Technical Memorandum 63/5

AN EXPERIMENT WITH A SELF-COMPILING COMPILER
FOR A SIMPLE LIST-PROCESSING LANGUAGE
(PART 2.)
by

M.V, Wilkes.

Herbert Schorr

Herbert Schorr
University Mathematical Laboratory,
Corn Exchange Street,
Cambridge.

Technical Memorandum 63/5

AN EXPERIMENT WITH A SELF-COMPILING COMPILER
FOR A SIMPLE LIST-PROCISSING LANGUAGE
(PART 2.)

t)')

M, V., Vilkes,

Herbert Schorr Argust. 1363

AN ZXPERIMENT WITH A SELF-COMPILING COMPILER
FOR 4 SIMPLE LIST-PROCIISING LANGU.GE
(PART 2)

Part 1 of this paper, which appeared as Technical Memorandum 63/1,
described how an elementary compiler for a simple list-processing
language was written in the language itself and manually converted to
machine code in such a way that the resulting compiler was capable of
compiling itself., Once this had been done it was possible to improve
both the compiler and the language by a series of bootstrapping oper-
ations, in each stage of which the compiler then existing was used to
compile its successor. The language has become known as WISP,

Use of the final form of the language, which contained conditional
expressions, was illustrated by a program for formal differentiation of
algebraic expressions. In part 2 of the paper I shall give an annotated
version of the compiler for this form of the language and describe how it
was further developed with a vicew to the transfer of the system to other
computers,

The Compiler TR 1

The development of the language in the way described on p.12 of
Technical Mcmorandum 63%/1 carried with it a corresponding substantial
development of the compiler. The version finally arrived at is given
below in full with annotations, and it will bz obscrved that it is
written in the language of TR 0.1, although that compiler must be
provided with a fow morc standard forms and corresvonding machine code
translations than have been mentionzd so far. It is hoped that the
following remarks will enable the annotations to be understood.

Conditional statements are compilcd as though they were written
in terms of conditional jumps and labels. These labels are anonymous
in the soense that they are introduced by the compiler without the
programmer knowing anything about then. For example, the following
conditional statemcnt

[IFCAR S = :*, L =38
R=CDR R

IF CARR = :X, CARL = :1
CARL = :0]

is compiled as though it were expressed in the following form.

IF CAR S 4 :* GO TO 81

L=3S8

TO 80

81

UNSET LABEL 81
R =CDR R

IF CARR 4 :X GO TO 81
CARL = :1

TO 80

31

UNSET LABEL 81
CARL = :0

80

UNSET LABEL 80

A short machine code subroutine for issuing labels was written; this
would issue labels in sequence starting, as will be observed, from the
value 80, Since the EDSAC Assembly Routine provides a rather small
number of different labels it is necessary that the labels should be
unset when they have served their purpose in order that they may be uscd
again, Re-issue of a label is made possible by providing the label
issuing subroutine with a second entry point, entry at which causes the
counter within the subroutine to be stepped back. The introduction of
conditional statements means that compilation no longer consists of
putting out a self-contained machine code translation for each statcment
on a one to one basis. ror example, an opening square bracket - brackcts
are trcated for the purpose of compilation as though they were statemcnts -
causes no orders to be compiled, but a label is put on the stack for use
when the closing square bracket is encountered, An IF clause has two
machine code translations associated with it. One is put out at once
and a reference to the other is left on the stack for use after the
statement controlled by the IF clause has been compiled. For example,
the first IF clause in the above example leads to the immediate output
of a machine code translation corresponding to IF CAR S 4 :* GO TO 81
and, when the statement L = S has been compiled, a further machine code
translation corresponding to the statement TO 80 is put out,

It will be scen that the action of the compiler is quite different
when it is dealing respectively with ordinary statements, IF clauses, and
brackets, Other types of statement also require their own special
treatment and the compiler is, therefore, provided with a number of
distinct subroutines. Control is sent to the appropriate subroutine
by means of a switch and each standard form has a switch number storecd
along with it, Ordinary statements have the switch number 0, and IF
clauses have the switch number 1, The following diagram shows how the

standard forms * = * and IF CAR * = * appear on the list of standard forms,
Do | T =TT 1

|

—|T 1 I-{F 1 _f--=l=_1 I-lspl I-tx 1 __I-l_2l 1-12_1 I——j

|-4nntl |=fmet] |

—lx 1_I-lspl_I-1="T I-ispl I-1«_T I-1a T 1-10 1 I-lmct |

Note that the mct references are now stored in the CAR of a register and
not in the CDR as was done in the case of earlier compilers.

It might be thought that the design of the subroutines required to
deal with brackets and IF clauses would be quite complicated. This,
however, is not so if the compiler is constructed from the beginning on
sound recursive lines, In the present case the whole program is regarded
as a compound statement, and must be enclosed in round brackets (later
versions of the compiler automatically enclose the progrzm in round
brackets during input, thus saving the programmer the trouble of deing
so himself), The heart of a compiler is a routine - which will be
referred to as the Statement Routine - whose label is 08, and the function
of this routine is to compile a single statecment. The master routine of
the compiler is very short and calls in the compile routine by the stale-
ment TO O8 AND BACK, with the object of compiling the compound statcment
that is the whole program, The first statement encountered is, naturally
enough, an opening round bracket, This has switch number 2, and control
is accordingly sent to subroutine 2 (label 52) which is as follows

52
TO 08 AND BACK
TO 52.

This subroutine has no RETURN statcment and the statement routine is
called in recursively and repeatedly to compile the statements within the
compound statement. Control is, in fact, trapped in subroutine 2, and it
can only be released when one of the statements turns out to be a closing
round bracket, This sends control to subroutine 3 which is as follows

53
LEVZL DOWN
RETURN.

The effect of the LEVEL DOWN statement is that the succeeding RETURN
statement sends control back, not to subroutine 2 (from which the
statement routine was called in on this recursion), but to the place to
which it would have becn sent back by a RETURN instruction at the cnd of
subroutine 2, If the closing bracket marks the end of the whole program
being compiled, this means that control is returned to the master routine.

