regiaier’ board and a "Contrel™ board. The IRPRSG interiaces

PR R T N SN S 3 IR S SN
fag the aricro- PUGLERSNGs Via the E/O ill‘;c:g;"‘bk‘.:} . Lho you ang COl HHHE

addvass lines, the read/wriie contrel Tines. and The soervice

3.2.3.2

[

L

2.1

3.2.3.2.2

requost line, For additieonal infornation gn the /0 interface,

P A I
for o Section 7.0,

RPASEG Register bLoard

The Kogister Beord centsins the Command Pegister, Punch Data Register,
96 column/ EBCDIC logic, Read Control and Write Control decoders,
and the Data Transfer Contral logic.

The Command Regicter is 11 bits in Gength., During the 1/0

iniiiation procedurs the micro-processor fetches the Command Bytes
from the SIO insiruction and leads 1t into this register. The
Commzind is then availuble to the wicro-processor for testing, and,
norimally, will remain in the Command register for the duration

of one I/0 operation. The bits in this register correspond to
bits % thru 15 of the wmicro-bus and their meanings are:

Punch, Read, Prini, Print Separate Jata, Upper Hopper Select,
Inhibit Input Fecd, Stacker Mode Cont ral, and stacker select

(three Tines).

The Punch Datza Register is the outbound data buffer during Card
Punch or Print ODGTut?OﬂS‘ It is 6 bits in length. This register
is toaded hy the Mrite Decoder "Load Punch Data" term. The & bit
ERBCDLC character is taken from bits 8 thru 15 of the micro-bus,
sresented to the "ERCDIC to 96 column format® converier, and the
convarted 6 bits are strobad into the register. The outputs of
this register are connected to the peripheral interface Punch
Date Tines. This Punch data is also availeble to the Input
Multiplexer, thus previding the capability for dicgnostic testing

of the cutbound data path.

The peripheral device continuousiy maintains a character cn the
Input Data interface lines. Therefore buffering in the Adapter
is not requived. This data is present at the inputs to the "96

colunn format to EBCDIC! converter, and the ouiput of this

converter 1s aveiiahle to the Inmput Fultiplexer.

by the I/0 write teym and, depending

|
on the Row Address contents, decodes one of the following

Register Load or Contrel terms:

Load Command byte registor Toad)

™S e

) (

?) lLoad Punch Date {(register load)

) Start I/0 (control function
} Halt 1/0 (control function
) (
) (
) (

)
)
control function)
)
)

[,

Clear Status
Reset Device control function

control function

~ Y U5 >

Clear Input Buffer

3.2.3.2.% There 1s onz Write acdress function and one Read address |”ﬂLC1Jﬂ
not used by the TRPA2S. These are interpreted as illegal addresses
and, should the micro-processor attempt to execute cone of these
when the Column Address is pointing to the IRPASG, the Command
Reject flag will set tc indicate an error condition.

.

3.2.3.2.6 Control of lnbound Data Transfers is as follows: The peripheral

device will raise the Input Data Available line for each character,

as it becomes availshle. The leading edge of this sigrnal is

detected and the CPU Dota Request FF is set to signal the micro-
processor that data is availabie. When the micro-processor
executes a Read Input Data micro-instruction, the CPU Data
Request FF will reset and the MFCU Data Reguest FF will set.

The MFCU Data Request signal will cause the peripheral davice
buffer to shift one charscier and, when the new character is
stable, the device will again raise the Input Data Available
Tine. This seguence will continue until ail 96 charactars are
transferred or until the micro-nrocessor executes a Clear Input

s

Buffer control function. Refer to Timing Diagram 3.2.1.

3.2.3.2.7 CGonirol of Qutbound Data Trensfers is as folicws: The peripheral
device will raise the Qutput Buffer Available line as it becomes

]

ready to receive cach cutput cheracter. The leading edoe of this
signal 15 detected and used fo sat the CPU Dota Re

que
the micro-processory responds by Teading the Punch reqistarg the

dovien will accent
GOVTOR v TCCEDY

- R N o~ SR B R G, A T N - Ty
deta and again raise the Gutput Buffer Aveilable Tine. This

ZL-21-5

Ay INIwI1INS

Figyay M123W OF XywW INIWIL To8IN@D YIVD LOdNT
1'2°€ WYYOVIG ONIWIL
. LNIAN3LIG 300D @¢¥yW = G2 13L%H
N . ‘935w OF @l ¢ Sl LJnyyILNI AMIN QL
| y NOTLIMYLSNT (LS3M03Y viIve ¥vITI, Wovd Wil
| i
! |
. { _uwu:r‘s_ ‘WiW S O f | | 1 ; 1 1 |
58 238wl Wil sS4 OSE
t — be e M) 0L} f ~— '
ol ao airx sUog Jdow g2 218w}
I | swogl 1 } } | | | i
e ! v B ~ Lo
i 1 ! | i I t 1 '
! } ! I [§ ! i Toygasy) 32000
! _ ! ! ! i 153003y yinl U¥ila
1 | 1]] ! "
1 | I | | | I Aodw O1
i +uu:6m.w. Yiyg MmaN
N | 1 1
| i 1 wyrent 2002
| | VYD aPgdl CYEY
suQse | 1
. ! gD S 1l
ﬁ ._.Smnsmm YiLY3 G20
K {
1 N7+l WoY4
FTAVTINAT Y.LVG lranl
nodw WS4
a T4 §34408 LAl
& nwn1eo X z rwnioa X | NWATOD viva Lidnl X

TLLdF Adyniwt 13¥S

SILIIAY N2 OF XYW ONTWIL TOQYINGD YLVQD 104U
TTUE WYHOVIT ONIWIL

INIANIJEG 3000 Q¥2IW = JoW [3LON

. . 538k 1 ©1 4" $1 LdNYy3ILNI LXIN Ol
NOILONYLSNI (A$3M03Y YLVG ¥v372, Woyd 3lil
[

|

!

XY SU OS5E} “
|

!
—_— Pt - XYW su 05§}
—_— ey
| Nt s40sE : "NIW 54 0S€
ooy _) .o *
. HiW SV 058 WiW 5S¢ 058
' ; >t > 225K § e
_ dohr | g aow | qor | f_
_ _ . _ | |
i I i [!
: i [! _ 3240l
! I i | 934308 Lndiro ev2y
! : [(e !
! ! ! [ylsng 3c0ow
!] i | 1S3n03y viva gvET2
| ! ' _ :
__ _ ! : | yisni 30033
: ' 1 i VLV RINOd VT
1 !
| | . .
! | ! ! g2 0L LNl
_ 0 - | LSINg3y vaul d7
| 1 |
| 1 l 1244 WS
! | : g7V TIVAY &3430@ LidinG
! 1
I 1
| | N
z nwr1e X i nwn10 X vivd Lrd1nd

senvance will continue until 96 cheracieors hove been transferr
or the micre-processor exechies o new Start 170 {Teed) control

function, Reter to Timing Diagram 3.2.2.

IRPASE Control Board
The 1TERASH Control Board contains the Input Multiplexer, the Data

Check Togic, Adapter Status logic, and the Peripheral Device

P

The Input Multiplexer selects the information specified by the

ed,

I/0 Row Address and, 1T it is a Read operation, the output drivers

are enabled, placing the information on the I/0 micro-bus.- The
v

selected information is one of the following:

1) Input Data (sourced from the input converter)

2) Punch Data (sourced from the cutput date Tines)

3) Command Byte (sourced from the Command register)

4} Status (Attention, Busy, Device End, Unit Check,
Request In)

5} Sepse 1 (Command Reject, Intervention, Data Check,

ot Ready, Upper Input Check, Lower Input
Check, Output Check, Stacker full, Lower
Hopper Empty, Upper Hopper Empty, CPU Da
Request)

6) Sanse 2 (Input Data Available, CQutput Buffer
Available, Print Buffer Available, Card

In Lover Read Wait Station, Card In Lower

Pre-punch Waii Station, Ready for Upper
Command, Ready for Lowey Command, [nd of
File, Punch Data Check, Read Data Check)

The Active FF is set if the peripherst device is “Ready" and

the micro-processor exccutes a Start 1/0 to the IRPAOG. It is

P

reset by a Halt T/0. hen the Active FF is reset, all service
reguasts are dnhibiled except "Atiention". Alsc, all date

N

Tyene Tovs hoeteoon the 1RPASO and iho peripheral dovice arce

. % [P R B T NS B
, a1l contral ?bucL:an; and data transters
e N ¢ PR I TP R
a8 and the micro-procossar are allowed in orday
to ovrovide Tor dieomessiion, adaptor tooting, and 1/0 inttiation/

2.3.3.4

e

™2

[

L

2

[#5

[}

3.2.3.3.7

a Start T/0
This flip flop provides the Teed Request

,«
o
—
ol
[}
it
=
Oy
=
—
%)
3
Z
-
o
o<
=
cF
-
O
i

T the paripher

W.i l l (_3{'5t {538 [":‘"7.

sional to the peripheral device Lo begin a new card cycle. A
Start 1/0 must bo executed foy each cord. The Fead FF is reset

-

by the Input Buffer Full or Uutput Buffer Available signals.

The Busy FF denntes that z peripneral device card cycle is in
process. It is set by the Food Reguest signal and is reset by
a lalt 170 or by the trailing edge of the Ready for Command

signal.
The neripheral device raises the Ready line if it is on-line
and there are ng error conditions. If this line is true, the
Ready Latch will be set, If it is false, the Ready latch will
ke reset.

.
The leading edye of the Ready latch is detected and is used
to set the Attention FF. The Attention FF is reset by the Clear
Status conirol function. The Attention signal raises the Service
R:qae Tine 1o signal the micro-processor that the peripheral

device is On-Ling and ready for use.

| '

is set by the trailing edge of the Busy signal,

The Doevice Ena

FF
or by the leading edge of the Ready 1atch. It is reset by the

J

Clear Status control function. The Device End signel denotes
that the peripherel device has completed its card cycle and is
aviilehle for a new Fecd Commznd or, in combination with the
Attention signal, that the device has come on-linz and is ready

Tor usc.

The Deta Check sigral will go trus during a Read opera tion, if

the peripheral device catects a read ervor. It will go true
during a Punch operaticn, if the poripheral device detects a
differeonce botuesn the pusch data and tha data read at the Post-

Punch Resd stcebion.

