MEMOREX 7100

MRX30 EMULATION AND PERFORMANCE

J.A. MILLER
7/19/72

MEMOREX CONFIDENTIAL

TABLE OF CONTENTS

1. Conclusion

2. Introduction

3. Evaluation of the MRX30

3.1 Comparison of MRX30 and MRX50

3.2 Comparison of MRX30 and IBM System 3

4, Emulation of the MRX30 Instruction Set

4.1 The Basic Ops

4.2 Brahch Operations

4.3 Variable Length Operations

4.4 The Weighted Average Over Instruction Types

APPENDIX: Tables

: |
|

Conclusion

The Memorex 30 has, on the average, an instruction execution §peed
1.08 times faster than the IBM System 3. |

Introduction

The purpose of this discussion is to evaluate the performance of the MRX30.
In addition, the evaluation provides a basis to describe how the instruction
set is emulated by the 7100 microinstructions. Throughout this discussion
reference is made to the memo €PU Speed of MRX50 by G. H. Leichner

(Santa Clara Systems Programming Technical Memo PER 002, January 26, 1972},
in which similar evaluative techniques were used. It is particularly
valuable as the source for instruction mix ratios. Instruction execution
times for the MRX50 were obtained from the 7200/7300 Computers Product
Description manual of March 1972.

Evaluation of the MRX30

Since the MRX30 user instruction set is compatible with the MRX50, a
comparison of execution speed with the MRX50 is the natural way to
evaluate the MRX30. Once this comparison has been made, the results
may be translated into the results of comparisons with other computers,
notably the IBM System 3.

In what follows we shall be dealing with ratios of execution times of
various instructions. If we let T(I) denote the execution time on

machine I, the ratio we normally use is R=T %MRXBOE . We also use
T (MRX50

a ratio R* which means the same except that the MRX50 is assumed to be
in single processor mode. Let us now let S(I) be the speed of machine I.
Since speed bears an inverse relation to time, we also have:
~ R=S %MRXSO} ‘
S (MRX30

Where the R here is the same as above.

‘) |
3.1 Comparison Between The MRX30 And MRX50 ﬁ

The MRX30 has a 400 nanosecond microinstruction cycle time @nd a 1.2
microsecond memory cycle time. In comparison, the MRX50 has a 100
nanosecond microinstruction cycle time and a .900 nanosecondimemory

cycle time. Thus, the MRX50 is 4 times the speed of the MRX30 in

terms of microinstruction execution, but only 1.3 times the speed in
memory operations. On. this basis one would predict that the ratio R

of MRX50 speed to MRX30 speed would fall between 4 and 1.3, with those
operations requiring fewer memory cycles closer to 4, and those requiring
more memory cycles closer to 1.3. This is true in-almost all cases.

Another difference between the MRX30 and MRX50 is in the use of memory.

In the MRX50 the microinstruction cycles are always locked to main

memory cycles. In the MRX30, the only time the microinstruction execution
becomes locked to memory timing is during a memory operation. This ailows
a timing on the MRX30 to be made in terms of microcycles rather than
memory cycles. The result of this is that some operations, like indexing,
take no time on the MRX50, but do take time on the MRX30.

The actual comparison between the MRX30 and MRX50 was done by micro-
coding several instructions on the MRX30 and comparing their timing
to the MRX50. The instructions chosen were ADDR, ADD, MOVR, LOD,

B (rahch), BCT and MOVX. It should be noted that this subset consists
of Register-Register, Memory-register and variable length memory ops.
ADDR and ADD were chosen as being representative of a large class of
combinatorial ops. MOVR, LOD, B and BCT were chosen because they are
frequently used ops. MOVX was chosen to represeht the variable length
ops. Section 4 describes this comparison in detail.

