Technical memorandum

No.63/1

An experiment wiith a self-compiling compiler
for a simple lisi-nrocessing language.
by
M.V. Wilkes

Hl"-"bel't Sk February 196}.

Technical memorandumn

No.63/1

An experiment wiih a self-compiling compiler
for a simple lisi-nrocessing language,
by
M.V. Wilkes

Herbert Srhn- February 1963,

AN EXPERTMENT WITH A SELF-COMPILING COMPILER T'OR A
SIMPLE LIST-PROCESSING LANGUAGE.

This is a report on what was essentially a student's exercise in list
processing and machine-independent compiling. I was anxious to obtain some
experierce is. the manipulation of lists and had found the machine code very
ill-adapted for that purpose. My first object was to establish a language
in which simple iist processing was possible with reasonable convenience. At
the same time, I wanted to see how soon it was possible to get "off the ground"
a series of compilers, each being written in the language of the previous one,
and te obtain, by actual experience, some understanding of the way in which
beot strapping and otl.er techniques can be applied to generate higher level
compilers,

I decided initizlly that the series of compilers should cater for symbol
manipulation only, and that the different problems that arise in dealing with
arithmetic expressions should be left on one side. I also decided that the
target language should be thut accepted by the EDSAC 2 assembly routine, the
particular advantage of doing this being that a system of labels was thereby
made available. The object program was to be punched out on paper tapec,

The language is not - so far at any rate - a fully developed list
processing language as is, for example, IPLZ, Rather it is a langunage - or
the nucleus of a language ~ in which the basic subroutines which provide the
programming facilities in IPL5 could be written. The peculiarities of
EDSAC 2, particularly zs regards the way in .hich the main store is addressed,
were obviously very much in mind when the esseatial foundations of the system
were laid.* Without transferring the system to other machines, it is hard to
say whether this has made it seriously machine-dependent; I am inclined to
believe that it has not, but this may be wishful thiniing,

The system of compilation may briefly be described as follows.
Succossive lines of the program - that is, statements, - are scanned and
cempared successively with a series of standard forms, until a match is

*EDSAC 2 is a single address machine, which originally had a working store

of 1024 registers, This was known as the free store and there was in
addition a fixed store in which certain subroutines were permanently wired,

A 16,000-word store was later added, and this is known as the main store.
Since there were not nearly enough address digits for registers in the main
store to be addressed individually, a system of indirect addressing was
resorted to, the lower numbered registers in the main store being used to

hold the indirect addresses. There is a special modifier register associatezd
with the main store. Punched paper tape is used for input and output.

T1e

found., Variables are indicated in the standard form Ly a star, and when
one of these is encountered during the scanning process, the corresponding
symbol in the statement is placed in a stack. This stack plays a central
part ia the compilation process. Each standard form has associated with
it a pro-forma list of machine orders, or machine code translation, which
represents i.s translation into machine orders, The translation of a
statement is performed by a machine code routine known as COMPILE which
copies out the machine code translation with appropriate substitution of
variable addiresces taken from the stack.

Since the statements that the compiler can handle are defined by
means of the stancard forms and the machine code translation of machine
orders, there is no marticular need to keep their number down to the
absolute minimum, The disadvantage of a very short list of possible
statements is that it leads to lighly inefficient compiling, and, although
efficiency is not a vprime consideration in the first compiler of a series,
it can never be lost sight of completely.

Machine code routines

In addition to COMPILE just mentioned, several special machine code
routines are used. Some of these are 30 machine-dependent that they con
almost be regarded as part of tke machine. Where the interface occurs
between what is regarded as the compiler proper, and written in symbolic
language, and the part written in machine code, is a matter for deliber-
ation in any particular case, For th: purposes of the present work, the
following basic machine code routines were srepared,

INPUT (76 half registers)

This routine reads single characters from “he input tape and
translates from the EDSAC 2 5-digit input code to a €-digit code in
which figures from O te 9 are represented by their binary equivalents.
Blank tape, line feed symbols, and all spaces after the first of a
sequence, are ignored. A comma is made to have the same represen-
tation in the 6-digit code as carriage return. This gives a certuin
freedom in layout by permitting, for example, the writing of two
statements on the same line. (The printers in use in the Laboratory
have no comma, and print a suffix 2 instead,)