3.2

T

3. 10

set by oon illegal Reod or Write

alse be sel by the Start I/0 i1 one or
move of the following condtions exist: The Command register
containg an 1llegal command, ov upner hopper is sclected and the
device s not Resdy for Upper Command, or upper hopper is not
selectad and the device 15 not Ready for Lower Command, or the
device is busy, or the device is not vezdy. The Command Reject
['f is reset by the Clear Status control function.

r

st Tine provides the iRPASG with the capability

to signal the micro-processur that service 1s requived. This

Tine is raised by setiing the Attention FF. Also, if the
Active FF is set, this line will be raised by setting of the
CPU lizta Reauest FF, Device End FF. Comnand Reject FF, Data

Check signal, both hoppers empty, or by the Ready Tatch being

= "

resot, .

ZL-%]-5 ASYNVIWT [3UeF

¥ILIVAY M124W QT XYW

£ZE wyyoviad 32978 | s3meTy
A\ v.iva
= LsFTeIH vlvg mIN 123w
Fi
L S7noy Jeﬂwxz%u h TOYLNDD JFFSNVal VoyE D
" YLya
A IIInoiy vLIva n1d3
-/ .
N...m S3n0dyd 03374
INILDY
49mig
Y
. avid o/l
. yrapdal
o1 gv3y T4
Asng
TYLNGD)
i Pl et
. #34dvaY ‘3 ¥30999q] 't SSINJGY MOY
SLI¥M
Y L.Mmhm% Allum 71
oIy oI 1 — w3a993
- NWATOI=7§="5539607 Mier
IoIn3a
an3
32IA30 .
SHTHS TiNT HovINg? &: T ITACEETEN =\
NOILN3LIV |sndiv¥ls T
5 a Iz FSNIS D SNIVLS .
iy vAvad @/l B
wﬂm 78 VIvO N A
\r Yivd Lhgnl —
\“
r mﬂo%mm_q = xru 03y
o3y 2 viva oond
A . . awo N 4 #2003l
SONYWI/0D I9:A3d Ol I it) Woy &
L5 : ‘ i
'8 SNg Yava ¢&/1

viyd Ligd L@ &)

o

3.3.3

3.2

3.2

3.3.3.1

o0

[E%]

[¥5]

™

r‘JI'n:-' \tn

FTLGRATES LINE PRIBTER ADAPTER (ILPA)

The ILPA is the Integrated Adapter/Controller which contains the

hardware interface and contral legic required to operate Data
Products Models 2440 and 2470 Line Printers.

DEVICE DESCRIPTION

Tha lodel 2440/2470 Line Printers contain the.clectronics and
mechanical parts reguired to print Tines of 132 characters on
multipie par£ fanfold paper and advance the paper to the next

1ine to be printed. The control Togic required to operate the
mochanism electronics and a 132 chavacter buffer register are
included. The printing speed (with the standard 64 characters)

is 1200 LPM with &8 characters per 11._; or 670 LPit with the full
132 characters per line. The interface to these printers is DTL/TIL

compatible.

JLPA DESCRIPTION

The Integrated Line Printer Adapter logic is contained on two
plug-in boards. This Togic is divided between a "Register”

board and a "Control" board. The TLPA interfaces to the micro-
processor via the I/0 micro-bus, the row and column address 1iies
the read/write control lines, and the service request line. for
additicnal information on the 1/0 interface, refer to Section 2.0
ILTA Begister Board .

The 1LPA Register Board contains the Cosmand Register, Invalid
Comnand Detection Logic, Print Data Register, Data Transfer Centrol
Logic, Vertical Formet Contrvel Logic, and the Peripheral Device

Status Logic. Refer o Legic Diagrem ILPA or Block Hiagram 3.3.2.

3.3.3.2.2

| 8
.
i

cnmand Reoisier i £ bhits in tength. During the I/0

initiction procedire, the micro-processor fetches the commiand
byte from the SI0 instruction and leads it into this register.

The command byte is then available to the micro-processor for

testing snd, novmally, will reisain in this register for the
duration of one 1/0 operation. The bits in this register corres-

pond o bits & through 15 of the micro-bus and their meanings

are assigned as follow

2]

9 10_1.{1.]”%&—‘ :!—:‘{i _]‘,4,“ wl‘g_? (LSB)

—_—
o § s I

{ i

1 LW...V,.,_"- Wirite (Print)

! e @i el Used only for Invalid
i

e Sepse Command Detection Logic

b e estr e o e meememe. Y EVETCAT Fovrmat

Y

b e Yoy Uical Fovimat

e i e o

e e VPt ical Format

l._..‘-_m.\ e e e Y@PETCAT FOVYmat

[B~ %)

e e oo e 2t e e s e Vertical Format
Each of the Verticel Format Control Codes required for these

lTine printers is one less, in binery velug, than the corres-
ponding codes used in standard software. The vertical format

bits from the command register outnuts eve applied to VF code
decrenent Togic which decrements the binary value, thus correcting

this discrepancy. The outpus of this Togic are available to

he LP Data Hultiplexor.

L)
(&%

Lo

™2

[V

3.3.3.2.4

3.2,

nd Detection Togic tests the four least signifi-

cant bits of the command vegister. Three of the sixteen possible
combrinations will he seinsed as an fnvalid command. These are:

1. 0000 Invalid

2. 1000 Transier in Channel

3. 1100 Read Baciward

The invalid compvand term is one of the inpufs to the command
reject legic on the control board. However, the invalid command
term will not cause a "Command Reject™ to occur uniess it is
present when tha micro-processor issues an "Execute Yertical

Forimat" contyrol function.

The Print Data Register is a single character buffer for the

rint data. It is 8 bits in length, énd they correspond to

hits & througn 15 of the micro-bus. The outputs eof this register
are muliiplexad with the vertical format tinas of the command
reqister. The contenis of one of the registers is always present
on the LP data Tines te the peripharal device. This resultant

data is also available to the Input HMultiplexor, thus providing

the capability for diagnostic testing of the data path.

Control of Data Trunsfers is os follows. The peripheral device

t its buffer is ready for

[a3]

raices the demand line to signal th
a crhavecter. The demand line sets the CPU Data Reguest FF.
The micro-processor will respond by leading a character into

the orint dala vecister. The lToad print data strobe resetls

the CPU Data Recuost FF oand sets the duia strebe latch. The

TL-3-2 AN 135S
24% F CHAZTIT2W S1onadyy vivd
S3LIVAY JALNIYS INIT COF XYW

BHIWIL TEYLNGD YLIVQ LNd.LIO
P'Ee WYYOVIQ ONTWIL

LNIGNISIQ 3a00-Q¥y 2w = QoW 310A

. _ “03Sh 4 OL L'z SI LJnNN§3LAND LXIN &1,

f10

g FRBIISMELSNT | (VAVD LNl QYT WiVs swil
! I)
_) _ ;
1 ! , I | 1 1 i |
. . a ity e - : — NiW e - N
oW g 238 ETE T S x“oa.x h et | s \mvﬁi ”
_ | — | | e e f _
* | | suoss 1 I ! SU osg . | 1 MILNING 0L
1 _ | i
i i ! !
| ! _ _

|
\

'J ,J___ __E__I:_.;_.[._

|1

_ _ 331958

I | i

_ _ ” P wiasyl 3202
_ _ , _ ,_ V1ivd LNied Gvol

N i
¢
| I I !
| | 1 ‘ | |
! ! | | I r1da ¢t il
| Lsinosy v.ivd
- - .

| y3inyg e
IHNIT SNV NED

NIEEEFED 4

2 UYH? Y

1 HYHS Y vivg ANIV2

]

date stroebe signals fne neriphers] device that the charscter is
on the L daca lines. The device Joads the characler inteo its
butfer and again raises the demand line. This seousnce is
repeated until alt characters fovr one printer line have been
transferred, or an "Execute Vertical Forimat" control function
is issued. (Refer to Timing Diagram 3.3.1.)

3.3.3.2.6 Vertical Format contral of the peripheral device is accomnlished

as follows., The micro-processor issues an "Execute Vertical
Format” cohtrol function to the TLPA, This sets the Yertical
Format FF which, in turn, switches the LP Multiplexor and raises
the Vertical Format Control Tine. This 1ine signals the peripheral
device that the character on the LP Data Lines is a Vertical
Format Centrol chavracter from the com;and register. The actual
character trensfer follows the same sequence as that described
in Paragraph 3.3.3.2.5. The peripheral device stores the
Vertical Formal Control character but completes the printing
of all data characters previously received, prior to acting
upon the control character.

3.3.3.2.7 The Busy signal denotes that the peripheral device 1s in the
orocess of either printing a Tine of characters, or moving
the paper under Vertical Format Conirol. The Busy signal
is TRUE if the demand Jatch is set, or the VYerticel Format FF

is set.

3.3.3.3

The Reedy Taich is sel if the peripheral dovice is "Ready™

LN s o

Un-tine." It is reset if either of these 15 not true, or

i the device detects a forms jam, end of forms, or forimat

The lending odge of the Reecdy laten is detected and is used to

set the Attention FF. The Attention TF is reset by the clear

ontrol function., The device end signal denotes that the

wy
—
=1}
ot
s
5]
9]

peripherel device has completed its print and paper advance cvcle
ov, in combinagtion with the attention signal, that the device

has come on~-line and is ready for use.

ILPFA Control Board

The ILPA Control Board centains the write ceniyol decoder, the input

L]

muttiplexor, and the active and command reject FF's,

The I/0 Row Addvess is presented to the write decoder and the

Input Pultipiexor. The Input Multiplexor selects the informa-

tion specified by tha 1/0 Row Address and, if it is a read opera-
tion, the output drives are enabled, placing the information

on the I/0 micreo-bus. The selectad information is one of the
following:

-

{sourced from the LP Data mux.)

1. LP Data
2. Command Byte {sourced from the Command Register.)
3. Status {Attention, Busy, Device End, Unit
Check, Request In) :
4. Sensc (Comnznd Reject, Intervention, Data Check,

Not Ready. Cn-linc, Forms Jam, End of
Forms, Forinat Tape Hiﬁsing, Vertical
Format, Denand., CPU Data Recuest)

3.3.3.3.¢

3.3.3.3.3

3.3.3.3.4

fhe Mrite Decoder is enabled by the I/0 Write Term and, depending

on the row addiess contents, decodes one of the following

register toad or contrael funciion terms.