The comparisbn showed that, for all the ops but MOVX, the ratio R was
very strongly dependent upon the indirect addressing and indexing
options chosen. In particular, the more indirect addressing that was
done, *the smaller R became. As a result of this observation, it was
decided to perform the analysis both on the simple (no indexing, no
indirect addressing) versions of the ops, and also on an average op
obtained by a weighted average of addressing types. The weighting
factors were computéd by assuming: 1)} 50% of the ops would have at

least 1 indirect address, and 2) 50% of the ops would use indexing.

3.2

It was also decided to perform the analysis usipg both the normal and

"single processor mode" MRX50. \
!

From these techniques an execution time for each op for each case was
obtained. The times thus obtained were averaged using a sef of weights
derived from operation versus frequency of execution tables. The results
of these weighted averages cqu]d be said to represent the contribution of
the subset of instructions to the average instruction execution time.
This gave a set of times both for the MRX50 and for the MRX30 which

could be used to compute a ratio for each of 4 cases. These results

were:
CASE R

Simple Addressing - Normal MRX50 2.4
Addressing Average - Normal MRX50 2.3

Simple Addressing - Single Processor MRX50 1.9
Addressing Average - Single Processor MRX50 1.9

As expected, the worst case arises for simple addressing and a normal
MRX50. It is on this case that the conclusions given in Section 1
above are based. It is surprising that the result is relatively
insensitive to differences between simple and average addressing.
This arises for two reasons. The first is that the addressing average.
is weighted towards the simple ops. The second is that over half the
contribution to the average instruction execution time comes in all
cases from MOVX, the op that is not address type sensitive. It is
worth noting at this point that Leichners memo shows that, even with
decimal multiply and divide excluded, the variable length operations
contribute over half to the average execution time in the MRX50.

Comparison of MRX30 with IBM System 3

Having now arrived at a figure of 2.4 for the ratio for MRX50 speed
to MRX30 speed, we need to relate this figure to the IBM System 3.
If we use S{I) for the speed of machine I, then we have the following

relations:

s (MRX50)
5 {MRX30; = 2.4

The published figure for the MRX50 shows: ‘

S (MRX50

s(iews0) T -

The following two relations represent assumptions:
S EIBM30§ = 3
S (IBM50 :
S %IBM 33} -
S (IBM 30 ’

We have then:

S_(MRX30 - 9 5MRX30% ~ S~(MRX50) = S (IBM50) S (IBM30
S (IBM 33 S (MRX50 S {IBM50) S (IBM30) S (IBM S3
- 1 L 1.
= 5.3 X .7 X 3 X 5 1.08

Which is the figure given above.

Emulation of the MRX30 Instruction Set

The starting and ending point in the emulation of any instruction is the
read next instruction sequence (RNIZ, Table 1). This sequence picks up
the first word of the next instruction from memory and increments the
program counter to the next word. In addition it checks for a pending
interrupt condition. Once the instruction is available, the RNIZ exits
to a location dependent upon the 8 bit op-code of the instruction.

In what follows we shall discuss in some detail how various instructions
and instruction types are emulated. In addition we will give examples
of the microprogramming for these emulations, and some timing analysis
based upon this microcoding. ' |

/

By the term basic ops here, we mean the functions of ADD, SUB, CMP, XOR,
EOR, MOV, and MVI, in conjunction with the addressing types RR, MR,
Direct, Immediate, and Memory-memory.

4.1 The Basic Ops -

The PIR decode branch for each of the basic ops branchs to a sequence

of two subroutine calls. The first of these subroutine calls is a branch

to an addressing type routine. The second call is a branch to an “operator"
function that actually performs the operation,

The first (addressing type) routine takes care of getting the operands.

The second {operation type) routine performs the operation on the operands,
and takes care of disposition of the results, including the condition

code, if any.