FORM FREE LIST (11 half registers)

This routine, which is activated when the compiler is first
read into the store, cennects together all registers of the main
store, from 512 onwards, to form a list which is given the name F,

2,

COMPILE (101 half registers)

A This routine has already been mentioned. It punches on to
the output tape the sequence of orders copied from one of the
machiie code translations in the main store., [Each order in the
machine code translation occupies thc whole word in the main store,
the first half-word giving the "stem" of the order and the sctond
half-word indicating how the address is to be constructed using
infoem~tion from the stack.

LABEL (11 half registers)

This short routine is necessary since the assembly routine
does not provide labelling facilities for orders placed in the
main store,

With some hindsight it is possible to see that some of these machine code
routines were perhaps more elaborate than was strictly necessary; INPUT
in particular could have been simplified by leaving some of the editing
to be done by the comp.ler vproper.

The Langusage

As an introduction to the languag=, I give below a description of
certain selccted statements with examples of their use, This is followed
by a complete list of permitted statements.

Each register of the available part of the main store is divided into
two sections known, as in LISP, as CAR and CDR. Normally, both CAR and
CDR contain a main store address, but, on occasion, they may contain pure
symbols, Lists and list structures are constructed by placing in the
CAR and/or CDR of one register addresses which point to other registers
whose CAR and CDR in turn contain either similarly pointing addresses or
symbols,

The letters A to Z are used for the names of lists. Each of
these letters corresponds to one of the early registers in the main
store, the CDR of which points to the first element of the correspon-
ding list, The CAR of the register is unused, In a given program,
of course, some of the letters A to Z and the corresponding registers,
may not be used, Use can also be made of the symbols on the figure
shift of the teleprinter,

3.

Fig. 1

In fig.1 the roctangles on the extreme left represent the registers
just referred to; A is the name of a list structure, and E and F are the
names of simple lists, F is initially the free list to which all available
storage repgisters are attacned. The statement B = A associates the name
B with the list A, so that B becomes an alternative name for the list., Its
programming effecl is to copy the CDR of the register corresponding to A
into the CDR ot the register corresponding to B, Similarly, C = CDR 4
associatos the name C with the list whose first member is the second member
of list A, Fig. 2 shows the configuration of the relevent part of the
store after the execution of the statemonts B = .1, C = CDR A, D = CAR A.

) I—f—_l-—I—! [T =TTl

IB I_"""I—""l_: ’ T l_“l__-[_—l“'
—_— —i__ 1 _|—1_T -

° — 1 I—il__1 _f---

e v ——

p I_1 _[——

Fig, 2

Normally, in diagrams such as fig.1 and fig.2, it is not necessary
to show the registers on the extreme left since these are the registers
permancntly assigned to the letters A to 2, and they form part of the
machinery of the system and, as such, do not concern the user of lists.

L,

Fige. 3 contains the same information as fig.2, and it will be seen that
the names A, B, C, have been placed in the appropriate places on the list
structure,

" A further example .s provided by the following sequcnce of statements

D=TF
F=CDRF
CORD =B
B=1D

which have the effect of toking a register from the beginning of the free
list and attaching it to the beginning of the list B,

The stack has two pointers, 1 and 2, which iritially both point to the
bottom of the stack, The instruction CAR A TO STACK causes CAR A to be
placed at the top of the stack and pointer 2 to be moved up,. The statement
RESET STACK sets pointer 1 equal to pointer 2. The statements LEVEL UP and
LEVEL DOWN were provided to enable recursion to be handled., LEVEL UP causecs
current values of both pointers to be stored at the top of the stack and then
sets both pointers to point to the next available register in the stack.
LEVEL DOWN reinstates the old values of both pointers, As it turned out,
these statements were not needed in the early part of the exercise since it
was found more convenient to incorporate the level changing sequences in
other statements.

