)
L2

(f

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-! Development Workbook

Chapter : 02 Page:

Section : Appendix Date: 1/8/68
ACS-1

| MPM INSTRUCTION MANUAL

Part Title

1 Load and Store Operations
Move Operations

Floating Point Arithmetic
Integer Arithmetic

Index Arithmetic

B O W W N

Compare Operations

Shift Operations

8 Logical Operations

9 Branch at Exit Operations
10 Input/Qutput Operations
11 Tag and Directory Operations
12 Special Registers

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-l Development Workbook

Chapter 02 Page: 1
Section : Appendix Date: 1/8/68

INDEX

Mnemonic Name Page_
ACH Add continued, high order 4-9
ACL Add continued, low order 4-8
ADN Add double normalized 3-10
ADR Add double rounded 3-11
ADU Add double unnormalized 3-12
Al Add integer 4-4
AN Add normalized 3-10
ANDA Logical and, arithmetic 8-3
ANDC Logical and, condition ' 8-4
ANDX Logical and, index : 8-3
AR Add rounded 3-11
AU Add uwnrormalized 3-12
AX Add index 8-4
AXC Add index to short constant 5-9
AXCT Add index to short constant and test 5-14
AXK Add index to constant 5-9
AXT Add index and test 5-13
BAND Branch if and 9-4
BEQ Branch if equal 9-4
BFAF Branch if false and false 9-4
BFOF Branch if false or false Q-4
BOR Branch if or 9-4
BTAF Branch if true and false 9-4
BTOF Branch if true or false 9-4
BU Branch unconditionally 9-4

BXOR Branch if exclusive or 9-4

ity
(

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook

Chapter : 02 Page: 2

Section : Appendix Date: 1/8/868
CBA Compare bytes, arithmetic 6-10
CBMA Compare bytes multiple, arithmetic 6-10
CBMX Compare bytes multiple, index 6-11
CBX Compare bytes, index 6-11
CEQD Compare equal, double 6-4
CEQI Compare equal, integer 6-17
CEQN Compare equal, normalized 6-3
CEQX Compare equal, index 6-8
CEQXK Compare index with constant, equal 6-9
CGED Compare greater or equal, double B-4
CGEI Compare greater or equal, integer 6-7
CGEN Compare greater or equal, normalized 6-3
CGEX Compare greater or equal, index 6-8
CGEXK - Compare index with constant, greater or equal 6-9
CMEQD Compare magnitude equal, double 6-6
CMEQN Compare magnitude equal, normalized 6-5
CMGED Compare magnitude greater or equal, double 6-6
CMGEN Compare magnitude greater or equal, normalized 6-5
CNTAA Count leading alike, arithmetic 8-5
CNTAX Count leading alike, index 8-6
CNTDA Count leading different, arithmetic 8-5
CNTS Count to storage 1-72
CNTDX Count leading different, index 8-¢
CNTT Count total ones, arithmetic 8-5
CUGEL Compare unsigned, greater or equal, integer 6-7
CUGEX Compare unsigned, greater or equal, index 6-8
CUGEXK Compare unsigned index with constant, greater or equal 6-9
CVF Convert to full floating 3-28
CVI Convert to integer 4-11
CVN Convert to normalized 4-11

Cvs Convert to short floating 3-27

ADVANCED COMPUTING SYSTEMS

IBM REGISTERED CONFIDENTIAL

Volume ACS-| Development Workbook
Chapter Page: 3
Section Appendix Date: 1/8/88
DDN Divide double normalized 3-22
DDR Divide double rounded 3-23
DEN Directory enter 11-3
DENP Directory enter per physical 11-3
DEX Directory examine 11-4
DEXP Directory examine per physical 11-4
DI Divide integer 4-7
DM Directory move and invalidate 11-4
DMI Divide mixed integer 4-7
DMN Divide mixed normalized 3-24
DMR Divide mixed rounded 3-24
DN Divide normalized 3-22
DR Divide rounded 3-23
DRUX Divide with remainder, unsigned index 3-23
DRUXK Divide with remainder unsigned index by constant 5-11
DRX Divide with remainder, index 5-5
DRXK Divide with remainder index by constant 5-10
DSC Directory search per count 11-6
DSt Directory search for invalid 11-5
&S Directory search for smaller 11-5
DswW Directory swap 11-3
DUX Divide unsigned index 5-8
DUXK Divide unsigned index by constant 5-12
DX Pivide index 5-6
DXK Divide index by constant 5-11
EQA Logical equivalence, arithmetic 8-3
EQC Logical equivalence, condition 8-4
EQX Logical equivalence, index 8-3
EXIT Exit 9-6
EXITL Exit and save location 9-6

,f i)

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume ¢ 1A ACS-| Development Workbook
Chapter : 02 Page: 4
Section : Appendix Date: 1/8/68
FAFA Logical false and false, arithmetic 8-3
FAFC Logical false and false, condition 8-4
FAFX Logical false and false, index 8-3
FOFA Logical false or false, arithmetic 8-3
FOFC. Logical false or false, condition 8-4
FOFX Logical false or false, index 8-3
HIO Halt 1/0 10-3a
IC Interrupt call 9-15
IFA Insert field, arithmetic 7-10
IFX Insert field, index 7-10
IFZA Insert field and zero, arithmetic 7-10
IFZX Insert field and zero, index 7-10
IR Interrupt return 9-18
ITUM Invalidate tag and update MS 11-2
ITUMA Invalidate tag and update MS per alternate key 11-2
IVIB Invalidate instruction buffers and branch g-11
LA Load arithmetic 1-8
LAA Load arithmetic per alternate key 1-9
LAH Load arithmetic (half word format) 1-8
LAT Load arithmetic, true indexing 1-14
LATH Load arithmetic, true indexing (half word format) 1-14
LD Load double arithmetic 1-12
LDH Load double arithmetic (half word format) 1-12
LL Load left half arithmetic 1-16
LMA Load multiple arithmetic 1-22
LMAA _ Load multiple arithmetic per alternate key 1-23a
LMX Load multiple index 1-18

LMXA Load multiple index per alternate key 1-19

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS~| Development Workbook

Chapter o 02 Page: 5

Section : Appendix Date: 1/8/68
LR Load right half arithmetic 1-16
ILX Load index 1-4
XA Load index per alternate key 1-4
LXH Load index (half word format) 1-4
MAC Move arithmetic bit to condition bit 2-6
MAX Move arithmetic to index a-2
MCX Move condition bit to index bit 2-6
MDN Multiply double normalized 3-17
MDR Multiply double rounded 3-18
MDU Multiply double unnormalized 3-19
MI Multiply integer 4-5
MKL Move constant to left half arithmetic 2-3
MKR Move constant to right half arithmetic 2-3
MLX Move location to index 2-4
MMI Multiply mixed integer 4-5
MMN Multiply mixed normalized 3-20
MMU Multiply mixed unnormalized 3-20
MN Multiply normalized 3-17
MOT Move one to T register bit 10-5
MR Multiply rounded 3-18
MSX Move specizal to index 2-4

© MSXZ Move special to index and zero 2-5
MTX Move T register to index 10-4
MU Multiply unnormalized 3-19
MX Multiply index - 5-4
MXA Move index to arithmetic 2-2
MXC Move index bit to condition bit 2-6
MXK Multiply index by constant 5-10
MXS Move index to special 2-4

MXSO Move index to special by oring 2-5

("‘\

ADVANCED COMPUTING SYSTEMS |BM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter . 02 Page: 6
Section : Appendix Date: 1/8/68
MXT Move index to T register 10-4
MZT Move zero to T register bit 10-5
ORA Logical or, arithmetic 8-3
ORC Logical or, condition 8-4
ORX Logical or, index 8-3
PAUSE Pause 9-12
I Pause with interrupt 9-12
RC Reset channel 10-3b
RND Round 3-25
RUX Remainder unsigned index 5-8
RUXK Remainder unsigned index by constant 5-12
RX Remainder index 5-6
RXK Remainder index by constant 5-11
SCAN Scan 9-17
SCH Subtract continued, high order 4-9
SCL Subtract continued, low order 4-8
SDN Subtract double normalized 3-13
SDR Subtract double rounded 3-14
- 8SDU Subtract double unnormalized 3-15
SHA Logical shift arithmetic 7-4
SHAC Logical shift arithmetic by constant T-4
SHD Logical shift double ' 7-6
SHDC Logical shift double by constant 7-6
SHDX Logical shift double index 7-8
SHDXC Logical shift double index by constant 7-6
SHX Logical shift index T-4

SHXC Logical ghift index by constant 7-4

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS~| Development Workbook

Chapter ;02 Page: 7

Section : Appendix Date: 1/8/68
SI Subtract integer 4-4
SIA Integer shift arithmetic 7-12
SIAC Integer shift arithmetic by constant 7-13
SID Integer shift double 7-15
SIDC Integer shift double by constant 7-15
SIO Start I/0 10-2
SICA Start I/0 per alternate key 10-3a
SIX Integer shift index 7-12
SIXC Integer shift index by constant 7-13
SKAND Skip if and 9-9
SKEQ Skip if equal 9-9
SKFAF Skip if false and false g-9
SKFOF Skip if false or false 9-9
SKOR Skip if or 9-9
SKTAF Skdp if true and false 9-9
SKTOQF Skip if true or false 9-9
SKXOR Skip if exclusive or 9-9
SN Subtract normalized 3-13
SNF Set negative, floating 3-28
SNI Set neqgative, integer 4-10
SNX Set negative, index 5-13
SPF Set positive, floating 3-26
SPI Set positive, integer 4-10
SPX Set positive, index 5-13
SR Subtract rounded 3-14
STA Store arithmetic 1-10
STAA Store arithmetic per alternate key . 1-11
STAH Store arithmetic (half word format) 1-10
STAT Store arithmetic, true indexing 1-14
STATH Store arithmetic, true indexing (half word format) 1-14
STD Store double arithmetic 1-13

STDH Store double arithmetic (half word format) 1-13

t

ADVANCED COMPUTING SYSTEMS

IBM REGISTERED CONFIDENTIAL

Volume 1A ACS-1 Development Workbook

Chapter 02 Page: 8

Section Appendix Date: 1/8/68
STL Store left half arithmetic 1-16
STMA Store multiple arithmetic 1-23b
STMAA Store multiple arithmetic per alternate key 1-23c
STMX Store multiple index 1-20
STMXA Store multiple index per alternate key 1-21
STMZ Store multiple zeros 1-24
STMZA Store multiple zeros per alternate key 1-24
STR Store right half arithmetic 1-16
STX Store index 1-5
STXA Store index per alternate key 1-6
STXH Store index (half word format) 1-5
SU Subtract wnormalized 3-15
SVC Supervisor call 9-13
SVR Supervisor return 9-14
SWS Swap with storage 1-7b
SWSA Swap with storage per alternate 1-7b
SX Subtract index 5-4
TAFA Logical true and false, arithmetic 8-3
TAFC Logical true and false, condition 8-4
TAFX Logical true and false, index 8-3
C Test channel 10-3b
TOFA Logical true or false, arithmetic 8-3
TOFC Logical true or false, condition 8-4
TOFX Logical true or false, index 8-3
ZORA Logical exclusive or, arithmetic 8-3
XORC Logical exclusive or, condition 8-4
XORX Logical exclusive or, index 8-3

ADVANCED COMPUTING SYSTEMS IBM _REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 1-1
Section ¢ Appendix Date: 1/8/68

LOAD AND STORE OPERATIONS

The load operations replace the contents of index (X) registers, or arithmetic (A) registers,

with information from storage. The storage contents remain unchanged. The store operations
replace information in storage with information from one or more of the X or A registers. The
register contents remain unchanged. The count to storage and swap with storage instructions act
as both a load and a store and thus may change both the register and storage.

The load and store instructions have one of the following formats:

Short op (i]j |k
Long op |iij]k h
9 b 5 b5 24

For each operation the i field designates the register, or registers, to be loaded or stored.
The j and k fields designate two index registers which are added together to calculate the
effectlve address of the storage information. In the long format the h field is also added in
forming the effective address.

All addresses generated by the main processor are considered to be virtual addresses by the
mapping mechanism, This mechanism transforms (maps) the virtual address into the address
of a physical location in storage. The mapping mechanism deals with 86 bit virtual addresses
(ea). The low order 24 bits are called the effective address (eal) and the high order 12 bits are
called the key (eak).

The eak is specified by one of four key registers: problem normal key PNK, problem alternate
key PAK, supervisory normal key SNK, and supervisory alternate key SAK. Which key is used
. is defined by the MPM mode, which is either problem or supervisory, and the instruction code,
which specifies either normal or alternate. The following table describes the key specification:

Supervisory Mode Problem Mode
Normal Xey SNX PNK
Alternate Key SAK PAK

The eal may be computed in two ways. Innormal indexing the index quantities are aligned so
that the low order bits of each are added together. In true indexing the quantity from XK is
doubled by shifting it left one position prior to addition. The eal addition is computed modulo
224 for both types of indexing.

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 1-2
Section : Appendix Date: 1/8/68

The following table describes normal and true indexing for both long and short formats:

Short Format Long Format
Normal Indexing eal +Xj + X‘k | eal *—Xj + X‘k +h
True Indexing eal «+ X + 2 x X5 eal «X + 2 x X 4 h

additions are computed modulo 224t

XJ, Xk = contents of the index registers specified by the
j and k fields of the instruction

h = literal field of the instruction

Index load and store operands are 24 bits long, The length of the operands for arithmetic

loads and stores is specified in the operation code. Three lengths may be specified: half

{24 bits), single {48 bits), and double (96 bits). When loading half word quantities the 24 bit
number is expanded to 48 bits when placed in ths arithmetic register as follows: if the instruc-
tion calls for the left half to be loaded, 0's replace the low order 24 bits of the register; if

the right half is loaded, the high order bit of the half word is copied into the high order 24 bits
of the register, When storing half word quantities, the selected half of the arithmetic reqgister
is stored and the register contents are uneffected. ‘

Index register X0 is specified to be a source of 0's. To specify single indexing or no indexing,
either the j or k field or both should be set to zero. When X0 is stored, 0's replace the 24~
bit storage contents located by the effective address. Information loaded into X9 is not
recoverable from XV,

Similarly, ADis specified to contain O's, If AQ is used as 2 source in a store operation,
the length of the zero quantity stored is determined by the operand length specified in the
instruction. Information loaded into AU is not recoverable from AQ, iIf AQis specified by
the i field of a load arithmetic double instruction, register Al isalso set to O's.

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS~| Development Workbook
Chapter ;02 Page: 1-3a
Section ! Appendix Date: 1/8/68

Multiple T.0oad and Store

The multiple load operations replace the contents of blocks of successive arithmetic (A) or index
(X) registers with information taken from consecutive storage locations. (Register number 0
is considered to be the successor of register number 31.} Storage remains unchanged.

The multiple store operations reverse the process, that is, information from the registers is
stored In consecutive storage locations., The registers are unchanged.

The multiple load and store operations have the following format:

op Ji|jiik h

For each operation the i-field designates the initial register to be loaded or stored; j gives the

number of registers to be loaded or stored; and the modulo 224 sum of index register k and the
literal, h, gives the effective address of the first storage location.

Registers X0 and AQ are sources of O's; information loaded into them is not recoverable.

The value of the i-field must be even when X-unit operands are specified. If it is not, the low
order bit of the field is forced to 0, exception bit RS is set, and the operation proceeds. The use
of the register pair x0,14n multiple load and store instructions results in the loading or storing
24 0's for X0 and the 24 data bits for ¥1.

Exceptions

Every virtual address generated for a load or store arithmetic, a load or store arithmetic double,
or any multiple load or store, must be divisible by 2. If it is not, the BV (boundary value) excep-
tion bit is set to 1, and the operation proceeds using the address minus one as the storage address.
Similarly the virtual address for STMZ and STMZA must be divisible by 64. I it is not, the BV
bit is set to 1, and the operation proceeds using the address with the seven low order bits forced to
O's as the storage address.

The mapping mechanism checks the validity of all virtual addresses in two ways. First, if the
virtual address does not correspond to an actual physical location, a missing address exception
occurs and exception bit MA is set to 1. Second, if the virtual address of a store instruction
refers to an area to which store access is not permitted, a protected address exception occurs
and exception bit PA is set to 1. The setting of the MA or PA exception bit results in a type 2
interruption condition. See the chapter "Interruptions” for further details,

Each storage address generated for multiple load and store operations is individually checked for
MA and PA exceptions. '

IBM REGISTERED CONFIDENTIAL

ADVANCED COMPUTING SYSTEMS
Volume : 1A ACS-~1 Development Workbook
Chapter ;02 Page: 1-3b
Section : Appendix Date: 1/8/68

When a double precision A-unit operand is specified by the instruction code, the value of the i-
field is assumed to be even. I it is not, the low order bit of the i-field is forced to 0, exception
bit RS is set, and the operation proceeds. These fifteen A-unit double precision quantities are
specifiable; namely the data in register pairs specified by 2, 4, 8,..., 30. The double precision
quantity specified by AQ is defined to be 98 O's , So that register Al is not the low order half of

any double precision quantity.

ff\

IBM REGISTERED CONFIDENTIAL
ACS~-] Development Workbook

ADVANCED COMPUTING SYSTEMS

Volume : 1A
Chapter : 02 Page: 1-4
Section : Appendix Date: 4/17/87
Load Index (half word format) ILXH i s | &
111
eal 4—}{j + Xk
eak +normal key
Xi M2
Exceptions Exception bit
missing address MA
Load Index LX .|
iljtk h
eal «x) + x5+ 1
eak «normal key
X Mm%
Exceptions Exception bit
missing address MA
Load Index per Alternate Key I3 I
. ifitk h

eal« X + X%+ n
eak+ alternate key
Xi+ ME2
This instruction is identical to LX except that in forming the storage address the alternate key

is used.

Exceptions Exception bit

missing address MA

ADVANCED COMPUTING SYSTEMS |8M REGISTYERED CONFIDENTIAL

Velume : 1A ACS-| Development Workbook
Chapter ;02 Page: 1-5
Section : Appendix Date: 4/17/67
Store Index (half word format) STXH il]k

eal « Xj + 'Xk

eak +normal key

M2 « Xi
Exceptions Exception bit
missing address MA .
protected addresé PA
Store Index STX i|j]x h
eal «X! + X%+ 1
eak <normal key
M %
Exceptions Exception bit
missing address MA

protected address PA

IBM REGISTERED CONFIDENTIAL
ACS-1 Development Workbook

ADVANCED COMPUTING SYSTEMS

Volume : 1A
Chapter < 02 Page: 1-6
Section : Appendix Date: 4/17/67
Store Index per Alternate Key STXA i« h

11])

cal «X° + Xk +h
eak «alternate key
M2 Ly
This instruction is identical to STX except that in forming the storage address the alternate
key is used.
Exceptions Exception bit
missing address MA
protected address PA

ADVANCED COMPUTING SYSTEMS 1BM _REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 1-7a
Section : Appendix Daje: 1/8/68
Count to Storage CNTS

ililk h

eal +Xj+Xk+h

eak +normal key

Xi +Mea
es 24 ea ea
M #2 =l: M «M™“+1

I M2 = 224_ 1: Mea +Mea

The contents of the memory location is loaded into X. The contents of M2 is treated as an
unsigned integer and is incremented by one, modulo 224, If this would cause Me€a to go to
zero, the add is suppressed. The fetch from ea and the subsequent storing into it are inter-
locked so that no intervening accesses are permitted.