Thus PIRD becomes one of a number of progfam segments like:

(PIRDX) BSR
BSR

XXXX
XXXX

Where thé individual routines are given in tables below:
ADDRESSING TYPE
ROUTINE TABLE

XXXX ADDRESSING TYPE OPERATION TABLE
ADRCT DIRECT 1
AIMM IMMEDIATE 1
AMR MEMORY + REGISTER 1
ARR REGISTER -+ REGISTER -1
2

AMM MEMORY - MEMORY

OP TABLE 1 ‘ /

YYYy OPERATION
- OADD ADD
0suB SUBTRACT
0AND AND (Logical Product)
0IOR EXCLUSIVE OR
0IOR INCLUSIVE OR
OCMP COMPARE
OMOY MOVE
OMVI MOVE INVERSE

OP TABLE 2 - Note these are in general alternate
entries to routines listed in Op
Table 1.

vy OPERATION

MADD ADD

MSUB SUBTRACT

MAND AND (Logical Product)
" MEOR EXCLUSIVE OR

MIOR INCLUSIVE OR

MCMP COMPARE

MMOV MOVE

MMVI MOVE INVERSE

4.2

/

_ /
For the purposes of the timing analysis, the ARR and AMR addressing routines,

and the OADD and OMOV operation routines were micro-coded. This coding is
shown in Tables 2, 3, 4 and 5. Timings were obtained from this coding for
all addressing variations of the instructions ADDR, MOVR, ADD and LOD.
Summarys of these timings appear on Tables 6 and 7.

From these times an average time for each instruction was also

computed. Each addressing variation in this average was weighed according
to the following rules: 1) 50% of the instructions would use indirect
address; and 2) 50% of the instructions would use indexing.

These calculations were made for the MRX50 in both the normal (MRX50 Short)

and single processor mode (MRX50 Long). Tables 8 and 9 show these
calculations.

Branch Operations p

Emulation of the various branch operations generally consists of two
program segments: 1) The execution of a branch condition test routine; 2)
followed under certain conditions by the execution of a branch generation
routine. It should be noted that the double subroutine call technique

is not necessary since the branch generator used by a particular branch
test routine is unique. The unconditional branchs will branch directly

to a branch generator, since no condition test is necessary.

BRANCH GENERATORS

BGN1 - Generates a normal, post-indexed branch

BGN2 - Generates a register branch

BGN3 - Generates a pre-indexed branch

BGN4 - (Alternate entry to BGN3) Generates a non-indexed branch

BRANCH CONDITION TEST ROUTINE

RTN USED FOR CORR. BRANCH GENERATOR
TBA1 Branch Add 1 BGN1
TBAZ Branch Add 2 BGN1
TBOF Branch if Bit off BGN4
TBON Branch if Bit on BGN4

TBRN Branch if Reg not zero BGN1

4.3

TBRZ Branch if Reg Zero BGN1 /
TBCF Branch if Condition False © BaNl
TBCT Branch if Condition True BGN1
TBS1 Branch Subtract One BGN1
TBS2 Branch Subtract Two BGN1

For the purposes of the timing analysis one branch generator (BGN1) and one
branch condition test routine (TBCF) were coded. These are shown in Tables
10 and 11. From this coding timings we obtained for all addressing types
for the instructions B and BCF. For BCF timings were obtained for both

the branch and no branch cases. These results are presented in Table 12.
In order to arrive at a single value for the branch operation, the
following assumptions were made: 1) 50% of branch operations were
unconditional and 50% were conditional; 2) 50% conditional branches were
taken, and 50% were not. Further, for address averaging, the assumptions
made in Section 4.1 were also made. The results of these averages are
shown in Table 13.

Variable -Length Operations

The variable length operations first pass through a variable length set

up section which computes the effective operand addresses and rectifies
the count fields. This initialization section is instruction independent,
except that SHFK and MOVL have their own. Subsequent to this set up
section, a section dependent upon the actual op is reached. This is
accomplished by the same sort of double branch technique employed for

the basic ops.

For the purposes of the timing analysis, a set-up section and the instruction

dependent section for MOVX were microprogrammed. This coding is shown in
Tables 14 and 15. For the timing, it was assumed (following Leichner)
that the two operand lengths were both equal at 14.8 bytes. A summary

of the timing for all addressing options is shown in Table-16. Since
the times are only slightly dependent on addressing option, it was
decided to use, for the MRX30, a value of 65.8 for the no address average
case, and 69.0 for the address average case.