An IF clause is dealt with in a somewhat similar monner by

subroutine 1, which uses the statement routine recursively to compile
the dependent statement. This dependent statement may itself be a

2

compound statement containing perhaps conditional statements. It is
surprising how cheavly facilities for the nesting of conditional and
compound statements can be obtained once the statement routine has bemn

designed recursively.

The compiler TR 1 is given in full below, except that the subroutine
for dealing with COPY has been omitted.

SET STaCK

F

CDR F

F

F

26 LND BACK
CiRE=CaR L
L

SUH’#QE"S
[T I T I}

=
fl

C = INPUT
TO 25 IF CAR F
F=CDRF

TO 23

25

TO 24 TF CAR L = :,
F=CDRF

CAR F = INZUT

22

F=CDRF

CAR F = INPUT
TO 21 IFCAR F = :,
SUBROUTINE 79
A = CDR G
CARF = A

TO 22

21

F=CDRF
CDRE = F
CkRE =L
E=CDRE

TO 26 AND BACI

TR 1

Reads in standard forms, using 26 recursively

The list of standard forms is terminated by a dot

This statement reads the switch number for the
standard form just recad

Subroutine 79 was designed for the original
compiler, and puts the mct label into CDR G.
Note that there may be more than one mct label
corresponding to a given standard form, ond

that each one is placed in the CAR of a register

UNSET 21 - 25
93

P =

29

S =3

,:\\)':F
F=CDRF
A=T

CAR A = INPUT
TO 21 IF C.R S

TO 22 IF C.R A
TO 22 IF C\R A
IF CAR A
TO 21 IF C.R 4

3

N
h¥]

-

B n

QE Q& o
[}

AALP\ A.

Qw QL Qb
ot >

Bg?;dﬂ oon
\r\):l)(')@
t!3" ';Udll oo
OO QO W

CAR 3 = C.R &
23

TO 28 IF C.iR
TO 29

28

TO 27 IF CiR 8
TO 29

27

WAIT

06
Q=P
TC 08 AND BuCK

Z=CaRD
E=CDR E
E=CDRE
E = CDR E
CiR B TO STLCK

SUBROUTINE 77
WAIT

Mo

i

ae s0 ee se e
[EE [N 4

Reads in the program to be compiled

Puts commas round all brackets enclosing
conditional or compound statements so that
the brackets are treated by the compiler as
statements

The program is terminated by two consecutive stars

The master routine of the compiler. 038 is the
routine that translatcs a statement: the whole
program is enclosed in round brackets and thus
forms a statement, "TO 08 AND BACK" calls,
therefore, for the whole progrom to be tronslated,

This is merely a rather roundabout way of

compiling the symbols necessary to terminate the
compiled program tape.

Se

15

2 = CDR Q

TO 08

16

E=D

09

RESET ST..CK

Z =C.RE
R=Q

05

TO 13 IF C.R Z
TO 12 IF C.R R
07,

E =CDRE

TO 09 IF CAR E # :

WAITS
12

CDR R
CDR Z

O N

5

TO 14+ IF CAR Z
TO 05

13

CiR R TO STACK

TO 25 IF C.R R # :

R =CDRR

25

TO 19 IF C.R R
TO 07

CaR 2

* e

iy

Prepares for the translation of 2 second progrom

End of master routine.
The statement routine

The following section compares the program,
statement by statement, with the list of

standard forms, It follows the general lines

of the corresponding scction of earlier compilers.

Waits if a match is not found

This section deals with two-character idcentifiers,
€e8e ASs If oL and B are the two upper
characters in the stack, subroutine 78 forms

102&,+/3 (mod 28) and lcaves this quantity et

the top of the stack

AR 2 TO STACK

5

Z = CDR 2

C

SUBROUTING 77

51

2 = CDR Z
SUBROUTINE 40
CiR 2 TO ST.CK
Z =CDR Z

CiR Z TO STuCK
SUEBROUTINE 77
TO 08 AND BLCK
SUBROUTINE 77
SUBROUTINE 41
RETU RN

52
70 08 . ND BLACK
TO 52

23
LEVEL DOWN
RETURN

54

SUBROUTINE 40
60

TO 08 .ND BA4CK
TO 60

This point is reached when a match hns beon found,
The switch number (N, say) is in C.R Z, =nd the
switch statement compiles into a jump to a+l,
where a is the address corresponding to label 49,

Switch directory; cach TO statement
compiles into a single jump order

This is the subroutine for dealing with

the ordinary type of statement, Subroutinc 77
(COMPILE) uses the mct and any other necessary
information from the stack

