Generating Trading Agent Strategies:

Analytic and Empirical Methods for Infinite and Large Games

Daniel Reeves

2006 Feb 23
Coauthors:
Michael Wellman, Jeffrey MacKie-Mason, o o
Anna Osepayshvili, Kevin Lochner, universy (of) michigan
Shih-Fen Cheng, Rahul Suri, artificial
Yevgeniy Vorobeychik, and Maxim Rytin intelligence
laboratory

Game Description
- Allowable actions

- Payoff function

- Type distributions

Motivation

Private Other (market)
Information Information

A

Strategy
Generation
Engine

— | Strategy

!

Actions (bids)

Game Theory Primer

, action
(anate)_ Strategy
Information

/’/ >

(Private) .| Payoff
Information Strategy - g]
action Function

(Private) S
Information rategy action

(Multi-stage)

Game Theory Primer

, action
(anate)_ Strategy) mmm——
Information

—

(Private) .| Payoff
Information Strategy - g i
action Function

(Private) S
Information rategy action

(Multi-stage)

Game Theory Primer

, action
(anate)_ Strategy) mmm——
Information

—

(Private) .| Payoff
Information Strategy - g i
action Function

v

A 4

(Private) S
Information rategy action

(Multi-stage)

http://www.something-fishy.com/photography/albums/Animals/toes.jpg

Game Theory Primer 2

Best-Response Strategy = optimal strategy
given known strategies of the other players

Nash Equilibrium = profile of strategies such
thﬁt each strategy is a best response to the
others

Bayes-Nash Equilibrium = generalization of
NE to the case of incomplete information, for
expected-utility maximizing players
Normal-form Game = defined in terms of
strategies

Symmetric Game = no distinct player roles
(except Nature)

Epsilon of a Profile = best gain from deviating
(0 iff Nash)

Outline

« Best-response strategies in one-shot, 2-
player, infinite games of incomplete
information

« Empirical game methodology for multi-
stage, multi-player games
(“Taming Monster Games”)

« Taming 2 particular monster games:
— Simultaneous Ascending Auctions (SAA)
— Trading Agent Competition (TAC Travel)

Our Class of Infinite Games

« 2-player, one-shot, infinite games of
incomplete information

» Piecewise uniform type distributions
« Payoff functions of the form:

u(t,a,t’'.a') =

(Bt +pra+0i+pid +¢1 if —eo<a+o0d <Py
021 + paa+ 05" +phad’ + ¢y 1fBr <a+oad’ <Bs

Ot +pra+ 0’ +pia + 07 if By <a+oa’ < oo

Games in our Class

Game 6 p 6’ p’ @ 3 o
FPSB 0,1/2,1 0,—1/2,—1 0,0,0 0,0.0 0 0,0 -1
Vickrey Auction 0,1/2,1 0,0,0 0,0,0 0,—-1/2,—1 0 0,0 -1
Vicious Vickrey Auction | 0, % 1—k kok/2,0 —k,—k/2,0 0, % e —1 0 0,0 -1
Supply Chain Game —1,—1,0 1,1,0 0,0,0 0,0,0 0 wov,v 1
Bargaining Game (seller) —-1,—-1,0 1 -k, 1—-FkO0 0,0,0 k., k.0 0 0,0 -1

(buyer) 0,1,1 0, -k, —k 0,0,0 0,1—k,1—-EF 0 0,0 -1
All-Pay Auction 0,1/2,1 —-1,—-1,-1 0,0,0 0,0.0 0 0,0 -1
War of Attrition 0,1/2,1 —1,—-1/2.0 0,0,0 0,—1/2,—1 0,0,0 0,0 -1
Shared-Good Auction 0.1/2,1 0,-1/4,—-1/2 0,0,0 1/2,1/4,0 0 0,0 -1
Joint Purchase Auction 0,1 0,—1/2 0,0 0,1/2 0,—-C/2 C 1
Subscription Game 0,1 0, —1 0,0 0,0 0,0 C 1
Contribution Game 0,1 -1, -1 0,0 0,0 0,0 C 1

u(t,a,t’,ad') =

/

L

017 +pra+0it+pid +d
021 + paa + 05"+ pha' + o

07t +pra+ 05t" + pa’ + o;

if —co<a+o0d <P
lfBz §CZ—|—OCCZ,§B3

if B; <a+oa’ < oo

Piecewise Linear Strategies

mit + by
mst + b»

mr_1t +br_
mgt + bg

1f —oco <t <
ifcr <t <cj

ifep_1 <t <cg
if cx <t < Hoo,

» Specified by the vectors ¢, m, b

Existence and Computation of
Piecewise Linear Best Responses

« Theorem 1. Given a payoff function with |
regions, an opponent type distribution with
cdf F that is piecewise uniform with J
pieces, and a piecewise linear strategy
function with K pieces, the best response
IS Itself a piecewise linear function with no
more than 2(I-1)(J+K-2) piece boundaries.

Proof Sketch

For arbitrary own type t, and opponent type a random
variable T, find own action a maximizing

Edu(ta, 1,s(T))]

(Numerical maximization not applicable due to
parameter i)

Above works out to be a piecewise polynomial in a
(parameterized by i)

For given t, finding optimal a is straightforward

Remains to find partitioning of type space such that
within each type range, optimal action is a linear function
of t

This can be done in polynomial time

Example: First-Price Sealed Bid
Auction (FPSB)

Types (valuations) drawn from U[0,1]
Payoff function:

(

t—a ifa>d
u(t,a,d)=< (t—a)/2 ifa=d
0 otherwise.

Known Bayes-Nash equilibrium:
a(t)=t/2 (Vickrey, 1961)

Found in as few as one iteration from a variety of
seed strategies

Example: Supply-chain Game

« Producers’ Costs U[0,1]
« Consumer’s Valuation v (known)
« Payoff function:

a, -t ifa +a,<v

u(t,,a,a,) = {

0 otherwise

Producer 1 —g—1> Producer 2 i» Consumer
(costt,, bid a,) (cost t,, bid a,) (value v)

Finding Best Responses

Finding Best Responses

Finding Best Responses

0.2 0.4 0.6 0.8

Finding Best Responses

0.6 0.8

Example: Bargaining Game

(aka, sealed-bid k-double auction)

Buyer and seller place bids, transaction happens iff
they overlap

Transaction price is some linear combination of the
bids

Known equilibrium (Chatterjee & Samuelson, 1983)
with k=1/2 for seller (1) and buyer (2):

(11(1‘1) :2/3t1 -+ 1/4
az(lz) — 2/3t2 -+ 1/12

Found in several iterations from truthful bidding

Example: Joint Purchase Auction

 Variants: contribution/subscription
games

« 2 agents want to jointly acquire a good
costing C

« Mechanism: simultaneously offer
contributions; buy iff sum > C and split
the excess (sum — C) evenly

« Nash: 2/3t+ C/4-1/6

Example: Shared-Good Auction

« New mechanism, similar to the divorce-
settlement game; undoes joint-purchase

« Agents place bids for a good they currently
share, valuations ~U[A,B]

 High bidder gets the good and pays half its
bid to the low bidder in compensation

u(t.a.d) = t—a/2 ifa>d
TS dl)2 otherwise

Equilibrium in Shared-Good Auction

2t + A4
a(t) = 3

« Found in one

iteration from
truthful bidding
(for any specific
[A,B])

Example: Vicious Vickrey Auction

» Generalization of a Vickrey Auction (Brandt &
Weiss, 2001) to allow for disutility from
opponent’s utility (eg, business competitors)

((1—k)(t—d) ifa>d
u(t,a,l’,d)=< (1-k)t—d)—k(t'—a))/2 ifa=d
| —k(t' —a) otherwise

« Brandt & Weiss consider only the complete
information version

Equilibrium in Vicious Vickrey

e at) = (ket)/(k+1)

« Reduces to truthful bidding for the
standard Vickrey Auction (k=0)

« lterated best-response solver finds this
equilibrium (for specific values of k) within
several iterations from a variety of seed
strategies

Conclusions:
Best-Response Solver

 First algorithm for finding best-response
strategies in a broad class of infinite games of
incomplete information

« Confirms known equilibria (eg, FPSB), confirms
equilibria we derive here (Supply-Chain game),
discovers equilibria in new games (eg, Joint
Purchase and Shared-good auction)

« Goal: characterize the class of games for which
iterated best-response converges

Taming Monster Games: Overview

Determining candidate strategies
Game simulators and brute-force estimation

Variance reduction for Monte Carlo Sampling
— Control Variates
— (Quasi-Random Sampling, Importance Sampling)

Player Reduction

« Analyzing Empirical Games

— Gambit, Amoeba, Replicator Dynamics
« Sensitivity Analysis

— PM distributions

— Confidence bounds on equilibria

« Killer App: Trading Agent Competition (TAC)

Reprise: First-Price Sealed-Bid
Auction (FPSB)

Types (valuations) drawn from U[0,1]
Payoff function (2-player case):

(

t—a ifa>d
u(t,a,d)=< (t—a)/2 ifa=d
0 otherwise.