Exceptions Exception bit

missing address MA
protected address PA

IBM REGISTERED CONFIDENTIAL

ADVANCED COMPUTING SYSTEMS
Volume ¢ 1A ACS-| Development Workbook
Chapter : 02 Page: 1-Tb
Section : Appendix Date: 1/8/68
Swap with Storage SWS ililk h

eal + Xj + X‘k +h
eak * normal key
1t M2 0 X« M®
i M2 =0 X« M® and M%< %!
The contents of the memory location is loaded into X1. If the contents of M®? is zero (twenty-

four O's), M®2 is replaced by the original contents of Xi. If M2 is different from zero, M€a
is not changed. The fetch from M2 and the (potential)subsequent storing into it are interiocked

so that no intervening accesses are permitted.

Exceptions Exception bit
missing address MA
protected address PA
Swap with Storage per Alternate Key SWSA ilitk h

eal+Xj+Xk+h

ealk + alternate key
M2 £0 X MR
M2 =0 X« M and M2« &

This instruction is identical to SWS except that the alternate key is used.

Exceptions Exception bit
missing address MA
PA

protected address

SN

ADVANCED COMPUTING SYSTEMS

Volume : 1A
Chapter : 02
Section Appendix

IBM REGISTERED CONFIDENTIAL

ACS-1 Development Workbook
Date: 4/17/67

Load Arjthmetic (half word format)

Exceptions

missing address

ea not divisible by 2

Load Arithmetic

Fxceptions

missing address
ea not divisible by 2

LAH

eal « X + xF

eak <normal key

Ai « M52
Exception bit
MA
BV
LA ilil k
eal <X + Xk +h
eak <normal key
Ai 4_Mea
Exception bit
MA
BV

-

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-! Development Workbook
Chopter : 02 Page: 1-9
Section : Appendix Date: 4/17/67
Load Arithmetic per Alternate Key LAA ililx h

eal « Xj+Xk+h

eak + alternate key
Ai < M2

This instruction is identical to LA except that in forming the storage address the alternate
key is used.

Exceptions Exception bit
missing address MA
ea not divisible by 2 BV

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-1 Development Workbook
Chapter . 02 Page: 1-10
Section : Appendix Date: 4/17/67
Store Arithmetic (half word format) STAH i 151k
eal « X' + Xk
eak + normal key
M2 « pl
Exceptions Exception bit
missing address MA
protected address PA
ea not divisible by 2 BV
Store Arithmetic STA
e —— iVji|k h
eal +Xj + XK +h
eak <normal key
M . Ai
Exceptions Exception bit
missing address MA
protected address PA

ea not divisible by 2 BV

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-! Development Workbook
Chapter ¢ 02 Page: 1-11
Section : Appendix Date: 4/17/67
Store Arithmetic per Alternate Key STAA ilil x h

cal« X+ XX« h

eak « alternate key

ea i

M™+A

This instruction is identical to STA except that in forming the storage address the alternate
key is used.

Exceptions Exception bit
missing address MA
protected address PA
ea not divisible by 2 BV

IBM REGISTERED CONFIDENTIAL

ADVANCED COMPUTING SYSTEMS
-~ Volume : 1A ACS-1 Development Workbook
Chapter : 02 Page: 1-12
Section : Appendix Date: 1/8/68
Load Arithmetic Double (half word format} LDH i |5 | x
eal « X:i + Xk
eak + normal key
Ai,i+1 - M eat+2
Exceptions Exception bit
missing address MA
ea not divisible by 2 BV
i odd RS
£ \ .
a3 Load Arithmetic Double LD i1« h
eal +Xj + Xk +h
eak <normal key
Ai, i+l < M2 eatl
Exceptions Exception bit
missing address MA
ea not divisible by 2 BV
RS

1 odd

ADVANCED COMPUTING SYSTEMS

IBM REGISTERED CONFIDENTIAL

Volume s 1A ACS-| Development Workbook
Chapter : 02 Page: 1-13
Section Appendix Date: 1/8/68
Store Arithmetic Double STDH
(half word format) HERR
eal «X + x5
eak «normal key
Mea,ea+2 . Ai,i+1
Fxceptions Exception bit
missing address Ma
protected address PA
ea not divisible by 2 BV
i odd RS
Store Arithmetic Double STD
ililk h
eal+ X + Xk +h
eak+ normal key
M2 eatd . pl, i+l
Exceptions Exception bit
missing address MA
protected address PAa
ea not divisible by 2 BV
i odd RS

{M

IBM _REGISTERED CONFIDENTIAL

ADVANCED COMPUTING SYSTEMS
ACS-| Development Workbook

Volume : 1A
Chapter . 02 Page: 1-14
Section ¢+ Appendix Date: 4/17/67
Load Arithmetic, True Indexing LATH A

(half word format) iljfk

ea.1~~Xj+2xXk

eak +normal key

Ai MR
Exceptions Exception bit
missing address MA
ea not divisible by 2 BV
Load Arithmetic, True Indexing LAT e n
eal +Xj + 2 % Xk +h
eak <«normal key
Ai <M
Exceptions Exception bit
missing address MA
BY

ea not divisible by 2

5N
(

|IBM REGISTERED CONFIDENTIAL

ADVANCED COMPUTING SYSTEMS
Volume : 1A ACS-! Development Workbook
Chapter 1 02 Page: 1-15
Section : Appendix Date: 4/17/67
Store Arithmetic, True Indexing STATH i1y |

(half word format)
eal « X + 9 x XK

eak + normal key

Mea + Ai
Exceptions Exception bit

miss'mg address MA

protected address PA

ea not divisible by 2 BV

Store Arithmetic, True Indexing STAT 1k b
i
eal +Xj + 2 x Xk +h
eak +normal key
M2 oal
Exceptions Exception bit

missing address MA
protected address PA
BV

ea not divisible by 2

Foay

ADVANCED COMPUTING SYSTEMS

Volume : 1A
Chapter + 02
Section : Appendix

IBM REGISTERED CONFIDENTIAL
ACS-| Development Workbook

Page: 1-16
Date: 4/17/67

Load Arithmetic, Left Half
ililk h
eal « Xj + X‘k +h
eak + normal key
i Py
80,1,2,+..,23 " M"
i +
Bos, 25,26, -+ 47 < O [24)
Exceptions Exception bit
missing address MA
Load Arithmetic, Right Half LR
i{ilk h
eal «X +X5+h
eak +normal key
i ea
80.1,...,23 Mg [

i ea

Bog 95,... 47 *M
Exceptions Exception bit
MA

missing address

LL

Fa

ADVANCED COMPUTING SYSTEMS

Volume : 1A
Chapter : 02
Section Appendix

IBM REGISTERED CONFIDENTIAL

ACS-| Development Workbook

Store Arithmetic, Left Half

Exceptions

missing address

protected address

Store Arithmetie, Right Half

Exceptions

missing address
protected address

Date: 4/17/67

STL

iljlk
eal « Xj + X‘k +h
eak+ normal key
ea i
M7+ 85 1,9,...,23
Exception bit
MA
PA
STR
ililk
eal + Xj + Xk +h
eak + normal key
ea i
M~ £o4,25,26,- - ,47
Exception bit
MA
PA

_(“‘

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-! Development Workbook
Chapter : 02 Page: 1-18
Section : Appendix Date: 1/8/68
T.oad Multiple Index LMX ililk h

number of registers loaded « j

eal « XX+ 1

eak + niormal key

Xi,i+1 « ME2 ea+l

Xi+2, i+3 Mea+2, ea+3

Xi+j-2, i+j-1 _ , ea+j-2, ea+-1

M

If j is not divisible by 2, the number of registers loaded will be j-1. ¥ j is zero or one, 32
registers will be loaded.

Exceptions Exceptions
missing address MA
ea not divisible by 2 BV
i odd RS

(rm

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-l Development Workbook
Chapter : 02 Page: 1-19
Section : Appendix Date: 1/8/68
Load Multiple Index per Alternate Key LMXA ilile h

number of registers loaded « j
eal + Xk +h

eak + alternate key

xis i+1 - M5 ea+l

Xi+2, i+3 Mea+2, ea+3

X'1+j-2, i#j-1 _, ea+j-2,eatj-1

M

K j is not divisible by 2, the number of registers loaded will be j-1. If j is zero or one, 32
registers will be loaded.

Exceptions Exception bit
missing address MA
ea not divisible by 2 BV
iodd RS

N

ADVANCED COMPUTING SYSTEMS

IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 1-20
Section : Appendix Date: 1/8/68
Store Multiple Tndex STMX i7(itk h

number of registers stored « j
eal +Xk +h
eak < normal key
M2 ea+l Xi’ i+l

Mea+2, ea+d L i+2,1+3

X

Mea+j-2, ea+j-1 _ Xi+j-2, i+j-1

If j is not divisible by 2, the number of registers stored will be j-1. If j is zero or one, 32

registers will be stored.
Exceptions

missing address
protected address
ea not divisible by 2
iodd

Exception bit

MA
PA
BV
RS

?:*15.

ADVANCED COMPUTING SYSTEMS
Volume 14

IBM REGISTERED CONFIDENTIAL
ACS~| Development Workbook

Chapter 02 Page: 1-21
Section : Appendix Date: 1/8/68
Store Multiple Index per Alternate Key STMXA iljilk h

number of registers stored <« j
eal * X‘k +h

eak + alternate key

M ea+l _ Xi’ i+l

Mea+2, ea+d X'1+2, i+3

-

Mea+j-2, ea+j-1 Xi+j-2, i+j-1

If j is not divisible by 2, the number of registers stored will be j-1. If j is zero or one, 32

registers will be stored.
Exceptions

missing address
protected address
ea not divisible by 2
iodd

Exception bit

MA
pA
BV
RS

_(r-n

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-1 Development Workbook
Chapter : 02 Page: 1-22
Section : Appendix Date: 1/8/68
Load Multiple Arithmetic LMA i]lilk h

number of registers loaded « j

eal + Xk +h

eak + normal key

Al e M

A:'L+1 . Mea.+2
Ai+j-1 . Mea+2j-2
If j is zero, 32 registers will be loaded.

Exceptions Exception bit

missing address , MA
ea not divisible by 2 BV

ADVANCED COMPUTING SYSTEMS |IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-1 Development Workbook
- Chapter : 02 . Page:1-23a
Section : Appendix Date :1/8/68
Load Multiple Arithmetic per Alternate Key LMAA ililk h

number of registers loaded « j
eal « Xk +h
eak *+ alternate key
Ai « 2

i+l _ , rea+2

A M

Ai+j- 1, Mea+2j-2

If j is zero, 32 registers will be loaded.

Exceptions Exception bit
¢
- missing address MA
ea not divisible by & BV

ADVANCED COMPUTING SYSTEMS

Volume : 1A
Chapter : 02
Section Appendix

IBM REGISTERED CONFIDENTIAL

ACS-| Development Workbook
Page: 1-23b
Date: 1/8/68

Store Multiple Arithmetic STMA ililk h

number of registers stored + j

eal « Xk +h
eak + normal key
ME* « Ai
Mea+2 . Ai+1
IV,‘[ea+:2j-:2. +Ai+j-—l
If j is zero, 32 registers will be stored.

Exceptions Exception bit
missing address MA
protected address PA
ea not divisible by 2 BV

ADVANCED COMPUTING SYSTEMS 1BM REGISTERED CONFIDENTIAL

Volume ¢ 1A ACS-| Development Workbook
Chapter : 02 Page: 1-23c
Section : Appendix Date: 1/8/68
Store Multiple Arithmetic per Alternate Key STMAA ililk h

number of registers stored «+ j
eal « Xk +h
eak « alternate key
MO « 4
Mea+2 . Ai+1

Mea+2j- 2, Ai-i—j- 1

If j is zero, 32 registers will be stored.

Exceptions Exception bit
missing address MA
protected address PA

ea not divisible by 2 BV

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 1-24
Section : Appendix Date: 4/17/67
Store Multiple Zeros STMZ \\. N
NNV h
eal «XX 4 h
eak «normal key
M2 ea+l,...,ea+83 <0 [15363
Exceptions Exception bit
missing address MA
protected address DA
ea not divisible by 64 BV
Store Multiple Zeros per Alternate K STMZA NN
or ip per Alternate Key &\\\ k b
eal +X‘k +h

eak +alternate key

M€+l ee 02483 oad)

This instruction is identicai to STMZ except that the alternate key is used.

Exceptions Exception bit
missing address MA
protected address PA
ea not divisible by 64 BV

oy
(

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL
Volume : 1A ACS-| Development Workbook
Chapter 02 Page: 2-1
Section : Appendix Date: 4/17/67

MOVE OPERATIONS

The move operations are for transfering data between registers of two different types. Examples
are moves from a special register to an index register or from an index register to an arithmetic
register. Most of the instructions involve movement of entire registers or register pairs.
However there is a class of move instructions which move single bits to or from the condi-

tion register.

Movement of information to or from special registers involve certain interlock considerations
which are treated in the section, "Interlocking".

-

ADVANCED COMPUTING SYSTEMS

IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Pagef 2-2
Section : Appendix Date: 4/17/67
Move Index to Arithmetic MXA i3 |x
Al bk
Exceptions: none
Move Arithmetic to Index MAX ililk
xh1e aK

k

If 1=, X‘wﬂlbeset_toA%m,w.

Exceptions: none

ADVANCED COMPUTING SYSTEMS

Volume : 1A
Chapter 2 02
Section : Appendix

IBM REGISTERED CONFIDENTIAL

ACS-! Development Workbook
Page: 9_3
Date: 4/17/67

Move Constant to Left Half Arithmetic

i
Boy 05,96, ,47

Exceptions: none

Move Constant to Right Half Arithmetic

i .
Ao4 25, 26,... , 47
Note that bits Ag 1.9 ... 93 are unchanged.

Lot B | ?

Exceptions: none

MKL

«0 [24]

MKR

h

NN

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Developmegt Workbook
Chapter : 02 age: 2-
Section : Appendix Date : 1/3/68
Move Location to Index MLX i ik
i, .
X" «ia + jk

The value of ia is the 24-bit storage location of the MLX instruction. The 10-bit literal ik-
field is extended to a 24-bit quantity before the addition by appending 14 high-order bits equal
in value to the high order bit of the jk-field. The addition is performed modulo 224.

Exceptions: none

Move Index to Special MXS i | &
S
Exceptions Exception bit
i 23 and in problem mode PV
Move Special to Index MSX i 5 Q
xt o
Exceptions Exception bit

j 2 3 and in problem mode PV

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-1 Development Workbook
Section | Appendix Date: 1/8/68
Move Special to Index and Zero MSXZ i |y @
xt+ g
s« 0[24]
Ixceptions Fxception bit
j 2 3 and in problem mode bv
Move Index to Special by Oring MXSO r §
Si + SivXj
Exceptions Exception bit

i1 2 3and in problem mode PV

ADVANCED COMPUTING SYSTEMS

Volume : 1A
Chapter : 02
Section : Appendix

IBM REGISTERED CONFIDENTIAL

ACS-| Development Workbook
Page: 2-6
Date: 1/8/68

Move Index Bit to Condition Bit

If n exceeds 23, c; is set to 0.
Exception

c24 set to O or c25

Move Condition Bit to Index Bit

I n exceeds 25, no bit is set,

Exceptions: none

Move Arithmetic Bit to Condition Bit

If n exceeds 47, < is set to Q.

Exception

Coy set to O or c25 settol

setto i

MXC

n+xt

c.*Xj
i n

MCX

next

MAC

n-'-Ak

c. +Aj
n

Exception bit

cC

Exception bit

CcC

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-I Development Workbook
Chapter : 02 Page: 3-1
Section : Appendix Date: 1/8/68

FLOATING POINT ARITHMETIC

The purpose of the floating point instruction set is to perform calculations wsing data with a wide
range of magnitude and yielding results scaled to preserve precision.

Floating point numbers consist of an exponent E and a fraction F. The quantity expressed by this
number is the product of the fraction and the number 2 raised to the power of the exponent, that is:

value = + F x 2F

Instruction Format

Most floating point instructions have the following format:

op {i]itfk

where j and k designate the arithmetic registers containing the source operands and i specifies
the result register(s). - The remaining floating point operations ignore the k field of the instruction.

The arithmetic registers containing the source operands are not changed as a result of floating
point instructions unless they are also specified by the i field to be result registers.

Number Representation

Floating point numbers may be in 48 bit single precision form or in 96 bit double precision form.
Single precision numbers may occupy any of the arithmetic registers. Double precision numbers
may occupy any even-odd pair of arithmetic registers. Arithmetic register AU is specified to be

a source of 0's, When AUis specified as a source operand, 48 or 96 0's will be provided depending
on whether a single or double precision operand was called for by the instruction. If AO is
specified as the resull register, the result will be lost, and the only effect of the operation will

be a possible change in the exception register.

Whenever a double precision number is specified by an instruction, the value of the i-, j=, or k-
field (as appropriate) is assumed to be even. If it is not, the low order bit of the field is forced to
0, exception bit RS is set, and the operation proceeds. Thus fifteen non-zero double precision
quantities are specifiable; namely, the data in register pairs specified by 2,4,6,...,30. Note
that register Al is not the low order half of any double precision quantity.

i;-m.«.

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS~| Development Workbook
Chapter 1 02 Page: 3-2
Section ¢ Appendix Date: 4/17/67

The representation of a floating point number consists of a one bit sign field, an 11 bit exponent
field, and a 36 bit or 84 bit fraction field, The sign field occupies positions O of the floating
point number. A 0 signifies a positive fraction and a 1 a negative fraction. The exponent

field occupies positions 1 through 11. The exponent field contains the sum of the exponent,

E, and the number 1024, the bias value. The fraction field occupies positions 12 through

47 for a single precision number, and positions 12 through 85 for a double precision number.

Pictorially, with arithmetic bit weights given for the fraction, the formats are:

48 bit floating point number

Sign —

Fraction p’ 3

Exponent —

Fraction Weight | || 2722 2 35], 738
T IT 12 13 %6 B7

Bit Position

96 bit floating point number

Sign <

Fraction ¢ 3>

Exponent —>

Fraction Weight ﬂ “ 2 _ll 272 PR PR
T 1 11 1z 13 TEEE

Bit Position

Number Range

The range of exponents which can be represented is +1022 through ~1024, Whenever a floating

" point operation results in an exponent which cannot be represented in this range, an excep~-

tion condition exists. If the exponent exceeds +1023, the condition is called overflow. If
the exponent is less than -1024, the condition is called underflow., An appropriate exception
bit is set to 1 on occurrence of these exceptional conditions.

Figure 3.1 illustrates the range of normalized results possible from a single precision floating
point operation. The range of result magnitude is approximately 2. 8 x 107309 to 9, 0 x 10307,

.

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-i Development Workbook
Chapter : 02 Page: 3-3
Section : Appendix Date: 4/17/67

Numbers in the exponent overflow range have the properties of undefined numbers and will
be symbolized by u. Furthermore, results in this overflow range are changed to a specific
bit configuration: bit Zero is set to 1 and the remaining bits are set to 0,

Numbers in the exponent underflow range may be considered to have the properties of the number
zero, and are symbolized by 0. Hence, results in the exponent underflow range are changed
to the bit configuration which is all O's.

Since the bit configuration of a leading 1 followed by all 0's represents the u range, special
definition of arithmetic using this configuration as an operand is necessary. Figure 3.2
summarizes the results for initial operands as specified. N represents a non-zero value in
the valid number range. N* represents a result which is normally in the N range but may be
in the v or O ranges due to exponent overflow or underflow. Results when using these operands
in the compare and sign change operations are given in the sections of this manual dealing with
those instructions.