1. Load Print Data {register load)

2. Load Comnand Dyte (registeé Toad)

3. Start I/0 (control function)

4. Halt 1/0 (controi function)

5. Clear Status (control function)

G. Reset Device (control funciion)

7. [Execute Yertical Format (control function)
Tnere is one wirite address function and four read address

functions not used by the ILPA. Thoese are interpreted as illegal
addresses and should the micro-processor atiempl to execvie one of
tiese when the column address is pointing to the ILPA, the command
reject flag will be set to indicaie an error condition.

The Active FF is set 1 the peripheral device is "Ready" and

the micre-processor issues a Start /0 control function fo the
ILPA. It is resel by tihe Halt I/0 control Tunction. UWhen the
Lotive FF s reset, all service requests are inhibited except
“pitention.”™ Also, all deta transfers belween the ILPA and the
peripheral device are inhibited. However, all control functions

and data transfers between the TLPA and the micro-processer are

Lo
(8]
£r

(4]

aliowed dn order to provide for diagnestics, adepter testing, and

/0 iritiation/terwination proceduyes.

The Command Reject 78 will be set by an i1legal read or write row

T

address. It will also ke set by an "Execute Vﬂtb1cgl Format" control
function 17 it occurs vwhen the command register contains an jnvalid
corpaand, or by a "Lead Print Deta" iF this dccurs when the peri-
pheral devjce is eithor busy or not ready. The Commnond Reject

FF is veset by the clear status control function. The command
reject signal inhibits the CPU data reguest logic, and sionals

the micro-processor that an operational ervor condition exists.

The Service Request line provides the ILPA with the capability

to signal the micro-processor that service is reqguired. This
Tine is raised by setting the Attention FF. Also, if the Active
FF is set, this Tine will be vaised by setling of the CPU Data
Request FF, Navice ind FF, Command Reject FF or by the ready

tatch being reset.

Ti-Fe-5 AdVrWiIayd

TLAZ T OFRTSTICOW YD
SO Ly 34NN I 08 X¥W

T'E'E WYYOYIQ ¥NooTYH

WLS3INoIY
Wivd

>

392445 wivdg.

=

15303y
vivq

i tInnay Yiva

A

ndo

IAILY

321A2d

TZYAINGD LVWHOS TYOILUTA

04 1NG2

vive

Asng

123r3y

anWd

)

NS

TLSERO3Y 3NAYES

TUUond wiva @1 8
»ow

yiva

anN3
321430

Y LNGS

A

ONYW3Q Yivd

AN

*

309230

qy3y %

Y3.Ldvay

NI Lsanodd

M23HD LInND

TRULNDD

NOILNILLY

SnAVLS
”»

ISNIS 7 SOAVLS

Do —
FAvC ¥3LNIYd VI 4

Xnw f

..umm"
awo

‘3

avay ¢/1

¥39023Q
ERRFT

.@

§5390aY

Mo

¥300337

...

ERTE TR w4

NWnTes

$53y00y NEAICD

AN

3

L ANBWIIIIT]

93y
L AR
LN1Yd

N 30 4A

SAO1YLS 3058

Py

——

e

$ng VLY

d o7

A

L]

3.4.7

3.4.2

The censole adapler provides the interlace Lolween the main processor
end Lhe consele CRT Dispiey Terminal. The console is the means by

which the operator can control the operation of the CPU.

DEVICE COMFIGURATION

he adapter will interface with a CRT Terminal at a speed of 9600
BPS or a 1240 Terminal at a speed of 1200 BPS.
THEGRY OF GPERATION
The conscie adapter receives all cata and command and transmits date
and status from and to the CPU via the 1/0 micro-bus. The adapter
receives characters 7Tor the CPU in parailel and disassembles then
and sends them serial te the console. The console adapter generates

L

.
the bit clocl for receiving and transmitting 10 bit start/stop

]
h]

chiaracroers.

~

e

.

REGISTER USAGE

i

Register Addressing

Address Read \Nrite
0 Data Data
] Status Command

™o

o

ey

Date Nogd
n

Bt

¥

g 1S Data Bit

9 IS

4 &

%

15 LS Data Bit

3.4.5.3 Data MWpite

3 NS Data Bit
&

14 W

15 LS Data Bit
3.4.3.4 Status

0

N

(oS

Lo

3.4.3.40 (Continied)
S iata Set Ready
16 Carricr Detect
11 Clear to Send

12 VRC Ervror

13 Stop Bit Error

3.4.

2

oS

(8]

11 Data Terminal Ready
12 Request to Send

13 Write Reguest

14 FPad

T3 -
15 Broak

3.5

3.5.1

INTEGRATED COMMUNICATIONS ADAPTER

The Integrated Communications Adapter (ICA) is a 16-Tine multiplexed

adapter which transmits and receives information from and to the main

processor via the I/0 micro-bus. The information fiow between the

ICA and the terminals is accomplished by Teased common-carriers

private Tine facilities, common-carrier switched facilities or equivalent

privately owned communications facilities. The ICA is capable of handling

any combination of start/stop (asynchronous) lines at-speeds up to

1200 BPS, binary synchronous 1ines (BSC) at speeds up to 9600 BPS

and data entry keyboard/display at speeds up to 1200 BPS or one 50KB

binary synchronous line. ; P
DEVICE CONFIGURATIONS |

The communication terminals.-that the ICA will support are:

>

Memorex 1240/1280 Communication Terminal at speed of 110 BPS, ?
300 BPS, 150 BPS, 600 BPS, and 1200 BPS.
- IBM 2740 Communication Terminal at 134.5 BPS and 600 BPS.
- IBM 2741 Communication Terminal at a speed of 134.5 BPS.
- Te]et&pewriter Terminal (Model 33/35/37) at speeds of 110 BPS
and 150 BPS.
_= Binary synchronous communications terminals at speeds up to
9600 BPS.
- Data entry keyboard at speeds of 110 BPS, 150 BPS, 300 BPS, -
600 BPS, and 1200 BPS.

T

L

HEuAY G OPERATION
The TCA s aivided up into four blocks. They are the control,

CRC/LRC/character decode, clock and the Tine adaptor.

The control dnterfaces with the 170 micro-bus and the ¥ine adapters.

It also controls the CRC/LRC and charvacter decode. Whencver a line
adenter has status or data, a priority fiag Wil be set. This flag
is codad by the control to indicaie a line adapter address. The
control will then set a request for tne main processor. The
processor will read the address vegister to determine the line
agapler wddress along with the type of interrupt. Once this is

dctermined the processor will read the data or status register.

When the processor has data or a command for a Jine adapter, the
address is written into the addross register, then the data or
command 1s writien into the appreopriate ling adapter. The CRC/

ctes the biock check characters or
character from the date being sent or received. It alse decodes all

the data link contral characters.
The clock generates all the async bit timing for the LA's.

There are Tour types cf tine adapiers:

- ASyRCIronous

Binary Synchronous
- B0 KB binary synchronous

Fien ey g
- bData tntey

1T th ne oagapuers have LIA intorfaces

(4]

3.2

Bl b o
RAUress

0

7

Write Address
Bit

0 cmd =0

] e 1T =

2 Data Character :

3 Diai bigit =

o

9

10 1S Address Bif

Read

Data/Status

Control Chavracter

Write
Data/cmd

fddress

3.65.3.3 Reed Addrass
3 Date =0 Status = 1

1 sol. status = 0 uhsol. status = 1

1 &

1z

13

14 . o

o

15 LS Address Bit

3.5.3.4.1

Data/Command Word

10 Data/Command

Data Bit Configuraticn
Bit

8 MS Data Bit

9 £
10
11
12

]

4 1

16 1% Dmta Bit

Comaand 1 Bit Condiguration
Bit
1

%
L.

>
vl

4

[

[))

9 Data Terminal Ready
10 Request to Send

11 Reset Sync

12 Write Regquest

13 Call Reguest

14

-

[

Gl 2 BL Configuvanion

EOT Search

Return Unsclicited Status
Return Solicited Status
Clear Link Coimmaind

Qdd/Evrror Parity

Parity
MSE Y *
s
) Character Speed
on |
l_\) r‘ _r
MSB i
. Chavacter Lencth
[l
[._DL' Vi

3.5.3.4.3.1 Character Speed and Character Lenjth

Character Speed Character Length

0
1200 BPS 1 9 Bits
600 BPS 2 10 Bits
11 Bits

(8]
(a0
by
-
jow)
[Op]
wo

150 BPS

S
2

(&)

L2
[on)
LN

T R L R e (T
!}ni_i!jfi)l.r;:'u:;: it

Bit
{
1

10 i Data/Status

IE! 5

t

!
12 g
_
13 ;
o
{4 |

:
15 §

Data Bit Configuration

dnsolicited Status Bit Configuration

Bt

P}

™o

10
11
12
13

n

ot

Data Set Ready
Cavrier Detect
Clear to Send

VRC tryovr

Stop Bit Ervor
Lost Date

ing

Albanden Call

i D o b
Recuive Breax

Soticited Status Lt Conficuration

w2

10

T
[

Transnarent Mode
Data Terminal Ready
Reguest to Send

FCT Scarch

Synchrenization Search

i

3.0.1

V3)

[

fhe J100 Letector Channel Adopter is ddeatical to the IBM 360/370

ctor Chonnet, Transfer rate for data is an excess of 60 K BPS

h

wiich is accomplished by the divect access to memory. The adaptor

desion uses the micro sequencer approach. This means that ail hand
snaking such as raising tag lines, wonitoring Tines and comparing

adaresses is achieved by the hardware.

