
Solution.

(a) \(L = \{0^n1^n2^n \mid n \geq 0\} \): Let \(y = 0 \) in the statement of the NPL. Then let \(m, n \) be distinct positive integers, and let \(z = 1^m2^m \). We have \(0^mz = 0^m1^m2^m \in L \), but \(0^nz = 0^n1^m2^m \notin L \). By the NPL, \(L \) is not regular.

(b) \(L = \{www \mid w \in \{a,b\}^*\} \). Let \(y = a \) in the NPL, and let \(m, n \) be distinct. Choose \(z = ba^mba^mb \). Then \(y^n \in L \), but \(a^mba^mb \notin L \). So \(L \) is not regular.

(c) \(L = \{a^{2^n} \mid n \geq 0\} \). Let \(y = a \), and let \(m < n \) be distinct. Choose an integer \(k \) such that \(2^k + (n - m) \) is not a power of 2. This is possible since the gaps between successive powers of 2 get as large as you wish. Then \(a^m a^{2^k-m} \in L \), but \(a^m a^{2^k-m} = a^{k+n-m} \notin L \).

2. Refer to Problem 4 on HW 2. Prove that the class of regular languages is closed under reversal. In other words, if \(L \) is regular, then \(L^R \) is regular. Do this using regular expressions – you should give an inductive definition of the expression \(\alpha^R \) using the inductive definition of the regular expression \(\alpha \). Then prove using induction on expressions that \(L(\alpha^R) = (L(\alpha))^R \).

Solution. The inductive definition of the expression \(\alpha^R \) is the following.

\[
\begin{align*}
\emptyset^R &= \emptyset, \\
a^R &= a, \\
e^R &= e, \\
(\alpha \beta)^R &= \beta^R \alpha^R, \\
(\alpha \cup \beta)^R &= \alpha^R \cup \beta^R, \\
(\alpha^*)^R &= (\alpha^R)^*. \\
\end{align*}
\]

The proof that this construction works involves the following facts about languages in general:

\[
\begin{align*}
(L_1 L_2)^R &= L_2^R L_1^R, & (1) \\
(L_1 \cup L_2)^R &= L_1^R \cup L_2^R, & (2) \\
(L^*)^R &= (L^R)^*. & (3)
\end{align*}
\]

I’ll just prove (3). Using (1) and induction on \(k \) it follows that for any \(k \), \((L^k)^R = (L^R)^k \).

Therefore, using (2) and its clear generalization to infinite unions,

\[
(L^*)^R = \bigcup_{k \geq 0} (L^k)^R = \bigcup_{k \geq 0} (L^R)^k = (L^R)^*.
\]

Now using (1), (2), and (3), we prove by induction on regular expressions that \(L(\alpha^R) = (L(\alpha))^R \).

I will illustrate just one base case:

\[
L(\alpha^R) = L(\alpha) = \{a\} = \{a\}^R = L(\alpha)^R.
\]

Assume that \(L(\alpha^R) = (L(\alpha))^R \) and the same equation for \(\beta \) Then

\[
L((\alpha \beta)^R) = L(\beta^R \alpha^R) = L(\beta^R)^R L(\alpha^R) = (L(\alpha) L(\beta))^R \text{ (by (1))} = L(\alpha \beta)^R.
\]

This is the inductive assertion for \(\alpha \beta \). The other 2 cases work the same way using (2) and (3) respectively.

3. Do problem 1.16 in Sipser using the method involving Arden’s lemma from class.

Solution (part b). From the state diagram, letting \(X_1, X_2, \) and \(X_3 \) be the languages accepted starting in 1,2,3, respectively, we have the equations:

\[
\begin{align*}
X_1 &= (a \cup b) X_2 \cup e; \\
X_2 &= aX_2 \cup bX_3; \\
X_3 &= aX_1 \cup bX_2 \cup e.
\end{align*}
\]
There is a choice about which variables to solve for using Arden’s Lemma. I started by solving for X_2, because it is the shortest equation. This gives

$$X_2 = a^*bX_3.$$

Substituting this into the first equation for X_1; you get

$$X_1 = (a \cup b)(a^*bX_3) \cup e.$$

Then you can substitute the solutions in the previous 2 equations into the third equation, getting

$$X_3 = a((a \cup b)(a^*bX_3) \cup e) \cup b(a^*bX_3) \cup e.$$

Now simplify this equation for X_3 so you can use Arden one more time. You get

$$X_3 = a((a \cup b)(a^*bX_3) \cup e) \cup b(a^*bX_3) \cup e$$

This lets you solve for X_3 using Arden:

$$X_3 = ((a(a \cup b)(a^*b) \cup ba^*b))^*(a \cup e).$$

But now you need the expression for X_1 since 1 is the start state. You can get this via

$$X_2 = a^*bX_3 = a^*b((a(a \cup b)(a^*b) \cup ba^*b))^*(a \cup e)).$$

Finally

$$X_1 = (a \cup b)X_2 \cup e = (a \cup b)(a^*b((a(a \cup b)(a^*b) \cup ba^*b))^*(a \cup e))) \cup e.$$

This is a very complicated expression, but it doesn’t matter. It doesn’t even matter too much that there’s a mistake in the algebra, as long as you see how to eliminate variables.

4. Use the partition refinement algorithm to find the minimum-size machine equivalent to the one below.
Solution. Here is a picture of the successive refinements:

![Diagram](image)

- **Partition 0:**
 - $q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_4\rightarrow q_5$
 - $B_0 \rightarrow B_1$

- **B0 does not split.**
- **q1 splits from q2, q3, and q4.**
- **q2 splits from q3 and q4.**
- **q3 splits from q4.**

- **Partition 1:**

- **q3 splits from q4.**

- **Partition 2:**

- **No further need to refine.**

- **Partition 2 represents the identity relation; all states are distinguishable, and the given machine is minimal.**