The statement CAR E = INPUT causes a symbol to be read from the input
tape and copied into CAR E. This statement is used, for example, in the
section of the compiler that reads the program to be compiled into the
machine,

Statecments are normally terminated by a carriage return symbol, and

appear one on a lino. Alvernatively, if, foi iayout reasons, it is
d.sired to have more than one statement on the same line, a comma may

be used for termination. This symbol has, in every way, the same effect
as a carriage return symbol.

Two symbols (normally figures) are used for labels; these are treated
quitce independently, and there is no notion in the system of numerical
ordering, .\ label is terminated in the samec way as a statement and
normally oopears on a line by itself,

An example of an unconditional jump statement is TO 37, and of a
conditionnl jump statement TO 37 IF CAR A = CAR By the latter causes a
Jump to 37 if CAR 4 arnd CAR B contain identical quantities, whether these
are intended to be incierpreted as addresses or symbols, It is sometimes
necessary to be able to test for the presence of a particular symbol
regardless of any meaning that symbol may have as the name of a list,

An example of a stat.ment that may be used for such a purpose is
TO 50 IF CAR A = :X. The : preceding the X is intended to indicate
that the symbol following stands for itself.

The statement TO 50 AND BACK is used to enter a closed subroutine
and provides for the storage of the link. The subroutine itself ends
with the instruction RETURN, which sends control back to the main program,
These statements do not allow o subroutine to be used recursively. A
statement of the type TO 50 AND BACK can be uscd to call in a machine code
subroutine,

A full list of the statements that the first compiler of the serices
capable of compiling itself, TR O, would accept is given below; this
list is in fact the list of standard forms referred to ecarlicr and is
set out exactly as it was punched on the input tape. The stars indicate
places where symbols can cccur, The first item X is a dummy statement
intended to be punched for synchronizing purposes at the beginning of a
progrem tape immediately after the blank tape "leader'", It is hoped
that the other statements will be self-explanatory in the light of the
explanations given above,

V1

X

*=CDR *

TO **

TO ** IF CiR * = :*

o

L R 3

RESET STACK

WAIT

CAR * = INUT

CiR * = *

CAR * TO STACK

* = CAR * R . .
TO *% AND BACK |« v)
TO ** IF CDR *
TO ** IF C'R *
LEVEL UP ¥
LEVEL DOWN po

-
»

iK*

R

- CDR * TO STACK « L

START AT ** v R
RETURN

A simple compiler was written in the above language and translated
nmanmually into machine code, The translation was effected by the use of
slips of paper on each of which was printed, on the right-hand side, one
of the possible symbolic statements, and, on the left-hand side, the
corresponding machine code translation, blanks being left on both sides
in which variable information could be written, A sequence of these
slips, with the variable information carefully filled in, was pasted up
on a sheet of paper to constitute the program. It is admitted that this
device was to some extent a toy; but, by partiaily mechanizing the process
of compiling, it helped to systematize the work and to minimize errors. It
had the advantage of keeping the programmer strictly to the operations
covered by the list of available symbolic statements.

The machine code (left-hand) version of the compiler was now
punched, the machine code routines zdded, and the whole program checked
out. The result was a compiler capable of reading the symbolic (right-
hand) version of itself and compiling a program identical with that
already in the machine, The symbolic version of the compiler, TR O,
is given below with sufficient annotation to enable its action to be
fellowed,

X

30

G=F

26

CAR F = INPUT
TO25 IFCiRF = 3,
F=CDRPF

TO 26

25

F=CDRF

D=F

23

TO 24 IF CAR G = :,
CARF =G
F=CDRF

21

TO 2 IF CARG = :/
G = CDR G "
TO 21

22

B = CDR G

TO-79 #ND BACK-
G =5

TO 23

24

WAIT

TO 27 IF CAR § = :*
TO 29

27

WAIT

TR O

This section reads the standard forms from the input
tape and stores them in the form of a list G, each
character occupying the CAR of one storage register; thus

G —l x| |=—lexl |—I_*] _I—I_spl _|—

cr indicates carriage return and sp indicates space, The
enu of the list of standard forms is indicated by a dot
fcllowing a carriage return,

—l=1 I—isp] l=-=lce] I1—I . [_|

‘e list is now converted to a list structure as follows:

D—__{ f—l__1 I—=I__T I---

I-—I T 1 __I—1

-

o

]

l—-—-

—l* 1 I=l_spl__i=

’

7

—| X1 __|—|cr [mpt|
Note that the CDR of the last member of each uUbllot
contains the address of the beginning of the corresponding
machine-code translation (met), This is placed there by
the LABEL routine called ir by the statement TO 79 AND BACK,
79 being the label assigned to that routine, The LABEL
routine was tailor-made for this usc and puts the address
directly into CDR G.