In order to inform the programmer when results approach to the limits of representability,
there are overflow and underflow warning bits. These bits are set when a machine with a ten
bit exponent would overflow or underflow. The resulting operand is not affected by the setting
of these exception bits.

Normalization

A quantity can be represented with the greatest precision by a floating point number, with a
given fraction length, when that number is normalized. A floating point number is normalized
when it is zero or when 1/2 < |F| <1. Thus, a non-zero floating point number is normalized

if bit 12 (the high order fraction bit) is a 1. The process or normalization consists of shifting
the fraction left until the high order fraction bit is a 1, and reducing the exponent by the number
of bits shifted.

Instructions are provided which sllow fioating point arithmetic to be performed with either
normalized or unnormalized results. The normalized addition and subtraction instructions

~ yield a normalized result regzardless of whether or not the input operands were normalized.
The normalized multiplication instructions only guarantee a normalized result if both input
operands were normalized. Division may not be done with an unnormalized divisor and does
not gquarantee a normalized result if the dividend is not normalized.

P

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-1 Development Workbook
Chapter : 02 Page: 3-4
Section : Appendix Date: 4/17/67

QOverflow Underflow
Representable Warning Warning Overlﬂow Underflow

(-2 ,9102 T T
(1/2) « 2°12 i
(1 - 2736y, P11
(1/2) x 27912 |
(1 - 2_36) x 2_513
{(1/2) x 2'-1024 4 L I

0 . . I

- T T

- (1/2) « 971024
(1 536y, 5513
- (1/2) x 2212
- %8, 5l |
- (1/2) x 2212
- (1 - 2-36}x 21023 [)

Figure 3. 1. Range of Normalized Numbers

ADVANCED COMPUTING SYSTEMS

Volume
Chapter
Section

: 1A
: 02
: Appendix

IBM_REGISTERED CONFIDENTIAL

ACS-1 Development Workbook

Page: 3-5
Date: 4/17/67

Addition Table

Addend
Augend 0O N u
0 O | N
N N | N*
u u u

Multiplication Table

Multiplicand
Multiplier O N u
O 0 [¢]
N 0 N*¥| u
u u u
Division Table
Dividend
Divisor 0] N u
O u u
N O N*
u u u u

Figure 3. 2. Result Ranges

e

-

ADVANCED COMPUTING SYSTEMS

IBM REGISTERED CONFIDENTIAL

gglume : 1A ACS-| Developme;i WOrl:;bgok
apter : 02 age: 3-
Section ! Appendix .) Date : 4/17/67

Truncation and Rounding

During the execution of floating point arithmetic operations, low order bits may be truncated
in intermediate calculations or when Placing the result in the result register. In single precision .
arithmetic the intermediate result fraction is truncated with the high order 37 bits retained.
The low order bit of the retained information is called the guard bit. Normalization, if specified
by the instruction, takes place by shifting the intermediate fraction including the guard bit.
Following normalization the fraction is truncated to 38 bits and placed in the result register.
Double precision normalized arithmetic is similar except the intermediate fraction is truncated
with 85 bits retained, and the final result is truncated to 84 bits.

Normalized floating point arithmetic instructions are also provided which specify the result
fraction to be statistically rounded. If any of the bits truncated, during either of the truncation
processes described above, were a 1, the low order bit of the fraction field is forced toa l.

Rounding does not take place if a zero fraction,exponent overflow, or exponent underflow excep-
tion occurred.

Low Significance and Zero Fraction

Addition and subtraction may cause a loss of significant bits in cases where the operands are

of nearly the same magnitude and differ in sign or when the operands have large numbers of
leading 0's, so that the result, before normalization, has a large number of leading O's.

A warning is given when this occurs by setting a "low significance" exception bit to 1. The

bit is set to 1 for both single and double precision operations when the leading 1 bit of the
result fraction, prior to normatization, is in one of the eight least significant bit positions

or is in the guard bit. The low significance exception bit is not set to 1 when the result fraction
is all 0's. For this occurrence, a "zero fraction" exception bit is set to 1.

Short Word Floating Point Format

Special provision is made for allowing floating point numbers to be packed into less than 48
bits. In the short floating point format, the sign bit occupies the leading bit position, the
exponent field the next n positions (where n is between one and eleven), and the fraction field
the remaining positions. The following diagram illustrates this format:

Sign —

Fraction < >
Exponent —

Fraction Weight |] 271273 | 27K
Bit Position o 1 7 n+l n+k

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume ¢ 1A ACS-| Development Workbook
Chapter = 02 Page: 3-7
Section : Appendix Date: 4/17/67

Quantities in this short format are not acceptable operands for arithmetic operations and must
be converted to the standard 48 bit format before use, Two special instructions CVF and

CVS are provided for converting from short word to full word floating point and vice versa.
These instructions which contract and expand the exponent will be described further in the
instruction section.

In the short format the exponent, sign, and fraction fields have the same interpretation as

in the long format except that the exponent is stored with a bias of on-1 in the short format (in
the reqular format, the bias is 210).

Operation Summary

The following table summarizes the floating point arithmetic instructions:

Add Subtract Multiply Divide
$ —
Nermalized, Truncated
Single) AN SN MN DN
Double ADN SDN MDN DN
Mixed - - MMN DMN
Normalized, Founded
Single AR SR MR DR
Double ADR SDR MDR DDR
Mixed - - - DMR
Unnormalized, Truncated
Single AU SU MU -
Double ADU SDU MDU -
Mixed - - MMU -

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter . 02 Page: 3-8
Section ¢ Appendix Date: 4/17/67

{""\

Addition and Subtraction Instructions
All the addition and subtraction operations are performed as follows:

The notation 37/85 indicates 37 in the case where the result is to be in single precision and
85 in the case where the result is to be in double precision.

1. If either operand is a u, the result is set to u and the remaining steps of the operations
are omitted.

2. U either operand is 48/96 O's, step 3 is omitted. If both of the operands are 48/96 O's,
the result is set to 48/96 0's and the remaining steps are omitted.

3. The exponents of the operands in Al and AK are compared and the fraction of the operand
with the smaller exponent is shifted right a number of positions equal to the difference
In exponents. 0O's are inserted in the high order vacated bits.

4. Tf the instruction specifies subtraction, the sign of the second operand is changed.

9. A signed fraction addition then takes place with the high order bit of the shifted fraction
aligned with the high order bit of the unshifted fraction. Conceptually, addition takes
place before any truncation and the intermediate result is then truncated to 37/85 bits.
In fact, truncation takes place first, with sufficient information retained from the truncated
bits to make the above property hold.

8. The larger of the two operand exponents is taken as the exponent of the intermediate result.

7. If the fraction addition caused a fraction overflow, the intermediate fraction is shifted
right one position and a 1 is inserted in the high order position. One is then added to
the intermediate exponent. If this causes the exponent to exceed 1023 an exponent over-
fiow has occurred. The result is then set to u, the AOQ (add overflow) exception bit is
set to 1, and the remaining steps are omitted,

© 8. If normalization is specified and if the 37/85 bit intermediate result fraction was all O's,
the result is set to zero (i. e. 48/96 0's), the ZF {(zero fraction) exception bit is set to
1, and the remaining steps are omitted.

9. If normalization is not specified and the 36/84 bit intermediate result fraction was all
0's, the ZF exception bit is set to 1 and step 10 is omitted.

10. If the high order 28/76 bits of the fraction are all 0's the LS (low significance) exception
bit is set to 1.

f\

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter . 02 ' Page: 3-9
Section : Appendix Date: 4/17/67

11. I the instruction specified normalization, the intermediate fraction is now normalized.
The intermediate fraction is shifted left until its high order bitis a 1. 0's are inserted
into the low order vacated bits. The intermediate exponent is decreased by the amount
of the shift. If this causes the exponent to be less than -1024, an exponent underflow
has occurred. The AU (add underflow) exception bit is set to 1, the result is set to
48/96 0's and the remaining steps are omitted.

12. If the resulting exponent is greater than 511, the OW (overflow warning) exception bit
is set to 1. If the resulting exponent is less than -512, the UW (underflow warning)
exception bit is set to 1.

13. This intermediate result fraction is truncated to 36/84 bits.

14. I rounding was specified by the operation, the low order bit of the fraction is forced to
a 1 if any of the truncated bits, including the bit shifted out in step 7, were a 1.

ADVANCED COMPUTING SYSTEMS

IBM_REGISTERED CONFIDENTIAL

- Volume 1A ACS-1 Development Workbook
Chapter : 02 Page: 3-10
Section : Appendix Date: 1/8/68
Add Normalized AN
i1jlk
The contents of register Alare replaced by the normalized sum of the single precision floating
point numbers in Al and Ak,
Exceptions Exception bit
result exponent > 41023 AO
result exponent < -1024 AU
+511 < result exponent € +1023 oW
=512 > result exponent 2 -1024 Uw
low significance LS
zero fraction ZF
= Add Double Normalized ADN il |k

The contents of reyister pair Al i+l are reflaced by the normalized swmn of the double precision

floating point numbers in Al 1+1 ang Ak, k+
Exceptions

resutt exponent » +1023

result expenent € -1024

+511 < result exponent € +1023
-512 > result exponent 2 -1024
low significance

zero fraction

i, i, or k odd

Exception bit

AO
AU
oW
Tw
LS
ZF
RS

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
et Chapter : 02 Page: 3-11
Section : Appendix Date: 1/8/68
Add Rounded AR
iljilk

The contents of register Al are replaced by the normalized and statistically rounded sum of
the single precision floating point numbers in A and Ak,

Exceptions Exception bit
result exponent) +1023 AQ
result exponent ¢ -1024 AU
+511 ¢ result exponent < +1023 oW
=512 ? result exponent } ~1024 UwW
low significance L3
zero fraction ZF

£
> Add Double Rounded ADR il 1w

The contents of register pair Al I*! are replaced by the noi'mahzed and statistlcally rounded

sum of the double precision floating point numbers in Al:J*1 and Ak, k+l
Exceptions Exception bit

result exponent > +1023 AO
result exponent < -1024 AU
+511 < result exponent £ +1023 oW
-512 > result exponent ? -1024 uw
low significance LS
zero fraction Zr
i, i, or k odd RS

ADVANCED COMPUTING SYSTEMS |BM REGISTERED CONFIDENTIAL

Volume 1A ACS~| Development Workbook
Chapter ;0 02 Page: 3-12
Section : Appendix Date: 1/8/68
Add Unnormalized AU .

iljlk

The contents of register Al are replaced by the unnormalized sum of the single precision floating
point numbers in AJ and Ak

Exceptions Exception bit

result exponent y +1023 AO
+511 ¢ result exponent € +1023 ow
low significance LS
zero fraction zr
Add Double Unnormalized ADU 1] [k

The contents of register pair Ai’ i+l are reglaced by the unnormalized sum of the double preci=-
sion floating point numbers in Al: 3+l and Ak, k+1,

Exceptions Exception bit
resuit exponent) +1023 AO
+b11 < result exponent +1023 ow
low significance LS
zero fraction ZF

i, j, orkodd . RS

ADVANCED COMPUTING SYSTEMS {BM REGISTERED CONFIDENTIAL

Volume 1A ACS-| Development Workbook
Chapter : 02 Page: 3-13
Section : Appendix Date: 1/8/68
Subtract Normalized SN L]

1]

The contents of register Alare replaced by the normalized result of the subtraction of the
single precision floating point number in A¥ from the single precision floating point number
in Al

Exceptions Exception bit
result exponent » +1023 AO
result exponent ¢ -1024 AU
+511 < result exponent ¢ +1023 oW
=512 7 result exponent > -1024 uw
low significance LS
zero fraction ZF

Subtract Double Normalized SDN i1yl

The contents of register pair Al i+l are replaced by the normalized result of the subtraction
of the double precision floating point number in AK, %+l from the double precision floating
point number in Aj,J+1.

Exceptions Exception bit
result exponent » +1023 AO
result exponent < -1024 AU
+511 < result exponent € +1023 oW
-512 » result exponent > -1024 UW
low significance 1S
zero fraction ZF

i, j, or k odd RS

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 14 ACS-1 Development Workbook
Chapter : 02 Page: 3-14
Section : Appendix Date: 1/8/68
Subtract Rounded SR

i]ljlk

The contents of register Alarereplaced by normalized and statistically rounded resuit of the
subtraction of the single precision floating point number in AX from single precision floating
point number in Al,

Exceptions Exception bit
resuit exponent > +1023 AQ
result exponent < -1024 AU
+511 < result exponent € +1023 oW
~012 > result exponent > -1024 uw
low significance L3
zero fraction ZF

Subtract Double Rounded SDR i[5 1k

The contents of register pair Al 1+1 are replaced by the normalized and statistically rounded
result of the subtraction of the double precision floating point number in Ak, k+1 from the
double precision floating point number in A, i+1,

Exceptions Exception bit
result exponent > +1023 AQO
result exponent < ~1024 AU
+511 < result exponent £ +1023 ow
~512 > result exponent 2 -1024 uw
low significance LS
zero fraction ZF

i, j, or k odd RS

f:-s-.z

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-! Development Workbook
Chapter . 02 Page: 3-15
Section : Appendix Date: 1/8/68
Subtract Unnormalized SU il |k

]

The contents of register Al are replaced by the unnormalized result of the subtraction of the
single precision floating point number in A¥ from the single precision floating point number
in A,

Exceptions Exception bit
result exponent » +1023 AQO
+511 < result exponent € +1023 ow
low significance LS
zero fraction ZF
Subtract Double Unnormalized SDU iy |k

The contents of register pair Al,1+1 are replaced by the unnormalized result of the subtraction
of the double precision floating point number in AX,¥*1 from the double precision floating
point number in Al J*i,

Exceptions Exception bit
result exponent » +1023 AQO
+511 ¢ result exponent £ +1023 oW
low significance LS
Zero fraction ZF
i, j, or k odd RS

-

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume ¢ 1A ACS-1 Development Workbook
Chapter : 02 Page: 3-16
Section : Appendix Date: 4/17/87

Multiplication Instruction

The multiplication operations are performed as follows:

1. I either operand is u, the result is set to u and the remaining steps of this operation
are omitted.

2. I either operand is 48/96 O's, the result is set to zero and the remaining steps are
omitted.

3. If either operand is unnormalized and the instruction calls for normalization, the UO
is set to 1.

4. The exponents of the operands are added to form an intermediate exponent.

5. The 36/84-bit fraction of the operand in Al and the 36/84-bit fraction of the operand
in AK are multiplied to form a 72/168-bit product which is then truncated with the high
order 37/85 bits being retained.

6. If normalization was called for, the high order bit of the intermediate fraction is compared
to 0. If it is a O, a left shift of one position takes place and the intermediate exponent
is decreased by one. This is sufficient to normalize the result if the operands were
normalized.

7. If the intermediate exponent is greater than 1023, the MO (muitiply overflow) exception
bit is set to 1 and the result is set to u. The remaining steps are omitted.

8. If the intermediate exponent is less than ~1024, the MU (multiply underflow) exception
bit is set to 1 and the result is set to 48/96 O's. The remaining steps are omitted.

9. If the exponent is greater than 511, the OW bit is set to 1. If it is less than -512, the
UW bit is set to 1.

10. The intermediate fraction is truncated to 36/84 bits.

11, I rounding is called for and if any of the truncated bits were a 1, the low order bit of the
fraction is set to 1.

15N

ADVANCED COMPUTING SYSTEMS 1BM REGISTERED CONFIDENTIAL

Volume : 1A ACS~| Development Workbook
Chapter ¢ 02 Page: 3-17
Section : Appendix Date: 1/8/68
Multiply Normalized MN 1]y x

i

The contents of register Al are r lIzlauzed by the normalized product of the single precision
floating point numbers in AJ and A

Exceptions Exception bit
result exponent » +1023 MO
result exponent < -1024 MU
+511 < result exponent ¢ +1023 ow
~D12 » result exponent > ~1024 uw
unnormalized operand Uuo

Multiply Double Normalized MDN i {1y |k

The contents of register pair al, i+l are {eplaced by the normalized product of the double

precision floating point numbers in A);J¥L and Ak, k
Exceptions Exception bit
result exponent » +1023 MO
result exponent ¢ ~1024 MU
+5:1 < result exponent £ +1023 oW
-512 > result exponent » -1024 Uw
unnormalized operand Uuo

i, j, or k odd RS

o
o

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 3-18
Section : Appendix Date: 1/8/68
Multiply Rounded MR

iljlk

The contents of register Al are replaced by the normalized and statistically rounded product
of the single precision floating point numbers in AJ and Ak,

Exceptions Exception bit
result exponent » +1023 MO
result exponent < -1024 MU
+511 < result exponent £ +1023 oW
512 » result exponent > -1024 UwW
unnormalized operand Uuo

Multiply Double Rounded MDR i1 |«

The contents of register pair AL+l gre replaced by the ncrmalized and statistically rounded
product of the double precision floating point numbers in A:J*1 and Ak, k+1,

Exceptions Exception bit
result exponent » +1023 MO
result exponent < -1024 MU
+511 < result exponent £ +1023 ow
-512 ¥ result exponent 2 -1024 uw
unnormalized operand Uo
i, j, or k odd RS

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

:

Volume : 1A ACS-| Development Workbook
Chapter . 02 Page: 3-19
Section : Appendix Date: 1/8/68
Multiply Unnormalized MU SERL

The contents of register Al are relglaced by the unnormalized product of the single precision
floating point numbers in Al and AK,

Exceptions Exception bit
result exponent » +1023 MO
result exponent < -1024 MU
+511 < result exponent £ +1023 oW
-512 * result exponent 2 -1024 UW

Muttiply Double Unnormalized MDU i

The contents of register pair Al i+l are replaced by the unnormalized product of the double
precision floating point numbers in Als I+1 and K. K+1,

Exceptions Exception bit
result exponent » +1023 MO
resuit exponent < -1024 MU
+511 < result exponent £ +1023 oW
-512 > result exponent 7 -1024 Uw

i, j, or k odd R8

o

ADVANCED COMPUTING SYSTEMS

IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-1 Development Workbook

Chapter ;02 Page: 3-20

Section : Appendix Date: 1/8/68
Multiply Mixed Normalized MMN

i

ilk

The contents of register pair Al i+l are replaced by the double precision normalized product

of the single precision floating point numbers in Al and Ak,

Exceptions Exception bit
result exponent » +1023 MO
result exponent < -1024 MU
+511 < result exponent € +1023 oW
-512 » result exponent 2 -1024 UwW
iodd RS

Multiply Mixed Unnormalized MMU il e

The contents of register pair Al i+l gpe replaced by the double precision unnormalized product

of the single precision floating point numbers in Aj and Ak,
Exceptions

result exponent > +1023

result exponent { -1024

+511 € result exponent £ +1023
=512 > result exponent > -1024
iodd

Exception bit

MO
MU
ow
uw
RS

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-1 Development Workbook
Chapter » 02 Page: 3-21
Section : Appendix Date: 4/17/67

Division Instructions

The division operations are performed as follows:

1.
2

9.

10.

11,

12,

I either operand is a u, the result is set to a u and the remaining steps are omitted.

If the fraction of the divisor is zero, the result is set to u, the DO bit is set to 1, and
the remaining steps are omitted,

If the divisor is unnormalized, the result is set to u, the UD bit is set to 1, and the
remaining steps are omitted.

If the fraction part of the dividend is zero, the result is set to zero, and the remaining
steps are omitted.