-

DIVICE CONFIGURATION

hanne? can interfave with:

-—4.
o
(’\

a. Line Printers
1. 5120 Fod 6, 600 LPit Printer

2. 5120 Fod 12, 1200 LPM Printer

ﬂ
3
Ll
2]
w
>

b. Tape D
1. 3237-1% 800 BPL, 30 KB Contvrolier Drive, T may.
2. 3227-12 1600 BRI, 6G KB Controller Drive, T max,

3. 323721 800 £PI 30 KB Drive, 3 max. w/3237-11

4, 3E3T-22 1000 BPI 60 KB Drive, 3 max. w/3237-17

The adapter has a 24 bit micro contrel word which is used to control
tag and date Tines end sense Tor sequencer status, channel status

Tn ordar to initicte a segronce the main

processor Josds the comnund and address register. IT the seguence
15 a cdatz tronstor, tho processor will Toad
sTer.

registar and word count regil

vl

T i LU S fad Iy '
Tt _—

ooadopoer okaes ovey tren thoveo The next Lime the main processor
geis oo requost Trom the selecteor adapter 1t will mean eitner the
sequence 1 compiote or 11U received bed status from the channel

or the sdenler recoived a tag or bus eyrror.

The processor will read the status register to identify the status.

wencar censists of 250 words by 24 bits of ROM.

ine micro e

[¥a;

3.6.

LA S - T
PR BRANCH

3.6.3.1 Bus Qut

1 Sat Hold Out/Sciect Out .

2 Reset Hotd Gut/Seiect Out

(WS

Set Suppress Qul
4 Resel Suppress Qut

[
)

-

3.6.3.2 Bus On Gating

0 CGate Status to Reg.

i

.

2 Gate Data to Uppar DMA Reg.

DA Reg.

3.6.3.4

3.6.3.%

[%ea}

G

~r . omm
QAL i

Address
Corand

Cate DUA Dava to Bus (Qut Reg.

RUP

Radvess Qut

Service {ut

1 Set Operational Cut

2 PBesst Operational Cut

e

[$x]
—
C
=
-
o

3.6.3.7 Sensge

5 Riddress In

6 Service In

7 Suppress Qut

8 Chaining

9 lrite

10 Operational In

1 Select

pus
—t
ot}

4

I STOT T A
(SR REGTL: 8 RODY

Mrite Read
U Line Address Dut Fine Address In
1 Comgmand Hemory Load Stetus

Pt e RPN - [, LR oA
¢ Pewory Countl Loed Mamoyy Count Read

&

I
u

[\;’\;“
Fis A

LS D

A

A

i

B [}
Mem Ado

Pen Count Load/Road

0 S Cournt Bit

&S W Mo

(8]

—t
[5]

£S5 Count Bit

LS Status Bit
Initial Selection Seq. Ervor
Incorroct Length TransTerred

Channel Failure

Transwission Checok

Not Usad

o

+

im

MS Comuand Bit

{
i
i
i
E
|
%
!
!
E
;
|

o

v

cator

[

[}

o

|
i
i
|
i
;
H
1
!
P [P
5 Hot Used
i
|
I
|

LS Address Bit

&

b [l [N
[— - =

MEMOREX 7100

PHYSICAL DESCRIPTION

M. GREGORY-
7719/72

MEMOREX CONFIDENTIAL

PHYSICAL DESCRIPTION

This section will describe the physical attributes of the 7100
processor in general without regard to its applications other
than as a programmable processor or a non-prograrmable controller.

The 7100 processor is available as a programmable processor or as
a controller. Externally the two systems look very similar.

Figure 1 shows the 7100 in a controller configuration while

Figure 2 shows it in a processor configuration. The major external
difference is in the removal of the desk, keyboard and CRT screen
from the programmable processor to make it a controller.

The major physical attributes of the 7100 processor are listed
in Table 1.

The 7100 processor dimensions are illustrated in Figure 3.

TABLE 1 7100 PHYSICAL CHARACTERISTICS

.Dimensions (Fig 3) - inches _ ﬁ
|

width 30
depth 43 | |
. heighth o 48

Service clearance - inches

front ' 30

rear 30

right ' - 30

left L 30
' Maximum weight * | | 2000 1b. °
ﬁaximum heat Qutput/hr * ' 15,000 ETU

Air Flow 500 CFM

Electrical requirements

' Voltage ' 208/230+ 10%
| Frequency 60+ 0.5 Hz
KVA* 2.5
Phases | 3

Operating Environment

Temperature ‘ 60-100°F
Relative Humidity 8-80%
Maximum Wet Bulb "78%F

* Yalues for system consisting of a 7100 processor, 300 LPM
printer, 8660 MFCU and one Trident file.

Non-Operating Environment
Temperature
Relative Humidity

Maximum Wet Bulb

\g*-’ .

50-110°
8-80%
80°F

Bt ro

SRR L

A —

LT

C

T

R B

s 2

g

o

|
3
-

— "ﬁng% .

i
!
!
!
a
e L8]
s
— 0
e cseominai i ‘
e : ‘
| ® '

. 4

MEMOREX 7100

POWER SUPPLY

G. EWART

7/19/72

MEMOREX CONFIDENTIAL

The power system designed for the MRX30 is based on the recently developed
switching type of power supply circuit. This type of circuit has many
advantages over the "conventional" type of power supply. First; it runs
cool because the reqgulation is controiled with storage elements rather
than dissipative elements. Second; it is smaller because the high
frequencies involved allow much smaller components to be used. Third;

it is more easily repaired in the field because the system lends itself

to replaceable plug in packages. Fourth; it is low cost: even through
the system is more complex, the components are cheaper and the overall
cost is equal to or less than that of a conventional system,

The power supply has overcurrent protection on all supply voltages and
shuts down automatically for any over voltage or under voltage condition.
Over voltage crowbars also protect circuit boards from momentary high
voltage surges. The power sequencing unit allows the MRX30 to be used

. as a peripheral device for a larger computing system where it must go
through a remote controlled power up sequence. On small system
configurations cost can be reduced by removing one of the 5V modules.

For large system configurations, power can be extended by adding 5V
modules’, at a rate of 50 amps per module.

MRX30 Power Supply Specifications

Supply Voltages

Voltage Tolerance Current -
+5 + 5% 100 amp
+12 + 4% 6 amp
+ 3 + 2% 2 amp
-3 t 2% _ 5 amp
-15 £10% 2 amp

Line Voltage

220 V 3 phase

AS+

JAAST-

A1ddNS ¥3MOd 0 X3HOWIW

JAACTF

sa 14
351
o1

AE

+l

3NA0W . e : 1NdN1
e N 1S3L '3°D N'S'd e N0
Ia0W [S g
AS 995d W03
310 HILIMS SNVY L .
LT0A ¥3d39 W 0Lny
NENVELL
1INDY1I9
¥31714
INIT
HOLIMS 0 ¢
W A 022
))

MEMOREX 7100

OPSYS1 EMULATION PACKAGE

R. CHUEH
R. HOEHNLE

7/19/72

MEMOREX CONFIDENTIAL.

1.0
1.1
2.0
c2.d
2.2
2.3
2.4
3.0
4.0
5.0
. Figure 1.

Figure 2.

CONTENTS

Introduction

The 7300 CPU

Priority Structure of the 7100 CPU
Memory Accessing Priority

CPU Processor - State Assignment

CPU Processor - State Switching

The Process in State F

The Busy and Active Bits of 7300 CPU
Organization of the Emulation Package
The Tie-Breaker Register and Process Scheduling
7100 System Register File

Organization of the Emulation Package

1.0

INTRODUCTION i
i

This section will outline the 7100 Emulation Package.
The Emulation Package has been designed so that OPSYSI
can be ekecuted on the 7100 CPU with minimum modification.
The OPSYS1 has been designed for the 7300 CPU which has
a time-slicing mu1ti-proces§or strucfﬂre. The emulation
of the multi-processor states is the main concern of this

section.

1.1

2.0

/

’&
THE 7300 CPU \
!

The 7300 CPU is organized into eight (8) semi;independent
processor-states. Each processor-state is assigned a
particuiar processing job and is competing with each other
for shared CPU sources and central memory access. The

CPU is time sticed into time slots 0% major cycles,

(0.9 us or 1 us). At the end of the cycle a new processor
state is scheduled for the next cycle. The active processor
states are scheduled in a "round-robin" algorithm sup-
plemented by dynamic priority logics. Switching from one
processor-state to another is hardware controlled and is
overlapped with the normal instruction executian. For
detailed description of 7300 CPU organization, please

refer to its Production Description.

Priority Structures of the 7100 CPU

7100 has three levels of priority structures. The
Central Memory assigns fixed priorities to its accessing
ports from the highest refresh port to the lTowest CPU
port. Within the CPU, fixed priorities are also assigned
to its processor-states associated with columns of the

nas

register-file. The higher priority processor can "in-
terrupt" any of the.lower priority processors at the
"break" points. Each I/0 adaptor is assigned to a proc-

essor?state. The majority of the non-time-dependent

2.1

2.2

/

data processing jobs are scheduféd on the prdcessor
state F, the lowest priority one. To emu]até 0PSYS/I
within the processor-state F, software will s}mu]ate

the 8-state assignments of MRX/50 for non-crftica]-time-

dependent jobs.

Memory Accessing Priority

Accessing priorities to the Central Memory have been
fixed in the following order:

Refresh

DMA 1 (Assigned to DISC data transfer)

DMA 2 {Reserved for Selector Channel data)
DMA 3 (Reserved)

(SPARE)

(SPARE)

(SPARE)}

cPU

Switching from one port to another:

Switching Quantum = Memory Cycle = 1.2 us

Switching (Transition) Time = 0

CPy Procéssor—State Assignments

The Register-file in CPU is partitioned into columns with
each column associated to a procéssor-state._ At any

instant, only one of the processor-states is active.

The P-register identifies the current active processor-state
and so the associated column of the register-file. Normal
addrgssing to the register-file is restricted to the column
of the active processor-state. (Address to other columns

can be specified through the use of the X-register).

Fig. 1 depicts the organization of the Reéister File. There
are 16 columns but only 9 columns have registers, the columns
from 8 to E are empty. In the first 8 columns (processor-
state 0-7), only ha]f of the 16 registers per column are
presented in the register file, the rest are located in

the various I/0 adaptorﬁ. These "Virtual I/0 Registers"
can be addressed as if they were part of the register-file,
the meaning and interpretatian of a fetch or store to these
"viftua] registers", however, are part of the particular
* 1/0 adaptor organization.
The 9 processor-states are assigned as:

Processor State Assignment

0 DISC Commands

1 | Selector Channel Commands
Communication Adaptor
Printer Adaptor

Card Reader Adaptor
MFCU

Console

Timer

m ~N oo oo B W M

General Data PRocessing

REGISTER NUMBER

C)Hmwbmmﬂmwbwncrﬂﬂ'

v

7~

7~

\&lféQ

\

6

8

e,
.