The program to be compiled is now read into the store
and formed into a list P, The end cf the program is
indicated by two consecutive stars.

P
N

The first line of the program is scanned and compared

Q=T character by character with the first standard form,
03 that is, with the first sublist of D. Whenever a
E=D star is encountered in the standard form, the

09 corresponding symbol in the program is placed in
RESET ST..CK the stack. If complete agreement (including the

Z =CiRE terminating carriage returns) is not found the stack
R=2Q is reset and the next sublist tried, When agreement
05 . is found, the address of the appropriate machine cods
TO 13 IF CAR 2 = :* translation is taken from the end of the sublist

TO 12 IF CAR R = C4AR Z containing the standard form and placed in the stack,
07 The machine code subroutine COMPILE (label 77) is
E=CDR E then entered to effect the compilaticn., The process
TO 09 is repeated for successive lines of the program,

12

R=CDRR

Z =CDR %

TO %4 IF C.R Z = 3,

TO 05

13

CAR R TO STiCK

TO 12

W4

TO 10 IF CARR =

0 07 ’

10

CDR: Z TO- BTACK -
TO 77 AND BACK

Q = CDR R

TO 11 IF CAR Q = :*
T0 08

11

WALT

* %

Although the compiler just described was capable of compiling itself,
and I came very near to making it do this, I did not actually do so, since
it was clear at that stage that certain modifications to the system were
desirable; I therefore used the program to ccmpile a new version - TR 0.1 -
of the compiler in which these modifications were incorporated. Thus the
first lessrn was learned that when a bootstrapping operation is in progress,
each compiler generates its successor, and only when stability is reached
(if ever) does a compiler actually compile itself,

9.

In passing to TR 0,1 some modifications and additions were made to the
standard forms and corresponding machine code vranslations, For example,
the GO TO ** AND BACK and RETURN statements were modified to allow for
recursion, and a new statement SUBROUTINE ** was introduced for calling in
machine code subroutines.

At the same time the following new statements were introduced:

CAR * = CAR *

CDR * = CDR *

TO ** IF CAR * # :*
TO ** IF CDR * 4 :*
CDR * = *

TR 0,1 was originally written in the language of TR O and compiled
by TR O, It was later re-written in its own language and used to compile
itgelf, This latter version is given in full below with annotations to
indicate how it differs from TR O, The section which reads in the standard
forms and constructs a list structure from them was modified so as to mmke
use of the recursive facilities now available; this carried no advantage in
itself but enabled the recursive facilities to be tested, Additional
features of a minor character were introduced into later sections; thesc
were the ignoring of spaces and extra carriage returns at the beginning
of lines, and arranging that the machine should come to a WAIT statement
instead of going into a loop if piesented with a statement that could not
be matched from the table of standard forus, '

RESET STACK TR 0.1

E=F After preliminary setting, the subroutine 26 is called

D=F in te read the standard forms from the input tape and

T0 26 AND BACK to form the list structure D (see TR O0), The final

CAR E =CAR L dot is left in CAR L and is transferred to the end of
-F =1L the list D

WAIT

70 93

26 - This subroutine, which uses itself recursively, sets

F =CDR F as follows:

23" F Read characters from input tape until a e¢r is

CAR F = INTUT ?ncountered and form them into a list. Jump out

T0 25 IF CAR F = if las? character was a dot following a cor;

F = CDR F ! otherwise attach list to E so that it forms a

70 23 new sublist of D and re-enter the subroutine

25

TO 24 IFCAR L = :,

G=PF

F=CDRF

SUBROUTINE 79

COR E= T

CARE =1

E=CDRE

TO 26 AND BACK

2h

RETURN

4

Reads the progrem to be enmpiled and constructs the
list Ps Identical with the corresponding section
in TR O

) " \O
n
0!