4.4 The weighted'Average Over Instruction Type

From Leichners memo a set owaeights, one for each jnstruction, were
derived that are proportional to the frequency of execution of that
instruction. By using these as the weights in a weighted average we
arrive at an overall figure of merit. There are 6 instances of this
figure of merit. They break down into 2 cases of 3 instances each.

The two cases are with and without address averaging. The 3 instances
are: 1) The MRX50 running in normal mode (MRX50 Short); 2) The MRX50
running in single processor mode (MRX50 Long); and 3) the MRX30. Once
the figure of merits have been developed, the ratios that were
summarized above are calculated. It should be noted that, although
only ADD and ADDR were evaluated, it was assumed that SUB and SBR would
be the same and the weights were adjusted to include them in the average.

MRX30 EMULATION AND PERFORMANCE

APPENDIX: TABLES

.\".
>
war S nas

RuIe

ArEL e
R= TlCxa')

S

AT, ST

. PIR® MAR
QRA: PIRD

R RA. TOVTF TRu LT

il

Tk lt"ﬂ.

&

v el 4

ROT 2

T".lcru‘anL

AR R 23 L =

NLaz = ArrI
BRARA = SRE T
B-R2I
ARAT FMAR > 2o F R
-
BRA = SRAT oM
L
B= mdR
4. 1 ?"‘C"l“‘ {.,
i

Tb‘\L:1L a - R,‘a 't'cpt

AMR
S+ Adb

.JHQI‘i

Ar‘-’lRL?
Lmbn

RMRCi3

ARy
R‘.

'tt-.'m"u.-i

Tale 3

e

=

AR
AAAT AMRE

AMAR =S TR

RB=rpb R

-
LY

A
ooy,

grA. TP AaRCP

MBR S MAR R

gRA. RRIT T AraRe X

MAR = MBR | MR

BAA=SRET, HEM

A R2T anel

SRRl 2

s s L ;
R “;.L..g_:‘-

A

oD

oAl i3

omADT

RRA NI1E * oADT
AR 1T

RAI = ADD

ARrudr

B cend
cond T ruw, DA
BRRAT RWIR

mAarT RLII, FHMR
HidM

J

AT MDOR

MDE= ABD Fraw

geA = oADB

Tl - Toe et

N
G rael
et
')
4 = ADD Ranbiwe

[N

\"H..__

[YV

QMVJ.-

Tﬂ 1;3 [4

BRRn, VMIO12 5 amMuT

wal*® BeR
RAA= RUT

MBR= BRA
MAR=Q LT, Fmuw

=DM
aRA RNITE

‘t!‘w :V\‘] 3. {_*:\‘C.'-‘\-
0 cu(! g
§ - o ©

Poe
o e

s

ADD G

ADDA T,L, L : /
‘ /
MREX SO MRX 3o “ j
_— - ! i
’ Catlcs U L JYRN FYYwY tione R 4 :
R]R M, T, 17 A i% 7.2 4.3 K
|
aT anm, 1.3 2. 20 1 H.4 3.6
}
1T Im, e, 3.5 4.3 Ra %8 a. 5 a0
1T “ 3.6 4.4 gy 1.4 =] 2.2
MR 3, 2.7 3} a4 1.6 KA 2.9
MULIR 3, A7 L1 asF 10.0 1.7 1.0
MDD R o, 3.6 4%t 2% fo.y 2.1 2.4
M LTOR 4rt, 2.4 4.4 27 0. § 2.0 2.5
ML sm, 4.5 S5 g .2 2.5 2o
g |
MO T 5, 1.4 $.5 a9 1.4 2.6 2.
M 6™, £.4 Wb 30 12.0 2.2 g
MLTOT M, .Y bbb 3 .t 2.3 9
Table ADD % ADDR T Samranr o