%
2

8 ¢ AB C D

F
AN
%
\

7100 SYSTEM REGISTER FILE

X
\\<§;j—-—-RESERVED
NG

Y

PROCESSOR STATES

FIGURE .1

M
&
eﬁﬁ‘q€§§&35

<L

05 el
5"

2.3

1
CPU Processor-State Switching |

|
The process of interrupt and switch to higher prior%ty
procedures in 7100 CPU is accomplished with a priorﬁty
network and a four-instruction BREAK subroutine. A
processor-stafe can request service by raising the Service
Request Line of the processor (usually by hardware logic
in response to an external condition). The priority network
will select the highest priority processor-state (Towest
in Hex number) which has the Service Request Line raised.
The select processor-state is encoded into a four-bit
number which can be loaded into P-register when a "CST"
micro-instruction is issued. There is also a comparison
netowrk that compares the four-bit value with the current
P-register and the output of the comparison can be tested

by a conditional branch micro-instruction.

The micro-routine to test and execute a higher level processor
state interrupt is:

BREAK: Branch to Next if no higher request; else Branch to
Switch, save return in R(F}.

NEXT:
SWITCH: Gate "CST" to P

Branch to location specified by R(F)

2.4

When a processor-state finishes its current processing, it

will have its Service Request Line reset and executes the

following micro-instruction:

FINI: Branch to Switch, Save Return in R{F).

Switching from one processor-state to another:
Switching Quantum = Maximum Time Span between two BREAKS
Switching (Transition) Time:

The BREAK {including SWITCH) = 5 x 0.4 = 2 us (taken)

0.4 us {not taken)
The FINI (including SWITCH)

4x 0.4-=].6'“5

The maximum Time Span between two BREAKS is a critical

parameter and is calculated to be 30 us

The Processes in State F

. The lowest priority processor-state (F) has 16 registers and

is used to process all non-time dependent jobs. Within the
processor-state F, processes are organized to emulate

the 8-processor-state of 7300 CPU. The scheduling of the

8 simulation processes is of major concern in the following
section. Since all time-dependent jobs has been"farmed-out"
to either DMA channels or high priority procéssor-states (0-7)
there is no critical timing requirement on the scheduling of
the processes. It has, however, to be logically cérrect in
emulating 7300 processor-states, to avoid possible dead-lock

situation and to improve overall system performance.

3.0

The Busy and Active Bits of 7300 CPU

Two flip-flops (the busy and active bits) are provided for

each processor-state in 7300 CPU. These bits are used to indicate
the state of the processor and the Busy bit is also used

for requesting CPU cycle (time-slot). When a processor

has its Busy bit reset, it is either not active or is waiting

for an external signal to wake it up. To.distinguish the

"wait" state from the "in active" state, an Active bit is

provided.

The Busy and Active bits are also used as attention signals

for sending messages from one processor to another. When

a processor sends a message to another, it attaches the message
into a gqueue in the central memory and sends an attention signal
to wake up the receiving processor-state. If the receiving

processor-state is already running, the attention signal will

be ignored; if it is waiting for some specific completion signai,

it should not be disturbed (do not wake-up by the signal).

The logic can be implemented in two ways: one is to have the
attention signal masked by the receiving processor, the other
is restraining the sending processor from issuing the attention
signal. The MRX/40 and 50 systems adapt the Tatter discipline.
For example, when the executive Processor (4) issues a job

to an 1/0Processor, it will put the job description into

a work queue and set both Busy and Active bits on the I/0

Processor if it is not already Active. If the receiving

/

~ processor is a]ready Active, it is either running (Busy) or

-

is waiting for an I/0 completion signal. In ejther situation,
the Executive Processor then will not disturb the Busy

or Active bits of the receiving processor. The message attached
to the work queue will only be processed after the I/0

processor has serviced the I/0 completion signal or the

current running job.

When a processor-state is serving more than one device
(e.g. the Communication Processor in the 7300 CPU controls up
"to 16 lines), the functions of the Busy/Action bits have to be
somewhat modified. The Busy bit is still used to request
CPU cycles. To display whether each device controller

is waiting for a completion signal, an (Active) bit is needed
for each device (Tine). Since the processor is now controlling
mofe than one device, waiting completion signal from c¢ne
. device (having the particular Active bit set) should not block
. the processor from processing jobs issued for other devices.
The "non-disturb” discipline of single device processor has to
be modified into a multiplexing organization. In addition, the
completion signals have to be he]d.high indefinitely since they

may not be recognized immediately.

4.0

Organization of the Emulation Package

Fig. 2 outlines the organization of the emulation package
for execution OPSYS/T in 7100 CPU. Basic to the emulation
package and not shown in Fig. 2 is a machine language

emulator that emulates all non-privileged MRX/50 instructions.

In OPSYS/I, every processing job is assighed to one of

the 8 processors. Programs executed by processors 4 to 7

are exclusively machine language subroutines. Programs
executed by the four I/0 processors (0-3) include both micro-
command and machine language routines. The general approach
of the emulator {; to create an 8-processor organization
within the 7100 CPU state F so that most of the machine

language programs can be executed with minimum or no modification.

The micro-command I/0 routines that handle I/0 command

_initializations and terminations as well as Tow speed data

transfers are rewritten in the 7100 micro-commands and to be
executed in dedicated 7100 CPU states (0-7). In terms of
system/360, state 0 to 7 correspond to eight "I/0 channels"

and state F corresponds to "CPU".

The disc and selector channel data movements, processed by
short micro-command lcops in 7300 CPU, are transfered to be

handled by hardwired logics in DMA channel #1 and #2.

/

As we have discussed in the last section, the states of the

7300 processors are indicated by their Busy/Active bits and
they are scheduled accordingly. The Busy bits are still used
to indicate that a simulating process is in a ready state.
The allocation of the CPU resources to the process, however,
is quite different. Instead of time slicing on every major
cycle, processes are usually allowed to execute (in state F)
to completion. Changing from one process to another includes
the Tengthy operation of swapping (state F) CPU registers.
The exact processes scheduling algorithm which involves the

Tie-Breaker Register and Timer is detailed in the last section.

To activate an I/0 state (O to 7), the responsible CPU process
_Yoads its micro-command pointer (register F of the I/0 State)
and sets its Service Request Line. A1l states have their
service request 1ines set are competing for execution at next

" program BREAK point. When a process-state finishes its

current processing, it will have its Service Request Line reset
and signals the responsible process (via its Busy/Active bits)

before it issues a BREAK.

Integrated with each I/0 state is an I/0 adaptor for controlling
a particular device. 8 of the 16 register addresses of the state
are reserved for addressing adaptor registers. For disc and

selector channel adaptors, they also include registers of the

DMA's and thus provide communication and control of DMA operations.

_ set-up, starting‘
#0 COMM, - .]
#1 _ DISC e :
#2 SELECT completion
#3 1/0 ') o N
#4 EXECUTIVE '
#5
#6 USERS
#7
Simutated MRX/50 .
Processor-States ¥ <y
[=)
' ey
N
= —
2 =
o+ + <
3 . T
Py s |5 | 8| "%
. - + =3 3] =
: E|E| 2| gt
= 5 o AF
. a O v og
e |
45 Laa | 43 |42 | 41 (40
7100 CPU States (Register-file column) I\
completion
starting
Y
"Figure 2 Orgénization'of-the
: Emulation Package Selector | Disc
" Data Data
#2 #1

DMA Channels

5.0

-

The Tje-Breaker Register and Process Scheduling

The Tie-Breaker Register is a hardware facility provided

by the 7300 CPU to ease the implementation of synchronization
of processors. In QOPSYS/I, at the entry of a work queue

a processor tests-and-sets a bit designated for the work
queue in the Tie-Breaker Register. If the bit has already
been set, the processor will Toop and test again unitl the

bit is reset.

The 7100 is a single processor system. Switching from one
processor-state to another can only occur at program designated

BREAK points. Tﬁerefore, the processors synchronization logic

~ of test-and-set can be implemented with a simple fetch-

branch-and-store macro provided no process switching is

allowed inside the macro.

To emulate OPSYS/I in the 7100, the convention of simply

looping if the Tie-Breaker Register is found set has to be
somewhat modified. Because the processors in the 7300 CPU
are scheduled cycle by cycle on "round-robin" basis, there
is no danger of getting into "dead-lock" situation. The
corresponding emulation processes are scheduled to run to
completion in the 7100. Simple looping may create a “"dead-
tock” situation. The following conventions are adopted for

the emulation package:

(1) A Process becomes ready when its Busy bit is set. A process
becomes not ready when its Busy bit is reset. A process.
becomes blocked when it tests the Tie-Breaker Register and
found the bit set. A process becomes not blocked when the

bit in the Tie-Breaker Register is reset.

(2) Among the ready and not blocked processes, CPU is allocated
to the highest priority process. The priority is fixed

accdrding to the process number { 0 to 7).

(3) An allocated process is normally scheduled to run to its
| completion (in Procéssor-State F)* except at the occurance
of the following conditions:
(a) Timer Expiration
~ (b) Manipulation of Busy bits
(c) Clear Tie-Breaker Register

(d) Test Tie-Breaker Register and found the bit set

(4) The occurance of condition (a), (b), or {c) will result to
a process switching to a higher priority process which is
ready and not blocked. If the current process is the highest

one, no process switching will result.

(5) The accurance of condition (d) will always result to a process
sﬁitching to a higher priority process which is ready and

not blocked.

* (Remark) A1l processes (programs) executing in Processor-State
F have to provide BREAKS for high-priority I/0 Processor-State
at least every 30 us.