Subroutine for dealing with an IF clause, There
are two met's which both go into the stack;

one is used at once by subroutine 77 (COMPILE),
and the sccond is left on the stack for use
after the statement controlled by the IF

clause has been translated, Subroutine 40
issues a label to the stack, =nd subroutine 41
returns the label for re-issue later

Subroutine for dealing with "('' ; no mct

Subroutine for dealing with ")" ; no met

Subroutine for dealing with "[" ; no mct.
Note that a label is put into the stack (by
subroutine 40) for later compilation when "%
is encountered

7

55 Subroutine for dealing with "J"., There is
LEVEL DOWN one mct, which uses the label left over in
Z = CDR Z the stack from "[",

CAR 2 TO STi.CK

SUBROUTINE 77

SUBROUTINE 41

RETURN

56 Subroutine for dealing with "COMMENT!
R =CDR R

TO 56 IF CiR R # :,

Q = CDR R

RETURN

* %k

4 modification later made to the compiler was intended to
facilitate program error diagnosis. This consisted in meking the
cempiler copy on to the output tape any statements in the program
which could not be matched with one of the stendsrd forms., Ex-
perience had shown that without this facility it was sometimes
difficult to locate an illegnl statement.

ilthough the conditional statements available with TR 1 arc of
great assistance to the programmer, they do not go as far as could
be desired, since they do not allow for Boolesn connectives in the
IF clauses, One would like, for exompl:, to be able to write
IFCR A= 3t+0or IFCiR i = :-, This is a feature which will, no
doubt, be introduced into future versions of WISP, but to do so
within the present framework is not entirely straightforward,

G.RB..GE COLLICTION

The early versions of WISP were founded on the assumption that
it was the programmer's responsibility to return to the free list
any registers no longer required. In fact, the programmer did not
need to bother much about this since the scale of the programs then
being handled was such that 16,000 words of storage could be regarded
as infinite, When one came to consider the application of the systcn
to larger problems, however, the advantage of automatic garbage collection
(ns used in LISP) became clear. The first of thesc is cbviously that
it saves the programmer trouble. apart from being troublesome,
however, when complicated list structures with sublists exist, it may
be exceedingly difficult, if not impossible, for the programmer to
know what is garbage and what is not.

The garbage collector now incorporated in the system resembles
McCarthy's in that it proceeds in two phnses, In the first, all
named lists are traced and all registers connccted with them are
marked by having the sign digit made into a one, In the second
phase, all registers not so marked are collected ~nd attached to the
frce list, the sign digits of marked registers being at the same time
restored to O,

For this type of garbage collector to work it is necessary that
all lists and sublists should be terminated in some standard manner,
and that the programmer should avoid the use of circular lists. The
convention was adopted that lists and sublists should be terminated
by having the CDR of the last register set equal to O,

It was decided to introduce, along with the garbage collector,
another facility, namely, the automatic extension of lists by the
attachment of a register taken from the free list, Whenever a
statement of the type A = CDR B is encountercd, a test is made to
ascertain whether CDR B =:0. If it does not, the operation proceceds.
Otherwise a register is detached from the free list and linked to
CDR A. The operation can then proceed and O is left in CDR 4, If
the free list is found to be exhausted, the garbage collector is
called into action. If the garbage collector does not succeed in
collecting any garbage then the machine reports the fact =nd comes
to a halt, The garbnge collecctor is also called into action if
necessary by the statemonts PUSH DOWN * and CAR * - *, It should
be noted that no outomatic extension or garbage collecting operation
can be initiated by the statement CDR * = CDR *, which is interpreted
as performing a straightforward copying operation, The free list
is now attached to a base register not accessible to the programmer,
This, however, is of no significance on account of the automatic
feature just described and the programmer can, in effect, use any
list as the free list,

There is no doubt about the advantages of having an automatic
garbage collecting system. Expericnce has also confirmed the
utility of the automatic extension facility, since this saves the
progremuer much trouble in the setting up of lists, and tends to
shorten programs written in symbolic language. It can, however,
lead to a slight increase in the length of the compiled program and
in the running time. As a further aid to the programmer, it has
becen arranged that the routine which sets up the freo list in the
first place shall attach one register to each identifier. 'This is
certainly a convenient adjunct to the automatic extension facility,
but it does use up a number of storage registers and it introduccs
a new programming pitfall in that the programmer must be on his

9.

guard when he re-uses identifiers that have been used for other
purposes; in particular he may need to re-attach a register after
a statement of the type * =3*, This standard form will probably
be dropped from future versions of the longuoge; good programming
practice would in any case appear to demand that symbols should not
be put into a base register, but that the CAR of a register should
be used to hold them,

i point in conncction with the design of the garbage collector
may be mentioned. It is quite ensy with some smnll extensions to
write the garbage collector in WISP, and it would be natural to make
use of recursive facilities in doing so. If this is done, howecver,
a special free list, unusable by other programs, must be provided for
the use of thc garbage collector, since it will operate when, by
hypothesis, the ordinary frec list is exhaustcd, Morcover, it is
difficult to decide how large to mnke this private frce list, since,
in the worst conceivable case, half the store could be requirced;
presumably some compromisc, based on statistical considerations,
would have to be made, The difficulty was avoided in the present
instance by writing the garbage collector non-recursively, and by
providing it with memory for onc branch point only. The disadventage
of this is that the garbage collector must continually be starting
again at the begirning of each list structurc, and its operation is
in consequence rather slow., No doubt an improvement could be made
by providing memory for scveral branch points instead of only onsz,
but this was not considered necessary at the present stagc.