\

Strategy space is set of functions from type to
action

Known Bayes-Nash equilibrium: a(t)=(n-1)/nt

FPSBn

Start with a baseline strategy
— Truthful bidding

Generalize via parameters

— Shade factor

— (Translational parameter, kt+b, etc)
Restricted game:

— For all agents iin {1,...,n}, bid kt for k in [0,1]

Further restrict the game by discretizing k

Theoretical Results for FPSBnN

« Expected Payoff for playing k. against

everyone else playing k:
(L ifk;=k=0
T—ﬂ'f ﬁ':,' 71—1 L1
(ki k) = { rt (%) ik <k
k) (n— UA _L”]}jﬂ {)T:I?E?;"l’l-‘i‘fé‘{i‘.
L U:—l—]}f

« Best response to everyone else playing k

rm?d@ﬁﬁed if k= [}
BR(k) = Ell‘gl‘lifl)(”;(fﬁ,f{) =& if k< =L

n—1 ~ H—
\ " Ur;t— n

Theoretical Results for FPSBnN

« Expected Payoff for playing k. against

everyone else playing k:
(L ifli=k=0
T—ﬂ'f ﬁ':,' 71—1 L1
ik k) = { 51 (F) ifki <k
(1—k)((n—1)k*—(n—1)k?)

otherwise.

« Best response to everyone else playing k:

0 , 2/3 Do
V3 (k‘-z (-n.z — 1) (9-:0.- + \/3(-:0.- +1)((n—1k?>+27(n+1)) + 9)) _ 32/32 (-n.z — 1)

3(n+1) i’/!fc?(n —1) (9?12 +18n + (n+ 1)3/2y/3(n — 1)k2 +81(n + 1) + 9)

Theoretical Results for FPSBnN

« Expected Payoff for playing k. against

everyone else playing k:
(L ifk;=k=0
T—ﬂ'f ﬁ':,' 71—1 L1
(ki k) = { rt (%) ik <k
k) (n— UA _L”]}jﬂ {)T:I?E?;"l’l-‘i‘fé‘{i‘.
L U:—l—]}f

« Best response to everyone else playing k

rm?d@ﬁﬁed if k= [}
BR(k) = Ell‘gl‘lifl)(”;(fﬁ,f{) =& if k< =L

n—1 ~ H—
\ " Ur;t— n

Epsilon Metric for FPSBnN

« The epsilon for a profile s is greatest
possible gain from deviating (payoff of

best unilateral deviation from s minus
payoff in s)

« For a symmetric profile (k) in FPSBn:

(1 1

2 on ifk=20
(k—¢) (& —££+£+£+£—1 (€ + k)n) g‘;--/”_l
erpspa(k) = 111“{(il k) —ui(k k) = < 262(n + 1 ¢ < —
ln—l—f;((%) —l-fll)
2 _ 1 otherwise.

Epsilon

.35}

Game Simulation: FPSB4

®
°o® °
[
oo o _o
°e [N o |
o ® o o ® i
[]
0.2 0.4 0.6 0.8 1
Symmetric strategy profile

Game Simulation: FPSB4

1.35 [] ® [] ® [] ® L] & ® [] ® » ® L] [] ® [] L 2 L] [T
T . T T T | hih
. @ I
[1.3 LILL]
s
0.35¢ . '
L T
I e ¢ vl
@ 1.25 | ++
0.3r1)) ; t 4+
I 3 +
r ® +
: o o g P ; +++ 4 [) i
0.25r vET ot e
F L s
'Hﬁ++ # +
ﬂ . + # 2]
O r L
— 0 . 2 B 1.15 | e b e
- : F (1}
3 L ¢ | bhved
Lﬂ o . . [eeeerg ® [J ® L J [] L J [[] [J ® L [] L J [] L ® L J L J [] o]
O 15 B ® Strategqy Profiles
I o
L Py i
L °® o i
0.1r .
L ° i
I @ ¢ o ® ®]
L ® |
0.05] o _
° o000 ° o o ° e®
. J
o o,0% o0 ®]
0+ [] _
1 . . . ! . . . ! . . . ! . . . ! . . . !
0 0.2 0.4 0.6 0.8 1

Symmetric strategy profile

Game Simulation: FPSB4

_6 T T T T
0.3 F
\
°

\\.

\\
o e
O L \
“ 0.2 \
.5 \\
0, AL I
M e .

" e® °
0.1¢
\‘x\ [)
‘O“? ® o_ o
H\“*m\h ® ° .
... e9® °
e e e0ge0%e %44%%,
0+t R o -
| 1 1 1 | 1 1 1 1 1 1 1 | 1 1 A |
0 0.2 0.4 0.6 0.8

Symmetric strategy profile

Game Simulation: FPSB4

Epsilon

0.05} .y

e _

L 1‘.‘L.‘.~~.‘.L .'t.‘:

ol *Oito-.tto"" 1
| |

0 0.2 0.4 0.6 0.8 1
Symmetric strategy profile

Control Variates

 Variance reduction by adjusting for luck

« FPSB: higher valuation means higher
expected payoff

« Suppose g(t) estimates payoffs; adjust
sampled payoffs by subtracting g(t)-E[g(t)]

(1 — k)kn—ter

11
j#i

g(ti) =

Control Variates: Estimating g(t)

« Bootstrapping a g() — learning a function
from types to payofts from empirical
samples

« Semi-automated approach: pick summary
statistics and perform linear regression
—g(t) = Bx(t) + A

« Unbiased as long as the regression

parameters are estimated from a distinct
data set (exogenously determined g())

Unadjusted and adjusted Payoffs in

FPSB

o
(00

O
()

O
N

Cumulative Probability
O
N

I i
0 0.02 0.04 0.06 0.08 0.
Payoff

Average Variance Reduction

0.008F

0.006

0.004

Variance

0.002F

] 2 3 3 5
Control Variates

1. Unadjusted (0)

2. Linear regression, profile non-specific

3. Linear regression for this profile

4. Analytically determined g()

5. g() = exact expectation (sanity check)

Other Variance Reduction
Techniques

Quasi-random Sampling
Importance Sampling

Stratified Sampling

Combined and Adaptive technigues

(Application requires special handling of
randomness from Nature)

Player Reduction

- Definition: '],

Wi(51,sSp) = Ugi(S1yee s 82y eeeyeeySpyen.

« Theorem: unigue symmetric equilibrium of
FPSBn, is
n(p—1)
p+np-—1)

Epsilon

Epsilons for Symmetric Profiles in
FPSB2, FPSB4 ,, FPSB4

0.02F

0.01F

\ [)
1 . r
5\
Y
b [
L]
. !
[]
®
[]
&
[]
..
[] ..
) e e e " .-
N VY e
0.2 0.3 0.4 0.5 0.6 0.7 0.

Symmetric strategy profile

Theoretical Results for FPSB

« Theorem: Foralln>p =1
eq(FPSBp) < eq(FPSBn|,) < eq(FPSBn) and
0 = c(eq(FPSBn)) < c(eq(FPSBn],)) < £(eq(FPSBp))

(reducing to p players always outperforms the p player version)
« Theorem: Foralln>p>q=>1
eq(FPSBn],) < eq(FPSBn|,) < eq(FPSBn) and

0 = c(eq(FPSBn)) < (eq(FPSBn],)) < €(eq(FPSBn|,))

(solution quality degrades monotonically with more severe player reduction)

Local-Effect Games

(ay1 2 gyl 2 3 gyl 2 4 (1091 2 5 (1)1 2 3 4 6

(p|ayers) reduced players...

Analyzing Empirical Games

« Gambit
« Replicator Dynamics
« Function Minimization (Amoeba)

Example of Replicator Dynamics

Sensitivity Analysis

Distributions over payoff matrices

Distributions over functions of the payoff matrix
— Nash equilibrium
— Epsilon for a Nash candidate

Confidence bounds on mixture probabilities
Confidence bounds

on epsilon

lity

obabi

Equilibrium Population Proportion

Frequency

200

150

[}
o
&

50

Sensitivity Analysis

100 200 300 400 500

Epsilon

600

Conclusion:
Taming Monster Games

Restrict strategy space
Reduce number of players

Simulate game outcomes

— Adjust type distributions or adjust sampled
payoffs with control variables to reduce
variance

Analyze empirical game
Assess solutions wrt underlying game

(Simultaneous Auctions in)
TAC Travel

Day 1 Day2 Day3 Day4
Air - Air - Air - Air -
— Alr — Alr — AII‘

Towers

Shanties

APRAW

Day 5

Towers

Shanties

Towers

Shanties

Towers

Shanties

AWl APRA WA PR W

— Alr

“Walverine”

Photograph by Antti Leinonen Beast of the Borcal

® 2002 National Geographic ty. All rights reserved. National Geographic magazine, June 2002

wolverine Léon Walras

http://www.walmart.com/

Expected value of perfect prediction

60

_h
h

[FS]
h

TAC Price Prediction

i % livingagents |
- = PackaTAC‘.

=, s

g Sou‘rhalnptran. o
. 2 RoxyBot //;

2 whi‘rebear. //’ UMBCTAC
; . aTTac02, _~ %cs

I /

-

1 -_f__//
. | -

haranmm
) kavayaH P e ® Lk _

- _ _ _ _ _ _ -f-— _ I_ - _ _ _ - - _ _ _ - _ _ _ _ - _ -
i f,/ . Best EVPP |
: Walrerine. e .
- e ATTac0l_ |
e ®

- -~ I
190 200 210 220 230 240

Euclidean distance to actual prices

Parameterized TAC Agent

« Walrasian Price Predictor with...