The exponent of the divisor is subtracted from the exponent of the dividend to form an
intermediate exponent.

The 36/84 bit dividend fraction is divided by the 38/84 bit divisor fraction to form the
intermediate quotient fraction. Conceptually the quotient is computed to infinite precision
and then truncated to 36/84 bits,

Since the divisor was normalized, the intermediate quotient fraction must be less than
2.0, K it is greater than or equal to 1.0, it is shifted right one position, a 1 is Inserted
in the high order position, and the intermediate expenent is increased by one. ¥ the
dividend was normalized, the fraction is now normalized.

If the intermediate exponent is greater than 1023, the result is set to u, the DO exception
bit is set to 1, and the remaining steps are omitted.

If the intermediate exponent is less than -1024, the result is set to all O's, thz DU exnep-
tion bit is set to 1, and the remaining steps are omitted.

If the exponent is greater than 511, the OW bit is set to 1. If the exponent is less than
-512, the UW bit is set to 1.

If rounding was specified and any of the bits truncated in steps 6 or 7 was a 1, the low
order bit of the fraction is forced to a 1.

The sign of the result, determined by the rules of algebra, together with the intermediate
exponent and fraction form the result.

iIBM REGISTERED CONFIDENTIAL
ACS~| Development Workbook

ADVANCED COMPUTING SYSTEMS

Volume : %12& h o
Chapter : age: 3-
Section . Appendix Date: 1/8/68
Divide Normalized DN

ifilk

The contents of register Al are replaced by the quotient formed by dividing the single precision
floating point dividend in A by the single precision floating point divisor in Ak,

Exceptions Exception bit
result expenent » +1023 DO
result exponent < -1024 DU
+511 < result exponent € +1023 oW
~-512 > result exponent ¥ -1024 UwW
unnormalized divisor UDb
divisor fraction = 0 DO

Divide Double Normalized DDN il

The contents of register pair Al 1+1 are replaced by the quotient formed by dividing the double
premsion floating point dividend in Al j+1 by the double precision floating point divisor in

Ak, k+

Exceptions Exception bit
result exponent » +1023 DO
result exponent < -1024 DU
+511 < result exponent ¢ +1023 oW
-512 » result exponent » -1024 uw
unnormalized divisor up
divisor fraction = 0 DO

i, j, or k odd B3

¥,

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 3-23
Section : Appendix : Date : 1/8/68
Divide Rounded DR

= ilj]lk

The contents of register Al are replaced by the statistically rounded quotient formed by dividing
the ?{ingle precision floating point dividend in Al by the single precision floating point divisor
in A%,

Exceptions Exception bit
result exponent » +1023 DO
result exponent ¢ ~1024 DU
+511 < result exponent +1023 oW
=512 > result exponent » -1024 uw
unnormalized divisor UuD
divisor fraction=0 DO

Divide Double Rounded DDR il |k

The contents of register pair Ai’ i+l are replaced by the statistjcally rounded quotient formed
by dividing the double frecision floating point dividend in AJ*J¥* by the double precision floating
point divisor in AK, k+1,

Exceptions Exception bit
result exponent » +1023 DO
result exponent < -1024 DU
+511 ¢ result exponent £ +1023 ow
-512) result exponent ? ~1024 Uw
unnormalized divisor ubD
divisor fraction= G DO

i, }, orkodd RS

|BM REGISTERED CONFIDENTIAL
ACS-1 Development Workbook

ADVANCED COMPUTING SYSTEMS

Volume : 1A

Chapter 02 Page: 3-24
Section : Appendix Date: 1/8/68
Divide Mixed Normalized DMN il x

The contents of reqgister A1 arci replaced by the quotient formed by dividing the double precision
floating point dividend in Al J* by the single precision floating point divisor in Ak

Exceptions Exception bit
result exponent » +1023 DO
result exponent < -1024 DU
+511 < result exponent ¢ +1023 oW
-512 » result exponent > -1024 UwW
unneormalized divisor UD
divisor fraction= 0 DC
j odd RS

Divide Mixed Rounded DMR i1]
J

The contents of register Al are regplaced by the statistically rounded quotient formed by dividing
the double prec151on floating point dividend in Aj,3*1 by the single precision floating point

divisor in AK

Exceptions Exception bit
result exponent » +1023 o
result exponent ¢ -1024 Du
+511 ¢ result exponent € +1023 ow
-512 » result exponent 2 -1024 Uw
unnormalized divisor UuD
divisor fraction = 0 Do

j odd RS

ADVANCED COMPUTING SYSTEMS

{BM_REGISTERED CONFIDENTIAL

Volume < 1A ACS-| Development Workbook
Chapter : 02 Page: 3-25
Section : Appendix Date : 1/8/68

Miscellaneous Instructions

Round

RND

i NN

The double precision floating point number is register pair AL I+1 45 rounded to form a single
Precision number which replaces the contents of Al

This round which is a "true round", rather than the statistical round which was described
earlier, is performed as follows:

1.

If the input operand is a double precision representation of u, the result is set to a single
precision u and the remaining steps are omitted.

The exponent of the input forms the intermediate exponent.

If bit Algl (L. e. bit 37 of the 84 bit fraction) is a 1, the magnitude of the fraction of Al

is increased by 2736 5 form an intermediate fraction.

If the addition in step 3 caused a fraction overflow, the intermediate fraction is shifted
right one position, with its low order bit lost, and a 1 is inserted into the high order
position of the fraction. Then the intermediate exponent is increased by one. ¥ this
causes an exponent overflow, the AO exception bit is set to 1, the result is set to u, and
the remaining steps are omitted.

If the intermediate fraction is 36 O's, the result is set to 48 0's and the ZF exception
bit is set to 1, and the remaining steps are omitted.

If there are no 1's in the high order 28 bits of the fraction, the LS bit is set to 1.
If the intermediate exponent is greater than 511 the OW exception bit is set to 1.

The sign of the input together with the intermediate exponent and fraction form the result.

Exceptions Exception bit
result exponent » +1023 AO
+511 < result exponent £ +1023 oW
low significance 13
zero fraction ZF

j odd RS

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02) Page: 3-28
Section : Appendix Date: 1/8/68
Set Positive, Floating SPF . Q

1 N
Set Negative, Floating SNF] N

5 N

The 47 low-order bits of Al are replaced by the 47 low-order bits of Al, Bit AB is set to
0 for SFF; it is set to 1 for SNF.

If A7 is the u configuration, then Al is set to the u configuration. If Al is true zero (all O's),
then Al is set to true zero.

Exceptions: none

ADVANCED COMPUTING SYSTEMS |BM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 3-27
Section : Appendix Date: 4/17/67
Convert to Short Floating CVs N

1

The single precision floating point number in AJ is converted to a short floating point number
and replaces the contents of AL, The length, n, of the exponent field of the short floating
point number is given by the b-bit 2's complement literal in the k field.

The conversion is performed as follows:

1. ¥ nis negative, zero, or greater than eleven, the result is set to a u, the ILO (illegitimate
operand) exception bit is set to 1, and the remaining steps are omitted,

2. If the input is u, the result is set to u, and the remaining steps are omitted.
3. If the input is 48 O's, the result is set to 48 O's and the remaining steps are omitted.

4, The 46 bits Aj , A 2 deny Aj are shifted left 11-n positions, 0's fill the vacated positions.
3 47

If any of the bits shifted out through A% are the same as A?.L, this indicates that the exponent

cannot be represented in 11-n bits. The SO bit is then set to 1, the result is set to u, and
the remaining steps are omitted.

5. The two unshifted bits A}, A} together with the 46 bits of the shifted quantity form the

result,
Exceptions Exception kit
n>1l1 ILO
n<l II.O

mrepresentable exponent S0

("

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 3-28
Section : Appendix Date: 4/17/67
Convert to Full Floating CVF i 15 | x

The short, left justified, floating point number in Al is converted to a single precision floating
point number and replaces the contents of Al, The length n, of the exponent field of the short
floating point number is given by the 5-bit 2's complement literal in the k field.

The conversion is performed as follows:

1. X nis negative, zero, or greater than eleven, the result is set to u, the ILO exception
bit is set to 1, and the remaining steps are omitted,

2. @ the input is a u, the result is set to u, and the remaining steps omitted.
3. I the input is 48 0's, the result is set to 48 0's and the remaining steps are omitted.

4, The 46 bits Ajz, AL, ..., A}'” are shifted right 11-n positions. The vacated bit positions
are filled with the complement of the bit Ai.

5. The two unshifted bits A}, A} together with the high order 46 bits from the shifted quantity
form the result.

Exceptions Exception bit
n2>1l ILO
n<l ILO

("

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS~-| Development Workbook

Chapter : 02 Pogef 4-1

Section : Appendix Date: 1/8/68
INTEGER ARITHMETIC

Instructions and facilities are included in the integer arithmetic class of operations which
allow elementary arithmetic to be performed on single length and multiple length operands.

The integer arithmetic instructions have the following format:

op |1}] |k

where j and k designate the arithmetic registers containing the source operands and i specifies
the result register(s). '

The instructions are divided into three groups:

1. The single length integer arithmetic operations (add, subtract, multiply and divide) operate
on 48-bit operands and yield a 48-bit result. In each operation the specified function
is performed between two arithmetic, registers Al and AKX, The result replaces the 48-
bit contents of arithmetic register Al, The contents of AJ and AK are not changed.

2. Mixed length integer arithmetic operations (multiply and divide) have a 26-bit operands
or 96-bit result. The 96~bit operand occupies an even-odd pair of 48-bitarithmetic registers.

3. The "continued" integer arithmetic operations (high order continued add, high order
continued subtract, low order continued add, and low order continued subtract) use an
implied third operand. In each operation the specified function is performed between
the single precision integer contents of arithmetic reqgisters Al and AK and the 3-bit
contents of Multiprecision Carry Register (MPC). The result replaces the contents of
Al and MPC. Registers Al and AK are not changed.

* Register A0 s specified to be a source of O's. When AQis specified as a source operand,

48 or 96 0's will be provided depending on whether a single or mixed length instruction is
used. If A is specified as the result register, the result will be lost, and the only effect
of the operation will be a possible change in the Multiprecision Carry Register or the excep-
tion register.

Number Representation

Integer operands are represented in two's-complement form. The formats are as follows:

A

ADVANCED COMPUTING SYSTEMS

IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Paqef 4-2
Section : Appendix Date : 4/17/67

Single Precision Integer

- 47| 46 4 7-m 1 0
weight -2 2 2 2 2

operand 0 1 m 46 47
bit position

for 1= m < 47

Double Precision Integer

- 46 5-n 1 0
weight 94,93 , 34 48,0707, 52 1,

operand 0 1 m 46 47 48 49 n 94 95
bit position

for 1=m <47
49<n <95

Muitiple Precision Integer

Multi-length operands are 2 multiple of 48 bits in length and have the format:
r r-1 /, 2 1 n

|

‘}‘
0 470 47 7 0 470 47 m

n
I= 3 b w
m m,n
m,n

where [is the value of the integer operand of multiplicity r; b?n is the binary value of the mth

‘bit of the nth 48-bit register; and LA, is the weighting factor of bit b;ll as follows:

bl

_ _ odTn
form=20 wo’n——E

_ o4Tn-m
form#0 Wm,n =2

Note that the single and double precision integer formats can be considered special cases of
the above format with r equal to 1 and 2, respectively.

4
-‘!l--'

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
-Chapter ¢ 02 Page: 4-3
Section : Appendix Date : 4/17/67
Standard Form

In the multi-length format the magnitude of the weights of bit O of register n and bit 47 of
register n+1 are the same, but the signs are different. Thus the combination 00 has the same
value as the combination 11, A “standard form" is defined to circumvent this non-unique
format. A number is defined to be in standard form if bit zero of every register, except

the high order register, is equal to 0. Except for a few numbers near the negative limit of
the representable range, all numbers have a standard form. For example, the number which
has a 1 in bit zero of every word and 0's elsewhere has no standard form.

Multiprecision addition and multiplication can be performed on operands without requiring

the operands to be in standard form. The operation will yield a result in standard form.

The subtrahend in multiprecision subtraction must be in standard form. The requirement

for multiprecision dividends and divisors to be in standard form is dependent on the program-
ming algorithm to be used. The 96-bit product formed in mixed length multiply is in standard
form and mixed length divide requires the 96-bit dividend to be in standard form.

Overflow

The integers which can be represented in 48 bits in two's-complement form range from -247

to 247-1. Wherever a single length add, subtract, or multiply; a mixed length multiply or
divide; a high order continued add or subtract; or an arithmetic shift results in 2 number which
cannot be represented in the satisfactory range of ~247 to 247-1, an integer overflow condi-
tion exists and the appropriate exception bit is set to 1.

e,

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 4-4
Section : Appendix Date: 4/17/67
Add Integer Al s 1k

1 1]

The contents of register Alare replaced by the low order 48 bits of the sum formed by the
addition of the single precision integers in Al and Ak,

Exception Exception bit
resait » 2171 AO
result < ~2% AO

Subtract Integer SI .
iljlk

The contents of register Al are replaced by the low order 48 bits of the difference formed by
the subtraction of the single precision integer in AK from the single precision integer in Al.

Exception Exception bit
result » 247-1 AO
result < -2 AO

1S

IBM REGISTERED CONFIDENTIAL

ADVANCED COMPUTING SYSTEMS

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 4-5
Section : Appendix Date: 1/8/68
Multiply Integer MI .

ililk

The contents of Al aye replaced by the low order 48 bits of the product of the single precision
integers in Al and Ak,

Exception Exception bit
result) 247-1 MO
result < -247 MO

Multiply Inteqger, Mixed Length MMI i1k

The contents of register pair Ai: i+l ﬁre replaced by the product in standard form of the
single precision integers in AJ and AX,

In the special case where Al and AK are both 247 the product cannot be represented by a double
precision integer; then AL, i+l are set to O's and the MO exception bit is set to 1.

Exception Exception bit

result » 2241 MO
i 0dd RS

Y
(

ADVANCED COMPUTING SYSTEMS

IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-l Development Workbook
Chapter : 02 Page: 4-6
Section : Appendix . Date: 1/8/68

Integer Divide Instructions

The integer divide instructions are performed as follows:

ll

2.

6.

T

If the divisor is zero, the result is set to zero, the divide overflow exception bit (DO) is
set to 1, and the remaining steps are omitted.

If the divide is a DMI and the dividend is not in standard form, the ILO exception bit is set
to 1, and the operation proceeds as if the dividend was in standard form.

‘The dividend is divided by the divisor to form an exact quotient.
If the exact quotient is an integer, it forms the intermediate result.

If the exact quotient was not an integer, the integer part of the exact quotient forms the
intermediate result. That is, the exact quotient is rounded toward zero.

I the intermediate result cannot be represented in 48 bits, the divide overflow exception
bit is set to 1.

The result is set to the low order 48 bits of the intermediate result.

("

ADVANCED COMPUTING SYSTEMS 1BM REGISTERED CONFIDENTIAL

Volume 1A ACS-1 Development Workbook
Chapter 02 Page: 4-7
Section : Appendix Date: 1/8/68
Divide Integer DI .

i3tk

The contents of Al are replaced by the single precision integer quotient formed by dividing
the single precision integer dividend in AJ by the single precision integer divisor in AK,

Excerptions Exception bit
A¥ =g DO
47
resultd 27 -1 DO
Divide Integer, Mixed Lenath DMI tly

The contents of register Alare replaced by the singlelprecision integer quotient formed by
divicll{ing the double precision integer dividend in Al: 3t py the single precision integer divisor

in AX,
Exceptions Exception bit
Ak =0 DO
result » 247-1 DO
result € -2%7 DO
AJBI =1 ILO

j odd RS

("

ADVANCED COMPUTING SYSTEMS {BM _REGISTERED CONFIDENTIAL

Volume : 1A ACS~I Developmegi Worktfogk
Chapter : 02 age: 4-
Section : Appendix Date: 1/8/68
Continued Add, Liow Order ACL ilitk

The contents of Al 47 2T€ replaced by the low order 47 bits of the sum of the integers in
3 3 LN] >

and Ak and the contents of the Multiprecision Carry Register MPC. Al is set to 0. The MPC

is set so that: 0
47 i L3 k
2 xMPCneW+A = A"+ A +MP001d
Exception Exception bit
MPcold#-B,—z,ul,O, or +1 ILO
Continued Subtract, ILow Order SCL ililk

The contents of Ai 47 2T¢ replaced by the low order 47 bits formed by subtracting the
’ L I ’ »
integer in Ak from the integer in Aj and adding the contents of MPC to the difference. Al

is
set 1o 0, The MPC is set so that: 0
47 I . Ak
27 x MPCnew+ A= A'-A"+ MPCold
Exception Exception bit
MPCold #-3,-2,-1, or 0 ILO

ADVANCED COMPUTING SYSTEMS 18M REGISTERED CONFIDENTIAL

Yolume : 1A ACS-! Development Workgook
Chapter - 02 Page: 4-9
Section : Appendix Date: 1/8/68
Continued Add, High Order ACH iyl

The contents of Alare replaced by the low order 48 bits of the sum formed by adding the integers
in AJ and AK and the contents of MPC. The MPC is then set to zero.

Except for the participation of MPC, this instruction is identical to AL

Exceptions Exception bit
result ¢ -2 AO
result » 247— 1 AQO
MPC ,, # -3,-2,-1,0, or +1 ILO

Continued Subtract, High Order SCH 115 Ik

The contents of Al are replaced by the low order 48 bits of the difference formed by subtracting
the integer in AK from the integer in AJ and adding the contents of MPC to the result. The MPC
is then set tc rero.

Except for the participation of MPC, this instruction is identical to SL

Exceptions Exception bit
result <€ 24'7 AO
result » 2%7-1 AO

-3 -9 - 1T,
MPCold# 3,-2,-1, or O O

ADVANCED COMPUTING SYSTEMS {BM_REGISTERED CONFIDENTIAL
1A , ACS-1 Development Workbook

{
Xﬁol:)'?:r 02 Page: 4-10
Section : Appendix Date: 4/17/67
Set Pogitive, Integer SPI il §

The contents of register Ai are replaced by the absolute value of the integer represented by
the contents Al.

If the integer in Al s -247, an overflow exception condition exists. The integer add overflow
exception bit AO is set to 1, and the contents of Al are replaced by the value zero.

Exception Exception bit
Al o 047 AO
Set Negative, Integer SNI NN
1] S

The contents of register Alare replaced by the negative of the absolute value of the integer
represented by the contents of Al,

Exceptions: none

o

¢

ADVANCED COMPUTING SYSTEMS |BM REGISTERED CONFIDENTIAL

Volume : 1A ACS-I| Developrne;i Workzoﬂ(
Chapler : 02 age: 4-
Section : Appendix Date: 4/17/67
C ert to N alized CVN . ;

onver ormaliz i &

The single precision integer in Al is converted to a normalized single precision floating point
number; the floating point number replaces the contents of AL

If the conversion results in an intermediate fraction length greater than 36 bits, the fraction
is truncated to 36 bits.

Exceptions: none

%
Convert to Integer CVI i s \\

W

The single precision floating point number in Al is converted to a single precision integer which
replaces the contents of Al

If the absolute value of the number in Al is greater than 248-1 or if it is u, the conversion will
not be done correctly. In this case the AQO exception bit is set to 1 and no meaning should be

given to the result,

Exception Exception bit
|a] > 28,1 AO
A=y AO

EN
(

ADVANCED COMPUTING SYSTEMS 1BM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook

Chapter . 02 Page: 5-1

Section : Appendix Date: 1/8/68
INDEX ARITHMETIC

The Index arithmetic instruction set performs binary arithmetic on operands serving as
addresses, index quantities, and counts. FExcept in literal index arithmetic, operands are 24
bits long. In literal index arithmetic one of the operands is contained in the instruction and is
either 5 or 24 bits long.