PROGRAMIING TECIANIQUE

What is good and what is bad progromming in a given language
only becomes apparent, as regards its finer points, as expericnce is
accurmulated, During the evolution of WISP new facilities wcre
continually becoming available and some re-thinking of programming
philosophy was necessnry in order to make effective use of them.
This accounts for the fact that the standard of programming in the
exomples given in this paper is uneven,

It goes without saying that the power of a programming language
such as WISP or IPL rcsides largely in the recursive techniques that
are available. The use of these does not come naturally at first and
one has to forcc onesclf to think recursively whenever possible, Later
one must learn to be more discriminating amd avoid rcecursive techricues

where they are unnecessarily inefficient, in example of over-cnthusiasn
in the use of recursion is to be found in the scction of TR.0.1 that
reads in the ghtandarad £ rmay and an sxample of roebraint in the uwue of

recursion is to be found in the compile routinc of TR 2, (Sca pn;::23.)

10.

Some training is necessary also if one is to make efficient use of
conditional statements, although this will come more naturally to those
who have had experience of ALGOL or one of the other programming languages
in which conditional statements may be used, I have noticed that
newcomers to the later forms of WISP have tended to use conditionnl
statements simply for conditional jumps, thereby losing one of the mnin
advantages of conditional statements, which is to reduce the number of
labels that occur in a program. It has already been remarked that the
conditional statements available in WISP at the present time are by no
means as powerful as could be desired.

It follows from the naturc of lists that CAR and CDR are symmetric;
either may contain a symbol or an address pointing to another item,
vhen I first started on the WISP project I thought that the exploitation
of the symmetry would be an important aspect of progromming. The
garbage collector, of course, imposes an assymetry since it locks for
the symbol O in the CDR of an item as the indication of the end of a
list or sublist. Even before the introduction of the garbage collector,
however, I began to realize more and more that it is better to regard
CAR and CDR in quite different lights. Symbols are alwnys held in a
CAR and, with the exception of a O to indicate the end of a list, =
CDR always contains a link.

In 2o system such as WISP in which tempornry n=zmes are freely
introduced by the programmer, the provision of aon automatic garbace
collector does not wholly absolve the programmer from responsibility
in this regard. de must be careful to sce that temporary names are
detached from lists which are likely to become garbage in order that
the garbage collector may not be misled into thinking that they are
still required.

MACHTI INDEPENDENC I 4aND TRANSFER TO

OTHER MaC.INDS

So far the interest in this project had centrod arcund the scrics
of bootstrapping operations which led from a primitive language to a
more highly developed one. At this stage it became appropriate to
make a critical examination of the system to determine to what extent
it was truly independent of the particular machine on which it had been
developed and, after such improvement as seemed necessary, to subject
it to the test of being transferred to another machine,

Complete machine independence can never be achieved, if only
because some minimal basis of machine coding will be necessary on

11,

transfer to a new machine in order to marry the system to the input
and output facilities provided on that particular machine, A
routine written in machine language will also be necessary for
setting up the free list in the first instance.

Some of the editing performed by the input and output routines
described at the beginning of the paper, could be performed by
routines written in symbolic language and this would make a slight
simplification of those routines possible. The gain would, however,
not be very significant, and it was decided not to make the change,
at any rate for the present. It was, however, clear that a very
substantial improvement could be made by replacing the machine code
compile routine, which, up to this time, formed an essential part of
the system, by one wholly written in symbolic language. TFor this
purpose it was necessary that the machine code translations should
be stored in a list structure (with one character per word) as was
already done for the standard forms themselves. Up to the present
the machine code translations had been sorted in a block of con-
secutive registers,

This change necessitated a fairly extensive re-writing of the
compiler and the opportunity was accordingly taken to express it
in terms of the language accepted by TR 1. This new compiler was
functionally equivalent to TR 1 and would compile the same assembly
code,

One conscguence of the re-arrangement was that it became a
straightforward matter to provide facilities whereby the programmer
using the system could, if he wished, define new standard forms to
supplement those already provided. This he can now do by writing
the statement NIW 8F fcllowed by the new standard form and its machine
code translation, This new facility turned out to be very relevant
to the matter considered in the next paragraph. A further facility
provided was that of defining new standard forms in terms of already
existing standard forms instead of in terms of machine code. There
is clearly a potential utility for such a facility, but no practical
experience of its use has yet been acquired.

There are various ways in which one may proceed when it is
necessary to go outside the scope of the language proper. I am
here primarily concerned with this problem as it arises in con-
nection with the compiler, but a few additional remarks on it from
a user's point of view may not be out of place.

Two approaches are possible. The first is to resort to assembly

12.

language programming. This may, perhaps, seem a confession of defeat,
and if the language is supposed to be complete enough to replace assembly
language for all purposes, then indeed it is. There is, however, another
way of looking at a system of automatic programming; it may be regarded
as an aid to the writing of an assembly language program to be uscd as a
labour-saving device by people who are familinar with assembly language,
If one looks at it this way it is natural to slip into asscmbly langunge
when the system fails, WISP includes, in fact, two ways of introducing
assembly language into a program. Subroutines written in assembly
language may easily be connected with WISP programs, since WISP labels
are compiled directly into assembly language labels, and the WISP
statements for calling in and returning from a non-recursive subrouting
compile into instructions identical with those used in asseuwbly language
programming., The other way is to make use of the COPY statement. This
is convenient when a few machine instructions only - or even single
instructions - are required, and it enables full use to be made of the
conditional statements and recursive facilities of WISP, Assembly
language patching is a help in maintaining the efficioncy of the compiled
program, but on the other hand it reduces machine independence,

The other approach is to define new standard forms to give the
additional facilities required. As explained above, with the latest
version of the compiler this is very easy to do., Since the machine
code translations have to be written in -assembly language, the
defining of new standard forms is perhaps only another way of
patching the program. It does, however, have the advantage that,
if the new standard forms are carefully phrosed, the program retains
transparency, Moreover, from the point of view of the evolution of
the language, the experience gained by cxpanding it with new standard
forms is most valuable.