 Variations on hotel bid shading
 Different entertainment trading strategies

« Parameterized decision process for flight
purchase timing a1

DELAY E[A] > T2?

BUY Reducible trip AND
#elients > T37

First ticket AND BUY
surplus > T47?

BUY DELAY

Searching for Walverine

(among 40 candidate strategies)

D Profiles Samples/Profile
total | evaluated % | min mean

8 | > 314M 2114 0| 12 22.3

41 123,410 2114 1.7 | 12 22.3

2 820 586 | 71.5 | 15 31.7

1 40 40 | 100 | 25 86.5

Profiles Evaluated in Reduced TAC Games

Performance of 8 Walverine
Variants

4200 ‘

4000 }

3800

3600

Average Score

3400

3200

Walverine in Third...

A
=

Competitive Benchmarking for The Trading Agent Community

LOGIN | SEARCH | FAQ | LEGAL NOTICES

w,

GENERAL TAC 2005 Finals | TAC 2005 Semi-Finals | TAC 2005 Seeding | TAC 2005 Qualifying
Home
About TAC .
News Score tables for TAC 2005 Finals - 3rd August
Press .
Calendar TAC Classic
Contact Info
JOIN NEWS LIST Position Agent Average Games Zero
| : . 9 Score Played Games
user@domain.com Join |

1 IMertacor (tacl, tac2) | 4126.49|| 30| 0
TAC 2005 ;

whitebear05s

Info & Call 2 ot toe) 4105.68 a0 0
Participants .
TADA Workshop E \Walverine (tacl, tac2) | 4058.90) | 80| 2
Results |4 IDolphin (tacl, tac2) | 4022.79|| 50|

E |SICS02 (tact, tac2) | 3972.29 | 50| 0
PREVIOUS RESULTS ey
TAC 2004 ‘E éi{"taﬂg‘ s 3899.24 a0 0
TAC 2003 ==r ==
TAC 2002 |7 le-Agent (tacl, tac2) | 3451.25 | 50| 0

E IRoxyBot (taci, tac2) | 3167.54)| a0| 10
TAC COMMUNITY

The scores have been combined from the TAC 2005 finals at tacl.sics.se and tac?.sics.se.

Research Groups

Ed ti i TAC
Educating using TAC TAC SCM

Walverine Rules (p=.17)

Recalculated Scores for TAC 2005 Finals

Position Agent Average Score | Games Plaved | Zero Games
1 Walvermme (tacl, tacl) 4157.10 58 0
2 RoxvBot (tacl, tacl) 406694 58 0
3 Mertacor (tacl. tacl) 406317 58 0
4 whitebear05 (tacl. tacl) 4001_89 58 0
5 Dolphin (tacl, tac2) 39935 31 58 0
6 SICS02 (tacl, tacd) 3904.70 58 0
7 LearnAgents (tacl. tacl) 378536 58 0
8 e-Agent (tacl. tacl) 336999 58 0

The scores have been combined from the TAC 2005 finals at tacl.sics.se (games
30563-30591) and tac’.sics.se (games 12108-12136).

This is a recalculation of the TAC 2005 final scores where some problem games have
been removed (RoxyBot was running two agents on tac1.sics.se and no agent at
tac2 sics.se during the first games).

Strategy Generation Summary

First algorithm to compute best-response strategies in a
broad class of infinite games of incomplete information

Empirical game methodology for applying game-theoretic
analysis to much larger games than previously possible

Theoretical and experimental evidence of the efficacy of
our methodology

A price-prediction approach to strategy generation in
simultaneous auctions for complementary goods

Application of the above methods to find good strategies
in complex games (TAC and SAA)

Future Work: new domains (multiattribute auctions,
sponsored search auctions), computational mechanism
design

Backup Slides

Strategy Metrics

Strategy | Count Max Sum
17 24 0.499 539
~ 19 0.729 4.86
21 17 0.501 4.68
16 18 0.892 3.77
23 14 0.542 334
6 16 0.699 3.25
9 16 0367 3.09
5 23 0.247 2.63
24 17 0232 234
35 15 0.641 2.04
40 20 0.180 1.95
3 8 0.401 1.70
34 7 0.307 1.05
7 6 0.099 0.37
38 5 0.091 0.35
39 3 0.126 0.18

Comparison of TAC-05 Scores

00000

00000

Cumulative Probability

o

Sensitivity Analysis 1

19
0

18
17

o 0.2 0.4 0.6

Equilibrium Population Proportion

Price Prediction for Complementary
Goods in Simultaneous Auctions

 Point vs. distribution prediction
 Self-confirming prediction

« Walrasian price equilibrium prediction
— Prices such that supply meets demand

« Both can be found (at least approximately)
by an iterative process

Performance of Self-Confirming

Prediction in SAA Games

SAA,_.(m,n) | e% (PP(F°Y)) &% Pr(e=0) Pr(PP(F""))
E(3,3 0 0 1.00 1.00
E(3,5) 0 .09 600 996
E(3,8) 83 85 0 —
E(5,3) 0 0 1.00 999
E(5,5) 0 01 900 998
E(5,8) 60 64 0 —
EB(7,3) 0 .06 667 992
E(7,6) 04 10 567 549
U(3,3) 1.24 1.26 0 725
U(3,5) 0 0 1.00 1.00
U(3,8) 56 53 0 —
U(5,3) 1.35 1.35 0 809
U(5,8) 1.59 1.62 0 —
U(7,3) 81 84 0 942
U(7,6) 52 52 0 929
U(7,8) 4.98 4.94 0 —

The Trading Agent Competition

12 minute games, 8 agents competing per game
Agents perform as travel agents, purchasing
travel goods for clients at auction

Each travel agent given clients requests,

defining objective function. Net value is objective
minus expenditure

Assemble trip for each client, comprising flight,
hotel, and entertainment

Goods are interdependent, each presents
interesting issues

Shading vs. Non-Shading

Walverine

3600_ @ @ ® [) @ [] @, [] |
“ 3400! iiniies]
U i]
© L QUOMHO]
A 3200 i U .HHHHHHH -_
8 I |
0 |
U 3000 -
& T
i

2800 Ll

2600_ O [] [] [] o o [@

Strategy Profiles

Symmetric Strategies in TAC |

% L
000000

Strategies

Prisoners’ Dilemma

17 (D) | 34 (C)
17 (D) | 3971 | 4377
34 (C) | 3907 | 4302

Why “Strategy Generation™? (SG)

Infinite Games: SG is meant in the sense of a
game solver (generating equilibrium strategies
from a game description)

Monster Games: SG refers to the process of
generating a set of candidate strategies as well
as choosing among them

Price Prediction: families of strategies from
which we generate prediction specific strategies

TAC/SAA: applying empirical game methodology
to establish good strategies in two market

games

TAC-05 (if not for meddling kids)

Agent Raw Score Adjusted Score 95% C.1.
Walverine 4157.1 413242 £+ 1384
RoxyBot 4066.94 4029.53 £ 167.3
Mertacor 4063.17 39739 £+ 1523
whitebear05 4001.89 3902.01 +1304
Dolphin 3993 31 3898.95 £ 148.5
SICS02 3904.7 3842 .61 1+ 140.6
LearnAgents 3785.36 371881 4+ 280.0
e-Agent 3369.99 334152 £+ 1172

Price Prediction Can Help

Agent {1} {2} {3] {12} {13} {23} {123

1 0 0 0 0 0 0 15
2 8 6 5 8 8 6 8
3 10 8 6 10 10 8 10

Control Variates for FPSB4

Expected Payoff

.35

.25

.15

Empirical Payoff Matrix

® ®
soed
TTY)
S b igy ®

L1

4

+N'+

e

® ®
11
L1
*p
$é
ed
® o

+

aé

¥
+

112

*hd

¥

+4

+eé

® ®
YY)
shie
boddd
® ®

L2 4

bé

+

4é $

Poinui®P
L2112
[] []

Strategy Profiles

Finite Game Approximations

 Finite game solvers:
— Gambit
— Gala
— Gametracer

« Why not discretize?
— Introduces qualitative differences
— Computationally intractable

Price Prediction Strategies
for Market-Based Scheduling

Jeffrey K. MacKie-Mason
Anna Osepayshuvili
Daniel M. Reeves
Michael P. Wellman

University of Michigan

Factory Scheduling Example

Agent 1
value = $10
length = 2hr.

deadline = 13:00

Factory

9:00

10:00

11:00

Agent 2
value = $16

length = 2hr.
deadline = 12:00

12:00

Agent 3
value = $6
length = Thr.

deadline = 12:00

13:00

14:00

15:00

16:00

Agent 4

value = $14.5
length = 4hr.
deadline = 17:00

Schedule Price Equilibrium

Factory

Agent 1

value = $10
length = 2hr
deadline = 13:00

Agent 3
value = $6
length = 1hr
deadline = 12:00

$6.25

9:00

$6.25

10:00

$6.25

11:00

Agent 2

value = $16
length = 2hr
deadline = 12:00

avi

$0.25

12:00

$0.25

13:00

$0.25

14:00

$0.25

15:00

$0.25

16:00

Agent 4

value = $14.5
length = 4hr
deadline = 17:00

The Market Mechanism

« Agent Preferences
—Job length
— Deadline values

- Simultaneous Ascending Auctions
— One auction per time slot
— Price quotes announced after each round
— Auctions clear when all are quiescent