The index arithmetic instructions have the following formats:

(I) op |i|jlk

(I} op |i{jiltk

%

(IIm) op |i1}]]

%

(IV) op |i]i h

Operations are performed between index register %’ and Xk (format I), between X’ and the 5-bit
k-literal (format IT), or between XJ and the 24-bit h-literal (format IV). . When format II{ is used,
the single operand is XJ. The result replaces the contents of register XI, Four index divide
operations also replace the contents of X+l with part of its result. Three add-and-test operations
set condition bit cj and XJ. Except for these three the contents of XJ and XX are not changed.

Index register x0 is identically equal to zero., Since the contents of X0 is always zero, results
which are placed in X0 are not recoverable.

Number Representation

The number representation used for 24-bit index quantities has the property that the operands and
results for the instructions add, subtract, and multiply can be interpreted either as 2's comple-
ment integers in the range -223 to 223-1 or as positive integers, modulo 224, the range 0 to 224-1,
These forms are termed "signed" and “unsigned" index integers. Since signed divide is different
from unsigned divide two sets of divide instructions are provided. Similarly both signed and
unsigned compare instructions are provided where necessary; see Section 8.

ADVANCED COMPUTING SYSTEMS ‘ IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-l Development Workbook
Chapter + 02 Poge: 5.2
Section : Appendix Date: 1/8/68

2's Complement Arithmetic

In 2's complement arithmetic the bits of the 24-bit index operands and results have the following
arithmetic weights:

L .
weight .23 1,22 |,21 l 223-m [23 |22 [21 J20
oo o
operand 0 i 2 m 20 21 22 23

bit position for1<m £ 23

Numbers in this format are called signed index integers.

The integers which can be represented in 2's complement form in 24 bits range from -223 to
923-1, No special indication is given if a result is outside this range {overflows).

The 5-bit literal in instruction format II is considered as an integer in 2's complement form.
Thus the bits have the following arithmetic weights:

weight [-2"]2%] 22 2! |2°®
operand 0 1 2 3 4
bit position

Thus the range of representable literal values is -24 to 24-1.

Before participating in an operation the 5-bit quantity is extended to a 24-bit quantity by appending
19 high order bits equal in value (i. e. 0 or 1) to the high order bit of the k field. This operation
transforms the 5-Dbit literal to a 24-bit signed Index integer, and does not change the value of

the number.

Modulo 2%° Arithmetic

In modulo 224 arithmetic the bits of the 24-bit index operands and results have the following
arithmetic weights:

e " =
weight 223 222,21 l/ 223m]l 22121 20
operand 0 1 2 i m had el 22 23
bit position for0<m <23

Numbers in this format are called unsigned index integers.

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL
ACS-! Development Workbook

Volume : 1A
Page: 5-3

Chapter : 02
Section : Appendix Date: 1/8/68

The integers which can be represented in modulo 224 form in 24 bits range from O to 224-1; and
by definition of modulo 224 arithmetic all results are within this range.

The instructions with format II can be used in modulo 224 arithmetic. I the high order bit of
the k field is O, the representable literal values are in the range O to 24-1, I the high order
bit of the k field is 1, the representable literals are in the range 224-16 to 224-1,

Dr

”

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS~-| Development Workbook
Chapter : 02 Page: 5-4
Section : Appendix Date: 1/8/68
Add Index AX i 1y |k

The contents of X! are replaced by the low order 24 bits of the sum formed by the addition of
the index integers in X} and XX,

Exceptions: none

Subtract Index - BX

i1k

The contents of X\ are replaced by the low order 24 bits of the difference formed by the subtrac-
tion of the index integer in XX from X.

Exceptions: none

Multiply Index MX

ili]x

The contents of %! are replaced by the low order 24 bits of the product of the index integers
in XJ and XX,

Exceptions: none

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-{ Development Workbook
Chapter : 02 Page: 5-5
Section : Appendix Dote: 1/8/68
Divide with Remainder, Index DRX i|lj|k

The contents of xtis replaced by the signed quotient formed by dividing the signed index integer
dividend in XJ by the signed index integer divisor in XX, and the contents of Xi+l are replaced by
the signed remainder. The value of the i-field is assumed to be even; if it is not, the low order bit
of the i-field is forced to 0, bit RS is set, and the operation proceeds.

The signed index divide is performed as follows:

1. I the divisor is zero, both the quotient and remainder are set to zero, the index divide by
zero exception bit (XDZ) is set to 1, and the remaining steps are omitted.

2. I the dividend is -223 and the divisor is -1 (so that the true quotient 223 cannot be repre-
sented), the quotient is set to zero, the remainder is set to -223, and the remaining steps
are omitted.

3. The dividend is divided by the divisor to form an exact quotient.

4. I the exact quotient is an integer, it forms the result quotient. The result remainder is
ZEero.

O. If the exact quotient was not an integer, the integer part of the exact quotient forms the
result quotient. That is, the exact quotient is rounded toward zero. The remainder is
defined as:

remainder = dividend - (quotient x divisor)

Exceptions Exception bit

x¥ =0 XDZ
iodd RS

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-1 Development Workbook
Chapter : 02 Page: 5-6
Section : Appendix Date: 1/8/68
Divide Index DX EIRERD"

The contents of X} is replaced by the signed quotient formed by the division of the signed index
integer dividend in XJ by the signed index integer divisor in XK. The quotient is defined as in
DRX.

Exceptions Exception bit
=0 XDZ
Remainder Index RX i1k

The contents of X! is replaced by the signed remainder formed by the division of the signed index
integer dividend in XJ by the signed index integer divisor in XK. The remainder is defined as in
DRX,

Exceptions Exception bit

xK= o XDZ

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume + 1A ACS-I| Developmegt Worksbo';)k
Chapter : 02 age: o=
Section : Appendix Date: 1/8/68
Divide with Remainder, Unsiqned Index DRUX 1171k

The contents of X' is replaced by the unsigned quotient formed by dividing the unsigned index
Integer dividend in XJ by the unsigned index integer divisor in XX, and the contents of Xi*1 are
replaced by the unsigned remainder. The value of the i-field is assumed to be even; If it is not,
the lower order bit of the i-field is forced to 0, bit RS is set, and the operation proceeds,

The unsigned index divide is performed as follows:

1. If the divisor is zero, both the quotient and remainder are set to zero, the index divide by
zero exception bit (XDZ) is set to 1, and the remaining steps are omitted.

2. The dividend is divided by the divisor to form an exact quotient,

3. I the exact quotient is an integer, it forms the result quotient. The result remainder is
Zero.

4, I the exact quotient was not an integer, the integer part of the exact quotient forms the
result quotient. That is, the exact quotient is rounded toward zero. The remainder is
defined as:

remainder = dividend ~ {quotient x divisor)
Exception Exception bit

x¥=0 XDZ
i odd RS

5

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-I Developmelr;1 Workﬁb%ok
Chapter v 02 age: b-
Section ¢ Appendix Date: 1/8/68
Divide Unsigned Index DUX ililk

The contents of X! s replaced by the quotient formed by the division of the unsigned index integer
dividend in XJ by the unsigned index integer divisorin Xk, The quotient is defined as in DRUX,

Exception Exception bit
X =0 XDZ
Remainder Unsigned Index RUX ililk

The contents of X! is replaced by the remainder formed by the division of the usigned index integef
dividend in XJ by the unsigned index integerdivisorin XX, The remainder is defined as in DRUX.

Exception Exception bit
x£-0 XDZ

. {._i

ADVANCED COMPUTING SYSTEMS |BM REGISTERED CONFIDENTIAL

Volume 1A ACS-| Development Workbook
Chapter : 02 Page: ©~9
Section : Appendix Date: 1/8/88
Add Index to Short Constant AXC il 1k

The contents of X are replaced by the low order 24 bits of the sum formed by the addition of the
24 bit number in XJ and the number in the literal k-field. The 5-bit k-field is extended to a 24-
bit quantity before the addition by appending 19 high-order bits equal in value to the high order
bit of the k-field.

Exceptions: none

Add Index to Constant AXK i | § n

The contents of X! are replaced by the low order 24 bits of the sum formed by the addition of
the index integers in X} and the literal h-field.

Exceptions: none

N

ADVANCED COMPUTING SYSTEMS {BM _REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook

Chapter 02 Page: 5-10

Section : Appendix Date: 1/8/68
; RN

Multiply Index by Constant MXK 113 & h

The contents of X! are replaced by the low order 24 bits of the product of the index integers in
XJ and in the literal h-field.

Exceptions: none

\’
Divide with Remainder Index by Constant DRXK it &\ h

The signed index integer in X} is divided by the signed index integer divisor in the literal h-field.
The signed index integer quotient replaces the contents of X! and the signed index integer
remainder replaces the contents of Xi*l, The value of the i-field is assumed to be even.
The quotient, remainder, and exception are defined as in DRX.

Exception Exception bit

h-field = 0 XDZ
iodd RS

ADVANCED COMPUTING SYSTEMS |BM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook

Chapter v 02 Page: 5-11

Section : Appendix Date: 1/8/68
N

Divide Index by Constant DXK 1] k\ h

The signed index integer dividendin XJ is divided by the signed index integer divisor in the litera]
h-field. The signed index integer quotient replaces the contents of Xi.

The quotient and exception are defined as in DRX.

Exception Exception bit
h-field = 0 XDZ
N\
Remainder Index by Constant RXK i3 & h

The signed index integer dividend in XJ is divided by the signed index integer divisor in the literal
h-field. The signed index integer remainder replaces the contents of Xi,

The remainder and exception are defined as in DRX.

Exception Exception bit
h-field = 0 XDZ

Divide with Remainder Unsigned Index s NN

by Constant DRUXK ' & b

The unsigned index integer in %) is divided by the unsigned index integer divisor in the literal
h-field. The unsigned index integer quotient replaces the contents of X1 and the unsigmed index
integer remainder replaces the contents of Xitl, The value of the i-field is assumed to be even.
The quotient, remainder, and exception are defined as in DRUX

Exceptions Exception bit

h-field = 0 XDZ
i odd RS

ADVANCED COMPUTING SYSTEMS |1BM REGISTERED CONFIDENTIAL

Volume : 1A ACS-I Develo;:megi WOrkgoi:g
bt Chapter ;02 age: b-
Section : Appendix Date: 1/8/68
. . N
Divide Unsiqned Index by Constant DUXK i3 & h
The unsigned index integer dividend in XJ is divided by the unsigned index inteqer divisor in the
literal h-field. The unsigned index integer quotient replaces the contents of X%,
The quotient and exception are defined as in DRUX.
Exception Exception bit
h-field = 0 XDZ
\
Remainder Unsigned Index by Constant RUXK i & h
The unsigned index integer dividend in XJ is divided by the unsigned index integer divisor in the
p literal h-field. The unsigned index integer remainder replaces the contents of Xi.
Lo

The remainder and exception are defined as in DRUX.
Exception Exception bit
h-field = 0 XDz

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-1 Development Workbook

Chapter 02 Pogef 5-13

Section : Appendix Date: 1/8/68
N

Set Positive, Index SPX i]i k\

The contents of register Xl are replaced by the absolute value of the signed index integer in XI.
If the integer in X is -223, the contents of X! are replaced by the value zero,

Exceptions: none

Set Negative, Index SNX 117 &

The contents of register Xl are replaced by the negative of the absolute value of the signed index
integer in XI.

Exceptions: none

Add Index and Test AXT i{jlk

The contents of X are replaced by the low-ordexr 24 bits of the sum formed by the addition of the
signed index integers in XJ and XK,

If the original value of X%) is different from the new Xg), condition bit < is set to 1; otherwise ¢

is set to 0. Thus the condition bit is set to 1 when the addition causes the sign of the index integer
in XJ to change {with zero considered positive).
Exception Exception bit

C24 set to 0 or 025 settodl CC

b

rf"h

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS~| Development Workbook
Chapter . 02 Poge: 5-14
Section : Appendix Date: 1/8/68
Add Index to Short Constant and Test AXCT ililk

The contents of XJ are replaced by the low-order 24 bits of the sum formed by the addition of the
signed index integer in X) and the signed integer in the literal k-field. The 5-bit k-field is

extended to a 24-bit guantity before the addition by appending 19 high-order bits equal in value
to the high order bit of the k-field.

If the original value of X]O is different from the new Xg.), condition bit < is set to 1; otherwise,
c is set to Q.

Exception Exception bit
CcC
Coy setto O or Cop setto 1
\
Add Index to Constant and Test AXKT i]ij \\ h

The contents of X are replaced by the low order 24 bits of the sum formed by the addition of the
signed index integers in XJ and the literal h-field.

If the original value of X%) is different from the new X%), condition bit ¢4 is set to 1; otherwise,

c.1 is set to Q.

Exception Exception bit

Coy setto O or Cor settol CC

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED _CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter ¢ 02 Page: 6-1
Section : Appendix Date: 1/8/68

COMPARE OPERA TIONS

Compare instructions are provided to test specified relations between two numeric quantities
and to provide byte testing capabilities.

The effect of the compare instructions is to set a bit called a condition bit. Twenty-four condition

bits are provided and are grouped together to form special register S0, The individual condition
bits are identified as Cgr Cqreres Coqe

The compare instructions have the following formats:

(1) op |i]j |k

() op |i jﬁ h

The compare is done between the contents of registers Rj and R¥ in format I and between the
contents register XJ and the literal h in format IL In both formats the 1 field designates the bit
(or bits) of the condition register which is to be set.

If a compare contains an i field greater than 23, that is, specifies a nonexistent condition bit,
the result of the compare is lost. However, if an attempt is made to set Coy to 0, or Cog to 1,
the condition check exception signal CC is generated.

Although only two basic numerical comparison relations are provided in the instruction set (greater
than or equal to, and equal to), all six possible relations can be tested either by interchanging -
the names in the j- and k-fields or by using the negation of the test result. Specifically:

Basic relation Basic relation true if

to test Tzst for condition bit has value
a>b b2a 0
azb azb i
a=b a=b 1
a¥b a=b 0
ash b2a 1
a<b azb 0

LEN

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-1 Development Workbook
Chapter : 02 Page: 6-2
Section : Appendix Date: 4/17/67

In the floating point arithmetic section a bit configuration is defined to represent ﬂoating point
numbers in the exponent overflow range. These numbers are symbolized by u and have the
configuration of a 1 in bit zero and 0's in the remaining bits. When one or both operands are

u in any of the floating point comparison operations, the result of the compare is made false
(0).

The floating point compare operations may give an incorrect result if either or both operands

are unnormalized. If either operand is unnormalized, the UO (unnormalized operand) exception
bit is set to 1.

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL
Volume : 1A ACS-1 Development Workbook
Chapter : 02 Page: 6-3
Section : Appendix Date: 1/8/68

i =N

Compare, Greater or Equal, CGEN { k
Normalized i

The normaliged single precision floating point numbers in Al and AX are compared. If the
number in Al is greater than or equal to the number in AX, condition bit ¢; is set to 1; otherwise
c. issetto Q.

1

For the special case when either or both operands are u,condition bit S is set to Q.

This instruction may give an incorrect result if either or both operands are unnormalized.

Exceptions Exception bit
unnormalized operand Uuo
Coy set to O or Cog settol CccC
Compare, Equal, Normalized CEQN i {5

The normalized single precision floating point numbers in Al and AK are compared. If the

numbers are equal, condition bit ¢ is set to 1; otherwise 4 is set to Q.

For the special case when either or both operands are u,condition bit c; is set to Q.

This instruction may give an incorrect result if either or both operands are unnormalized.
Exceptions Exception bit

unnormalized operand Uvo
Coy set to O or Cor setto 1 cC

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS~| Development Workbook
Chapter : 02 Page: 6-4
Section : Appendix Date: 1/8/68
Compare, Greater or Equal, CGED i3k

Double

The normalized double precision floating point numbers in Al J+1 and AK K+1 are compared.
If the number in AJ:}+1is greater than or equal to the number in AX,k+1 condition bit ¢, is
set to 1; otherwise < is set to 0. The values of the j- and k-fields are assumed to be evén.

For the special case when either or both operands are u, condition bit C is set to Q.

Exceptions Exception bit
unnormealized operand uo
Cos set to 0 or Cor setto l CcC
jor k odd RS
Compare, Equal, Double CEQD i«

The normalized double precision floating point numbers in Al:J*1 and Ak, k1 are compared.
If the numbers are equal, condition bit ¢ is set to 1; otherwise 4 is set to 0. The values of the

j=- and k-fields are assumed to be ever.

For the special case when either or both operands are u, condition bit ¢ is set to Q.

Exceptions Exception bit
unnormalized operand Uo
Coy setto Oor Coc settol CcC

jor k odd RS

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-1 Development Workbook
Chapter : 02 Page; 6-5
Section : Appendix Date: 1/8/68
Compare Magnitude, Greater or CMGEN il]k

Equal, Normalized R

The magnitudes of the normalized single precision floating point numbers in Al and AK are
compared. If the magnitude of the number in AJ is greater than or equal to the magnitude of
the number in AK, condition bit c; is set to 1, Otherwise ¢; is set to O.

For the special case when either or both operands are u, condition bit ¢y s set to Q.

This instruction may give an incorrect result if either or both operands are vnnormalized.

Exceptions Exception bit
unnormalized operand uo
Coy setto Oor Cog set to 1 cC
P
P Compare Magnitude, Equal, CMEQN sk
Normalized ik

The magnitudes of the normalized single precision floating point numbers in Al and AK are

compared. If the magnitudes of the numbers are equal, condition bit ¢ < is set to 1. Otherwise
c, is set to O,
i

For the special case when either or both operands are u, condition bit ¢, is set to Q.

i
This instruction may give an incorrect result if either or both cperands are unnormalized,
Exceptions Exception bit

unnormalized operand vO

Coy set to Q or c25 settol CcC

ADVANCED COMPUTING SYSTEMS 1BM _REGISTERED CONEIDENTIAL

Volume s 1A ACS-1 Development Workbook
Chapter : 02 Page: 6-6
Section : Appendix Date: 1/6/68
Compare Magnitude Double, CMGED 115t

Greater or Equal]

The magnitudes of the normalized double precision floating point numbers in AJs3+1 ang Ak, k+1
are compared. If the magnitudes of the number in Al, J#1 s greater than or equal to the magnitude
of the number in Ak,k+1 “condition bit ¢; is setto 1. Otherwise, c, is setto 0. The values of the

j~ and k-fields are assumed to be even.

For the special case when either or both operands are u, condition bit ¢ is set to O,

Exceptions Exception bit
unnormalized operand uo
Coy set to O or Cop settol CC
jor kodd RS
Compare Magnitude Double, Equal CMEQD il |k

The magnitudes of the normalized double precision floating point numbers in Al: i+l ang Ak, k+l
are compared. If the magnitudes of the numbers are equal, condition bit ¢, is set to 1. Other-
wise, ¢ is setto 0. The values of the j- and k-fields are assumed to be even.

For the special case when either or both operands are u, condition bit ¢ is set to Q.