It appeared that there were four operations in the WISP compiler
that could best be dealt with by special standard forms defined for
the purpose. Two of these respectively increase and decrease the
number in the CAR of n specified register by 1 and are made use of
by the label issuing subroutine. inother provides for decimal
input which is nceded to read in the base from which anonymous labels
run, and the fourth is a decimal print statement required by the
compile routine, These last two standard forms make use of standard
input and output routines.

In addition, provision must be made for translating two-character
identifiers, and it appeared that this could best be done by providing
a short machine code subroutine (gi. subroutine 78 of TR 1).

The new compiler, TR 2, is given in full at the end of the
memorandum,

13-

Troansference of the system to another m=achine

It follows from what has been said that the WISP system can be
divided into three parts, (1) the environment, (2) the compiler,
and (3) the tables of standard forms and machine code translatiocns.
It is convenient for the present purpose to consider the environment
as including the machine code subroutine used to translate two-
character identifiers, although this is something peculiar to the
compiler and is not needed at run time by compiled programs. Apart
from this the environment consists of routines for input and cutput,
for setting up the free list at the beginning of a program, for the
automatic extension of lists where required, and a garbage collcctor,
In the EDSAC 2 realization of the system the environment contains
about 240 instructions of which 80 are accounted for by the garbage
collector, It is probably better to omit the garboge collector in
the first instance when transferring the system to another machine,
and to add it later when the system is working.

The environment must be re-written in machine langnage for each
new machine to which the system is transferrcd, The compiler is,
of course, written in machine independent langusge, The tables =
also writtcn in mnchine independent langunge as far as their fors is

concerned, although their content is naturally dependent on the
machine for which the compiling is being done. The tables are rcad
into the machine under the control of the compiler. Thus the input
consists of the program to be translated, together with the tables
giving standard forms with their machine code translations for the
machine on which the object program is to be run, Note that ¢
need not be the same as the nmnchine being used for the translation,

This last obsmorvation points the wnay to the procedure that is
used for transferring the system from one machine to another, This
is illustrated in table 1, Line 1 shows thc system in operation
on machine A, It is shown taking its own compiler in symbolic form
and tronslating it into an assembly language version, The arrow
indicates that this program could be read back into the machine and
would then be identical with the compiler previously there. Line 2
differs only in that new tables, giving machine code translations
for machine B, have been used for input; the output is a version of
the compiler in the assembly langunge appropriate to machine B, The
arrow indicates that this is read into machine B, together with an
environment which has been specially written in mﬂchlne code., The
system is now copable of operating on machine B, and in line 3 of
the table it is shown translating its own compiler.

So far the system has been successfully transferred to an

Elliott 803 computer and its transference to an IBM 709 computer is
in progress., The transference of a programming system to another
computer is a major operation and it is not surprising if all does
not go as smoothly as the forcgoing discussion might suggest. The
various subroutines used in the cnvironment can, of coursc, be checked
out by means of short programs written for the purpose, but errors in
the standard forms are more difficult to locate, It was soon realized
when transferring the system to the 803 that it would be a good iden
to write in symbolic language a short series of test programs, which
would cnable the standard forms to be checked systematically before
an attempt was made to compile the wholc compiler. Zven so, one
rather subtlc error was not picked up by these tests, It will be
realized that an error in the standard form affects the version of
the compilcr used in the new machine as well as object code produccd
by it. Such errors, therefore, involve some to-ing and fro-ing from
one machine to another. It might be better to transfer a simple
version of the system in the first instance and to make use of one

or morc stages of bootstrapping thereafter. It is hoped to report
further on the problems involved in transferring the system from one
computer to another when more experience has been obtained,

A minor problem in transferring a systesm arises on account of
differing character sets, and naturally somc decision must be taken
as to what symbols to use when the symbols used in the original
realization are not available. Meons must then be provided for
bridging thc gap betwecn the character sets and character codes on
the two machines. Perhaps the simplest way to do this is to take
a printed output from computer A, c¢dit it wherc the characters differ,
and key punch it for computer B, In the case of the 803 computer,
however, it was found convenient to use that ccmputer itself for
doing the necessary transliteration, a short program being written
for the purposc. Thc tables of standard forms were edited and key
punched separately for the two computers.