Exposure Problem

« Balance benefit of acquiring enough slots
with risk of buying unusable slots

 Price prediction can mitigate the exposure
problem

« Knowing the eventual price of a slot
means you can avoid committing to it

Name Job Length (A) v(1) v(2) v(3)
8

Agent 1 3 — 15
Agent 2 1 6 4
Agent 3 1 10 3 6

Straightforward
Bidding (SB)

No attempt to anticipate

other agents’ strategies:

« Perceived prices

« Best bundle

- maximizes surplus at
perceived prices

- assumes it will win the
whole bundle

Slots 1 2 3

Current

prices (CP) $10 | $9 $5

Slots the

agent is yes

winning

Perceived

prices $1 0 $1 0 $6

Job length 2 slots

Deadline Surplus =
Values $35 | $25 Value - Cost
Bundle {1,2} | yes | yes 35-20 = $10
Bundle {1,3} | yes yes | 25-16=$9
Bundle {2,3} yes | yes | 25-16=99

Modification Stots 1 [23
C
Of SB prices (cp) | $10 | $9 | 85
Slots the
. . . ti
Estimate final prices: winning |
 Perceived prices rieaa el 810 | $10 | $6
 Information on market | vectorof
. predicted
prICGS prices (m)
« Best bundle Adjusted
prediction =
- maximizes surplus at maxiperc, m}
estimated final prices Job length 2 slots
: : : Deadli Surplus =
- assumes it will win the | P52 e | $35 | $25 | bt
whole bundle Bundle {1,2} | yes | yes | -- 35 - 7
Bundle {1,3} | yes | --- | yes 25 - ?
Bundle {2,3} --- yes | yes 25-7

Price
P red . Slots 1
ICtO rS Current 2 3
prices (cp) | $10
Esti - $9 | $5
I:)ma’[e final prices: Slots the
* . . winnin ye
- Vector of : roaa | 8
prices predicted [vectoro 0| s10 | 36
P . pr_edicted
AdJUS’[ed predictiOn prices () $20 | $15 | $1
° Adiu
Best bundl predietion -
© ety | 920 | 919
- ma . . x{perc, 11} $6
adjiJ(ISTelfjeS surplus at ===
i predicted Deadin 2 slots
prices valucs e e
- $2 Sur _
assumes it will wi Bundle {1,2} | yes 5 | Value - Cost
WhOle b win the Bundl yes — |3
Undle e{1,3} | yes | -- 5-35=%0
Bundle {2,3} — yes | 25-26 = -$1
yes | yes | 25-21-$4

Predictors

SB = Straightforward Bidding = PP(0)
BL = Baseline = Predict average prices for SB agents

SC = Self-Confirming
ECE = Expected

14

12

Competitive Equilibrium

EDCE = Competitive
Equilibrium for
expected demand

Prices
'_'l
o0 -

0

4

iiiiiii
llllll

iiiiii

L]

lllll

iiiii

iiiiiiiiiiiiiiii

Prediction Methods

SB (=PP(0))
PP(rtBL)
]?I)(TES(')
]?I)(ﬂngif)
]?I)(Tthl)CYf)

O
14.8
13.0
26.0
20.0

)
10.7
8.7
14.2
12.0

O
4.6
3.0
2.5
2.0

30

Average Payoff

]

|_\

(&)

Example Payoff Matrix
(2 strategies)

&

&

0 1 2 3 4 5
Number of Agents Playing PP (71°¢)

Payoff Matrix for 5-Strategy Game

Expected Payoff

ﬁmﬁw i |

Strategy Profiles

Participation-Only Prediction

Predictors always beat straightforward bidders
Why does prediction help?

Decompose behavior of predictor

— Finding the best bundle

— Deciding whether to bid on it

Modified (PO) Predictor:

— Pick best bundle as per SB

— Only bid on it if positive surplus at predicted prices

Equilibria and Efficiency Results

« 98% of performance improvement is due to
correct choice of participation or not

« SC and EDCE are supported in an equilibrium of
5-predictor game

« Prediction greatly improves agent (buyer)
performance with a small efficiency loss (ie,
hurts the seller)

— Buyer surplus three times greater for equilibrium price
predictors than all SB agents

— Market efficiency (aggregate utility as fraction of
optimal allocation) drops from 87% to 86%

Conclusion: Price Prediction Helps
in SAA

Price prediction can significantly improve
performance by reducing the exposure risk

Performance depends on the quality of
prediction and on how it is used

Computational game theoretic approach to
assessing strategies

Results specific to particular scheduling domain

But this is the best known strategic approach to
bidding in any Simultaneous Ascending
Auctions

We expect price distribution predictors to
perform much better...

Prices

Convergence to Self-Confirming

(-
IR

=
N

=
(@)

Price Predictions

.......................

Tterations

Equilibria and Efficiency Results
Table

Games (i.e., strategy sets) Equilib1ium Profiles % Eff. Payoff Average Final Price Vectors
{SB, PP(™!)} all PP(n’!) 86 415 112 68 38 20 0.77
{SB, PP(r®L) w/ P.O.} allPP(ftBL)\\ PO. 85 407 118 69 37 1.7 058
[SB, PP(°C)} all PP(n°*) 88 305 130 87 54 30 L17
{SB, PP(n™).

i), PP(*C), PP(ECE), PP(REPCE) L 0.45SC,055EDCE 86 425 106 65 40 22 091

Additional Profiles

allSB 87 135 148 107 76 46 190
all PP(rnfCE) 74 58 47 21 17 12 055
all PP(nEDCE) 33 524 81 45 27 16 070

Walverine

a TAC-02 Agent from the
University of Michigan

university michigan

artificial Trading
intelligence I A' Agent
laboratory Competition

OPT

Architecture

Flight & Hotel Buyer

Entertainment Dealer

Proxy

Flight & Hotel Loop

 |nitial
— Get flight prices
— Initial predict
— Client-by-client best-trip optimization
— Buy flights
« Starting at 3:00, each minute:
— Get quotes, transactions
— Price prediction
— Optimal package, buy flights if nec.
— Get marginal values
— Construct hotel bids

Price Prediction

Given 1nitial tlight prices, calculate

hotel prices.

Premises:

— Trip choices driven in large part by relative flight
prices.

— Aggregate behavior reasonably approximated by
competitive model.

Calculating Competitive EQ.

« lterative price adjustment (tatonnement):

Pi1 < Py + at[X(pt) — 16]
where x(p,) is aggregate demand at hypothetical
prices

« Demand estimation

— For our own clients (8), calculate hotel rooms demanded for
best package at hypothetical prices

— For other agents’ clients (56), employ analytic expression for
expected demand based on client preference distribution
« Mid-game:
— Employ quote/closing as price floors
— Fix own demand at holdings for closed hotels

Hedging

« Equilibrium method yields point estimate,
decisions highly sensitive.

 “Outlier probability”

— Represents likelihood that prediction is wrong for a
given hotel.

— Qutlier prediction defined as max(2p,400).
— Walverine uses 0.06 per open hotel.

« Results in hedged package choices, hotel
valuations.

Optimizer

* Integer linear program representing optimal

package allocation

« Inputs: prices (actual, predicted), holdings
— Reported separately by hotel, entertainment modules

« Outputs:

— Optimal package
— Marginal values (each unit)
— Hedged marginal values

OPT

Flight & Hotel

Entertainment

Hotel Bidding

« Compute hedged MV given predicted prices

« Compute optimal shading
— Separately for each unit

— Based on analytic model of other clients’ MV
distribution (similar to demand calc. approach)

— Maximize bid value, accounting for:
« Prob of winning unit & setting price
« Prob of winning & not setting
« Expected price if no bid
« Number of other units affected

 Adjust optimal shades for BTQ rule

conditional on ASK

Entertainment Dealing

Derived a trading policy via Q-learning.

Action is bid
— to buy/sell unit in given entertainment auction
— represented as offset from marginal value

State space:
— Game time, MV, holdings, Bid/Ask, day
— Coarse distinctions, still 12852 states

Rewards: Entertainment cash flow + fun bonus

Learning to Trade

- Two giant Q-tables shared by all auctions
(one each for days 1/4, 2/3)

« Played various policies, gathering
transition and reward data
— livingagents, “Exploit”, “Explore”

— Games on SICS/own servers, variously
populated

— 14839 total games (x 12 auctions)

Summary: Walverine

 Price prediction based on competitive eq.
« Model-based optimal bidding.
« Q-Learned entertainment trading policy.

Flight & Hotel Buyer Entertainment Dealer

v
Model Free!

Online Auction Environments

« Auctions are efficient mechanisms for allocating
resources
« Online auction space growing
— Consumer — ebay, amazon
— B2B
— Electronic Trading Network (finance)

« Agents aid in the automation of trade in such
auctions

Flights

« Agents are buyers
« One flight per day each way

« Prices determined by stochastic process
— Random walk with upward drift

= In expectation, flight prices increase
over time, but different auctions
increase at different rates

Hotels

Two hotels (Towers, Shanties)

Each with fixed number (16) of rooms
available per day.

Sold in simultaneous ascending 16™ price
auctions.

To avoid sniping: One hotel closes
randomly every minute

Entertainment Tickets

 Fixed pool of tickets for Museum,
Amusement Park, Alligator Wrestling, by
date, divided among agents.

 Clients have different preferences for
event type.