Exceptions Exception bit
unnormalized operand Uuo
o s,
Coy setto Oor Cog settol ce

j or k odd RS

ADVANCED COMPUTING SYSTEMS 18M_REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 6-7
Section : Appendix Date: 1/8/68
Compare, Greater or Equal Inteqer CGEI i1y]x

The single precision mtegers in Al and AK are compared. If the number in Al is greater than
or equal to the number in AK, condition bit ¢ is set to 1; otherwise ¢ is set to O,

Exception Exception bit
Cou set to O or Cog settol CC
Compare, Equal, Integer CEQI i1y lx

The single precision integers in Al and A¥ are compared. If the numbers are equal, condition
bit ¢ is set to 1; otherwise ¢; is set to 0.

i
Exception Exception bit
Coy settoOor <:25 settol cC
Compare Unsigned, Greater or CUGEI i bilk
Equal, Integer]

The contents of registers Aj and AX are considered as 48-bit unsigned integers. If the number
in Al is greater than or equal to the number in AK, condition bit ¢ is set to 1; otherwise ¢ is
set to O,

Exception Exception bit

024 set to O or c25 settol CcC

ADVANCED COMPUTING SYSTEMS 18M_REGISTERED CONFIDENTIAL

Vofume : 1A ACS-{ Development Workbook

S~ Chapter 1 02 Page: 6-8
Section : Appendix Date: 1/8/68
Compare, Greater or Equal, Index CGEX il]k

The index integers in XJ and XX are compared. If the number in X/ is greater than or equal to
the number in Xk, condition bit ¢ is set to 1; otherwise ¢4 is set to Q.

Exception Exception bit
Coy set to Q or Cop settol cC
Compare, Equal, Index CEQX ililx

The index integers in X3 ang X¥ are compared. If the numbers are equal, condition bit ¢ is
set to 1; otherwise ¢ is set to O.

£ Exception Exception bit
T~ tto 0 ttol ce
c24 se or c:25 set to
Compare Unsigned, Greater or CUGEX s 1tk
Equal, Index ;

The contents of registers %3 and XX are considered as 24-bit unsigned integers. If the number
in XJ s greater than or equal to the number in XX, condition bit e is set to 1; otherwise ¢ is
set to O.

Exception Exception bit

settoQore,.settol cC

Co4 25

-\(""“

ADVANCED COMPUTING SYSTEMS ' 18M REGISTERED CONFIDENTIAL

Volume s 1A ACS-! Development Workbook
Chapter : 02 Page: 6-0
Section : Appendix Date: 1/8/68
Compare Index with Constant, CGEXK .| Q n

Greater or Equal L) \

The index integers in X and in the literal h-field are compared. If the number in X! is greater
than or equal to the number in the h-field, condition bit S is set to 1; otherwise, < is set to G,

Exception Exception bit
Cog set to O or C25 settol CcC
: N
Compare Index with Constant, Equal CEQXK i 1 \\ h

The index integers in %J and in the literal h-field are compared. If the numbers are equal,
condition bit ¢ is set to 1; otherwise, e is set to Q.

Exception Exception bit
Coy set to Cor Cog settol cC
Compare Unsigned Index with Constant, CUGEZXK il \ h
Greater or Equal] R

"The contents of register XJ and the literal h-field are considered as 24~bit unsigned integers.
If the number in X! is greater than or equal to the number in the h-field, condition bit ¢4 1s set

to 1; otherwise ¢4 is set to O,

Exception Exception bit

Cou set to O or c25 settol cC

Fim

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-1 Development Workbook
Chapter : 02 Page: 6-10
Section : Appendix Date: 1/8/68
Compare Bytes, Arithmetic CBA i]ilx

The 48-bit contents of register AK are considered as six 8-bit operand bytes: the first byte is

Aloc 1 e the second byte is Alg 9 15+ and s0 on. The low order 8 bits of register A
Yy PUsensy

are considered as one test byte. The test byte is compared with each of the six operand bytes.

Condition bit ¢4 is set to 1 if the test byte is identical to one or more of the operand bytes; it is

set to O i the test byte is not identical to any operand byte.

Exception Exception bit
c24 se_t to O or c25 setto 1l CC
Compare Bytes, Multiple, Arithmetic CBMA i«

The 48-bit contents of register AX are considered as six 8-bit operand bytes: the first byte is
Ak ; the second byte is Ak ; and so on. The low order 8 bits of register Al
0,1,...,7 8,9,...,15

are considered as one test byte. The test byte is compared with each of the six operand bytes.

Condition bit 4 is set to 1 if the test byte is identical to one or more of the operand bytes; it is
set to O if the test byte is not identical to any operand byte.

Condition bit i1 is set to 1 or 0 according as the test byte is identical to the first operand byte
or not; bit) is set to 1 or 0 according as the test byte is identical to the second operand byte
or not; and so on through bit Ciigr

Only the leading two bits of the i~-field of the instruction are interpreted to determine which
condition bits are set, thereby effectively partitioning the condition register into segments:
bits O to 6, bits 8 to 14, bits 16 to 22, and bits 24 to 30.

Exception Exception bit

024 setto O or 025 settol cc

| N

ADVANCED COMPUTING SYSTEMS

|BM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 6-11
Section : Appendix Date :1/8/68
Compare Bytes, Index

Comvpare Bytes, Index CBX ilifx

The 24~bit contents of register XK are considered as three 8-bit operand bytes: the first byte

is x5 ; the second byte is XX ; and so on. The low order 8 bits of register XJ
0,1,...,7 8,9,...,15

are considered as one test byte. The test byte is compared with each of the three operand bytes.

* Condition bit ¢ is set to 1 if the test byte is identical to one or more of the operand bytes; it is

set to 0 if the test byte is not identical to any operand byte,

Exception ' Exception bit
Coy set to 0 or c25 settol CcC
Compare Bytes, Multiple, Index CBMX il |k

The 24-bit contents of register Xk are conslidered as three 8-bit operand bytes: the first byte

is Xlé 1 7; the second byte is X“g g 15 and so on. The low order 8 bits of register p:¢
gapen sy A I

are considered as one test byte. The test byte is compared with each of the three operand bytes.

Condition bit ¢ is set to 1 if the test byte is identical to one or more of the operand bytes; it
is set to O if the test byte is not identical to any operand byte.

Conditjon bit Cis1 is set to 1 or 0 according as the test byte is identical to the first operand byte
or not; bit Ciio is set to 1 or O according as the test byte is identical to the second operand byte
or not; and bit i3 is set to 1 or O according as the test byte is identical to the third operand byte

or not.

Only the leading three bits of the i-field of the instruction are interpreted to determine which
condition bits are set, thereby effectively partitioning the condition register into segments:
bits Oto 3, bits 4 to 7, and so on.

Exception Exception bit

settoQorc,._settocl CcC

Cos 25

I

ADVANCED COMPUTING SYSTEMS IBM _REGISTERED CONFIDENTIAL

Volume : 1A -
Chup_ter {09 ACS~| Developmeg;g‘l:?rkrt;ggk
Section : Appendix Date: 1/8/68

SHIFT OPERATIONS

There are three functionally different shift operations: logical shift, insert fleld, and
integer shift. Within the logical and integer shift classes either single or double length
operands may be used. There also are two ways of specifying the direction and amount of shift:
either directly from a literal field in the instruction or indirectly by the contents of a register.

Shift Amount and Direction

When the shift amount is specified by the literal field of the instruction, the following instruc-
tion format is used:

op |i| jk

The 10-bit literal jk-field is interpreted as a 2's complement integer, so that numbers in the
range -512 to +511 are representable.

When the shift amount is specified by the contents of a register, the following instruction format
is used:

op |[i]jlk

The contents of register AKor xk g interpreted as a 2's complement integer. Only the low
order 10 bits are used to specify the shift amount; the remaining bits are ignored.

The integer specifies both the direction and amount of the shift. Its absolute value specifies

‘the amount of the shift. Its sign indicates the shift direction: a positive integer specifies

a left shift, a negative integer specifies a right shift.

For the insert field instructions register AX or XK contains three 8-bit parameters.

Source and Result Operands

When the shift is specified by the literal field, the i-field specifies both the source and result
operands; that is,

ADVANCED COMPUTING SYSTEMS |BM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook

Chapter : 02 Page: 7-2

Section : Appendix Date: 4/17/67
Source operand: Ri or Ri’ i+l

Result operand: R or Ri’ i+1

(where R may be interpreted as either X or A).

When the shift amount is specified by Rk, the i- and j-fields specify the source and result
operands as follows:

Source operand: R or Rj’j+1

Result operand: R or Ri’i+1

In the explanations, R® is used to indicate the source register, and RT the result register.
The shift amount is denoted by n. The notation 48/24 is to be interpreted as 48 for the A-unit
shift instructions and 24 for the X-unit shift instructions.

Logical Shift, Single Register

The contents of register R® are shifted left or right the specified number of bit positions. The
direction of the shift is determined by the sign of the shift amount. Bits which are shifted out

of RS are lost; vacated positions are filled with 0's. The 48/24-bit shifted quantity then replaces
the contents of register RT. The contents of register R® are unchanged unless due to the
operation type or the specification of the 1 and j field, RS is the same register as RT. If the
shift amount is greater than or equal to 48/24, register RYis set to O's.

Pictorially the logical shift, single register, instructions are:

single shift jeft

RS n
1
initial a : b
/” ,”
RI‘ P ‘/f
]
final b f 0

("

ADVANCED COMPUTING SYSTEMS

Volume : 1A
Chapter : 02
Section : Appendix

1BM REGISTERED CONFIDENTIAL

ACS-| Development Workbook

Page: 7-3
Date: 4/17/67

single shift right

R® o
|
initial c : d
~ S
| SR TS
T
final 0 i c

ADVANCED COMPUTING SYSTEMS |BM REGISTERED CONFIDENTIAL

Volume : 1A ACS-I Development Werkbook
Chapter : 02 . Page: 7-4
Section : Appendix Dote: 4/17/67
Logic Shift, Arithmetic SHA i3

; k
shift amount +A38,... 47

Al «10gic shitt (al)

Exceptions: none

Logic Shift, Index SHX

shift amount « Xl1{4,... .23

X! «logic shitt (33)

Exceptions: none

Logic Shift, by Constant, Arithmetic SHAC

shift amount+ jk
A« logic shift (A1)

Exceptions: none

Logic Shift, by Constant, Tndex SHXC

shift amount+ jk
X'« logic shift (X)

Exceptions: none

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume 1A ACS~| Development Workbook
Chapter : 02 Page: 7-5
Section : Appendix Date: 1/8/68

Logical Shift, Double Reqisters

Registers RS and RS*! are coupled and are considered as one 96/48 bit quantity. This 96/48

bit quantity is shifted left or right the specified number of bit positions to form an intermediate
result. The direction of the shift is determined by the sign of the shift quantity. Bits which

are shifted out are ignored; vacated positions are filled with 0's, The 96-bit intermediate result
then replaces the contents of registers RT and Rr+l, _

If the shift amount is greater than or equal to 96/48, registers R' and R™1 are set to O's.
Pictorially, the logical shift, double registers, instructions are as follows:

double shift left

RS n] ' Rs+1 |
injtial a | b c : d
7| Pl
rT ,/’ Rr+1 prad
T
final b : c d : 0
double shift right
-n
RS Rs+l |
1
initial e : i g : h
~ RS
RY ~ ~ Rr+1 | S -
|
final 0 : e f : g

The value of s must be even. If it is not, the low order bit specifying s is forced to 0, exception
bit RS is set, and the operation proceeds.

Py

ADVANCED COMPUTING SYSTEMS

Volume : 1A
Chapter : 02
Section Appendix

IBM REGISTERED CONFIDENTIAL

ACS-| Development Workbook
Page: 7-6
Date: 1/8/68

Logic Shift, Double Arithmetic

Exception

iorjodd

Logic Shift, Double Index

Exception

iorjodd

Logic Shift by Constant, Double
Arithmetic

Exception
io0dd

Logic Shift by Constant, Double
Index

Fxception
i odd

SHD i |k
: . nk
shift amount A38, v, 47
AV rogie shift (Al it
Exception bit
RS
SHDX i«
shift amount « Xl];;,,,, 93
xhi*, logic shift o i
Exception bit
RS
SHDC i i
shift amount + jk
Al ogie snitt (b 1)
Exception bit
RS
SHDXC i ik
shift amount « ik
x 3+ jogic snirt ot
Exception bit
RS

LR

e

ADVANCED COMPUTING SYSTEMS

Volume : 1A
Chapter i 02
Section : Appendix

1BM REGISTERED CONFIDENTIAL

ACS-1 Development Workbook
Page: 7-7
Date: 1/8/68

This page has been deleted.

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS~| Development Workbook
Chapter : 02 Page: 7-8
Section : Appendix Date: 1/8/68
Insert Field

Register Rk supplies three 8-bit integer parameters m, n, and p. These parameters are packed

in RK as shown:
SN ESESE:

N\
0 23 24 47
1
X‘k m:n;p
0 23

The contents of register R} are rotated left m positions. Bits rotated out of position 0 are inserted
into position 47/23.

The p-n bits of this rotated quantity numbered n, n+1, n+2,..., p-1 are then inserted into the
corresponding bits of register R

The remaining bits of Ri {namely those numbered 0, 1, 2,..., n~1 and p, p+l, p+3,..., 47/23}
either are left unaltered for the instructions IFX and].'FA or are set to 0's for the instructions
IFZX and IFZA. The contents of Ri and RK are not changed.

The parameter m is interpreted as a positive integer modulo 48/24. The normal ranges for the
positive integer parameters n and p are:

0<n <47/23
1<p <48/24

n<p

If p2 49/25, the operation proceeds as if p=48/24. Ifn2>48/24 or f p=OQorifn= p, the
contents of Rl are left unaltered for IFA and IFX or are set to O's for IFZA and IFZX.

Iin>p, then - pbits of R! numbered p, p+l,...,n-1 are set to O's; the remaining bits are left
unaltered for IFA and IFX or are also set to 0's for IFZA and TFZX.

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS~1 Development Workbook
Chapter : 02 Page: 7-9
Section : Appendix Date: 4/17/67

Pictorially the insert field instructions are as follows:

p p
R' B R K I
T T I T T
initial a | b : c dt e | f : g
: 1

after rotation e |

R l I !
T T
inal a [
f pr 0's | {orO's
n
e e sl
P

Bit number « of the result may come from

(1) a source of O's
or (2) bit «of operand Rri .
or (3) bit «+m {mod 48/24) of operand R

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-I Development Workbook
Chapter : 02 Page: 7-10
Section + Appendix Date: 4/17/67
Insert Field, Arithmetic IFA 15 |x

. k
insertion parameters A24, 25,004 ,47
Al-t- 'msert(Al, AJ)

Exceptions: none

Insert Field, Index IFX N

insertion parameters « Xk
X'« insert (X', X°)

Exceptions: none

Insert Field and Zero, Arithmetic IFZA

. k
insertion parameters « Ag, 25,...,47

Al ¢ tnsert (0, Al)

Fxceptions: none

Insert Field and Zero, Index IFZX il x

insertion parameters « Xk
X « insert 0, %%

Exceptions: none

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-1 Development Workbook
Chapter : 02 Page: 7-11
Section : Appendix Date: 1/8/68

Inteqer Shift, Single Register

The contents of the last 47/23 positions of register RS are shifted left or right the specified
number of positions to form an intermediate result; position R-S is not shifted. If the shift is
to the right, bit values equal to R(s) are supplied to the vacated high-order positions; low-order

bits are shifted out and ignored. If the shift is to the left, O's are supplied to the vacated low-
order positions; high-order bits are shifted out and are lost; however if the instruction is SIA or
SIAC, and if one or more of the bits which is shifted out is unequal to A%, the shift overflow

exception bit SO is set to 1. The shifted quantity then replaces the contents of register Rr, bit
RS being set to the value of RS. The contents of register R® are unchanged unless the operation
type of the specification of the i and j field result in R’ being the same register as RS,

If the shift amount is greater than or equal to 47/23, the low order 47/23 bits of RT are set

to 0's for a left shift, or to the value of RS for a right shift,

Pictorially the integer shift, single register, instructions are:

single shift 1eft

R -
T
initial s; a : b
] "l
RE 4L el
II l’
final tsl b t O
| 1
single shift right
-n
R® |
T
initial 51 c : d
' l\ Y
RT LD SN, s
] |
final si s : c

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-1 Development Workbook

Chapter 1 02 Page: 7-12

Section : Appendix Date: 1/8/68
Integer Shift, Arithmetic SIA il

. k
Shift amount +« A38, Ce AT
A’ ¢ integer shift (%)
Exception Exception bit

bit different from A‘E) shifted out during left shift S0

Integer Shift, Index SIX

Shift a;:cno*unt4-}(1121’“.,23

X' + tnteger shift (X))

Exceptionz: none

>

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-t Development Workbook
Chapter : 02 Page: 7-13
Section : Appendix Date: 1/8/68

Integer Shift by Constant, Arithmetic SIAC

Shift amount « jk
Al «integer shitt (a})

Exception Exception bit

bit different from Alo shifted out during left shift S0
integer Shift by Constant, Index SIXC 1] Kk

Shift amount + jk
%« integer shift (Xi)

Exceptions: none

ADVANCED COMPUTING SYSTEMS IBM _REGISTERED CONFIDENTIAL

Votume : 1A ACS-| Development Workbook
Chapter y 02 Page: 7-14
Section : Appendix Date: 1/8/68

Inteqer Shift, Double Register

Registers A% and AS+1 are coupled and are considered as one 96~bit quantity., Of this quantity
94 bits are shifted left or right the specified number of positions to form an intermediate resuit.

The bits corresponding to AS and A%S! are not shifted. Bit A%} specifies the value of the
r+l

result bit A” .7, but does not enter the operation in any other way. Except for the treatment of

bits A% and ATF!
single registerinteger shift instruction when the latter is considered to operate on a 95-bit
quantity instead of a 48-bit quantity.

, the double register signed shift instruction is identical in function to the

Pictorially theinteger shift, double register, instruction is:

double shift left
AS , n I AIs+1 I
initial s: a } b r=i c { d
] > " L
AT L/’, /’;ll .:;,’/'ﬁd /”/
! 1 ! 1
final si b ' e r: d :)
double shift right
AS | : ASI+1 1 0
initi | i I I
initial sl\ e l\\f rL g 3 h
AT LS RN I
. T T = r ~
final s: S } e ry £ | g

The value of s must be even. If it is not, the low order bit specifying s is forced to 0, exception
bit RS is set, and the operation proceeds.

ADVANCED COMPUTING SYSTEMS IBM _REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 7-15
Section : Appendix ‘ Date: 1/8/68
Integer Shift, Double SID il]x

Shift amount + Ak

38,...,47
Ai’1+1 +integer shift (AJ’J+1)
FExceptions Exception bit
bit different from A} shifted out during left shift SO
iorjodd RS
Integer Shift, Double by Constant SIDC i ik

Shift amount «jk

Al teger shift (al 1ty
Exceptions Exception bit
bit different from AE shifted out during left shift S0

iodd RS

28

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume ¢ 1A ACS-| Development Workbook
Chapter : 02 Page: 8-1
Section : Appendix Date: 4/17/67

LOGICAL OPERATIONS

A comprehensive set of logical operations is included on the arithmetic registers, the index
registers, and condition bits. For most of the logical instructions the two operands are treated
as either 1-, 24-, or 48-bit quantities and a logical connective is applied bit by bit. However,
for the "count" instructions a function is computed, not on corresponding pairs of bits of differ-
ent operands, but on all 24 or 48 bits of one operand,

All logical operations have the short format:

op ti|j |k

where the j- and k-fields designate the operand registers or bits and the i~field designates the
result register or bit. The contents of the operand registers or bits are not changed by the
execution of a logical operation.