Since WISP compiles into an assembly langunge, the cxistence of
a satisfactory assembly routine for machine B is a pre-recquisite for
successful transfer, In the case of the IBM 709, the FAP Asscmbler
was found to be entirely satisfactory, but in the case of the Elliott
803, a modification to the assembly Routine was found desirable, This
was because in 803 assembly langunge labels are written after the
instructions to which they refer, whercas the WISP compiler puts
them in front, and to change this would not be a trivial matter.
Even if it appears that changes to the compiler would enable a
more satisfactory system to be established on the new machine, it
is, nevertheless, desirable to effect the transfer in the first

instance with the compiler changed as little as possible, The proper
time to make changes is after the transfer has been made and when the
compiler is capable of compiling itself on the new computer,

Experience suggests that machine dependsnce is more likely to creep
into a system such as WISP via fecatures of the Assombly Language of the
original machine, rather than as a result of features of the logical
design of the machine, Perhaps one should say that the system is nore
likely to turn out to have assembly language dependent features than
machine dependent features. /n example is provided by the WISP
statement UNSET ** -~ **, This appears in the language as a direct
consequence of the existence of a similar feature in EDSAC 2 assembly
language, which provides the programmer with a rather small number of
distinct labels, and must, therefore, enable him to re-use them as
many times asz is necessary. In FAP the number of distinect labels
that may be used is virtually unlimited, and there is ne provision for
unsetting, Consequently, the 709 version of WISP will not have the
UNSTIT statement, and some WISP programs written for EDS/C 2 will need
a small amount of editing before they will run on the 709,

16,

TABLE T

TRANSFZRTNCE OF SYSTEM FROM MACHING . TO MACHINZ B

MACHINE INPUT

(in machine independent

PROGRAMS IN MACHINE

(in machine code)

OUTPUT

(compiled program

form) in assembly langusgs)
Sourcce Tables
program PP ——
&)
A COMPILER T/BLES ENVIRONMENT COMPILER COMPILER IN AS.IMBLY “
FOR FOR MACHINE A LiNGU..GS TPOR MLCHIND A
MACHINE i
unchenged unchanged unchanged
A CCMPILER TABLES ENVIRONMENT COMPILTR COMPILER IN ASSZMBLY
FOR © FOR MACHINE A LANCUAGE I'OR MACHINE B
MACHINE B _
unchanged* unchanged*; specially ;
| | written ‘j//’////
Vv v o & -
B COMPILER TABLES FOR: ENVIRONMENT COMPILER 45 COMPILIR IN ASSIMBLY)
MACHINE B ' FOR MACHINE B LANGUAGE ¥FOR MACHINE B
*

character sets

17.

except for substitutions made necessary by incompatible

I give below representative extracts from the standard form tables
for the three machines, These are all expressed using LD3AC keyboard
characters. They are followed by an annotated version of the compiler
TR 2.

e
[11]

In writing the machine code translations use is made of four symbols
with special meanings. These are known as reserved symbols, and are
defined by being placed at the head of the table of standard forms. The
third reserved symbol indicates that the figure following - r, say - is
not to be put out as part of the machine code translation, but that the
identifier corresponding to the rth star in the standard form is to be
taken instead. The other rescrved symbols have special meanings only
when they occur at the beginning of a line. The first is interpreted
by the routine that reads in the machine code trenslations as meaning
that the identifier following it is to be assigned as a name to the
machine code translation about to be read. The second is addressed to
the same routine and is also followed by an identifier. It indicates
that the machine code translation to be used at this point is identical
with one already read in and assigned that identifier as a name. The
fourth reserved symbol is used to terminate the machine code translaticns
in a way that will be sufficiently clear from thc tables themselves,

The naming facility for machine code translations was introduced
in order to give extra flexibility in possible future developments of
the system. It is not used much in the TR 2 standard forms,

Following the reserved symbols is a decimal number giving the
base from which anonymous labels run.

The statement X - this has no connection with the X usced with
TR 041 - was intended to enable a terminating symbol to be put out
at the end of the program. It is, however, rarely used by the
prograrmer, since the compiler is arranged to put out the terminating
symbol automatically, making use of the name J2 for this purposc.

Figure 4 is part of the list of standard forms and shows how the
sublists containing machine code translations are arranged, The
section illustrated contains the two IF statements included in the
extract from the table given below, These statements each have two
mct's associated with them. Other types of statement may have one
or none,

t 4 23 |
ClF----{THTHGHTEHEH EHTHT H GH B T T

L8 $ @8
fafl-<=m=- ! d.I:TﬂELrI.mI.}L [FHT HTE o HTeH T |
Lo
o[+ L - = wvo - --- [1}

EXTRACTS FROM STANDARD FORMS TABLE FOR EDSAC 2,

ELLTOTT 803, IRM 709 (or 7090) FAP

(*=+

80

X,0
(g2

)43

(*=+
80
X,0
(J2
)

++

(,2
++

)43

++

Lyl
++

1,5

r000-1)