« Agents trade among themselves through
Continuous Double Auctions (e.g., stock
market)

Agent Objectives

Maximize total “profit”:
[sum over clients: trip utility] minus expenditures

Client preferences: arrive/depart days, hotel
premium, entertainment prefs

Feasible trip: round trip airline, hotel room for
iInterva
Trip utility:

— zero if infeasible
— If feasible... (next)

Feasible Trip Utility

Trip utility =

1000 - travel penalty + hotel bonus + fun bonus
travel penalty = 100 per day deviation
hotel bonus = {1 if Towers} x premium

fun bonus =
Sum over types: {1 if ticket} x value

HotelAgent behavior

 First 30 seconds:
— Generate hotel price predictions
— Calculate optimal package, hedging for price volatility
— Purchase flights in optimal package

« Before each hotel closing
— Update price predictions
— Calculate hedged marginal values of hotels
— Calculate/submit an optimal bid for each hotel

Price Prediction

« Given
— Distribution over client preferences
— Assumptions about other agents’ bidding
— Known initial flight prices

« Compute Walrasian equilibrium prices for
hotels

— Prices for which supply meets expected
demand

Hedging

 Equilibrium method yields point estimate,
decisions highly sensitive.

« “Outlier probability”
— Represents likelihood that prediction is wrong
for a given hotel.
 Calculate hedged package choices, hotel
valuations.

Hotel Bidding

« Compute hedged MV given predicted
prices

« Compute optimal bids
— Separately for each unit

— Based on analytic model of other clients’ MV
distribution (similar to demand calc. approach)
— Maximize bid value, accounting for:
 Probability of winning
« Expected impact on closing price

Walverine's Entertainment
bidding:
e Entertainment accounts for ~40% of Walverine’s total score.
e Our approach: Completely model-free.
e Policy derived through Q-learning algorithm.
e Reward: sum of cash-flow plus fun bonus.

e State space defined in terms of six dimensions: time, bid/ask
quotes, ticket holdings, and marginal values to buy/sell.

e Actions: bid in terms of offsets from marginal value.

Decision Tree for Flight Buying

E[A"] <T1?
/ N
DELAY E[A"] > T2?
% N
BUY Reducible trip AND
#clients > T3?
/Y '\N
First ticket AND BUY
surplus > T4?

How to Bid in Ebay

 Single good with independent private
values: Bid your max!

« Multiple goods

— Need to know the number of bidders and type
distribution (a probability distribution over
possible valuation functions for bundles of
goods)

— Compute self-confirming distribution
prediction

Game Theory Primer

, action
(anate)_ Strategy) mmm——
Information

// >

(Private) .| Payoff
Information Strategy - g i
action Function

Nature

(Private) S
Information rategy action

(Multi-stage)

Randomness from Nature

Generating Trading Agent Strategies:

Analytic and Empirical Methods for Infinite and Large Games

Daniel Reeves

2006 Feb 23
Coauthors:
Michael Wellman, Jeffrey MacKie-Mason, o .
Anna Osepayshvili, Kevin Lochner, universiy (o) michigan
Shih-Fen Cheng, Rahul Suri, _artlflgal
Yevgeniy Vorobeychik, and Maxim Rytin intelligence
laboratory

“So, you’re all presumably here to learn how to generate trading agent
strategies. I’'m going to spend more time on the analytic methods for infinite
games since it's my baby but I'll also tell you about the empirical methods for
Large Games.

Everything in this presentation is joint work with my advisor, Mike Wellman.

Much of the empirical game methodology is joint work with Mike and Jeff
MacKie-Mason and Anya Osepayshvili.

Much of our published work on the Trading Agent Competition (one of the killer
apps for our empirical game methodology) is joint work with Mike, Kevin
Lochner, Shih-Fen Cheng, Rahul Suri, and Eugene Vorobeychik. Maxim Rytin
helped with some of the proofs of some of the theoretical results in the empirical
methods section of the talk.”

Prefs: doch, players who don’t know what they want don’t last long

Competitiveness assumption: fine, represent advertisers by a demand curve;
yahoo and google are the agents

Mike’s presentations | might want to get ideas from:
- TAC Price Prediction

- ppsaa at UAI

- dexter presentation with sunk-awareness results
- hiergame at AAAI

L, e o e A

<number>

Motivation

Private Other (market)
Information Information

Game Description

- Allowable actions Strategy
- Payoff function Generation [— | Strategy

- Type distributions Engine

Actions (bids)

<number>

“First, the big picture: my grand research vision and the ultimate goal of
my thesis work is a Strategy Generation Engine that can read in a
description of a game (consisting of game rules and distributions from
which private information is drawn) and can output a strategy which is a
program that takes actions based on private information and
observations about other agent actions. So in a sense the goal is a
program that writes programs that play games.

And although I'll focus almost entirely on games that involve auctions of
one kind or another, this framework is applicable to more general kinds
of games.

But before | say any more about games, let me say what | mean by a
game: ...”

YACC analogy:
* automate what used to be the hard part
* input high-level spec, turn a crank

<number>

Game Theory Primer

(Private) action

Information

Strategy

(Private) Payoff —_— 7
: S
: . N
Information ey S ction Function ‘ ;

e
(Private) — Nature N A
Information & Jaction \—/

<number>

(Multi-stage)

“...it's really any circumscribed interaction between multiple agents where each agent is trying to
maximize an objective function that depends on the interplay of the agents’ actions. The agents
here are captured by their strategies—the output of the strategy generation engine. I've
depicted here a one-shot game. In a multi-stage game, agents perform actions and then learn
something about the other agents’ actions (that becoming part of their information) before
performing the next action. The whole eventual action history then, plus private information,
informs the payoff function. We assume a finite number of rounds. By infinite game I'll mean
that there are infinitely many possible actions—for example, bidding a real number. If there’s
any inherent randomness in the game, that’s captured by a dummy player, Nature. The players’
private information is also known as their types or preferences. For example, in poker your hand
is your type. In an auction, it would be your valuation of the goods being sold. The output of the
payoff function is of course the payoffs, or utilities, of each player. (agent2 didn’t fare so well
here) If each agent only has one possible type then this would be a game of complete
information, but in general we’re talking about incomplete information games. This captures the
case that | may not know what your true payoff function is, but we assume that if only | knew
your private information—your type—then | would know. So we always assume that that global
payoff function as well as the probability distribution from which the types are drawn are common
knowledge. That's a hairier assumption than it sounds, and if you’re not sure why ask me about
the blue-eyed monks problem afterwards. But otherwise, this can be a quite realistic model of
real agent interactions. I'm mostly talking about artificial agents but [CLICK] this all applies to
humans too. In fact, game theory is even useful in biology, in that case not so much for advising
clever squirrels on hoarding strategies but [CLICK] in describing evolved strategic behavior in
nature...

[in fact, later in this presentation i'll describe a method for finding strategies based on a (highly
abstracted) biological/evolutionary model.]

<number>

Game Theory Primer

(Private) action

Information

Strategy

(Private) PayOff
: S
Information ey S ction Function

(Private) — Nature
Information & Jaction

<number>

(Multi-stage)

“...it's really any circumscribed interaction between multiple agents where each agent is trying to
maximize an objective function that depends on the interplay of the agents’ actions. The agents
here are captured by their strategies—the output of the strategy generation engine. I've
depicted here a one-shot game. In a multi-stage game, agents perform actions and then learn
something about the other agents’ actions (that becoming part of their information) before
performing the next action. The whole eventual action history then, plus private information,
informs the payoff function. We assume a finite number of rounds. By infinite game I'll mean
that there are infinitely many possible actions—for example, bidding a real number. If there’s
any inherent randomness in the game, that’s captured by a dummy player, Nature. The players’
private information is also known as their types or preferences. For example, in poker your hand
is your type. In an auction, it would be your valuation of the goods being sold. The output of the
payoff function is of course the payoffs, or utilities, of each player. (agent2 didn’t fare so well
here) If each agent only has one possible type then this would be a game of complete
information, but in general we’re talking about incomplete information games. This captures the
case that | may not know what your true payoff function is, but we assume that if only | knew
your private information—your type—then | would know. So we always assume that that global
payoff function as well as the probability distribution from which the types are drawn are common
knowledge. That's a hairier assumption than it sounds, and if you're not sure why ask me about
the blue-eyed monks problem afterwards. But otherwise, this can be a quite realistic model of
real agent interactions. I'm mostly talking about artificial agents but [CLICK] this all applies to
humans too. In fact, game theory is even useful in biology, in that case not so much for advising
clever squirrels on hoarding strategies but [CLICK] in describing evolved strategic behavior in
nature...

[in fact, later in this presentation i'll describe a method for finding strategies based on a (highly
abstracted) biological/evolutionary model.]

