ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A . ACS-I Development Workbook
Chapter : 02 Page: 8-1
Section : Appendix Date: 4/17/67

BRANCH AT EXIT OPERATIONS

Branch-at- Exit instructions form the basic set which permits alteration of sequential execution
of instructions.

To specify a change in the sequence (i. ., a branch) three decisions are required: (1) whether
or not the branch is to be taken, that is, the condition determination; (2) when the branch is to
be taken, the exit point specification; and (3) the address to which the branch is to be made, the
effective address calculation.

Condition Determination

The conditional Branch-at-Exit instructions have the long format:

op {L]jtk h

The i~ and j-fields designate the bits of the condition register used to determine whether or not
the branch is taken. The k-field designates an X-register which with the literal h-field is used
to compute the effective branch address.

Whether or not the branch is to be taken is computed as a function of two bits selected from the
condition register c (special register S¥). The i~ and j-fields select the bits of ¢; the function
which is computed is specified by the operation code. If the value of the function is TRUE (1),

the branch is called successful and the alteration of sequence is effected at the next EXIT instruc-
tion. I the value of the function is FALSE (0), the branch is called unsuccessful and no altera-
tion of sequence occurs.

Eight functions can be specified:

C. AC, C. ¢,
1] 173
C. AC, C.vC

] i]
C. AC. c.\vT
i 3 i i
c.=c c.¥gc

("

ADVANCED COMPUTING SYSTEMS

IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 9-2
Section : Appendix Date: 4/17/67

A branch controlled by a single bit may be specified by setting j equal to i. An unconditional
branch may be specified by the true function c;=¢; for any i

If any of the (non-existent) condition bits 24 through 31 is addressed, the bit value 0 is used.

There is a single unconditional Branch-~at-Exit instruction which has the short format:

N\E

The i- and j-fields of this instruction are ignored, and the condition value TRUE is used so that
this branch is always successful.

Fxit Point

The sequential nature of instruction execution is not altered by the Branch-at-Exit instruction
itself. Rather, the branch point is marked by an EXIT instruction, and, when a branch is
successiul, the actual alteration of instruction flow occurs at the EXIT. Instructions between
the branch instruction and the EXIT are executed normally, independent of whether the branch
is successful or unsuccessful,

When two or more branch instructions occur without an intervening EXIT, the branch instruc-
tions are examined in order. The first branch which is successful governs the next EXIT; the
other branch instructions which follow the successful branch but preceed the EXIT are ignored.
The set of branch instructions which relate to a single EXIT need not be in adjacent storage
locations but may be interspersed with other instructions {except EXITs).

If an EXIT occurs without a successful branch having been executed since the last previous EXIT,
the instruction flow continues in a sequential manner.

‘Effective Branch Address

The effective branch address, eba, designates the location of the instruction to which the instruc-
tion execution sequence will be altered if the branch is successful. The point of alteration is
determined by an EXIT instruction.

The eba may be specified in either of two ways: in the 24-bit unconditional branch instruction
¢ba is given directly by the contents of index register k; in 48-bit instructions eba is the modulo
224 sum of index register k and the 24-bit literal field of the instruction.

Iy

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Velume : 1A ACS-i Development Workbook
Chapter : 02 Page: 9-3
Section : Appendix Date: 4/17/67
instruction format eba calculation
short eba « Xk
long eba + Xk +h

If the branch is successful and if the eba designates a missing address, at the next EXIT excep-
tion bit MI is set to 1 and the program is interrupted (see the section on Sequencing for further
details). If the branch is unsuccessful, no exception can ocecur.