O

F
= INeJT
I CAR Q

N Q
NEHQWe n
W]gononon

v v
OGO QHO

TO 27 IF CAR 8§ = :*
TO 29

27

WAIT

06 This section is identical with TR O exnept wirere
Q=P . noted below

08

TO 15 IF CiR Q =
TO 15 IF CAR Q =
TO 16

15 '

Q = CDR Q

TO 08

16

E=D

09

RESZET STACK

s Ignore spaces and extra cr's in front of statement

Z = CiR E
R=4Q

C5

TO 13 IF CAR 2
TO 12 IF CAR R
o7

E=CDR E

TO 09 IF CARE # :. Wait if all sublists of D have been tried withcut
WAIT finding agrcement with the line of the program

12 being scanned

o« %

CiR Z

el
N

19

IF CJ"AR Z =

I
-

CAR R TO STACK
TO 12

14

TO 19 IF CAiR R
TC 07

19

CDR Z TO STACK
SUBROUTINE 77
Q = CDR R

TO 11 IF CAR Q
TO 08

11

WAIT

bl M.

n
*

Present status of the lanruage

It is not necessary to describe in detai) the subssguent devalopment
of the language. Soveral distinct stages were passed through, new
statements being introduced. and old ones omitted at each stage.

The most important innovation was the abandonment of the conditicnal
Jump stutements in favour of conditicnal statements resembling those of
McCarthy, Conditional statements are enclosed in square brackets and are
composed of a series of ordinary statements, Some of these are preceded’
by an IF clause (for example IF CAR A = CAR B) and arc executed only if the
condition specified in the clause is satisfied, Contrel passes to the
statements in the crder in which they are written and, if none of the IF’
conditions are satisfied, finally reaches the closing square bracket, and
passes to the next statement in the program. If,however,one of the
conditions is satisfied, the statement controlled by that IF clause is
executed, and control then skips the remaining statements and jumps to
the end of the conditional expression.

he statement controlled by an IF clause may be compound, that is
it may be composed of several ordinary statements. This is indicated
by enclosing the statements in round brackets, One or more of the
statements in a compound statement may itself be a conditional statement,

an example of a conditional statement is

(IFCARS=:*, L=358

R=CDR R .
IFC.RR = :X, CARL = :1
C.RL = :0]

If CiR 8§ = :* this is equivalent to
L = 8;

otherwise, it is equal to

R=CDRR, CARL = 1
if CAR R = X, and to
R=CDRR, CsRL = :0

if CARR 4 :X.

12,

The number of identifiers available for -2 by the programmer has
been increased., In addition to the letter A, use may now be made of
A1, A2, ...y A7, and similarly for other letters of the alphabet., These
symbols when they stand for themselves, are known as atoms, and an IF
clause of the form IF CaR A = ATOM, may be used tc test whether a given
symbol is atomic cr not,

Instructions of the type PUSH DOWN A and POP UP A have been
provided; the first inserts a new register (taken from the free list)
at the beginning of list A, while the second removes a register from
list A, and return= it to the free list. Thus the programmer may use
any list as a push down list. In order to simplify as far as possible
the use of a2 push cown list for communicating with a subroutine, state-
ments, of which the following are examples, are provided,

CAR A- B equivalent to PUSH DOWN A, CAR A = B
B—- CiR A equivalent to B = CAR A, POP UP A.

The stack used in earlier versions (which was implemented as a
consecutive list) has been suppressed and an ordinary push down list is
now used for subroutine linkage; the list is not, however, availadle to
the programmer. If when ¢ compiled program is run the capacity of the
store is exceeded and no more registers are available on the free list,
it has been arranged that the macaine shall report. This can happen
either because the problem is too big for the available storage, or
because the programmer has failed to ret-rn tc the free list registers no
longer reguired,

A full list of available statements is given below, and will, it is
hcoped, be sufficiently intelligible. WAIT and OPTIONAL STOP carry
numerical identifiers and correspend to machine code facilities of the
EDSiC. UNSET enables labels that have been used tc be unset ready for
re-use, COMMENT cnuses everything to be ignored up to the next commn
or carriage return, COPY causes whatever is on the input tape to be
copied into the compiled program, and its most important use is to enable
machine code sections, or subroutines, to be incorporated into a program.