<number>

Game Theory Primer

(Private) action

Information

Strategy

(Private) PayOff
: S
Information ey S ction Function

(Private) — Nature
Information & Jaction

(Multi-stage)

“...it's really any circumscribed interaction between multiple agents where each agent is trying to
maximize an objective function that depends on the interplay of the agents’ actions. The agents
here are captured by their strategies—the output of the strategy generation engine. I've
depicted here a one-shot game. In a multi-stage game, agents perform actions and then learn
something about the other agents’ actions (that becoming part of their information) before
performing the next action. The whole eventual action history then, plus private information,
informs the payoff function. We assume a finite number of rounds. By infinite game I'll mean
that there are infinitely many possible actions—for example, bidding a real number. If there’s
any inherent randomness in the game, that’s captured by a dummy player, Nature. The players’
private information is also known as their types or preferences. For example, in poker your hand
is your type. In an auction, it would be your valuation of the goods being sold. The output of the
payoff function is of course the payoffs, or utilities, of each player. (agent2 didn’t fare so well
here) If each agent only has one possible type then this would be a game of complete
information, but in general we’re talking about incomplete information games. This captures the
case that | may not know what your true payoff function is, but we assume that if only | knew
your private information—your type—then | would know. So we always assume that that global
payoff function as well as the probability distribution from which the types are drawn are common
knowledge. That's a hairier assumption than it sounds, and if you're not sure why ask me about
the blue-eyed monks problem afterwards. But otherwise, this can be a quite realistic model of
real agent interactions. I'm mostly talking about artificial agents but [CLICK] this all applies to
humans too. In fact, game theory is even useful in biology, in that case not so much for advising
clever squirrels on hoarding strategies but [CLICK] in describing evolved strategic behavior in
nature...

[in fact, later in this presentation i'll describe a method for finding strategies based on a (highly
abstracted) biological/evolutionary model.]

<number>

Game Theory Primer 2

« Best-Response Strategy = optimal strategy
given known strategies of the other players

« Nash Equilibrium = profile of strategies such
that each strategy is a best response to the
others

« Bayes-Nash Equilibrium = generalization of
NE to the case of incomplete information, for
expected-utility maximizing players

« Normal-form Game = defined in terms of
strategies

« Symmetric Game = no distinct player roles
(except Nature)

« Epsilon of a Profile = best gain from deviating
(0 iff Nash)

<number>

“A few more key definitions. My best-response strategy is my optimal
strategy (the one maximizing my payoff) if | knew everyone else’s
strategy. A NE is a profile of strategies that are each best responses to
the others. Nash himself proved that for any finite game, as long as
players can use mixed strategies (that is, randomize among actions) at
least one Nash equilibrium must exist. A Bayes-Nash Equilibrium is the
natural generalization [TOO TECHNICAL] where players are
simultaneously maximizing their expected payoffs given the strategies
and known type distributions of the other players.

By expressing a possibly multi-stage game by enumerating [describing
the space of] the possible strategies, any game can be converted to a
one-shot game of complete information, called the normal form of the
game.

Finally, almost all the games I've studied are symmetric. That means
that ex ante (before the types are determined) all the players are
identical. For example, we might assume that there’s nothing to
distinguish poker players until their hands are dealt. A symmetric profile
is simply a homogeneous one—all agents play the same strategy, which
in a symmetric game we might well expect they would. A symmetric
equilibrium, then, just refers to an equilibrium profile that is symmetric.
Nash also proved that symmetric games have symmetric equilibria.

And one last definition: the epsilon of a profile is how much better |
could do by playing my best response to the profile instead. So that’s
zero iff the profile is an equilibrium and it gives us a measure of how far
from equilibrium we are otherwise. (any questions on any of these game

N P T R I [P S 1 P N o A B 1]

<number>

Outline

- Best-response strategies in one-shot, 2-
player, infinite games of incomplete
information

« Empirical game methodology for multi-
stage, multi-player games

(“Taming Monster Games”)

« Taming 2 particular monster games:
— Simultaneous Ascending Auctions (SAA)
— Trading Agent Competition (TAC Travel)

<number>

“So, here’s what you've really come for: Il first describe my analytic approach
to generating best-response strategies in a class of one-shot, 2-player infinite
games and use that to find Nash equilibria. [WHY IS THIS RELEVANT,
IMPORTANT, NOVEL]

That works for many simple games, automating many results published in the
game theory and auction theory literature.

For more complex games, I'll describe our empirical approach and it's
application in particular to the Trading Agent Competition Travel-shopping
game.”

<number>

Our Class of Infinite Games

« 2-player, one-shot, infinite games of
incomplete information

 Piecewise uniform type distributions
 Payoff functions of the form:

u(t,a,t’,a') =

017 +pra+0y/ +pld+01 if —o<a+od <P
021 + paa+ 051" +pld’ + ¢y if By <a+oa <PBs

01t +pra+ 0’ +pjad’ +¢; ifBr<a+oa < e

“So here’s our class of 2-player, one-shot, infinite games of incomplete
information. The type distribution must be piecewise uniform and payoff
functions of my type and my action and the other agent’s type and action
are of this form, where all the greek letters are parameters. Note that the
piecewise linear restriction is not especially restrictive — you can get as
close as you like to an arbitrary function with a piecewise linear
approximation.”

<number>

Games in our Class

Game [P 0’ o @ 3 «
FPSB 0,1/2,1 0,—-1/2,—-1 0,0,0 0,0,0 0 00 -1
Vickrey Auction 0,1/2,1 0,0,0 0,0,0 0,-1/2,-1 0 00 -1
Vicious Vickrey Auction | 0, % 1—Fk k,k/2,0 —k —k/2,0 0, % k=1 0 0,0 -1
Supply Chain Game -1,-1,0 1,1,0 0,0,0 0,0,0 0 w0 1
Bargaining Game (seller) -1,-1,0 1—Fk,1—k0 0,0,0 k. k.0 0 00 -1
(buyer) 0,1,1 0,—k,—k 0,0,0 0,1—k1—Fk 0 0,0 -1

All-Pay Auction 0,1/2,1 —1,-1,—-1 0,0,0 0,0,0 0 0,0 -1
War of Attrition 0,1/2,1 —1,-1/2,0 0,0,0 0,-1/2,—1 0,0,0 0,0 -1

* Shared-Good Auction 0,1/2,1 0,—-1/4,—-1/2 0,0,0 1/2,1/4,0 0 00 -1
* Joint Purchase Auction 0,1 0,-1/2 0,0 0,1/2 0,-C/2 c 1
Subscription Game 0,1 0,—1 0.0 0,0 0.0 C 1
Contribution Game 0,1 —1,—-1 0.0 0,0 0,0 C 1

u(t,a,l’,a') =

011 +pra+0 +pid+0, if —ee<a+od <Py
021+ pra+ 051" +pla’ +¢r ifPr <a+oa < Bs

Ot +pra+ 0’ +pid +¢; ifBr<a+od <+

“That class of games turns out to be pretty general and captures most 2-
player one-shot games you can think of by appropriate settings of those

greek letters. Here are the parameter settings for a host of games, some
well-known like first-price and 2"-price sealed-bid auctions, and a couple
we made up, namely the shared-good and joint purchase auctions which
I'll describe shortly.”

Payoff for winning in joint purchase auction: t-a+(a+a’-C)/2

Payoff we might like to have: t-a+(a+a’-C)*a/(a+a’)

<number>

Piecewise Linear Strategies

mit + by if —oco <t <y
mot + b ifcr <t <cj

mrg_1t+bx_1 tep_| <t <cg
mgt + bg if cx <t < Hoo,

« Specified by the vectors ¢, m, b

<number>

“So games can now be described by a set of parameters. If we also
specify a piecewise linear strategy, like this, (and remember, in a one-
shot game a strategy is just a mapping from type to action) then we’re
ready for my main result for this game class...”

<number>

Existence and Computation of
Piecewise Linear Best Responses

« Theorem 1: Given a payoff function with |
regions, an opponent type distribution with
cdf F that is piecewise uniform with J
pieces, and a piecewise linear strategy
function with K pieces, the best response
is itself a piecewise linear function with no
more than 2(I-1)(J+K-2) piece boundaries.

<number>

“That for payoff matrices of THIS [BACKx2] form along with a specified
type distribution, and a piecewise linear strategy of THIS [BACK] form,
then we can compute in polynomial time the best-response strategy,
which will also be a piecewise linear strategy.”

<number>

Proof Sketch

- For arbitrary own type t, and opponent type a random
variable T, find own action a maximizing

Eu(taTs(T))]
« (Numerical maximization not applicable due to
parameter {)

- Above works out to be a piecewise polynomial in a
(parameterized by)

« For given t, finding optimal a is straightforward

« Remains to find partitioning of type space such that
wflthln each type range, optimal action is a linear function
of ¢

« This can be done in polynomial time

<number>

“Just to give you the barest taste of what the proof is like: we have a
function that gives our payoff in terms of our type and action and the
other agent’s type, which is a random variable from a known distribution.
So we need to find our own action, expressed in terms of arbitrary t, our
type, that maximizes our expected payoff. In the complete information
case, you could then apply any kind of numerical maximization technique
to get your best action. But here we end up with a nasty expression
involving t. But it turns out the optimal action is always linear in t in any t
neighborhood so if we partition the type space in the right way we end
up being able to express the optimal action as such-and-such linear
function of t when t is in such-and-such range and such-and-such other
linear function of t when t’s in this other range, and so we’ve got a best-
response strategy that looks like THIS [BACKXx2].

And the great thing about that is it means we can now iterate this best-
response algorithm from some arbitrary seed strategy and if it’s lucky
enough to converge, ie, reach a fixed point, then we have a strategy
that’s a best-response to itself and thus... a Bayes-Nash Equilibrium!”