1. ‘-\A‘V\-"\

Mav- LO D

T

ey
-~
" (XY 7. ¥}

MRY $o MRY 3¢ R R
g Tame T tyeln T e

R R Miermz 1.7 3.0 L4 5.6 3. Jd.7
axT 8™ 1.% 2.2 e L. 4 2. 2.9
T A+ ML A 3.2 17 L- % 2. Q.
i Al SR 2.7 2.3 1 9) 2. 4. 3
rM R 3™ 2.7 x.3 20 ¢.0 3.0 2.4
P e 3 3.7 5% A §. 4 3. 3.5
m_cr)ra My 1.0 MY 2= .8 2 Y 2.0
PMILIXD R H) 3¢ ';H.‘r a3 9.4 2.6 &
Mz Yoy 3.6 Y. 23 9. a 2. ¢ . |
P T Y My 3.6 4.4 2y 1. ¢ 2.7 2.2
Mo r £ M 4.5 5§ A% (o, O 2.2 A
MLTx) T .:Ml Y. & S5 ac 1o-4 2.3 -9

Tubte 7 - MBUR 5 LdD -ﬂ'wwi Summany o

SQUARE
SQHIARE
SQUARE

.\r.'
N
L CArAL

PODR - MRy So Short

L3 % .&+ (1§ +3.8 3.;,)/(9

. . 1o +3.8 1340 - i -
EJ*(']/2 = 3.3 (R=13.¢)
3
ADOT .n]f{)($o: t"“]
(2.2 +4.3 +4.4) = 2.9 -
-k + /s : (R-_a.s)
3 .

ADOR MRX 3o

[:-;_;,+ (§$+684 ﬁ.a):{/a . g
R .

ADD MRXS$o St

2.7+ 2.7 + (b +3%b vy ¢ +4.8 45,4, S04) . .
[' 3 j/‘f 3.6 (@=0.9)

ADD MRx S“ ,av\l]

[_3-3r3.'§ v (ot 1188 +46. b 'rb,b)]/‘_f_ - pfa{ (R"‘Q.“f)
. ‘ 2

A DD FRY 3o ‘ . .

-y L2 41 s 120 12, _
[q_(‘., [©.0 T (e d 108+ 12 _/,._ﬁ..-a__‘-"___':_______l]/cf, z [o. 6
? .

Teubkle 2 - AL fens f—\\n.(u\{vW\ f.e BDD & ADD R

* Plav ~LPD

/
a /
- '!
‘ Mau R MMARXSO PY ' ' _ |
z (R =3.2)|
- - [-€12.6 12,7 < ' 7 |
[e bl s 2
Mo v R mexse Lonq
FEL ,1"‘ - ?- - —r , _
L [J—f* A 1 3:(_/2‘ 2.5 (R 2.5)
23§ 2
:EE IR MY 3a . .
[s’-(. L b4 s 7-61/2 - L.
5Z§ 3
§°
3
L«’D rM e io A<\""'—J‘
R - .
3.7+2.77+ [3.!73’,(‘—«?.& NS 1%.5'!*-%)‘3 /‘f T 3.7 (R=2.7)
& | 3
LQD- rqrix 5O L—am.c,l

[13437 4 (mq«wf.%#.tf;w.h $.8+5.5)’]/7_ - 4.0 (R = 2.2)

Lo MR X3

] ’ ,2‘7' Lo A I, - -
[8&18‘%*(5%1‘?1%1 _;"*D * ﬂ_l/* 5.1

T ARLE A ALl rees Avt&o‘.,'uq f.. MuUR T oLed

50 SHEETS 5 SGUARE
00 SHEETS 5 $QUARE
00 SHEETS 5 SQUARE

—

.\‘-.
A
oS

goul

BavA

B LY

MAaR =S, MR

BAA.NTLE® RBgwA

,H&"'t

AR MQQJ rraR

AnA, R EF - BovX

, HOM

g = MDLR
BRA =T 2

A g4I, 4071
B=mMmbe
§+ ADD

RRA=ANMTE

‘{nl«a'omq . L L.ég,(.w cilr.r.v_f

Tulolt

o

s t--di..lvd m‘..wa;.,O
-8 LEL(AA \Jx&;rcw'{

c{ L'%L"‘A t‘u;n-‘-lftw'(

= Bfu"\f.-\’\ (\tmwa“'af

wnd wewel -

Ranvi

.