The basic set of logical operations provides for eight logical comnectives, applied bit by bit on
the operands. The truth tables for these eight functions are:

function value base
function a 0011 common names of function .
mnemonic
b 0101
an~b coco1 and, logical product AND
anb 0010 logical difference TAF
an~b 1000 nor, Peirce stroke FAF
ab 111 or, logical sum OR
avb 1011 cover TOF
avb 1110 nand, Scheffer stroke FOF
a="b 1001 equivalence EQ
a¥ b 011090 not equal, exclusive or, XOR
modulo 2 sum

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-I Development Workbook
Chapter : 02 Page: 8-2
Section : Appendix Date: 4/17/67

It should be noted that all sixieen possible Boolean functions of two variables can he computed
by these eight operations by interchanging the names in the j- and k-fields or by setting k equal
to j. In particular are the following common functions {where R may be interpreted as either
A, X, orc)

move R.1 - Rj Ri** Rj /\Rj
complement and move RfL + l?{j Ri+ ﬁj /\E_{j
set to O's R« 0's R~ R*AR!
setto 1's Ri «1's Ri+ Ri\/f{i

In addition to the operations included in this section, the shift instructions and certain move
instructions provide logical (i e. bit by bit) functions.

ADVANCED COMPUTING SYSTEMS IBM _REGISTERED CONFIDENTIAL

Volume ¢ 1A ACS-| Development Workbook
Chapter s 02 Page: 8-3
Section : Appendix Date: 4/17/67
Logical Operations, Arithmetic Unit ililx

ANDA st Al A nk

TAFA Al Al ABE

FAFA Al (B AEE

ORA Al Al AK

TOFA Al LAlUER

FOFA Al LBV URF

EQA Al oad o Ak

XORA Al < 44K

Exceptions: none

Logical Operations, Index Unit il]k

ANDX xt X AxE

TAFX X AR

FAFX KA

ORX xxdUxF

TOFX % X

FOFX xRS

EQX xoxd = x®

XORX X % ¥ xF

Exceptions: none

-

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-1 Development Workbook
Chapter : 02 Page: 8-4
Section : Appendix Date: 1/8/68
Logical rations, Condition Bits ik
ANDC e cj /\ck
TAFC c;+ cj "
FAFC ¢, + &, AT
i j k
ORC C. < ¢, Ve
i j k
TOFC ¢ - cj Ve,
FOFC ¢, +C.vC
i] k
EQC e+ cj =<y
XORC c; + cJ. # Sy
Exception Exception bit

Coq set to QO or c25 setto 1 CcC

e

-

ADVANCED COMPUTING SYSTEMS

IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-!| Development Workbook
Chapter : 02 Page: 8-5
Section : Appendix Date : 4/117/67
Count Total Ones, Arithmetic CNTT . NN

The contents of register A are replaced by the number of bits of register Aj which have the
value 1,

Exceptions: none

Count Leading Alike, Arithmetic CNTAA il | x

1113

The contents of register Al are replaced by the number of leading bits of register Aj which have

the value of the bit Ag. The bits of A] are examined in the order Ai‘}, A] Az, and so on.

Note that if the k-field specifies AO, the effect is to count leading 0's.

Exceptions: none

Count Leading Different, Arithmetic CNTDA i 13 |k

The contents of register Alare replaced by the number of leading bits of register Aj which are

different in value from the value of bit A (that is, have the value Ak) The bits of A’ are

examined in the order A] AJ Ajz, and so on.

Note that if the k-field specifies AO, the effect is to count leading 1's.

Exceptions: none

¢

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chopter v 02 Page: B8-8
Section : Appendix Date: 4/17/87
Count Leading Alike, Index CNTAX 1] x

The contents of register X' are replaced by the number of leading bits of register Xj which have
the value of the bit Xlg The bits X° are examined in the order Xg), Xi, ij, and so on.

Note that if the k-field specifies XO, the effect is to count leading O's.

Exceptions: none

Count Leading Different, Index CNTDX ililx

The contents of register X' are replaced by the number of leading bits of register x} which are
different in value from the value of bit X‘é (that is, have the value }-Cg). The bits of Xj are

examined in the order X%, le, X3 , and so on.

Note that if the k~field specifies XO, the effect is to count leading 1's,

Exceptions: none

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A . ACS-I Development Workbook
Chapter : 02 Page: 8-1
Section : Appendix Date: 4/17/67

BRANCH AT EXIT OPERATIONS

Branch-at- Exit instructions form the basic set which permits alteration of sequential execution
of instructions.

To specify a change in the sequence (i. ., a branch) three decisions are required: (1) whether
or not the branch is to be taken, that is, the condition determination; (2) when the branch is to
be taken, the exit point specification; and (3) the address to which the branch is to be made, the
effective address calculation.

Condition Determination

The conditional Branch-at-Exit instructions have the long format:

op {L]jtk h

The i~ and j-fields designate the bits of the condition register used to determine whether or not
the branch is taken. The k-field designates an X-register which with the literal h-field is used
to compute the effective branch address.

Whether or not the branch is to be taken is computed as a function of two bits selected from the
condition register c (special register S¥). The i~ and j-fields select the bits of ¢; the function
which is computed is specified by the operation code. If the value of the function is TRUE (1),

the branch is called successful and the alteration of sequence is effected at the next EXIT instruc-
tion. I the value of the function is FALSE (0), the branch is called unsuccessful and no altera-
tion of sequence occurs.

Eight functions can be specified:

C. AC, C. ¢,
1] 173
C. AC, C.vC

] i]
C. AC. c.\vT
i 3 i i
c.=c c.¥gc

("

ADVANCED COMPUTING SYSTEMS

IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 9-2
Section : Appendix Date: 4/17/67

A branch controlled by a single bit may be specified by setting j equal to i. An unconditional
branch may be specified by the true function c;=¢; for any i

If any of the (non-existent) condition bits 24 through 31 is addressed, the bit value 0 is used.

There is a single unconditional Branch-~at-Exit instruction which has the short format:

N\E

The i- and j-fields of this instruction are ignored, and the condition value TRUE is used so that
this branch is always successful.

Fxit Point

The sequential nature of instruction execution is not altered by the Branch-at-Exit instruction
itself. Rather, the branch point is marked by an EXIT instruction, and, when a branch is
successiul, the actual alteration of instruction flow occurs at the EXIT. Instructions between
the branch instruction and the EXIT are executed normally, independent of whether the branch
is successful or unsuccessful,

When two or more branch instructions occur without an intervening EXIT, the branch instruc-
tions are examined in order. The first branch which is successful governs the next EXIT; the
other branch instructions which follow the successful branch but preceed the EXIT are ignored.
The set of branch instructions which relate to a single EXIT need not be in adjacent storage
locations but may be interspersed with other instructions {except EXITs).

If an EXIT occurs without a successful branch having been executed since the last previous EXIT,
the instruction flow continues in a sequential manner.

‘Effective Branch Address

The effective branch address, eba, designates the location of the instruction to which the instruc-
tion execution sequence will be altered if the branch is successful. The point of alteration is
determined by an EXIT instruction.

The eba may be specified in either of two ways: in the 24-bit unconditional branch instruction
¢ba is given directly by the contents of index register k; in 48-bit instructions eba is the modulo
224 sum of index register k and the 24-bit literal field of the instruction.

Iy

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Velume : 1A ACS-i Development Workbook
Chapter : 02 Page: 9-3
Section : Appendix Date: 4/17/67
instruction format eba calculation
short eba « Xk
long eba + Xk +h

If the branch is successful and if the eba designates a missing address, at the next EXIT excep-
tion bit MI is set to 1 and the program is interrupted (see the section on Sequencing for further
details). If the branch is unsuccessful, no exception can ocecur.

LEN

ADVANCED COMPUTING SYSTEMS

Volume : 1A
Chapter : 02
Section : Appendix

iIBM REGISTERED CONFIDENTIAL

ACS~| Development Workbook
Page: 9-4
Date: 4/17/67

Branch at Fxit, Conditional

mnemonic function
BAND ci ~ c:j
RTAT ciAEJ.
BFAF e, AT,
1)
BOR C. Ve,
1 J
BTOF ¢, e,
1]
BFOF C.WvC,
1]
BEQ ci = c].
BXCOR ¢ # cj

Exceptions: none

Branch at Fxit, Unconditicnal

mnemonic function
BU identically TRUE

Exceptions: none

ililk h
RN
\\\ k

? %

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 9-5
Section ¢ Appendix Date: 1/8/68

Exit erations

An EXIT instruction serves to mark a branch point, where one sequential pattern of instruction
execution terminates and another sequential pattern begins.

Two exit operations are provided. The EXIT instruction serves only to designate a branch point.
The EXITL instruction does three functions in the following logical order: it sets the skip state
to "not skipping", it performs the function of the MLX instruction, and it designates a branch
point,

A branch point designation cannot be skipped. Thus, if an EXIT instruction is flagged as skippable,
the flag is ignored. If an EXITL is flagged, its first two functions may be skipped but the branch
point designation may not,

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume + 1A ACS-1 Development Workbook
Chapter : 02 Page: 9-8
Section : Appendix Date: 1/8/68

Bt =X NN

The branching action for any previous branch instruction occurs at the point designated by this
instruction.

Exceptions: none

Exit, Save Location and Stop Skipping EXITL i ik

This instruction is logically identical to the three instructions:

SKTAF 31,31
MLX i,k
EXIT

Exceptions: none

>

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-l Development Workbook
Chapter : 02 Page: 9-7
Section ¢ Appendix Date: 4/17/67

Ski rations

Skip operations provide the ability to inhibit the execution of a set of instructions following the
skip instruction. The skipping action is conditional on a function of two bits of the condition
register; the instructions to be skipped are indicated by a special bit in the operation code.
Thus, to specify a skip two parameters are required: (1) whether or not the skip is to be made,
the condition determination; and (2) which instructions are to be skipped, the skip scope.

Condition Determination

Whether or not the skip is to be taken is computed as a function of two bits selected from the
condition register c (special register 80). The i- and j-fields select the bits of ¢; the function
which is computed is specified by the operation code. If the value of the function is TRUE (1),
the skip is called successful and the flagged instructions within the scope of the skip will be
ignored. X the value of the function is FALSE (0), the skip is called unsuccessful and instruc-
tions within the scope of the skip are executed normally.

Eight functions can be specified:

.AC, c.\vC,
cl i j
LG, ¢.vC,
c1 c:J : i
C. AT, [RVER
1 J 3
c,=C, c. #c,
i j 1-’1]

A skip controlled by a single bit may be specified by setting j equal to i.
If any of the (non-existent) condition bits 24 through 31 are addressed, the bit value 0 is used.

It will be noted that skip condition is determined exactly the same as the branch-at-exit condition.

Scope of the Skip

The scope of a skip instruction is those instructions between the SKIP and the next SKIP instruc-
tion which is not skipped. Those instructions within the scope which may be skipped are designated
by setting a special bit in the instruction to 1. One bit position in the operation code of all instruc-
tions is designated as the skip flag; it is bit nuwmber O in the format which is common to all
instructions:

ADVANCED COMPUTING SYSTEMS

Volume : 1A
Chapter ;02
Section ! Appendix

18BM REGISTERED CONFIDENTIAL

ACS-| Development Workbook
Page: 9.8
Date: 1/8/68

skip operation register designations,
flag code etec.

The mnemonic means of designating an instruction with its skip flag set to is to proceed the
instruction's menmonic by an asterisk (%),

If the skip condition is TRUE, all instructions within the scope with this skip flag set to 1 are
ignored.

If the skip condition is FALSE, all instructions within the scope are executed nofrnally {(indepen-
dent of the value of their skip flag).

The instructions within the scope of a SKIP which are designated as skippable by having their skip
flags set to 1 need not be in adjacent storage locations. They may be interspersed with other
unflagged (and hence unconditionally executed) instructions.

All instructions except an EXTT instruction may be flagged as skippable. In particular a skip or
branch instruction may be skipped.

The skip state (i. e., "skipping": ignore flagged instructions, or "not skipping": execute all
instructions) is altered only as shown in the following table:

Instruction New Skip State
SKIP determined by condition determination
EXITL not skipping
sSVe, I1C not skipping
SVR, IC : determined by bit s%l

SCAN determined by scan-in data

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 9-9
Section : Appendix Date: 4/17/67
Ski I
Skip i] \\
menmonic function
SKAND C. AC,
1 3
SKTAF Cy N Ej
SKFAF Ei ~ Ej
SKOR C.VC,
1]
SKTOr c, Vv Ej
SKFOF Ei v Ej
SKEQ ¢ = cj
SKXOR ¢ # cj

Exceptions: none

™

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 9-10
Section : Appendix Date: 4/17/67

Special Purpose Branch Instructions

The special purpose branch instructions are included primarily for use in interruption servicing
routines and for changing the status of the supervisory-problem mode. These situations require
special treatment because the concurrency of operation in the MPM creates circumstances not
normally encountered in a non-overlapped computer. To treat these situations without these
Instructions would be both awkward and excessively time consuming.

Many instructions in this class are essentially unconditional branch instructions. The formation
of the effective branch address is different for each instruction. However the point at which
the branch is to occur is marked by an EXIT, as usual.

™

ADVANCED COMPUTING SYSTEMS I1BM REGISTERED CONFIDENTIAL

Volume + 1A ACS-1 Development Workbook
Chapter : 02 Page: 9-11
Section : Appendix Date : 4/17/67

Invalidate Instruction Buffers IVIB N
and Branch &\\ k h

At the next EXIT the contents of all instruction buffers are invalidated. Any instructions which
had been prefetched into the instruction buffers and any instructions in the dispatch registers
or contender registers following the EXIT are fetched from storage again.

For the branching action, IVIB appears as a successful branch instruction. That is, unless
there is an outstanding successful branch instruction, a branch occurs at the next EXIT to the
location designated by the effective branch address, eba. The eba is calculated as

eba+Xk+h.

If a successful branch is outstanding, all IVIB functions are suppressed.

Exceptions: none

S

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter 02 Page: ©-12
Section ¢ Appendix Cafe: 1/8/68

Pause PAUSE N

The execution of all instructions preceding PAUSE are completed, Any interruptions occasioned
by these instructions are also taken. After all these actions are accomplished, the execution
of the next instruction in sequence is begun.

Exceptions: none

Pause with Exception PI i jk

Index register Xlis replaced by the value specified by the 10-bit literal jk-field. Before the
replacement the 10-bit quantity is extended to 24 bits by appending 14 high order bits equal in
value to the high order bit of the jk-field. Also the PI exception bit is set to 1. Then a PAUSE

is executed, so that an interruption is taken before the execution of the next instruction in sequence

is begun.
Exception Exception bit

always set I

ADVANCED COMPUTING SYSTEMS {BM REGISTERED CONFIDENTIAL

Volume : 1A ACS~-{ Development Workbook
Chapter ;02 Page: 9-13
Section : Appendix Date: 1/8/68
Supervisor Call SVC i ik

If there are no outstanding successful branch instructions, SVC is performed as follows:

1. Index register X! is replaced by the value specified by the 10-bit literal jk-field. Before the
replacement the 10-bit quantity is extended to 24 bits by appending 14 high order bits equal
in value to the high order bit of the jk-field.

At the next EXIT the following are also performed:

2. The current values of the MPM mode bits S11 replace the values of the bits S11 .
0,1,2 13,14,15

3. The MPM is placed in the following mode:

a. supervisory
b. concurrent

(Note that the disable/enable mode is not altered,)

4. The internal branch-skip-MPC state is saved in bits 3 through 9 of Sll. (Note that the
recorded branch state is always "no outstanding branches". }

5. The internal branch-skip-MPC state is set as follows:
a. no outstanding branches
b. not skipping
¢, no carry

8. A branch is taken to fixed location 256 with respect to the supervisory normal key.

The setting of the mode bits is interlocked with the execution of other instructions to give the
effect of sequential execution, so that concurrency problems associated with the entrance to the
supervisory mode are avoided.

If a successful branch is outstanding, all SVC functions are suppressed.

Exceptions: none

ADVANCED COMPUTING SYSTEMS 1BM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Poge: §-14
Section ¢ Appendix Date: 1/8/68

VA
Supervisor Return SVR &\k\ k h

If there are no outstanding successful branch instructions, SVR is performed as follows at the
next EXIT:

X 11 11
1. The MPM mode bits SO, 1,2 are set to the values 813’ 14,15°

2. The internal branch-skip-MPC state is set to the values designated by bits 3 through 9 of the
machine state register s11, This setting of the branch state neither effects nor is effected

by the branching action of step 3.
3. A branch is taken to the address designated by the eba where
eba + Xk +h,
The branch is with respect to the normal key of the mode specified by S} é

The setting of the mode bits is interlocked with the execution of other instructions to give the
effect of sequential execution, so that concurrency problems associated with the return are

avoided.
If a successful branch is outstanding, all SVR functions are suppressed.

Exception Exception bit

in problem mode bV

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter 02 Page: 9-15
Section : Appendix Date: 1/8/68

Interrupt Call IC m

The interrupt call instruction is internally generated and inserted into the instruction stream to
effect an interruption. IC is not available for use as a programmed instruction. IC is performed
as follows:

1 11

1. The current values of the MPM mode bits S1 replace the values of bits 81 0.11.1%"
] 2

0,1,2
2. 'The MPM is placed in the following mode:

a. Ssupervisory

b. disabled

c. concurrent

3. The interruption return address register 5 is set to the address to which a return should
be made in order to resume the interrupted program in its proper logical sequence.

4. The internal effective branch address is saved in register $10.
5. The Internal branch-skip~-MPC state is saved in bits 3 through 9 of register sl
6. The internal branch-skip-MPC state is set as follows:
a. no outstanding branches
b. not skipping
C. NO Carry
7. A branch is taken to fixed location 0, with respect to the supervisory normal key.
IC is interlocked so that it is executed in strict sequence with each stream; that is, it cannot

pass any instructions ahead of it {instructions in the program being interrupted), nor can it be
passed by any instructions behind it (instructions in the program at location 0).

ADVANCED COMPUTING SYSTEMS iBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 9-16
Section : Appendix ‘ Date: 1/8/68

Interrupt Return IR \W

If there are no outstanding successful branch instructions, IR is performed as follows at the
next EXIT:

. 11 11
1. The MPM mode bits SO, 1,2 are set to the values of SlO, 11,12

2. The internal branch-skip-MPC state is set to the values designated by bits 3 through 9 of the
machine state register 11

3. The internal effective branch address is set to the value of Slo.

4. A branch is taken to the address designated by the interruption return address register Sg.

The branch is with respect to the normal key of the mode specified by Sié This branching

action neither effects nor is effected by the actions of steps 2 and 3.
The setting of the mode bits and the branch-skip-MPC state are interlocked with the execution of
other instructions to give the effect of sequential execution, so that concurrency problems
associated with the return are avoided,
X a successful branch is outstanding, all IR functions are suppressed.

Fxception Exception bit

in problem mode PV

o

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS~| Development Workbook
Chapter : 039 Page; 9-17
Section : Appendix Date: 1/8/68

Scan In SCAN ﬁ\\\w k h

The MPM registers and control triggers are reset to state specified by the contents of storage
starting at the effective address ea, where

eal ‘-X'k+h

eak +alternate key

The nine low order bits of ea are ignored and assumed to be 0's. Thus the scan data is assumed
to be aligned on a 256-word boundary.