Cf. Newton iteration, hill climbing

<number>

Example: First-Price Sealed Bid
Auction (FPSB)

Types (valuations) drawn from U[0,1]
Payoff function:

t—a ifa>d
ult,a,d)=1< (t—a)/2 ifa=d
0 otherwise.

Known Bayes-Nash equilibrium:

a(t)=t/2 (Vickrey, 1961)
Found in as few as one iteration from a variety of
seed strategies

<number>

“A very simple example of a game in our class is the first-price sealed-
bid auction. In this game the players’ types are their independent,
private valuations for the good, drawn uniformly from [0,1], and the
actions are the bids. So your payoff is your valuation minus your bid if
your bid is higher, nothing if your bid is lower, and the winner is chosen
at random in case of a tie so in expectation your payoff in that case is
the average of 0 and t-a. So this game has a well-known equilibrium of
shading your bid by 1 over the number of players (so 2 here) and my
algorithm finds that equilibrium by computing iterated best-responses
from most seed strategies — for example, the best-response to truthful
bidding is in fact this NE.”

<number>

Example: Supply-chain Game

« Producers’ Costs U[0,1]
« Consumer’s Valuation v (known)

« Payoff function:

a -t ifa,+a,<v
u(t, a,, a,) = { b e
0 otherwise
Producer 1 &1 Producer 2

(costt,, bid a,)

(cost t,, bid a,)

i Consumer
(value v)

<number>

“Here’s another game we call the supply-chain game. [DESCRIBE
GAME] This game was studied in a paper on supply chain formation by
Bill Walsh and others and they proposed a general strategy for a broader
class of supply chain games, which for this game works out to be this...”

2 producers in a supply chain; they bid for being included — the sum of
their bids is what the consumer has to pay.

The consumer will pay only if the sum of their bids is less than its
valuation v, in which case each producer gets a payoff

of its bid minus its cost. If the sum of bids is higher than v, both agents

get nothing.

<number>

1.1 +

0.9 r

Action

0.7 r

0.6 |

“And here is that strategy, which you can see is of a nice piecewise

Finding Best Responses

linear form, so we can feed it to our best-response finder...”

[BOLDER LINES, BIGGER CAPTIONS]

<number>

1.1 +

0.7 r

0.6

Finding Best Responses

“And we get the strategy in blue.”

<number>

Finding Best Responses

1.1 +

0.7

0.6 |

“After a few more iterations of best-responses, we seem to be
converging to this green strategy which is an equilibrium that we found
by hand for this game. And of course, our algorithm confirms that the
green strategy is an equilibrium. But that’s not the equilibrium we
converge to from the initial seed strategy from Walsh and company...”

<number>

Finding Best Responses

11

0.9 |

Action
o
o0

0.7 |

0.6 |

0.6 0.8 1

“Rather, we end up at this asymmetric equilibrium, which is basically the
pair of strategies in which we each ask for half of v (unless that’s not
enough given our cost in which case we just kill the deal). It’s pretty
easy to see that this is an equilibrium — if | know you’re asking for x then

| might as well ask for v-x. Any more and we both get nothing. So in fact
there are a continuum of equilibria of this form, though iterated best-
response always seems to converge to reasonably fair ones, like this,
where both agents ask for about half.”

<number>

Example: Bargaining Game

+ (aka, sealed-bid k-double auction)
« Buyer and seller place bids, transaction happens iff
they overlap
. 'tl)'.rjmsaction price is some linear combination of the
ids
« Known equilibrium (Chatterjee & Samuelson, 1983)
with k=1/2 for seller (1) and buyer (2):

al(tl) :2/311—|— 1/4
az(tz) :2/3t2—|— 1/12

« Found in several iterations from truthful bidding

<number>

Another game that’s similar to the supply chain game is the bargaining game or
sealed-bid k-double auction. This is a very straightforward mechanism in which
| want to sell you something so we both write down an offer and if you're willing
to buy it for at least what I'm willing to sell it for then | give you the good and
you pay me something between our bids. This result was published 20some
years ago and my solver finds it automatically when seeded with truthful
bidding. And btw, this the only asymmetric game I'll talk about today but
asymmetry turns out to be easy to deal with at least in the 2-player case.

Myerson and Satterthwaite: pick 2: BB, IR, Eff in BNE

<number>

Example: Joint Purchase Auction

Variants: contribution/subscription
games

2 agents want to jointly acquire a good
costing C

Mechanism: simultaneously offer
contributions; buy iff sum > C and split
the excess (sum — C) evenly

Nash: 2/3t+ C/4-1/6

<number>

“Here’s another game. This comes under the heading of public good or
provision point mechanisms. I'll describe a variation that seems to not
have been solved in the literature before: namely 2 agents want to
jointly acquire a good that costs C for which they have private valuations;
they submit a sealed offer and the good gets bought if and only if the
sum of their offers exceeds the cost, in which case the excess is split
and given back. There are variations where the agents don’t get the
excess back, or where they don’t get their contributions back in the case
that not enough money is collected. Both of those variations are in the
literature and they have very different equilibria from this one, which
bears some similarity to the known equilibrium for the bilateral bargaining
game [sealed double auction], which my algorithm also finds.

Also, I've suggested that most 2-player one-shot games are in the class
of games that this algorithm works for but here’s an example of a
potentially useful one that’s not, namely the variation on the joint
purchase auction where we split the excess in proportion to how much
we contributed [BACK TO SLIDE 7 (this is 17)].”

<number>

Example: Shared-Good Auction

« New mechanism, similar to the divorce-
settlement game; undoes joint-purchase

« Agents place bids for a good they currently
share, valuations ~U[A,B]

 High bidder gets the good and pays half its
bid to the low bidder in compensation

N | t—a/2 ifa>d
u(t7a7a) - { al/z OtherWISe <number>

“Now suppose we've jointly acquired a good and but now one of us is
leaving town and we can’t split the good in half so we need one of us to
buy the other out. My friend and colleague Kevin Lochner and | came up
with this mechanism originally to decide which of two roommates should
get the big bedroom and for how much more rent. Since then we’ve also
used it to allocate undesirable tasks for which we had joint responsibility
[SO]. The auction rules specify that each agent submits a sealed bid as
usual and the high bidder gets the good but pays half their bid to the
loser in compensation.”

Parking tickets, skis on ebay (so this is can be used for bid collusion,
which is a whole other can of worms).

<number>

Equilibrium in Shared-Good Auction

244

alr) = =

« Found in one
iteration from
truthful bidding
(for any specific
[A,B])

<number>

“Again, iterated best-response quickly converges to an equilibrium which
is to shade your bid down a third of the way to the lowest possible
valuation.

Of course a nice thing about having this game solver for humans using
these mechanisms is that we can leverage the revelation principle and
then play the modified game where they submit their types to the solver
which plays the NE on their behalf. So two people playing the shared-
good auction, assuming they believe the type distribution, can simply
submit their true types without strategizing. This also mitigates the
problem that we have no guarantee the equilibria we find are unique
[focal].

By the way, the plotted points with error bars here are just from verifying
the analytic algorithm with Monte Carlo simulations.”

<number>

Example: Vicious Vickrey Auction

« Generalization of a Vickrey Auction (Brandt &
Weiss, 2001) to allow for disutility from
opponent’s utility (eg, business competitors)

(1—k)(t—d) ifa >d
u(t,a,t',a' Y=< (1—k)(t—d)—k(t' —a))/2 ifa=d
—k(t' —a) otherwise

« Brandt & Weiss consider only the complete
information version

<number>

One other game | wanted to mention is a variant of the Vickrey auction. The
interesting thing about a Vickrey Auction — or 2" price auction because the
winner pays the 2 highest — is that truthful bidding is a dominant strategy (dom
= BR to everything). So it’s reassuring that my game solver returns truthful
bidding for every seed strategy. But the variant is called vicious vickrey
because it adds a term to the payoff function for my utility for your disutility.

Like if we're competitors, | don’t want to only maximize my profit, | want to
minimize yours. So now | want to bid more than my valuation in hopes that if |
lose I'll at least cause you to pay more.

<number>

Equilibrium in Vicious Vickrey

e a(t) = (k+t)/(k+1)
« Reduces to truthful bidding for the
standard Vickrey Auction (k=0)

- lterated best-response solver finds this
equilibrium (for specific values of k) within
several iterations from a variety of seed
strategies

<number>

And here’s the equilibrium strategy.

<number>

Conclusions:
Best-Response Solver

« First algorithm for finding best-response
strategies in a broad class of infinite games of
incomplete information

« Confirms known equilibria (eg, FPSB), confirms
equilibria we derive here (Supply-Chain game),
discovers equilibria in new games (eg, Joint
Purchase and Shared-good auction)

« Goal: characterize the class of games for which
iterated best-response converges

<number>

“To conclude the first part of this presentation, we have an algorithm for
computing best-response strategies in a broad class of 2-player infinite
games of incomplete information.

We’'ve used this to confirm many known equilibria, confirm some we’ve
derived by hand, and discovered equilibria in new games, namely the
joint-purchase and shared-good auctions.

The most interesting and useful aspect of this work is not the actual best-
response finding (though that has its uses, like automating proofs of
equilibria) but the iterating of that to find NE.

It remains a goal to characterize the class of games, if not our entire
class, for which that process converges.”