= ox IF CAR * =

* = CaR * IF CAR * 4
*=CDR * IF CDR * = :

CAR * = * IF CDR * ¢ *
CDR * = * IF CAR * = CAR *
CiR*=CAR * IF C\R * = ATOM
CDR * = CDR * IF CiR * £ ATOM
CiR * = INPUT

* = :*

CiuR * = :* (continued overleaf)
CDR * =

13.

Exomple

* %

UNSET ** - **
‘IO**

TO ** and back
RETURN

START AT *»

SUBROUTINE **
SUBROUTINE END

PRINT C..R *

PELNT ™

PUSH DOWN *

POP UP *
CR*—»>*
*- CiR *

WAIT *

OPTIONAL STOP *

COMMENT

COPY

A5 an exzmple of a program written in the language just described, I
give a program for formnl differentiation of algebinie exprossions emch as

X+ (X.Y)/(X + YD

Differentiation is with reoepret to X.

in brackets.

Note thnt products must be enclosed

The program consists cf a master routine (label 55) which reads in the
expression to be differentiated (terminated by two stars) and then makes
use of four subroutines S0 - 53, each of which uses itself recursively.
Subroutine 50 re-arranges the expressions into a Polish list, which is a

form of Folish notation.

X + (Y.2) becomes

For example,

—i + |

-1 X1

I

I

-ty 7 1= 2 |

Subroutine 51 prints a Polish list as a conventional mathematical
expression, Subroutine 52 performs the formal differentiation. Finally,

subroutine 53 performs a certain amount of simplification;

for oxample,

it removes certain zero terms and contracts products in which one of the

No attempt has been made, heowever, to do more than

rather obvious pieces of editing, and the results printed arc not necessarily
in their simplest form, nor in a form pleasing to a mathematician,

factors is unity,

Examples of differentiated expressions are given below,

The first

line in each pair is the original expression, and the second line is the

derivative,

14,

(X+(x.Y))
(1+Y)

(Z+(X/1))
(1+(1/Y))

(X+(X, (x+1)))
(1+(X+(X+Y)))

(X+ ((XrY) o (242)
)

))
(1+((X+Y)+(X+2)))

The program is given on the following pages. Note that PRINT :,
causes 2 carriage return and line feed to be punched on the output tape,
and that () following an IF clause is a dummy statement for which no
orders are compiled,

Whon an expression has been differentiated, the program resets
itself ready to acc:opt another expression., Reconstituting the free
list was particularly easy in the case of the program since it had not
been necessary to disturb the CDR of any register taken from the frec
list, There was thus a ""thread" running through all registers used
which enabled the registers to be returncd to the free list in one
operation.

I would like to thank Mrs V. Bayley for all the help that she
has given me in checking ocut this system,

15.

cudNr
N T LA

COMMENT, DIFFERENTIATE

55
PRINT :,
WAIT 5

P
oo
Pan

Q" "o

9
o

Algll
%rxj..
[=]
L]

n Q QY
Q H \O"g"i
1]

5=

CAR F = INPUT
{IFCARF = :,, TO O4

IFCARF =: , TO O4]

(IF CARF = :* [IF CAR S % :*, TO 03] TO 03]
CAR 8 = :)

Z =8

Q="