'\f.
~
AraTet Al

ToCF R: PTR
A= tpuid
. R8I T
BRRA. yuez = Ban it
A=5
g w'z'
<= AdDD
ReA : RNTR

t"\n'-.n-.[: ‘1‘ E.tdt(l./_) 'lF Br.ul.('ﬁ

? ‘lﬁittﬂd \'F ﬂq‘bfllv\l.(/\

TM Elf. l I - '3 ranclhh Cor\(ﬂlz Fiov T'-.S f

TRCF

=11

tgely

N = M,

% a My

el 3,

T X 2 M,

v -) a4 M,
M- B -,
x - B a ™,
x - B P B A N
r- ® 3m,
L - B L,
Ix -.-B' . 21,
Ix -~ B 3

WU el by a b

MRY S

—

Timn [L-ac.tu

i a.a iR

Rranch ae GLnflvla
(-5 a.a 4
1. & a,2 (A
1.8 2,2 v

)‘5 a,.’J i 7

2.7 33 19

L PN

MIRA Ry

Trvena

Tauble 12 - Brav‘f-(’\ ||v-'n-{/\=\ /Summuva

SQUARE
SQUARE
SQUARE

SHEETS 3§
SHEETS 5
SHEETS 5

coo

5
o
0

1

-381
342
389

acen §
B

.\'.b.
"~
wari A nas

For Mo ALQ.'/QHSS n..)q--[g

“”’3*50 is l"!&t{)wzg(v\."' X LY A +n|9c. L T T bruuc

oy 4‘.&“. [N

pRXSe Sw,, ¥ 2 .8 (R’-'&)

MRx$a banq t=22.2 (R™= a.5)
(6. 6+ 6-1) - -
MRX3 O t = [q.s + .:"__6_5__._-—]/a S |

For AJ‘QY(<E AV({HT'L

™R X$o So.-t ¢ {1+ .’!.')) = a.as (r(T A, L)

-—

FMRX§o Leny - (a.2#3.3)° 2.75 (R'= 2.1

MRy 2 St [—(4.6 +S. 3784+ L)y 4 (4xdie bt f..sf‘r.a+‘7.t.)/g j/a
= £.85

. Wote Flhat Ful alksee averayt tww-u'ps T evtr |

t, Bruuub\ T‘-&fc
2, 'AJ&msle t-apf.
a, Wt ¢ Br.uub\ tultiv or e

Table V3 -— Branch -T-spc. 4 Addnes Pﬁuwl-{iv‘ﬂ

Mo v -

LA {‘\u ‘vg,l,‘;.._ S;H"

*
-1y |

-
~
NaTiGAmAL

AMAR= S,
B R
S>A030 Hor
Bam, wei2 = Avex/
oad - MR ’
ARS8, TR
5 :ARD, M
Renp.nvRLE
apnz >~ MDR

A MARE 5 F Mt
B=x'z2'
S:apd, oM
LLI=S™MDR

ITA A

MAR~ ADD,

L2 > SMb R

A= O0Ad

Au L [P

AVLEI
T AUVL X

AJLGy

= L4
A= ADD
B ow! <
oo dx Suid
H- ot
A: S B
R oL
OAD* ADD
n-oLd
grsi P

! BRA vin T payL2d

AL o8
RES =30

enT=0 1

AL g

BRA:SRET
prR> %o

23 + 3 fur tachh X+ 2 F.r vag

+

qulvnfolt L“--‘T'H"' S:.f'."