MEMOREX 7100

MRX30 EMULATION AND PERFORMANCE

J.A. MILLER
7/19/72

MEMOREX CONFIDENTIAL

TABLE OF CONTENTS

1. Conclusion

2. Introduction

3. Evaluation of the MRX30

3.1 Comparison of MRX30 and MRX50

3.2 Comparison of MRX30 and IBM System 3

4, Emulation of the MRX30 Instruction Set

4.1 The Basic Ops

4.2 Brahch Operations

4.3 Variable Length Operations

4.4 The Weighted Average Over Instruction Types

APPENDIX: Tables

: |
|

Conclusion

The Memorex 30 has, on the average, an instruction execution §peed
1.08 times faster than the IBM System 3. |

Introduction

The purpose of this discussion is to evaluate the performance of the MRX30.
In addition, the evaluation provides a basis to describe how the instruction
set is emulated by the 7100 microinstructions. Throughout this discussion
reference is made to the memo €PU Speed of MRX50 by G. H. Leichner

(Santa Clara Systems Programming Technical Memo PER 002, January 26, 1972},
in which similar evaluative techniques were used. It is particularly
valuable as the source for instruction mix ratios. Instruction execution
times for the MRX50 were obtained from the 7200/7300 Computers Product
Description manual of March 1972.

Evaluation of the MRX30

Since the MRX30 user instruction set is compatible with the MRX50, a
comparison of execution speed with the MRX50 is the natural way to
evaluate the MRX30. Once this comparison has been made, the results
may be translated into the results of comparisons with other computers,
notably the IBM System 3.

In what follows we shall be dealing with ratios of execution times of
various instructions. If we let T(I) denote the execution time on

machine I, the ratio we normally use is R=T %MRXBOE . We also use
T (MRX50

a ratio R* which means the same except that the MRX50 is assumed to be
in single processor mode. Let us now let S(I) be the speed of machine I.
Since speed bears an inverse relation to time, we also have:
~ R=S %MRXSO} ‘
S (MRX30

Where the R here is the same as above.

‘) |
3.1 Comparison Between The MRX30 And MRX50 ﬁ

The MRX30 has a 400 nanosecond microinstruction cycle time @nd a 1.2
microsecond memory cycle time. In comparison, the MRX50 has a 100
nanosecond microinstruction cycle time and a .900 nanosecondimemory

cycle time. Thus, the MRX50 is 4 times the speed of the MRX30 in

terms of microinstruction execution, but only 1.3 times the speed in
memory operations. On. this basis one would predict that the ratio R

of MRX50 speed to MRX30 speed would fall between 4 and 1.3, with those
operations requiring fewer memory cycles closer to 4, and those requiring
more memory cycles closer to 1.3. This is true in-almost all cases.

Another difference between the MRX30 and MRX50 is in the use of memory.

In the MRX50 the microinstruction cycles are always locked to main

memory cycles. In the MRX30, the only time the microinstruction execution
becomes locked to memory timing is during a memory operation. This ailows
a timing on the MRX30 to be made in terms of microcycles rather than
memory cycles. The result of this is that some operations, like indexing,
take no time on the MRX50, but do take time on the MRX30.

The actual comparison between the MRX30 and MRX50 was done by micro-
coding several instructions on the MRX30 and comparing their timing
to the MRX50. The instructions chosen were ADDR, ADD, MOVR, LOD,

B (rahch), BCT and MOVX. It should be noted that this subset consists
of Register-Register, Memory-register and variable length memory ops.
ADDR and ADD were chosen as being representative of a large class of
combinatorial ops. MOVR, LOD, B and BCT were chosen because they are
frequently used ops. MOVX was chosen to represeht the variable length
ops. Section 4 describes this comparison in detail.

The comparisbn showed that, for all the ops but MOVX, the ratio R was
very strongly dependent upon the indirect addressing and indexing
options chosen. In particular, the more indirect addressing that was
done, *the smaller R became. As a result of this observation, it was
decided to perform the analysis both on the simple (no indexing, no
indirect addressing) versions of the ops, and also on an average op
obtained by a weighted average of addressing types. The weighting
factors were computéd by assuming: 1)} 50% of the ops would have at

least 1 indirect address, and 2) 50% of the ops would use indexing.

3.2

It was also decided to perform the analysis usipg both the normal and

"single processor mode" MRX50. \
!

From these techniques an execution time for each op for each case was
obtained. The times thus obtained were averaged using a sef of weights
derived from operation versus frequency of execution tables. The results
of these weighted averages cqu]d be said to represent the contribution of
the subset of instructions to the average instruction execution time.
This gave a set of times both for the MRX50 and for the MRX30 which

could be used to compute a ratio for each of 4 cases. These results

were:
CASE R

Simple Addressing - Normal MRX50 2.4
Addressing Average - Normal MRX50 2.3

Simple Addressing - Single Processor MRX50 1.9
Addressing Average - Single Processor MRX50 1.9

As expected, the worst case arises for simple addressing and a normal
MRX50. It is on this case that the conclusions given in Section 1
above are based. It is surprising that the result is relatively
insensitive to differences between simple and average addressing.
This arises for two reasons. The first is that the addressing average.
is weighted towards the simple ops. The second is that over half the
contribution to the average instruction execution time comes in all
cases from MOVX, the op that is not address type sensitive. It is
worth noting at this point that Leichners memo shows that, even with
decimal multiply and divide excluded, the variable length operations
contribute over half to the average execution time in the MRX50.

Comparison of MRX30 with IBM System 3

Having now arrived at a figure of 2.4 for the ratio for MRX50 speed
to MRX30 speed, we need to relate this figure to the IBM System 3.
If we use S{I) for the speed of machine I, then we have the following

relations:

s (MRX50)
5 {MRX30; = 2.4

The published figure for the MRX50 shows: ‘

S (MRX50

s(iews0) T -

The following two relations represent assumptions:
S EIBM30§ = 3
S (IBM50 :
S %IBM 33} -
S (IBM 30 ’

We have then:

S_(MRX30 - 9 5MRX30% ~ S~(MRX50) = S (IBM50) S (IBM30
S (IBM 33 S (MRX50 S {IBM50) S (IBM30) S (IBM S3
- 1 L 1.
= 5.3 X .7 X 3 X 5 1.08

Which is the figure given above.

Emulation of the MRX30 Instruction Set

The starting and ending point in the emulation of any instruction is the
read next instruction sequence (RNIZ, Table 1). This sequence picks up
the first word of the next instruction from memory and increments the
program counter to the next word. In addition it checks for a pending
interrupt condition. Once the instruction is available, the RNIZ exits
to a location dependent upon the 8 bit op-code of the instruction.

In what follows we shall discuss in some detail how various instructions
and instruction types are emulated. In addition we will give examples
of the microprogramming for these emulations, and some timing analysis
based upon this microcoding. ' |

/

By the term basic ops here, we mean the functions of ADD, SUB, CMP, XOR,
EOR, MOV, and MVI, in conjunction with the addressing types RR, MR,
Direct, Immediate, and Memory-memory.

4.1 The Basic Ops -

The PIR decode branch for each of the basic ops branchs to a sequence

of two subroutine calls. The first of these subroutine calls is a branch

to an addressing type routine. The second call is a branch to an “operator"
function that actually performs the operation,

The first (addressing type) routine takes care of getting the operands.

The second {operation type) routine performs the operation on the operands,
and takes care of disposition of the results, including the condition

code, if any.

Thus PIRD becomes one of a number of progfam segments like:

(PIRDX) BSR
BSR

XXXX
XXXX

Where thé individual routines are given in tables below:
ADDRESSING TYPE
ROUTINE TABLE

XXXX ADDRESSING TYPE OPERATION TABLE
ADRCT DIRECT 1
AIMM IMMEDIATE 1
AMR MEMORY + REGISTER 1
ARR REGISTER -+ REGISTER -1
2

AMM MEMORY - MEMORY

OP TABLE 1 ‘ /

YYYy OPERATION
- OADD ADD
0suB SUBTRACT
0AND AND (Logical Product)
0IOR EXCLUSIVE OR
0IOR INCLUSIVE OR
OCMP COMPARE
OMOY MOVE
OMVI MOVE INVERSE

OP TABLE 2 - Note these are in general alternate
entries to routines listed in Op
Table 1.

vy OPERATION

MADD ADD

MSUB SUBTRACT

MAND AND (Logical Product)
" MEOR EXCLUSIVE OR

MIOR INCLUSIVE OR

MCMP COMPARE

MMOV MOVE

MMVI MOVE INVERSE

4.2

/

_ /
For the purposes of the timing analysis, the ARR and AMR addressing routines,

and the OADD and OMOV operation routines were micro-coded. This coding is
shown in Tables 2, 3, 4 and 5. Timings were obtained from this coding for
all addressing variations of the instructions ADDR, MOVR, ADD and LOD.
Summarys of these timings appear on Tables 6 and 7.

From these times an average time for each instruction was also

computed. Each addressing variation in this average was weighed according
to the following rules: 1) 50% of the instructions would use indirect
address; and 2) 50% of the instructions would use indexing.

These calculations were made for the MRX50 in both the normal (MRX50 Short)

and single processor mode (MRX50 Long). Tables 8 and 9 show these
calculations.

Branch Operations p

Emulation of the various branch operations generally consists of two
program segments: 1) The execution of a branch condition test routine; 2)
followed under certain conditions by the execution of a branch generation
routine. It should be noted that the double subroutine call technique

is not necessary since the branch generator used by a particular branch
test routine is unique. The unconditional branchs will branch directly

to a branch generator, since no condition test is necessary.

BRANCH GENERATORS

BGN1 - Generates a normal, post-indexed branch

BGN2 - Generates a register branch

BGN3 - Generates a pre-indexed branch

BGN4 - (Alternate entry to BGN3) Generates a non-indexed branch

BRANCH CONDITION TEST ROUTINE

RTN USED FOR CORR. BRANCH GENERATOR
TBA1 Branch Add 1 BGN1
TBAZ Branch Add 2 BGN1
TBOF Branch if Bit off BGN4
TBON Branch if Bit on BGN4

TBRN Branch if Reg not zero BGN1

4.3

TBRZ Branch if Reg Zero BGN1 /
TBCF Branch if Condition False © BaNl
TBCT Branch if Condition True BGN1
TBS1 Branch Subtract One BGN1
TBS2 Branch Subtract Two BGN1

For the purposes of the timing analysis one branch generator (BGN1) and one
branch condition test routine (TBCF) were coded. These are shown in Tables
10 and 11. From this coding timings we obtained for all addressing types
for the instructions B and BCF. For BCF timings were obtained for both

the branch and no branch cases. These results are presented in Table 12.
In order to arrive at a single value for the branch operation, the
following assumptions were made: 1) 50% of branch operations were
unconditional and 50% were conditional; 2) 50% conditional branches were
taken, and 50% were not. Further, for address averaging, the assumptions
made in Section 4.1 were also made. The results of these averages are
shown in Table 13.