LEN

ADVANCED COMPUTING SYSTEMS

Volume : 1A
Chapter : 02
Section : Appendix

iIBM REGISTERED CONFIDENTIAL

ACS~| Development Workbook
Page: 9-4
Date: 4/17/67

Branch at Fxit, Conditional

mnemonic function
BAND ci ~ c:j
RTAT ciAEJ.
BFAF e, AT,
1)
BOR C. Ve,
1 J
BTOF ¢, e,
1]
BFOF C.WvC,
1]
BEQ ci = c].
BXCOR ¢ # cj

Exceptions: none

Branch at Fxit, Unconditicnal

mnemonic function
BU identically TRUE

Exceptions: none

ililk h
RN
\\\ k

? %

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 9-5
Section ¢ Appendix Date: 1/8/68

Exit erations

An EXIT instruction serves to mark a branch point, where one sequential pattern of instruction
execution terminates and another sequential pattern begins.

Two exit operations are provided. The EXIT instruction serves only to designate a branch point.
The EXITL instruction does three functions in the following logical order: it sets the skip state
to "not skipping", it performs the function of the MLX instruction, and it designates a branch
point,

A branch point designation cannot be skipped. Thus, if an EXIT instruction is flagged as skippable,
the flag is ignored. If an EXITL is flagged, its first two functions may be skipped but the branch
point designation may not,

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume + 1A ACS-1 Development Workbook
Chapter : 02 Page: 9-8
Section : Appendix Date: 1/8/68

Bt =X NN

The branching action for any previous branch instruction occurs at the point designated by this
instruction.

Exceptions: none

Exit, Save Location and Stop Skipping EXITL i ik

This instruction is logically identical to the three instructions:

SKTAF 31,31
MLX i,k
EXIT

Exceptions: none

>

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-l Development Workbook
Chapter : 02 Page: 9-7
Section ¢ Appendix Date: 4/17/67

Ski rations

Skip operations provide the ability to inhibit the execution of a set of instructions following the
skip instruction. The skipping action is conditional on a function of two bits of the condition
register; the instructions to be skipped are indicated by a special bit in the operation code.
Thus, to specify a skip two parameters are required: (1) whether or not the skip is to be made,
the condition determination; and (2) which instructions are to be skipped, the skip scope.

Condition Determination

Whether or not the skip is to be taken is computed as a function of two bits selected from the
condition register c (special register 80). The i- and j-fields select the bits of ¢; the function
which is computed is specified by the operation code. If the value of the function is TRUE (1),
the skip is called successful and the flagged instructions within the scope of the skip will be
ignored. X the value of the function is FALSE (0), the skip is called unsuccessful and instruc-
tions within the scope of the skip are executed normally.

Eight functions can be specified:

.AC, c.\vC,
cl i j
LG, ¢.vC,
c1 c:J : i
C. AT, [RVER
1 J 3
c,=C, c. #c,
i j 1-’1]

A skip controlled by a single bit may be specified by setting j equal to i.
If any of the (non-existent) condition bits 24 through 31 are addressed, the bit value 0 is used.

It will be noted that skip condition is determined exactly the same as the branch-at-exit condition.

Scope of the Skip

The scope of a skip instruction is those instructions between the SKIP and the next SKIP instruc-
tion which is not skipped. Those instructions within the scope which may be skipped are designated
by setting a special bit in the instruction to 1. One bit position in the operation code of all instruc-
tions is designated as the skip flag; it is bit nuwmber O in the format which is common to all
instructions:

ADVANCED COMPUTING SYSTEMS

Volume : 1A
Chapter ;02
Section ! Appendix

18BM REGISTERED CONFIDENTIAL

ACS-| Development Workbook
Page: 9.8
Date: 1/8/68

skip operation register designations,
flag code etec.

The mnemonic means of designating an instruction with its skip flag set to is to proceed the
instruction's menmonic by an asterisk (%),

If the skip condition is TRUE, all instructions within the scope with this skip flag set to 1 are
ignored.

If the skip condition is FALSE, all instructions within the scope are executed nofrnally {(indepen-
dent of the value of their skip flag).

The instructions within the scope of a SKIP which are designated as skippable by having their skip
flags set to 1 need not be in adjacent storage locations. They may be interspersed with other
unflagged (and hence unconditionally executed) instructions.

All instructions except an EXTT instruction may be flagged as skippable. In particular a skip or
branch instruction may be skipped.