The storage arrangement of the registers and triggers is specified in the section "MPM Interrup-
tions",

After completing SCAN, execution is resumed according to the state specified by the scanned-in
data.

Exceptions Exception bit

in problem mode pv
missing address MA

ADVANCED COMPUTING SYSTEMS {BM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter ;02 Page: 10-1
Section : Appendix Date: 1/8/68

INPUT/OUTPUT OPERATIONS

The input/output (i/0) operations provide for the initiation, termination, and testing of data move-
ment between storage and input/output devices, The actual data movement is controlled by
channels and device control units. The T registers contain interruption and mask bits and other
control and status data for channels as shown below.

The descriptions of the instructions SIO, SIOA, HIO, TC and RC given below are incomplete and
specify only the basic function of the instruction. Complete descriptions of these instructions
and the use of the T registers are included in the section "Input/Output Module".

T REGISTERS
Number Name Length in Bits
0 Interruption Signal, Channels O to 47 48 Notel
1 Interruption Signal, Channels 48 to 95 48
2 Mask, Channels 0 to 47 48 Note 2
3 ~ Mask, Channels 48 to 95 48
4 Enable Search 1 Note 3
5 Channel Number _ 8 Note 4
6 Interruption Status I 48
7 Interruption Status IT 48
8 Test Channel Status I 48
9 Test Channel Status IT 48
10 Busy, Channels O to 47 48 Note &
11 Busy, Chanmnels 48 to 95 48
Notes:

1. For the instruction MOT, the reogister pair T0, 1 is considered as a 96-bit register with bits
numbered 0 to 95, Neitier MY T nor MZT will modify TO,1,

2. For the instructions MZT and MOT, the register pair T2, 3 is considered as a 96-bit register
with bits numbered 0 to 9%.

3. The unused bits of T# are bits 1 through 47,
4. The unused bits of T2 are bits 0 through 39,

5. Register pair T10, 11 may be set only by chamnels., Hence the instructions MXT, MZT, and
MOQOT have no effect.

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook

= Chapter : 02 Pagef iOé2
Section : Appendix Date: 1/8/68
Start I/0 SIO i1j 1tk h

. o
device number X8,9,.. .15

-
channel number 16,17,...,23
eal +XX + b

eak +normal key

H the specified channel is not operational or is busy, bit ¢ is set to 1. Otherwise, bit cj is set
to 0, and the channel command parameters (CCP) at storage location ea are sent to the channel.
The CCP specifies the command to be executed by the channel and the device. The format of the
CCP in storage is

command code (8}, flags (4), key (12) in location ea
address (24) in location ea + 1
ignored (8), skip count (16) in location ea + 2
ignored (8), transmission count {16) in location ea + 3
p FHF parameters (24) in location ea + 4
h} The conditions for initiation, execution, and termination of both SIOQ and the command specified

by the CCP are specified in the section "Input/Output Module".

Exceptions Exception bit
in problem mode PV
Coy set to Qor Cop set to 1 ccC

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 10-3a
Section : Appendix Date: 1/8/68
Start I/0 per Alternate Key SIOA ililk h

device number +X£3 9 15
Py ey

o~
channel number Xm, 17,...,23

eal*Xk+h

eak * alternate key

This instruction is identical to SIO except that in forming the storage address the alternate key
is used.

Exceptions Exception bit
in problem mode v
Coy set to Oor 025 settol cC
N
Halt I/0 HIO ifj \\\

device number + X% 9 15

o
channel number X16, 17,...,23

If the specified channel is not operational, bit ¢; is set to 1. Otherwise, bit ¢; is set to 0, and the
execution of the current operation at the specified channel and device is terminated. The conditions
for initiation, execution, and termination of HIO are specified in the section "Input/Cutput Module",

Exceptions Exception bit
in problem mode PV
Coy set to O or Cop setiol cC

\(

ADVANCED COMPUTING SYSTEMS IBM _REGISTERED CONFIDENTIAL

Volume : 1A ACS-1 Development Workbook

Chapter 02 Page: I0-3b

Section : Appendix Date: 1/8/68
N

Test Channel TC 1] k\

)
channel number X16, 17,...,23

If the specified channel is not operational, bit ¢; is set to 1. Otherwise, bit ¢j is set to 0, and

the contents of the channel status data {CSD) register of the specified channel replaces the contents
of registers T7,8. The operation of the chamnel is not effected. The conditions for initiation,
execution, and termination of TC are specified in the section *Input/Output Module".

Exceptions Exception bit
in problem meode bv
Co4 set to Cor Cog setto 1l CC

N
Reset Channel RC 1j&

channel nuznber +X16, 17,...,23

If the specified channel is not operational, bit ¢; is set to 1. Otherwise, bit ¢; is set to 0, and the
specified channel and all devices attached to it are reset. The conditions for initiation, execution,
and termination of RC are specified in the section "Input/Output Module™.

Exceptions Exception bit
in problem mode v
Cog setto Oor Cog setto 1 CC

ADVANCED COMPUTING SYSTEMS |BM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Developmeni Workbook
Chapter . 02 Page: 10-4
Section : Appendix Date: 4/17/67
Move T Register to Index MTX i«
xb e Tt
Exception Exception bit
in problem mode PV
Move Index to T Reqgister MXT il ik
e xlok
Exception Exception bit

in problem mode Pv

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 10-5
Section : Appendix Date: 4/17/67
Move Zero to T-Register Bit MZT i | §
n +Xj
T <0
n

If n exceeds the length of 'I‘l, no bit is set.

For this instruction, the register pairs 7% 1 (IO interrupt register) and 749 (IO mask register)
are each considered as a 96-bit register with bits numbered 0 through 95. The pair TC,1 may
be addressed by setting the i-field to either 0 or 1; similarly T2, 3 addressed by either 2 or 3.

Exception Exception bit
in problem mode PV
Move One to T-Register Bit MOT i |; \Q
n +Xj
L <1

If n exceeds the length of T , no bit is set.

For this instruction, the register pairs TO’ 1 (IO interrupt register) and Tz’ 3 (IO m.ask register)

are each conzidered as a 96-bit register with bits numbered O through 95. The pair T0; 1 may

be addressed by setting the i-field to either O or 1; similarly T2, 3 addressed by either 2 or 3.
Exception Exception bit

in problem mode PV

ADVANCED COMPUTING SYSTEMS 1BM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter T 09 Page: 11-1
Section : Appendix Date: 1/8/68

TAG AND DIRECTORY OPERATIONS

The tag and directory operations provide for the manipulation of the storage control portion of the
Bus and Lining Module,

All tag and directory instructions are in the short format:

'The i-, j-, and k-fields always refer to X-registers. Whenever a pair of X registers is specified,
the value of the i-, j-, or k-field (as appropriate) is assumed to be even. If it is not, the low
order bit of the field is forced to 0, exception bit RS is set, and the operation proceeds. The
48-bit quantity X0,1 is defined as 48 0O's.

Tag and Directory instructions (except ITUMA) may be executed only when the MPM is in the
supervisory mode; if one is encountered in the problem mode, exception bit PV is set and the
instruction execution is suppressed so that no X-registers or tag or directory entires are changed.

A complete description of these instructions is included in the section "Bus and Lining Module".

ADVANCED COMPUTING SYSTEMS IBM _REGISTERED CONFIDENTIAL

Volume : 1A ACS-I Development Workbook
Chapter ;02 Page: 11-2
Section : Appendix Date: 1/8/68
Invalidate Tag and Update MS per Y .
Alternate Key ITUMA & ik
eal +Xi + xk

eak +alternate key

If the line containing the ea is present in HSS, its copy in MS is set equal to the HSS copy, and
the tag corresponding to the line is made invalid. Otherwise no change takes place.

Exceptions: none

Invalidate Tag and Update MS ITUM W

The MS copy of each line in HSS is made equal to the HSS value. Al tags are made invalid.

Exception Exception bit

problem mode PV

™

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume ¢ 1A ACS-| Development Workbook

Chapter : 02 Page: 11-3

Section : Appendix Date: 1/8/68
‘

Directory Enter DEN i k k

The contents of register pair Xk skl specify a directory entry. A directory search is performed
{using increasing counts appropriate to the page size) to locate an invalid entry. Then the contents
of X¥'and Xk+1 replace that invalid entry.

The physical directory address (PDA} of the invalid entry and the count used to locate it are
returned to register X! in bit positions 0,1,...,11 and 13, 18,..., 17 respectively; bits 18,19,...,
23 are set to O's.

If no invalid entry can be located, no directory entry is made; a count of 32 and a PDA of 0 are
returned to X!,

Exception Exception bit
in problem mode by
k odd RS
irectory Enter per Phys A
Directory Enter per Physical DENP i \ k

Bit0,1,...,11 of Xk specify a PDA. The contents of register pair Xi’i"'l replace the directory
entry at location PDA. . No check is made that this is a legitimate PDA for this directory entry.

Exception Exception bit
in problem mode PV
i odd RS
Directory Swap DSW i§jlk

Bits 19, 20,...,46 of register pair Xk Skl specify a virtual page address. A directory search is
performed to locate the entry corresponding to this virtual address. The entry is returned to the
register pair ¥i,1#1, Then the contents of Xj»j+1 replace the contents of the entry just located.
No check is made that this location is a legitimate PDA for the directory entry specified by Xi,i+1.

If the entry camnot be located, X1’1+1 are set to 0's, and no new directory entry is made.
ry ry
Exception Exception bit
in problem mode PV

i,j, or k odd RS

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-1 Development Workbook

Chapter ¢ 02 Page: 11-4

Section : Appendix Date: 1/8/68
. NN

Directory Move and Invalidate DM \\Q k

Bits 0,1,...,11 of register Xk specify one PDA {pda1); bits 12,183,...,23 specify a second PDA
(pdag).

The directory entry at location pdag replaces the directory entry at location pdaj, and the entry
at pdag is replaced by the invalid pattern (forty-eight O's are stored).

The move and invalidation are interlocked so that no intervening accesses to location pdaj are
permitted.

No check is made that the directory entry in pda2 can be legitimately located in pdaj.

Exception Exception bit
in problem mode Vv
%
Directory Examine DEX i @ k

Bits 19, 20,...,46 of register pair Xk kel specify a virtual address. The directory entrycorres-
pondmg to this virtual page addre=c replaces the contents of registcrs Xi,i+1,

i,i+l

If no entry can be located, X’ are sef to O's.

Exception Exception bit
in problem mode v
iorkodd RS
Directory Examine per Physical DEXP i w k
N

Bits 0,1,...,11 of Xk specify a PDA, The directory entry at location PDA replaces the contents
of register pair Xt 1%,

Exception Exception bit

in prohlem mode PV
iodd RS

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-1 Development Workbook

Chapter o 02 Page: 11-5

Section : Appendix Date: 1/8/68
N

Directory Search for Smaller DSS i \ k

Bits 19,20,. .. ,46,47 of register pair X* ™! gpecify a virtual page address and page size. A
directory search is performed to find either an invalid entry or an entry specifying a page size
smaller than the page size of the search argument. Upon locating either type of entry, the PDA
and the ID-PS field of the entry is returned to register pair X1,1+! in bit positions 0,1,...,11
and 18,19,...,47 respectively.

If an invalid entry was found, bits X‘k are set to 0,0. If a smaller page entry was found, bits

12,13
Xiz 13 are set to 0,1, If the search was unable to locate either type entry, bits Xiz 13 are set
H . 3 | b
to 1,0, In all cases bits X}l4,15,16,17 are set to O's.
Exception Exception bit
in problem mode v
iorkodd RS
\
Directory Search for Invalid DSI i \ k
K, k41

Bits 18, 20,...,46 of register pair X " specify a virtual page address. A directory search is
performed to find an invalid entry, The PDA of the invalid entry and the count used to locate it
are returned to register X! in bit positions 0,1,...,11 and 12,13,...,,17 respectively; bits 18,
19,...,23 are set to O's.

If no invalid entry can be located, the count returned is 32 and the PDA is Q.
Exception Exception bit

in problem mode PV
k odd RS

|BM REGISTERED CONFIDENTIAL
ACS-| Development Workbook

ADVANCED COMPUTING SYSTEMS

Volume 1A
Chapter : 02 Page.: 11-6
Section : Appendix _ Date: 1/8/68

. N
Directory Search per Count DSC i k\ k

. : ; Xk, k+l . . :
Bits 19, 20,...,46 of the register pair specify a virtual page address. Also bits
XJ;3 14 17 specify a count. The hash function H (va,cnt) specifies a PDA. This PDA ang the

» yre ey ..
ID-PS field of the directory entry at location PDA are returned to register pair xt i+l in bit
positions 0,1,...,11 and 18,19,...,47 respectively; bits 12,13, ... ,17 are set to O's,
Exception Exception bit
in problem mode BV

iorkodd)

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 : Page: 12-1
Section : Appendix Date: 1/8/68

SPECIAL REGISTERS

The set of status bits, control bits, and auxiliary registers required for the proper functioning
of the MPM constitute the set of special registers. The designation of these registers is shown
in Table 1.

Special registers 520 through 5§31 are sources of 0's; information loaded into them is not recover-
able. Although all special registers are nominally 24 bits in length, not all special registers
have 24 physical positions; the unused bits are noted in Table 1. If any register or bit which does
not exist in the physical embodiment is addressed as a source operand, the value O is supplied;
thus, if it is addressed as a resuit operand, the information is lost.

The special registers 3 through S31 are accessible only when the processor is in the supervisory
mode. If these registers are addressed when in the problem mode, a privileged exception occurs,
exception bit PV is set to 1, and the execution of the offending instruction is suppressed in such

a way that the contents of all registers remain unchanged.

Each bit position of special registers PX, PM, SX, SM and MS has individual significance to
delineate an exceptional condition, a mask, a mode, or machine status. The significance of
these bits and their mnemonics are shown in Tables 2, 3, 4, and 5.

The contents of special registers IRA, EBA, and parts of MS have significance only when an inter-
ruption occurs. A complete discussion of these registers is given in the chapter "MPM Interrup-
tions".

Special registers GPO, GPl, GP‘?', and GP3 are not reserved for a particular function, but rather
may be used as general purpose registers when the processor is in the supervisory mode. Unlike
the remainder of the special registers, they are never altered or used except when explicitly
addressed.

Special registers are used as operands in the instructions shown in Table 6 {instructions which
may cause an exception bit to be set in PX or SX are not included).

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-1 Development Workbook
Chapier ;02 Page: 12-2
Section : Appendix Date: 1/8/68

Special Registers

Length Unused bit
Number Name Mnemonic in bits positions Privileged
0 Condition C 24 - no
1 Problem Exception PX a1 21 through 23 no
P Problem Mask PM 21 21 through 23 no
3 Supervisory Exception SX 11 11 through 23 yes
4 Supervisory Mask SM 11 11 through 23 yes
) Problem Normal Key PNK 12 0 through 11 yes
6 Problem Alternate Key PAK 1z O through 11 yes
7 Supervisory Normal Key SNK i2 0 through 11 yes
8 Supervisory Alternate Key SAK 12 0 through 11 yes
9 Interruption Return Address IRA 24 - yes
10 Effective Branch Address EEBA 24 - ' yes
11 Machine State MS 16 16 through 23 yes
12 Cycle Count CYC 24 - yes
13 Instruction Count INC 24 -~ yes
14 Timer TIME 24 - yes
15 External Signal ES 24 - yes
16 General Purpose Gp” 24 - yes
17 General Purpose grt 24 - yes
18 General Purpose GP2 24 - yes
18 General Purpose Gp3 24 - yes

TABLE 1

ADVANCED COMPUTING SYSTEMS IBM_REGISTERED CONFIDENTIAL

Volume : 1A ACS-| Development Workbook
Chapter : 02 Page: 12-3
Section : Appendix Date: 1/8/68

Problem Exception !Sll and Mask 582) Registers

Number Name Mnemonic
0 Index Divide by Zero XDZ
1 Add Overflow AO
2 Add Underflow AU
3 Multiply Overflow MO
4 Multiply Underflow MU
5 Divide Overflow Do
6 Divide Underflow Du
7 Shift Overflow SO
8 Unnormalized Operand 1010)
g Unnormalized Divisor Ub

10 Dllegitimate Operand ILO
11 Zero Fraction ZF
12 Low Significance 1S
13 Overflow Warning ow
14 Underflow Warning uw
15 Condition Check CcC
16 Address Boundary Violation BV
17 Illegitimate Instruction Code oc
18 Privileged Instruction PV
19 Register Specification RS
20 Pause and Iterrupt 1

TABRLE 2

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Volume : 1A ACS-t Development Workbook
Chapter ;02 Page: 12-4
Section ¢ Appendix Date: 1/8/68

supervisory Exception 83 and Mask S4 Redqgisters

Number Name Mnemonic
0] Input/Qutput 10
1 External In EI
2 Cycle Count Zero cz
3 Timer Zero TZ
4 Instruction Count Zero 17
5 Missing Address, Data Load or Store MA
6 Protected Address PA
7 Missing Address, Instruction Execution MI
8 Directory Interrupt DI
9 Directory Interrupt Overrun Dio

10 Machine Malfunction MM

TABLE 3

L BN

ADVANCED COMPUTING SYSTEMS |BM REGISTERED CONFIDENTIAL

Volume : 1A ACS-1 Development Workbook
Chapter ;. 02 Page: 12-5
Section : Appendix , Date: 1/8/68

Machine State Register (Slll

Number Name
0 Supervisory/Problem Mode
1 Disable/Enable Mode
2 Concurrent/Sequential Mode
3 Branch State
4 Branch State
5 Branch State
6 Skip State
7 Multi-precision Carry
8 Multi-precision Carry
9 Multi~precision Carry
10 Previous Supervisory/Problem Mode for Interrupt
11 Previous Disable/Enable Mode for Interrupt
12 Previous Concurrent/Sequential Mode for Interrupt
13 Previous Supervisory/Problem Mode for SVC
14 Previous Disable/Enable Mode for SVC
15 Previous Concurrent/Sequential Mode for SVC

TABLE 4

o

LY

ADVANCED COMPUTING SYSTEMS

Volume : 1A
Chapter : 02
Section : Appendix

iBM_REGISTERED CONFIDENTIAL

ACS-1 Development Workbook
Page: 12-§
Date: 1/8/68

Ixplanation of Branch, Skip and MPC States

000
001
010
011
100
10
110
111

= O

000
001
010
011
100
101
110
111

Branch State
11

53.4.5

No Outstanding Branch
Successful Branch Qutstanding
IVIB Outstanding

SVC OQutstanding

SVR Outstanding

IR Qutstanding

Unused

Unused

Skip State
11
56

Not Skipping
Skipping

Multi-precision Carry State

11
57.8,9

No Carry

+ 1

-- } exceptional
-3

-2

-1

TABLE 5

P,

ADVANCED COMPUTING SYSTEMS IBM REGISTERED CONFIDENTIAL

Voluma : 1A ACS-~| Development Workbook
Chapter ;02 Page: 12-7
Section : Appendix Date: 1/8/68
Special Reqgisters Used as Operands
Instruction S Registers as Source 5 Registers as Result
MXS, MXSO - any
MSX any -
MSXZ ' . any any
ACH, ACL, SCH, SCL MS MS
MCX C -
MAC, MXC - C
All Logic on Condition Bits C C
AXT, AXCT, AXKT - C
SIO, SIOA, HIO, TC, RC - C
All Compare - C
All Branch-at-Exit (except BU) C -
All Skip C -
SVC MS MS
SVR MS MS
ic MS EBA, TRA, MS
IR EBA, IRA, MS M3
SCAN - all

TABLE 8