06 Onk0 207.3(
00 -1n00 99
++

COMMINT, 6
++

COPY,?
++

* = CAR *,0
00 -2.2/30 0.2
51 20n20 -1.2
++

TO **,0
400n
r000-1-2(
++

CAR * = :*,O
73 3.1/30 1

00 -2n00 O

00 =1.2/10 0.2
03 O0.1n

00 -1.2/24 0.2
++

19

Pl

(*=+

X,0

(J2
END

++

(,2

++

)43

++

Lok

++

1,5

A=1 EQU %

++

COMMENT, 6

COPY,?7

++

* = CAR *’O
CAL* -=2(2
ILGR 18
STA —:1(1

++

TO **’O
TRA L=1=2

+4

CAR * = :*,O
AXT =2(4
PXD (k4

STD* -:1(2

++

IF CAR * = :*,1 IF CAR * = :*,1 I7 CAR * = :*,1

(a1 (31 (J1
50p-2 40 On TRA A=2
p-1=p1 r000 -2(A=1 EQU *
==1/109 r000 -1) +
+ 060n40207 . 3(AXT
L6f-2 00-1n0099 ST%
33rf-1 + S¥D /TENP(
62£8 00 -1.2/30 0.2 CAL* -=1(2
53p=~3 73 3.1/07 1 ANA /CsR
44 00 -2n03% 1.1 SUB TP
00 3,1/46 3 TNZ A=3
4O On +4
r000 -3(
++
IF CAR * = CAR *,1 IF CAR * = CAR *,1 IF CAR * = CuR *,1
*J1 *J1 *J1
+ + +
30rf-1 00 -1.2/30 0.2 CLA* -=2(2
33rf-2 03 1.1n SUB* -=1
62£8 00 -2.2/07 0.2 ANA /CAR
53f-3% 03 1.1n73 3.1 TNZ A=3
++ 00 3.1nk6 2 ++
L[] I+O On]
. I‘OOO—B(.
. ++ .
+++ +++ +4++

Note that 6, 8 (EDSAC 2) 0.1, 1.1 (803) amd CDR, CAR (709) contain
masking constants for CDR and CAR respectively.

TR 2

4o

40

WAIT O

CAR F = INPUT Reads in the four reserved characters
L IFCARF # :,, TO 40 1]

CAR W1 = INFUT, CAR W2 = INPUT

CAR W3 = INPUT, CAR W4 = INPUT

10

CAR F = INPUT Reads in base number from which
LIFCARF £ :,, TO 10] anonymous labels run

CAR 11 = DiC INPUT

B1 = CDR B/, B2 = CDR B1 Sets up the list structure that
B3 = CDR B2, B4 = CDR B3, B5 = CDR B4 takes the place of the stack used
CAR S1 = CAR W3, CDR $1 = B1 in earlier compilers (see fig.4)
CAR 52 = CAR W3, CDR &2 = B2

C:R 83 = CiR W3, CDR 83 = B3

CAR S4 = CAR W3, CDR S4 = B4

CAR 85 = C4R W3, CDR 85 = B5S

S1 =D

TO 30 AND BACK

TO L4

48

CiR 8 = CiR Z2, CAR R = CAR 23

TO 47 47 is the machine ccde subroutine

that deals with twc-characbcr_
identifiers (cf., subroutine 7& of TR 1)

COMMENT, READ STANDARD FORMS

30
Z =CDRR, Z=CDR Z
25
R1 = CDR R, B2 = CDR R1
CAR R2 = INPUT
[IF CiR R = CiAR Wh

[IF CAR R1 = CAR W4

[IF C4iR R2 = CAR Wh
(R=F, F=CDRF, CDRR = :0, TO 26)]1]

R = R1, TO 25

21.

26

[IF CaR
CAR D1 =
21
[LIFCRZ £ :, (Z=CDRZ, TO 21)
Z = GDR 2, Z1 = CDR 2
IF C.RZ1 # 3,

Z =CDR Z1, 2 =CDR Z]
PUSH DOWN 2, D2 = Z, Z = CDR Z, CDR D2 = :0

Z =1:, (Z=CDR Z, TO 26)] Sets up the list structure
Z, D1 = CDR D1, CAR D1 = :, illustrated in fig.h

22
CARD2 = 2
2k
21 = CDR 2

[IFCARZ = :,
(Z2 = CDR 21, 23 = CDR Z2
IF CiR 21 = CAR W1
(TO 48 AND BACK
4i=CAR S8, CDR A =
74 = CDR %3, CDR Z
IF CAR Z1 = CiR W2
(TO 48 AND BACK
B=CWRS, B=CDRB, CARZ =8B
CDR Z = CDR 23, TO 24)

[

]

CDR Z4%, TO 24)

IF CiR Z1 = CAR W4
[CDR 21 = :0
IF CLR Z2 = C.R Wh

(IF CiR Z3 = C.K W4, RITURN
Z = 2%, TO 26]

D2 = CDR D2, 2 = 22, TO 22 1]
IF CAR Z = CAR W3

(LIFC.RZ1 = :1, C\RZ = 81
IFCRZ1 = :2, C\RZ = 82
IF CAiR 21 = 3, C.R Z = 83
IF CAR 21 = 4, CiR Z = 84
IF C,R 21 = :5, C.RZ = 85]
CDR Z = CDR 21)]
%z = CDR 72, TO 24
UNSuT 40 - 41 Label issuing routine
4o
PUSTT DOWN L
C/RL = CAiR 11
INCR C..R 11
RETURM
L1 Label goncelling routine
POP UP L

DECR €. 11

s U BN

COMMENT, READ PROGRAM

UNSET OS5 - 25
Ly
A =Q
CiR A = #(
WAIT 8
23
R1 =R
R A
A CDR A
CiR A = INPUT
[LIFC.RRI £ :,, TO 23
IF CARR # :*, TO 23
IF CAR A # %, TO 23 1
C.RR=1:), CDRR = :0

TO 08 /iND B.CK Master routine of the compiler
CiR M- g2

70 77 AND B.CK

WAIT 3, TO L4k

L3 Inserts, if necessary, a comma at
R=21Q the end of each statement inmediately
CiR § = 4+ before it is scanned., This is an
21 alternative to putting commas round
[IFC.RR = :,, RETURN brackets enclosing statements as is
IFCARR=::y R=CDRR done in TR 1
IF C4R R = :(, TO 22
IFC/RR=1:), TO 22
I C.CRR = :[, TO 22
IF CC.RR = :]