Avey | A ADR
- RLT
0AL® ADD
BRAT AL G
A =ADE

R KaZ
aAd= ADD
Bras Aveidl

Au‘Lyz

p-swild
AERE
RES=54 B
cTE Lal
ArsresnnT
pre- %'

u_r: Sc l.,"'l‘u'\/\

™Mavx -~ I:hv”‘ W, F\:

o
-~
~arionaL

orMPU X By
VT e
sy . P38 T OrywoT
oamx T? AMAR‘-DA‘L) f—mKN
oL ADD oA
AMAR: DAL MW
© A= ahd
A [V
LT G S4B HdA
BA, Nt&B‘-QHV??

o ML ' RES~ RS
faa, i #UT2
q
:
(tmis sl «,“tlwi;h.‘r..\a{ Wty ant
dul eoeivatien b vt BIVRE S
Litlbz o, rkat ®AS:0)

5+ 5L

T able s - MOUX QPv- &(Pcndﬂm(’ CoDE

Mwux -er:V\I‘\.‘\-I

=

Scb Lp O»C <
MRx 3o PMRY SO
Cyetu Tiw Cqyels Tine T R R’
¥ 4 & 18,4 Lr‘f.*3’;1i 7.8 q.¢ 2.4 .9
b4 q4 9 L9, & tr’l,vzr.flc L 7.4 2.5 2.0
a ¥ ¥ a Qa9 L1, rEL 7% 2.4 2.7 o Jga
La 6~ U 4 s |a.a LT3t .8 q.¢ 2. 5 2.0
LaG - X 5t Go. o ¢, 3T g ?.; b a. |
Lat - ¥ 54 A e, r3mn 1.8 % 2.3 2.3
L""F cxﬂraa
Ly = Le™ 1t & -

) . .

L v Y aced, AL 3.4 3 Y
Tote |
r YerEl L$. 8 LM 30, e, 3% YR (.9 1.6
® yq+ §L & T.0 B 1y 4 ®z. 2 1.9 1.6
3% gargl AT " 4.4 H2.2 J.© ol
Lag - ¥ 1y EL bbb . 4.2 19 1. ¢
Lig - X Jrrst . .L-z'r,g e . 34,4 412 2.0 Lok
Li6- ax gt &L L 1.0 " Y Hu 2,0 f. &
Table

- . X |v:a|.\.a AL

JQ.W.F 5m.+45~+w:# BT ald Jﬂ.:»‘:.,q dm.\,._e..ﬂuaﬁj EETH 4 MT.L.J,?S.,GA_ L1 .ﬁ&.olr
"
Al
!
b e°C b1 h-v Y
L7 Ls5's g238°¢e 1e-? DRI hac T wigl
ittt s e} N
A AN 4 o'L? 75%0°¢ Tth 210 5% hhE hiastg £°59 a5ce’t ¥ th 1S9 | h'he | ©3he’ XN bl
MSL3T- | 535 bE7" Scr bees: SE€C | 2bh5EN b5 ten s LN €E814 " B hewe! dwl
hithhd 58 HosT Ok g s7ese %t § oot | o3 | BsILs £ e | €obih' L't VR-L 1N g &
Byollt | €2 hheo Ste | ester ot | asseo’ 75 | Tk9t0” 1'g febkeo | Lp| 2ci0f YNek
L AR I 9-01 | $8990° hh | ELRSO 70 | EhbShi’ 9% | rie5e’ €t | hernoo Le | esior a9V
A o3 gocel’ b e 1L0%0" €L | hhesC eL ChELe' t'e | habso: L1 | westa; Y QQY
CEARYWL. _.S.l_ oS AW 125 oS Ay g XU n._..r.:_ LY SN 3% oS X Wi .fe_n.,.? SR
.u“.vx:_:.ﬂ w«f__oa%m\ .u_.a&usﬂ TN ey
qwenss ¢ siamns gor T | Ny
FIYNODS § SLIIHS OF 18E-Lr)

