Volume Chapter : 1A : 02

Section

Appendix

IBM REGISTERED CONFIDENTIAL

ACS-I Development Workbook Page: 8-1

Date: 4/17/67

LOGICAL OPERATIONS

A comprehensive set of logical operations is included on the arithmetic registers, the index registers, and condition bits. For most of the logical instructions the two operands are treated as either 1-, 24-, or 48-bit quantities and a logical connective is applied bit by bit. However, for the "count" instructions a function is computed, not on corresponding pairs of bits of different operands, but on all 24 or 48 bits of one operand.

All logical operations have the short format:

op	i	j	k
----	---	---	---

where the j- and k-fields designate the operand registers or bits and the i-field designates the result register or bit. The contents of the operand registers or bits are not changed by the execution of a logical operation.

The basic set of logical operations provides for eight logical connectives, applied bit by bit on the operands. The truth tables for these eight functions are:

function	function value a 0 0 1 1 b 0 1 0 1	common names of function	base mnemonic
a^b	0 0 0 1	and, logical product	AND
a∧b̄	0010	logical difference	TAF
ā∧b	1000	nor, Peirce stroke	FAF
a∨b	0111	or, logical sum	OR
a√b	1011	cover	TOF
ā√ō	1110	nand, Scheffer stroke	FOF
a = b	1001	equivalence	EQ
a≠ b	0110	not equal, exclusive or, modulo 2 sum	XOR

Volume Chapter

: 1A

Section

02

: Appendix

IBM REGISTERED CONFIDENTIAL

ACS-I Development Workbook

Page: 8-2 Date: 4/17/67

It should be noted that all sixteen possible Boolean functions of two variables can be computed to j. In particular are the following common functions (where R may be interpreted as either A, X, or c): by these eight operations by interchanging the names in the j- and k-fields or by setting k equal

move	$R^i + R^j$	R ⁱ + R ^j ∧R ^j
complement and move	$R^{i} + \overline{R}^{j}$	R ⁱ ← R̄ ^j ∧R̄ ^j
set to 0's	R ⁱ + 0's	$R^{i}+R^{i}\wedge \overline{R}^{i}$
set to 1's	R ⁱ + 1's	R ⁱ + R ⁱ √Ā ⁱ

In addition to the operations included in this section, the shift instructions and certain move instructions provide logical (i. e. bit by bit) functions.

Volume

: 1A

Chapter Section

: 02 : Appendix

IBM REGISTERED CONFIDENTIAL ACS-I Development Workbook Page: 8-3 Date: 4/17/67

Logical Operations, Arithmetic Unit

ANDA	$A^{i} + A^{j} \wedge A^{k}$
TAFA	$A^{i} + A^{j} \wedge \overline{A}^{k}$
FAFA	$A^{i} \leftarrow \overline{A}^{j} \wedge \overline{A}^{k}$
ORA	$A^i + A^j \vee A^k$
TOFA	$A^{i} + A^{j} \vee \overline{A}^{k}$
FOFA	$A^i \leftarrow \overline{A}^j \smile \overline{A}^k$
EQA	$A^i + A^j = A^k$
XORA	$A^i + A^j \neq A^k$

Exceptions: none

i j k

Logical Operations, Index Unit

ANDX	$X^i + X^j \wedge X^k$
TAFX	$X^i + X^j \wedge \overline{X}^k$
FAFX	$X^i + \overline{X}^j \wedge \overline{X}^k$
ORX	$X^{i} + X^{j} \checkmark X^{k}$
TOFX	$x^i + x^j \checkmark \overline{x}^k$
FOFX	$X^i \leftarrow \overline{X}^j \checkmark \overline{X}^k$
EQX	$X^i + X^j = X^k$
XORX	$X^i + X^j \neq X^k$

Exceptions: none

k

Volume

: 1A : 02

Chapter Section

Appendix

IBM REGISTERED CONFIDENTIAL

ACS-I Development Workbook
Page: 8-4
Date: 1/8/68

Logical Operations, Condition Bits

i k

ANDC	$c_i + c_j \wedge c_k$
TAFC	$c_i + c_j \wedge \overline{c}_k$
FAFC	$c_i + \overline{c}_j \wedge \overline{c}_k$
ORC	$c_i + c_j \sim c_k$
TOFC	$c_i + c_j \vee \overline{c}_k$
FOFC	$c_i + \overline{c}_j \vee \overline{c}_k$
EQC	$c_i + c_j = c_k$
XORC	$c_i + c_i \neq c_k$

Exception

 $c_{24}^{}$ set to 0 or $c_{25}^{}$ set to 1

Exception bit

CC

Volume Chapter 1A

Section

Appendix

IBM REGISTERED CONFIDENTIAL

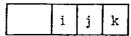
ACS-I Development Workbook

Page: 8-5

Date: 4/17/67

Count Total Ones, Arithmetic

CNTT

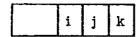

i j

The contents of register A^{i} are replaced by the number of bits of register A^{j} which have the value 1.

Exceptions: none

Count Leading Alike, Arithmetic

CNTAA


The contents of register A^i are replaced by the number of leading bits of register A^j which have the value of the bit A_0^k . The bits of A^j are examined in the order A_0^j , A_1^j , A_2^j , and so on.

Note that if the k-field specifies A⁰, the effect is to count leading 0's.

Exceptions: none

Count Leading Different, Arithmetic

CNTDA

The contents of register A^i are replaced by the number of leading bits of register A^j which are different in value from the value of bit A_0^k (that is, have the value \overline{A}_0^k). The bits of A^j are examined in the order A_0^j , A_1^j , A_2^j , and so on.

Note that if the k-field specifies A⁰, the effect is to count leading 1's.

Exceptions: none

Volume Chapter

1A

Section

02 Appendix IBM REGISTERED CONFIDENTIAL

ACS-I Development Workbook

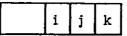
Page: 8-6

Date: 4/17/67

Count Leading Alike, Index

CNTAX

]			
!	lii	i	k
	"	۰	


The contents of register X^i are replaced by the number of leading bits of register X^j which have the value of the bit X_0^k . The bits X^j are examined in the order X_0^j , X_1^j , X_2^j , and so on.

Note that if the k-field specifies X⁰, the effect is to count leading 0's.

Exceptions: none

Count Leading Different, Index

CNTDX

The contents of register X^i are replaced by the number of leading bits of register X^j which are different in value from the value of bit X_0^k (that is, have the value \overline{X}_0^k). The bits of X^j are examined in the order X_0^j , X_1^j , X_2^j , and so on.

Note that if the k-field specifies X⁰, the effect is to count leading 1's.

Exceptions: none