The skip state (i. e., "skipping": ignore flagged instructions, or "not skipping": execute all
instructions) is altered only as shown in the following table:

Instruction New Skip State
SKIP determined by condition determination
EXITL not skipping
sSVe, I1C not skipping
SVR, IC : determined by bit s%l

SCAN determined by scan-in data

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 9-9
Section : Appendix Date: 4/17/67
Ski I
Skip i] \\
menmonic function
SKAND C. AC,
1 3
SKTAF Cy N Ej
SKFAF Ei ~ Ej
SKOR C.VC,
1]
SKTOr c, Vv Ej
SKFOF Ei v Ej
SKEQ ¢ = cj
SKXOR ¢ # cj

Exceptions: none

™

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 9-10
Section : Appendix Date: 4/17/67

Special Purpose Branch Instructions

The special purpose branch instructions are included primarily for use in interruption servicing
routines and for changing the status of the supervisory-problem mode. These situations require
special treatment because the concurrency of operation in the MPM creates circumstances not
normally encountered in a non-overlapped computer. To treat these situations without these
Instructions would be both awkward and excessively time consuming.

Many instructions in this class are essentially unconditional branch instructions. The formation
of the effective branch address is different for each instruction. However the point at which
the branch is to occur is marked by an EXIT, as usual.

™

ADVANCED COMPUTING SYSTEMS I1BM REGISTERED CONFIDENTIAL

Volume + 1A ACS-1 Development Workbook
Chapter : 02 Page: 9-11
Section : Appendix Date : 4/17/67

Invalidate Instruction Buffers IVIB N
and Branch &\\ k h

At the next EXIT the contents of all instruction buffers are invalidated. Any instructions which
had been prefetched into the instruction buffers and any instructions in the dispatch registers
or contender registers following the EXIT are fetched from storage again.

For the branching action, IVIB appears as a successful branch instruction. That is, unless
there is an outstanding successful branch instruction, a branch occurs at the next EXIT to the
location designated by the effective branch address, eba. The eba is calculated as

eba+Xk+h.

If a successful branch is outstanding, all IVIB functions are suppressed.

Exceptions: none

S

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter 02 Page: ©-12
Section ¢ Appendix Cafe: 1/8/68

Pause PAUSE N

The execution of all instructions preceding PAUSE are completed, Any interruptions occasioned
by these instructions are also taken. After all these actions are accomplished, the execution
of the next instruction in sequence is begun.

Exceptions: none

Pause with Exception PI i jk

Index register Xlis replaced by the value specified by the 10-bit literal jk-field. Before the
replacement the 10-bit quantity is extended to 24 bits by appending 14 high order bits equal in
value to the high order bit of the jk-field. Also the PI exception bit is set to 1. Then a PAUSE

is executed, so that an interruption is taken before the execution of the next instruction in sequence

is begun.
Exception Exception bit

always set I

ADVANCED COMPUTING SYSTEMS {BM REGISTERED CONFIDENTIAL

Volume : 1A ACS~-{ Development Workbook
Chapter ;02 Page: 9-13
Section : Appendix Date: 1/8/68
Supervisor Call SVC i ik

If there are no outstanding successful branch instructions, SVC is performed as follows:

1. Index register X! is replaced by the value specified by the 10-bit literal jk-field. Before the
replacement the 10-bit quantity is extended to 24 bits by appending 14 high order bits equal
in value to the high order bit of the jk-field.

At the next EXIT the following are also performed:

2. The current values of the MPM mode bits S11 replace the values of the bits S11 .
0,1,2 13,14,15

3. The MPM is placed in the following mode:

a. supervisory
b. concurrent

(Note that the disable/enable mode is not altered,)

4. The internal branch-skip-MPC state is saved in bits 3 through 9 of Sll. (Note that the
recorded branch state is always "no outstanding branches". }

5. The internal branch-skip-MPC state is set as follows:
a. no outstanding branches
b. not skipping
¢, no carry

8. A branch is taken to fixed location 256 with respect to the supervisory normal key.

The setting of the mode bits is interlocked with the execution of other instructions to give the
effect of sequential execution, so that concurrency problems associated with the entrance to the
supervisory mode are avoided.