Pl =F, F=CDRF
UNSET 03 - O
CAR M - P1

TO 50 AND BACK
CDR % = F

F=Q

CAR M - P1

TO 51 AND BACK
P2 =F, F=CDRF
CAR M - B2

CAR M - P1

TO 52 AND BACK
CAR M - P2

TO 53 AND BACK
CAR M - B2

7O 51 AND BACK
OPTIONAL STOP 1

F=mM
CPTIONAL STOP 2
TO 55

16,

COMMTNT, PORM POLISH LIST

CARA=T

11 = CAR A, 12 = CDR 11, L3 = CDR L2
F = CDR L3

CAR M= L3

CAR M ~ 11

CAR M- L2

TO 50 AND BACK

11—+ CAR M

CAR L1 = CiR P

P = CDR P

TO 50 AND BACK

P = CDR P

(IrCARP =:), P=CDR P]
RETURN

COMMENT, PRINT POLIS!! LIST

OPTIONAL STOP 4

A= CAR M

[IFCAR A = :0 ()

IF CAR A = ATOM, PRINT CAR A
I1 = CAR A, L2 = CDR L1, L3 = CDR L2
PRINT :(

CAR M- 13

CAR M~ In

CARM~-» 12

TO 60 AND BiCK

11 - CAR M

PRINT CAR 11

TO 60 AND BACK

PRINT :)]

RETURN

17,

COMMENT, DIFFERENTIATE POLISH LIST

52
WALIT 6

A= CiR M

D-= CiR M

[IF CiR A = ATOM

((IF CAR A = :X, CARD = :1, CiR D = :0] RETUEN)]
B1 = C:R A, E2 = CDR B1, B3 = CDR B2
CARD=F

11 = CAR D, L2 = CDR L1, L3 = CDR 12

F = CDR 13

[IF CAR B1 = :+, TO 05

IF CAR B1 = :-, TO 05

TO 06]

G5

C.R 11 = C.iR B1
CAR M= L2
CARM-~ B2
CiBRM- 13

CAR M- B3

TO 52 AND B/CK
™0 52 AND BACK

RETURN

06

CARILZ2 =F

R1 = CAR 12, R2 = CDR R1, R3 = CIR R2
F = CDR R3

CiRL3 =F

81 = C4R L3, 82 = CDR 81, S3 = CDR 82

[IF CAR B1 = :,, TO O7
IF CAR B1 = :/, TO 08
WAIT 7]

o7
CiR 11
CAR 1
C/R R2 = CAR B2
CAR S3 = CAR B3
CAR M - 82

CAR M- B2

CAR M~ R3

CiR M- B3

TO 52 .ND BACK
TO 52 A'\ND BJ‘ILCK
RETUR

i+
Sey C.ilt 81 = :,

Hnnu

18,

08
C:R 82 = F
U1 = CAR 82, U2
F = CDR U3
CMR 83 =F
V1 = C.R 83, V2
F = CLR V3
CAR 11
CAR R1

CDR U1, U3

CDR V1, V3

:/y CAR 81 = :
CAR U1 tey AR VY = 2
CAR V2 CiR BB, CiR V3
C.RU2 = CiR B2, CAR R3
C.RM- R2

CiR M- B2

CRM-TU3

C.RM- B3

TO 52 AND BACK

TO 52 AND BACK

RETUEN

COMMENT, EDIT

53

A C.;R M

[IF CAR A = ATOM, RETURN]
I1 = C.R A, 12 = CDR 11, L3
CAR M=~ A

CAR M= 12

CAR M= 13

TO 53 AND BACK

TO 53 AND BACK

A- CAR M

L1 = CAR A, 12 = CDR 11, 13
[IF CAR 12 =
IF C.R L3
IF CLiR 12
IF CiR 13
IF CiR 11 -
[IF COR 13 = :0, CAR A = CiR 12
IF CAR L3 = C.AR L2, CAR A = 3:0]
IFCRI1 =3/

[iF CAR L2 = :0, C4AR A = CAR L2
IF CAR 13 = :1, CiR A = C4iR L2]
IF C,R L1 HE S

(IF Cik L2 = :0, CAR A = CAR L3
IF CLRL3 = :0, CAR A = CAR 12
IF CAR L2 C.» L3

(CAR L1 = :,

CAR L2 = :2)]]

RETURN

C

c

it

Q

AR A= CAR L2
CAR L3
CAR L3
CAR 12]

- > () sa es
- e
nnan

- .

Qaoa
=R

4 M

1

LR

CDR U2

CDR V2

CiR B3
C.R B3

DR L2

DR L2

9.