(22, IFCARS = :+, R=CDRR]
PUSH DCWN R, CARR = :,, T0 21)]
CARS = t=y R=CDR R, TO 21

COMMENT, COMPILE

77
Z - CAR M Replaces the machine code compile
10 routine in TR 1
[IFCDRZ = :0, ()
IF CAR Z = LTOM
(L IF CAR B? = :+

(PRINT DEC CiR 2
C.R BY = :~, RETURN)

IF C.R Z = C.R W3, C.R B? = :+
PRINT CiR Z]

Z =CDRZ, TC 10)

CDR Z, CiR M~ 4
i=CRZ, C.RM= A
TO 77 I[ND BACK

7O 77 JND BACK]
RETURN

"
FES

ft. o

UNS:T 10 - 10

08 Functionally equivalent to the
AR 3 = ¢4, TO 15 corresponding routine in TR 1
)=ty (15, Q@ = CDR 3, TO 08)]

O

nouon
Q
=v]

™ O NtwoOE
\nm

2%, TO 13
C.R 2, TO 12

£ &

—
Ujghjhj
Qo
N
non

5 = CDR B

FCAREZ ey TO 09]

R=27

PRINT : ,

10

[IFC:RR#:y, (PRINT CAR R, R=CDR R, TO 10)]
3 =CDR I

PRINT : ,

WAIT 7

TO 08

it H

E=CDR R 2 =CDIR %

~—
=
& |
Q
ko
N
{

= 1:,, TO 14, TO 05]

i mNQ
i
Q1
o
o
N Q

R = CDR R

TO 03

14

[IFC.RR

7 = CDR 2,
1O

=:, R=CDRR]
2 = CDR R

SWITCH L CiR 2

L9

TO 50

70 51

TO %2

T C‘.'.'|
< S

TO Sk
TO 55
TO 56
TO 57
TO 58
TO 59

co

Z =CDR %y 2 =CiRZy C.RM= Z Ordinary statements
10 77 AND BACK

REZLURN

= = C M- A IF statements
= CDR 2, &L = Ci
TO 40 AND BACK
C.RB3=CRL
TO 7?7 AND BACK
TO 08 .ND B.CK
CiRB1=CiR L
TO 41 AND BiCK
CnR B2 = C‘.R L
TO 77 AND B.CK
RETURN

52
TO 08 AND BACK, TO 52 (

53
LEVZL DOWN, RETURN)

54

TO 40 ..ND B..CK L
16

TO 08 AND BiCK, TO 16

55

LEVEL DOWN]
Z=CDRZ, 2=CRZ CiRM- 2

CAR B1 = C/R L

TO 41 AND BLCK

TO 77 4ND BACK

RETURN

25.

= CDR R

[IFCXRR# :y, TO 56]

2 =CDR R

RETURN

57

[TFCRR=:+

(“RINT : , @ = CDR R, RETURN)

P 0T CiR R
R = CDR R, TO 57]

58
Z = CDR R, TO 26 AND B.CK, Q = CDR Z3
RETURN

59

UNSST 49 - 58

Z =CDR Z

SWITCH 49 - C R 2
L9

TO 50

50

UNSAT 20 - 24
Z = CDR Z, R = CiR Z
PUSH DOW M, C;“;R M= :*

20
[IFC.RR=ATOM [CDRR = :0, TO 21]
CHM-=R

S=CRRy, CARM~ 8§

S =CDR Sy C.RR=CAR S]

R =CDR R, TO 20

21

C.CRM~Q

2=CRZ

TO 08 AND BiCK

¥ = CAR M

22

[IFCRMZ :*

(S~ C.RM R-CiR M
C.RR=8§, TO22)]

PCP UP M

RITURN

START AT 42

Comment

Copy

New SF; calls in again the routine
for reading standard forms

Provision has been made for two-digit
switch numbers beginning with a 9.
Only one has so far been used, namely,
90, for standard forms defined in
terms of other stondard forms

instead of in terms of assembly
language. Variable information is
indicnted in these by using the
appropriate reserved symbol

exactly as is done in an met

Acknowledgements

I would like to express my gratitude to collengues and students
whio have taken an interest in this project. Mr. J.8, Biggs and
Mr, P, Grant wrote the garbage collector and added the automatic
extension facility. Mr. N.E. Wiseman played an active part in
the operation of transferring the system to the other machines,
particularly to the Elliott 803, Dr. H. Schorr is concerned with
the transfer to the IBM 709.

The experiment of transferring the system was made possible
through the kindness of Mr. S.L.H. Clarke, issistant General Meanager,
Elliott Brothers (London) Ltd., and of Dr. H. Lipps, Computing
Lzboratory, CLIN, Geneva. I weuld like to thank them, ~nd also
Mr, I, Gould and Mr. B. Elliott of their respective staffs, for
their enthusiastic cooperation.

Dr. Harry Huskey first interested me in bootstrapping technigues,
and I am also indebted to him for a number of helpful discussions on
the problem of transferring a system from one computer to another,

Finally, I would like to give my speci
for her help in running the system on the
through its various stages,

5~

1 thanks to Mrs V, Bayley
3AC and in developing it

-
L'?c