Variable -Length Operations

The variable length operations first pass through a variable length set

up section which computes the effective operand addresses and rectifies
the count fields. This initialization section is instruction independent,
except that SHFK and MOVL have their own. Subsequent to this set up
section, a section dependent upon the actual op is reached. This is
accomplished by the same sort of double branch technique employed for

the basic ops.

For the purposes of the timing analysis, a set-up section and the instruction

dependent section for MOVX were microprogrammed. This coding is shown in
Tables 14 and 15. For the timing, it was assumed (following Leichner)
that the two operand lengths were both equal at 14.8 bytes. A summary

of the timing for all addressing options is shown in Table-16. Since
the times are only slightly dependent on addressing option, it was
decided to use, for the MRX30, a value of 65.8 for the no address average
case, and 69.0 for the address average case.

4.4 The weighted'Average Over Instruction Type

From Leichners memo a set owaeights, one for each jnstruction, were
derived that are proportional to the frequency of execution of that
instruction. By using these as the weights in a weighted average we
arrive at an overall figure of merit. There are 6 instances of this
figure of merit. They break down into 2 cases of 3 instances each.

The two cases are with and without address averaging. The 3 instances
are: 1) The MRX50 running in normal mode (MRX50 Short); 2) The MRX50
running in single processor mode (MRX50 Long); and 3) the MRX30. Once
the figure of merits have been developed, the ratios that were
summarized above are calculated. It should be noted that, although
only ADD and ADDR were evaluated, it was assumed that SUB and SBR would
be the same and the weights were adjusted to include them in the average.

MRX30 EMULATION AND PERFORMANCE

APPENDIX: TABLES

.\".
>
war S nas

RuIe

ArEL e
R= TlCxa')

S

AT, ST

. PIR® MAR
QRA: PIRD

R RA. TOVTF TRu LT

il

Tk lt"ﬂ.

&

v el 4

ROT 2

T".lcru‘anL

AR R 23 L =

NLaz = ArrI
BRARA = SRE T
B-R2I
ARAT FMAR > 2o F R
-
BRA = SRAT oM
L
B= mdR
4. 1 ?"‘C"l“‘ {.,
i

Tb‘\L:1L a - R,‘a 't'cpt

AMR
S+ Adb

.JHQI‘i

Ar‘-’lRL?
Lmbn

RMRCi3

ARy
R‘.

'tt-.'m"u.-i

Tale 3

e

=

AR
AAAT AMRE

AMAR =S TR

RB=rpb R

-
LY

A
ooy,

grA. TP AaRCP

MBR S MAR R

gRA. RRIT T AraRe X

MAR = MBR | MR

BAA=SRET, HEM

A R2T anel

SRRl 2

s s L ;
R “;.L..g_:‘-

A

oD

oAl i3

omADT

RRA NI1E * oADT
AR 1T

RAI = ADD

ARrudr

B cend
cond T ruw, DA
BRRAT RWIR

mAarT RLII, FHMR
HidM

J

AT MDOR

MDE= ABD Fraw

geA = oADB

Tl - Toe et

N
G rael
et
')
4 = ADD Ranbiwe

[N

\"H..__

[YV

QMVJ.-

Tﬂ 1;3 [4

BRRn, VMIO12 5 amMuT

wal*® BeR
RAA= RUT

MBR= BRA
MAR=Q LT, Fmuw

=DM
aRA RNITE

‘t!‘w :V\‘] 3. {_*:\‘C.'-‘\-
0 cu(! g
§ - o ©

Poe
o e

s

ADD G

ADDA T,L, L : /
‘ /
MREX SO MRX 3o “ j
_— - ! i
’ Catlcs U L JYRN FYYwY tione R 4 :
R]R M, T, 17 A i% 7.2 4.3 K
|
aT anm, 1.3 2. 20 1 H.4 3.6
}
1T Im, e, 3.5 4.3 Ra %8 a. 5 a0
1T “ 3.6 4.4 gy 1.4 =] 2.2
MR 3, 2.7 3} a4 1.6 KA 2.9
MULIR 3, A7 L1 asF 10.0 1.7 1.0
MDD R o, 3.6 4%t 2% fo.y 2.1 2.4
M LTOR 4rt, 2.4 4.4 27 0. § 2.0 2.5
ML sm, 4.5 S5 g .2 2.5 2o
g |
MO T 5, 1.4 $.5 a9 1.4 2.6 2.
M 6™, £.4 Wb 30 12.0 2.2 g
MLTOT M, .Y bbb 3 .t 2.3 9
Table ADD % ADDR T Samranr o

1. ‘-\A‘V\-"\

Mav- LO D

T

ey
-~
" (XY 7. ¥}

MRY $o MRY 3¢ R R
g Tame T tyeln T e

R R Miermz 1.7 3.0 L4 5.6 3. Jd.7
axT 8™ 1.% 2.2 e L. 4 2. 2.9
T A+ ML A 3.2 17 L- % 2. Q.
i Al SR 2.7 2.3 1 9) 2. 4. 3
rM R 3™ 2.7 x.3 20 ¢.0 3.0 2.4
P e 3 3.7 5% A §. 4 3. 3.5
m_cr)ra My 1.0 MY 2= .8 2 Y 2.0
PMILIXD R H) 3¢ ';H.‘r a3 9.4 2.6 &
Mz Yoy 3.6 Y. 23 9. a 2. ¢ . |
P T Y My 3.6 4.4 2y 1. ¢ 2.7 2.2
Mo r £ M 4.5 5§ A% (o, O 2.2 A
MLTx) T .:Ml Y. & S5 ac 1o-4 2.3 -9

Tubte 7 - MBUR 5 LdD -ﬂ'wwi Summany o

SQUARE
SQHIARE
SQUARE

.\r.'
N
L CArAL

PODR - MRy So Short

L3 % .&+ (1§ +3.8 3.;,)/(9

. . 1o +3.8 1340 - i -
EJ*(']/2 = 3.3 (R=13.¢)
3
ADOT .n]f{)($o: t"“]
(2.2 +4.3 +4.4) = 2.9 -
-k + /s : (R-_a.s)
3 .

ADOR MRX 3o

[:-;_;,+ (§$+684 ﬁ.a):{/a . g
R .

ADD MRXS$o St

2.7+ 2.7 + (b +3%b vy ¢ +4.8 45,4, S04) . .
[' 3 j/‘f 3.6 (@=0.9)

ADD MRx S“ ,av\l]

[_3-3r3.'§ v (ot 1188 +46. b 'rb,b)]/‘_f_ - pfa{ (R"‘Q.“f)
. ‘ 2

A DD FRY 3o ‘ . .

-y L2 41 s 120 12, _
[q_(‘., [©.0 T (e d 108+ 12 _/,._ﬁ..-a__‘-"___':_______l]/cf, z [o. 6
? .

Teubkle 2 - AL fens f—\\n.(u\{vW\ f.e BDD & ADD R

* Plav ~LPD

/
a /
- '!
‘ Mau R MMARXSO PY ' ' _ |
z (R =3.2)|
- - [-€12.6 12,7 < ' 7 |
[e bl s 2
Mo v R mexse Lonq
FEL ,1"‘ - ?- - —r , _
L [J—f* A 1 3:(_/2‘ 2.5 (R 2.5)
23§ 2
:EE IR MY 3a . .
[s’-(. L b4 s 7-61/2 - L.
5Z§ 3
§°
3
L«’D rM e io A<\""'—J‘
R - .
3.7+2.77+ [3.!73’,(‘—«?.& NS 1%.5'!*-%)‘3 /‘f T 3.7 (R=2.7)
& | 3
LQD- rqrix 5O L—am.c,l

[13437 4 (mq«wf.%#.tf;w.h $.8+5.5)’]/7_ - 4.0 (R = 2.2)

Lo MR X3

] ’ ,2‘7' Lo A I, - -
[8&18‘%*(5%1‘?1%1 _;"*D * ﬂ_l/* 5.1

T ARLE A ALl rees Avt&o‘.,'uq f.. MuUR T oLed

50 SHEETS 5 SGUARE
00 SHEETS 5 $QUARE
00 SHEETS 5 SQUARE

—

.\‘-.
A
oS

goul

BavA

B LY

MAaR =S, MR

BAA.NTLE® RBgwA

,H&"'t

AR MQQJ rraR

AnA, R EF - BovX

, HOM

g = MDLR
BRA =T 2

A g4I, 4071
B=mMmbe
§+ ADD

RRA=ANMTE

‘{nl«a'omq . L L.ég,(.w cilr.r.v_f

Tulolt

o

s t--di..lvd m‘..wa;.,O
-8 LEL(AA \Jx&;rcw'{

c{ L'%L"‘A t‘u;n-‘-lftw'(

= Bfu"\f.-\’\ (\tmwa“'af

wnd wewel -

Ranvi

.