If a successful branch is outstanding, all SVC functions are suppressed.

Exceptions: none

ADVANCED COMPUTING SYSTEMS 1BM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Poge: §-14
Section ¢ Appendix Date: 1/8/68

VA
Supervisor Return SVR &\k\ k h

If there are no outstanding successful branch instructions, SVR is performed as follows at the
next EXIT:

X 11 11
1. The MPM mode bits SO, 1,2 are set to the values 813’ 14,15°

2. The internal branch-skip-MPC state is set to the values designated by bits 3 through 9 of the
machine state register s11, This setting of the branch state neither effects nor is effected

by the branching action of step 3.
3. A branch is taken to the address designated by the eba where
eba + Xk +h,
The branch is with respect to the normal key of the mode specified by S} é

The setting of the mode bits is interlocked with the execution of other instructions to give the
effect of sequential execution, so that concurrency problems associated with the return are

avoided.
If a successful branch is outstanding, all SVR functions are suppressed.

Exception Exception bit

in problem mode bV

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter 02 Page: 9-15
Section : Appendix Date: 1/8/68

Interrupt Call IC m

The interrupt call instruction is internally generated and inserted into the instruction stream to
effect an interruption. IC is not available for use as a programmed instruction. IC is performed
as follows:

1 11

1. The current values of the MPM mode bits S1 replace the values of bits 81 0.11.1%"
] 2

0,1,2
2. 'The MPM is placed in the following mode:

a. Ssupervisory

b. disabled

c. concurrent

3. The interruption return address register 5 is set to the address to which a return should
be made in order to resume the interrupted program in its proper logical sequence.

4. The internal effective branch address is saved in register $10.
5. The Internal branch-skip~-MPC state is saved in bits 3 through 9 of register sl
6. The internal branch-skip-MPC state is set as follows:
a. no outstanding branches
b. not skipping
C. NO Carry
7. A branch is taken to fixed location 0, with respect to the supervisory normal key.
IC is interlocked so that it is executed in strict sequence with each stream; that is, it cannot

pass any instructions ahead of it {instructions in the program being interrupted), nor can it be
passed by any instructions behind it (instructions in the program at location 0).

ADVANCED COMPUTING SYSTEMS iBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 9-16
Section : Appendix ‘ Date: 1/8/68

Interrupt Return IR \W

If there are no outstanding successful branch instructions, IR is performed as follows at the
next EXIT:

. 11 11
1. The MPM mode bits SO, 1,2 are set to the values of SlO, 11,12

2. The internal branch-skip-MPC state is set to the values designated by bits 3 through 9 of the
machine state register 11

3. The internal effective branch address is set to the value of Slo.

4. A branch is taken to the address designated by the interruption return address register Sg.

The branch is with respect to the normal key of the mode specified by Sié This branching

action neither effects nor is effected by the actions of steps 2 and 3.
The setting of the mode bits and the branch-skip-MPC state are interlocked with the execution of
other instructions to give the effect of sequential execution, so that concurrency problems
associated with the return are avoided,
X a successful branch is outstanding, all IR functions are suppressed.

Fxception Exception bit

in problem mode PV

o

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS~| Development Workbook
Chapter : 039 Page; 9-17
Section : Appendix Date: 1/8/68

Scan In SCAN ﬁ\\\w k h

The MPM registers and control triggers are reset to state specified by the contents of storage
starting at the effective address ea, where

eal ‘-X'k+h

eak +alternate key

The nine low order bits of ea are ignored and assumed to be 0's. Thus the scan data is assumed
to be aligned on a 256-word boundary.

The storage arrangement of the registers and triggers is specified in the section "MPM Interrup-
tions",

After completing SCAN, execution is resumed according to the state specified by the scanned-in
data.

Exceptions Exception bit

in problem mode pv
missing address MA