'\f.
~
AraTet Al

ToCF R: PTR
A= tpuid
. R8I T
BRRA. yuez = Ban it
A=5
g w'z'
<= AdDD
ReA : RNTR

t"\n'-.n-.[: ‘1‘ E.tdt(l./_) 'lF Br.ul.('ﬁ

? ‘lﬁittﬂd \'F ﬂq‘bfllv\l.(/\

TM Elf. l I - '3 ranclhh Cor\(ﬂlz Fiov T'-.S f

TRCF

=11

tgely

N = M,

% a My

el 3,

T X 2 M,

v -) a4 M,
M- B -,
x - B a ™,
x - B P B A N
r- ® 3m,
L - B L,
Ix -.-B' . 21,
Ix -~ B 3

WU el by a b

MRY S

—

Timn [L-ac.tu

i a.a iR

Rranch ae GLnflvla
(-5 a.a 4
1. & a,2 (A
1.8 2,2 v

)‘5 a,.’J i 7

2.7 33 19

L PN

MIRA Ry

Trvena

Tauble 12 - Brav‘f-(’\ ||v-'n-{/\=\ /Summuva

SQUARE
SQUARE
SQUARE

SHEETS 3§
SHEETS 5
SHEETS 5

coo

5
o
0

1

-381
342
389

acen §
B

.\'.b.
"~
wari A nas

For Mo ALQ.'/QHSS n..)q--[g

“”’3*50 is l"!&t{)wzg(v\."' X LY A +n|9c. L T T bruuc

oy 4‘.&“. [N

pRXSe Sw,, ¥ 2 .8 (R’-'&)

MRx$a banq t=22.2 (R™= a.5)
(6. 6+ 6-1) - -
MRX3 O t = [q.s + .:"__6_5__._-—]/a S |

For AJ‘QY(<E AV({HT'L

™R X$o So.-t ¢ {1+ .’!.')) = a.as (r(T A, L)

-—

FMRX§o Leny - (a.2#3.3)° 2.75 (R'= 2.1

MRy 2 St [—(4.6 +S. 3784+ L)y 4 (4xdie bt f..sf‘r.a+‘7.t.)/g j/a
= £.85

. Wote Flhat Ful alksee averayt tww-u'ps T evtr |

t, Bruuub\ T‘-&fc
2, 'AJ&msle t-apf.
a, Wt ¢ Br.uub\ tultiv or e

Table V3 -— Branch -T-spc. 4 Addnes Pﬁuwl-{iv‘ﬂ

Mo v -

LA {‘\u ‘vg,l,‘;.._ S;H"

*
-1y |

-
~
NaTiGAmAL

AMAR= S,
B R
S>A030 Hor
Bam, wei2 = Avex/
oad - MR ’
ARS8, TR
5 :ARD, M
Renp.nvRLE
apnz >~ MDR

A MARE 5 F Mt
B=x'z2'
S:apd, oM
LLI=S™MDR

ITA A

MAR~ ADD,

L2 > SMb R

A= O0Ad

Au L [P

AVLEI
T AUVL X

AJLGy

= L4
A= ADD
B ow! <
oo dx Suid
H- ot
A: S B
R oL
OAD* ADD
n-oLd
grsi P

! BRA vin T payL2d

AL o8
RES =30

enT=0 1

AL g

BRA:SRET
prR> %o

23 + 3 fur tachh X+ 2 F.r vag

+

qulvnfolt L“--‘T'H"' S:.f'."

Avey | A ADR
- RLT
0AL® ADD
BRAT AL G
A =ADE

R KaZ
aAd= ADD
Bras Aveidl

Au‘Lyz

p-swild
AERE
RES=54 B
cTE Lal
ArsresnnT
pre- %'

u_r: Sc l.,"'l‘u'\/\

™Mavx -~ I:hv”‘ W, F\:

o
-~
~arionaL

orMPU X By
VT e
sy . P38 T OrywoT
oamx T? AMAR‘-DA‘L) f—mKN
oL ADD oA
AMAR: DAL MW
© A= ahd
A [V
LT G S4B HdA
BA, Nt&B‘-QHV??

o ML ' RES~ RS
faa, i #UT2
q
:
(tmis sl «,“tlwi;h.‘r..\a{ Wty ant
dul eoeivatien b vt BIVRE S
Litlbz o, rkat ®AS:0)

5+ 5L

T able s - MOUX QPv- &(Pcndﬂm(’ CoDE

Mwux -er:V\I‘\.‘\-I

=

Scb Lp O»C <
MRx 3o PMRY SO
Cyetu Tiw Cqyels Tine T R R’
¥ 4 & 18,4 Lr‘f.*3’;1i 7.8 q.¢ 2.4 .9
b4 q4 9 L9, & tr’l,vzr.flc L 7.4 2.5 2.0
a ¥ ¥ a Qa9 L1, rEL 7% 2.4 2.7 o Jga
La 6~ U 4 s |a.a LT3t .8 q.¢ 2. 5 2.0
LaG - X 5t Go. o ¢, 3T g ?.; b a. |
Lat - ¥ 54 A e, r3mn 1.8 % 2.3 2.3
L""F cxﬂraa
Ly = Le™ 1t & -

) . .

L v Y aced, AL 3.4 3 Y
Tote |
r YerEl L$. 8 LM 30, e, 3% YR (.9 1.6
® yq+ §L & T.0 B 1y 4 ®z. 2 1.9 1.6
3% gargl AT " 4.4 H2.2 J.© ol
Lag - ¥ 1y EL bbb . 4.2 19 1. ¢
Lig - X Jrrst . .L-z'r,g e . 34,4 412 2.0 Lok
Li6- ax gt &L L 1.0 " Y Hu 2,0 f. &
Table

- . X |v:a|.\.a AL

JQ.W.F 5m.+45~+w:# BT ald Jﬂ.:»‘:.,q dm.\,._e..ﬂuaﬁj EETH 4 MT.L.J,?S.,GA_ L1 .ﬁ&.olr
"
Al
!
b e°C b1 h-v Y
L7 Ls5's g238°¢e 1e-? DRI hac T wigl
ittt s e} N
A AN 4 o'L? 75%0°¢ Tth 210 5% hhE hiastg £°59 a5ce’t ¥ th 1S9 | h'he | ©3he’ XN bl
MSL3T- | 535 bE7" Scr bees: SE€C | 2bh5EN b5 ten s LN €E814 " B hewe! dwl
hithhd 58 HosT Ok g s7ese %t § oot | o3 | BsILs £ e | €obih' L't VR-L 1N g &
Byollt | €2 hheo Ste | ester ot | asseo’ 75 | Tk9t0” 1'g febkeo | Lp| 2ci0f YNek
L AR I 9-01 | $8990° hh | ELRSO 70 | EhbShi’ 9% | rie5e’ €t | hernoo Le | esior a9V
A o3 gocel’ b e 1L0%0" €L | hhesC eL ChELe' t'e | habso: L1 | westa; Y QQY
CEARYWL. _.S.l_ oS AW 125 oS Ay g XU n._..r.:_ LY SN 3% oS X Wi .fe_n.,.? SR
.u“.vx:_:.ﬂ w«f__oa%m\ .u_.a&usﬂ TN ey
qwenss ¢ siamns gor T | Ny
FIYNODS § SLIIHS OF 18E-Lr)

MEMOREX 7100

MRX30 PHASE "0" COST ESTIMATE

M. GREGORY
7/19/72

MEMOREX CONFIDENTIAL

The following section presents the product cost estimates
for the 7100 processor and peripherals. The assumptions
used to generate these estimates are also presented. Field

Engineering costs will be included at a Tater date.

I.

COST ASSUMPTIONS

7100 PROCESSOR

A.

DIRECT LABOR (ULTIMATE)

1. Manufacturing
The following direct manufacturing hours are estimated for the
three processor configurations:

Small Configuration 150 hours
Median Configuration 175 hours
Large Configuration 200 hours

These hours include contingency, processor assembly and unit
test as well as system assembly and test. The direct labor
rate was assumed to be $4 per hour.

2. Quality Control and Receiving Inspection
Q.C. and R.I. is taken as 10% of the direct manufacturing hours
at a rate of $4.30 per hour.

MATERIAL (ULTIMATE)

Ultimate material costs for the processor and I/0 Adapters are included
on the attached mattrix. All of these costs include a 30% contingency.
Floor loss is estimated as 3% of ultimate PCB component material costs

plus 0.5% of all other ultimate material costs.

BURDEN

1. Direct labor burden on manufacturing Q.C. and R.I. is 125%.
2. Material burden on direct material plus floor is 12.9%.

MANUFACTURING SUPPORT - .
Manufacturing support includes a 94% burden. These costs are

distributed on the attached matrix.

MANUFACTURING PROGRESS
Total manufacturing progress is estimated as 11% of base ultimate
manufacturing cost, and is distributed on the attached mattrix.

F. DEVELOPMENT ENGINEERING EFFORT
‘The cost of Development Engineering is based on the following

breakdown ¢f the cost of an engineering manmonth.

Controllable Department Cost $£2470/mo
Non-Controllable Dept. Costs 410/mo
Controllable Product Support 970/mo
Non-Controllable Product Support 160/mo
TOTAL $4010/mo

The development engineering effort does not include Programming
or Publications.

G. E.C. SCRAP AND REWORK
E.C. scrap and rework is estimated as 2.5% of base ultimate manufacturing

costs.

H. EXPENSE
Manufacturing expense includes a 94% burden, and is distributed on

the attached matirix.

I. OTHER COSTS
Other costs includes the shipping group cost.

CPU AND ADAPTERS

BASE ULTIMATE MATERIAL COST -~ 7100 PROCESSOR

ITEM _ COST W CONTINGENCY

CPU 10K {28K) $4138
CPU 14K (32K) 4416
CPU 18K (36K) 4809
CPU 26K (44K) 5365
CPU 34K (52K) 6036
IFA 520
SEL. CHANNEL 260
ASYNC LA ' 130
BI-SYNC LA (225%) 195
WIDEBAND LA (225%) 195
ICA 325
IPA 150 LPM (320%) 195

300 LPM (638%) ‘ 390
8610-11 ADAPTER (250%) 195
8633 ADAPTER (250%) 195
8643 ADAPTER (250%) 195
8653 ADAPTER (250%) 195
8655 ADAPTER (250%) 195
8660 ADAPTER (250%) . 195
80 COL. READER (340%) 130
80 COL. R/P (185%) . 195
DATA ENTRY ADAPTER (200%) 195
STORAGE PROT & TIMER 260

CONSOLE ADAPTER 130

MRX30 PERIPHERAL PRODUCT COST*

CONSOLE § 1560
PRINTER 150 LPM 4225
300 LPM 6404
600 LPM 10358
1200 LPM 10514
TRIDENT 1288
8610 3313
8611 4166
8630 2798
8633 : 1508
8643 3283
8653 | 3907
8655 9088
8660 9093
80 COL. CR 300 2322
600 2533
80 COL R/P 500/100 14010
TAP CT + 30KB 6182
CT + 60KB 7061
30K8 | 4180
60KB 4690
DATA ENTRY DISPLAY 1560

*Includes material, labor and burden.

%0259 1924 %924 N95T$ 718$ | WLIdYD oM
HOT6$ %05 002 082 N0L23 NOTTS | 3SNIdXT DM
%001 e 761 %01/ %01 | dY49S *9°3
¥529¢$ NZTTS N0T2$ NE9ES 40964 NSPSTS NSEVS NI A3Q
7001 40T %08 %01 $SIY0Nd BN
%659% yTES NeeS 4994 NL6TS 4825 L40ddNS 94U
W10L 1161 961 G/61 /61 €L6T 2161

)))