[GIVE OUTLINE SLIDE WITH PROGRESS BAR]

<number>

Taming Monster Games: Overview

« Determining candidate strategies
« Game simulators and brute-force estimation

« Variance reduction for Monte Carlo Sampling
— Control Variates
— (Quasi-Random Sampling, Importance Sampling)

« Player Reduction
- Analyzing Empirical Games

— Gambit, Amoeba, Replicator Dynamics
« Sensitivity Analysis

— PM distributions

— Confidence bounds on equilibria

« Killer App: Trading Agent Competition (TAC)

<number>

“So what about games that have more than two players or have multiple rounds? In other
words, most realistic games? | call them Monster Games because they’re pretty much
untouchable by standard game theory. For example, we’re not going to find the NE of poker in
the foreseeable future (though Nash himself and others have solved highly abstracted versions
of it) or the problem of bidding in multiple simultaneous auctions, like for a set of Yahoo
keywords.

I'll now show you my general empirical game methodology — kind of a collection of computational
techniques -- for finding good strategies in games like that.

For all these I'll use a simple first-price sealed-bid auction as an example and to help verify the
methodology.

Broadly, there are several parts to this methodology, but I'll focus on the first few. The first is
about determining a set of candidate strategies — that is, restricting the strategy space. This is
the most drastic way in which we cut monster games down to size. Next is game simulation —
estimating the restricted game.

Going along with game simulation, I'll talk about standard variance reduction techniques for
Monte Carlo sampling, in particular the method of Control Variates for which we’'ve done some
controlled experiments with first price sealed bid auctions and also applied in the Trading Agent
Competition.

Player Reduction is a kind of complement to reducing the number strategies. It's another way to
radically reduce the size of a game without generally sacrificing too much in terms of solution
quality. Once we have an empirical estimate of a game, we can apply various off-the-shelf
techniques for solving it.

Finally, I'll briefly talk about a couple methods for assessing how well the solutions to the
empirical game approximate solutions to the underlying game of interest.

I'll focus on toy examples and tell you briefly about the real monster games that motivated all
this.

<number>

Reprise: First-Price Sealed-Bid
Auction (FPSB)

Types (valuations) drawn from U[0,1]
Payoff function (2-player case):

t—a ifa>d
ult,a,d)=1< (t—a)/2 ifa=d
0 otherwise.

Strategy space is set of functions from type to
action

Known Bayes-Nash equilibrium: a(t)=(n-1)/n t

<number>

So let’s start with our old friend FPSB, which is by no means a monster
game; in fact it's been solved. But it has infinite type and strategy
spaces and a nonlinear payoff function and so has many of the attributes
of games that are analytically intractable.

DESCRIBE (generalization to n players)

Again, the strategy space is the set of functions from type to action, and
the unique symmetric equilibrium is to bid (n-1)/n times your type, n
being the number of players.

<number>

FPSBnN

Start with a baseline strategy

— Truthful bidding

Generalize via parameters

— Shade factor

— (Translational parameter, ki+b, etc)
Restricted game:

—Forallagentsiin {1,...,n}, bid kt for k. in [0,1]

Further restrict the game by discretizing k

<number>

So for our purposes now, we’ll pretend that we can’t deal with such a rich
strategy space as that and restrict the strategy space by imposing the constraint
that strategies must be of a particular parameterized form. In general, the way
we do this is to pick a baseline strategy and introduce parameters that
generalize it. For FPSB, the most straightforward strategy (although also the
worst possible strategy without actively throwing away money) is truthful bidding
— just bidding your valuation. But if we generalize that with a shade factor, k,
the strategy space now includes the unique symmetric bayes-nash equilibrium
(namely, shading by an nth). If we didn’t know that, we could’ve also included,
say, a translational parameter b, or allowed piecewise linear strategies with a
fixed number of pieces.

But the point is, even if the baseline strategy is awful, as long as the space of
strategies allowed by the parameterization includes smarter strategies (and
they need not be identifiable as such a priori) then our methodology has hope
of finding them. As we’ll see, introducing a shading parameter in FPSB (without
knowing a good setting for it) allows us to approximate the unique symmetric
equilibrium of underlying infinite game.

First, I'll quickly show some theoretical results for this restricted version of FPSB
before showing how we manage when the games are too complicated to admit
any such analytic results.

<number>

Theoretical Results for FPSBn

« Expected Payoff for playing k. against
everyone else playing k:

L ifl=k=0
il) = { st () ki <k

I
(1—k) (n— D)2~ (n—1)k)

, . otherwise.
2(n+1)k;

- Best response to everyone else playing k:

undefined if k=0
BR(k) = argmaxu;(ki, k) = § ifk< =L

1 . -~ -
n—1 Tfki\ n—1

n n <number>

First, we derived a closed-form expression for the expected payoff for arbitrary
symmetric profiles and unilateral deviations.

Maximizing that wrt to k_i gives a closed-form expression for the best-response,
where that xi is an expression of n and k (anyone want to guess what it looks
like? Hint: it starts with a cube root of 3... CLICK).

Anyway, from this [CLICK] we can see that the equilibrium in the unrestricted
game is also an equilibrium here, and with a bit more effort we show that it’s in
fact the uniqgue symmetric equilibrium.

<number>

Theoretical Results for FPSBn

« Expected Payoff for playing k. against
everyone else playing k:

> ifki=k=0
(ki ko) = l,;l‘f(i}%)”_l ki <k

I
(1—k) (n— D)2~ (n—1)k)

, . otherwise.
2(n+1)k;

- Best response to everyone else playing k:

3 (kz (n? —1) (972 +V3m+1)((n— k2 +27(n+1)) + 9>>2/3 — 3232 (n? - 1)

3(n+1) jkz(n - 1) (9722 +18n + (n +1)3/2/3(n — 1)k2 + 81(n + 1) + 9>

First, we derived a closed-form expression for the expected payoff for arbitrary
symmetric profiles and unilateral deviations.

Maximizing that wrt to k_i gives a closed-form expression for the best-response,
where that xi is an expression of n and k (anyone want to guess what it looks
like? Hint: it starts with a cube root of 3... CLICK).

Anyway, from this [CLICK] we can see that the equilibrium in the unrestricted
game is also an equilibrium here, and with a bit more effort we show that it’s in
fact the uniqgue symmetric equilibrium.

<number>

Theoretical Results for FPSBn

« Expected Payoff for playing k. against
everyone else playing k:

L ifl=k=0
il) = { st () ki <k

I
(1—k) (n— D)2~ (n—1)k)

, . otherwise.
2(n+1)k;

- Best response to everyone else playing k:

undefined if k=0
BR(k) = argmaxu;(ki, k) = § ifk< =L

1 . -~ -
n—1 Tfki\ n—1

n n <number>

First, we derived a closed-form expression for the expected payoff for arbitrary
symmetric profiles and unilateral deviations.

Maximizing that wrt to k_i gives a closed-form expression for the best-response,
where that xi is an expression of n and k (anyone want to guess what it looks
like? Hint: it starts with a cube root of 3... CLICK).

Anyway, from this [CLICK] we can see that the equilibrium in the unrestricted
game is also an equilibrium here, and with a bit more effort we show that it’s in
fact the uniqgue symmetric equilibrium.

<number>

Epsilon Metric for FPSBn

« The epsilon for a profile s is greatest
possible gain from deviating (payoff of
best unilateral deviation from s minus

payoff in s)

« For a symmetric profile (k) in FPSBn:

eppsan(k) = lllf_i.X(u.i[I. k) —ui(k k) =

11 L
53 ifk=0

(k=) (2 —kE+E+k+(E-1)(E+ k)n) n—1

262(n+1) gk < n

lfnJr/;((”_l) +nfl)
kn

- otherwise.
n? —1

We can also derive an expression for the epsilon of arbitrary symmetric profiles
in FPSBn, and remember, epsilon means the greatest gain from deviating from

a profile.

<number>

Game Simulation: FPSB4

Epsilon

0.4 0.6 0.

Symmetric strategy profile

8

So those results will be nice for comparison but we can'’t get that sort of thing
for the real monster games. Instead, the next step is to further restrict the
strategy space by discretizing the parameters. Here, | discretize the strategies
in the 4-player restricted FPSB game by 40ths, yielding 135,000some profiles. |
simulated 100 games for each profile to construct the empirical payoff matrix.
[CLICK] (We typically represent empirical payoff matrices like this...) This graph
shows the epsilons for each symmetric profile, based on that empirical payoff
matrix. This is enough to see that there’s likely an equilibrium somewhere
around .7something. If we overlay the exact results from the previous slide
[CLICK], we can see that this is in fact giving us a reasonable idea of the
solution to the underlying game.

(And if you’re wondering why all the plotted points are above the exact epsilon
it's because all the payoff estimates that the empirical epsilons are based on
have sampling noise and since the epsilon calculation takes the max of a bunch
of noisy estimates, it will typically find one that’'s anomalously high. I'll talk about
reducing sampling noise next.)

Anyway, to get a more accurate estimate of the solution to the game using
brute-force Monte Carlo, | upped the number of samples per profile to 36,000.
At this point, we still can’t estimate the unique symmetric nash with very high
fidelity but it’s clear that anything in this range will have very low epsilon in the
underlying game.

[100 games per profile and 41+4-1 choose 4 = 135751 profiles]

<number>

Game Simulation: FPSB4

.....

Epsilon

0.4 0.6 0.

Symmetric strategy profile

8

So those results will be nice for comparison but we can'’t get that sort of thing
for the real monster games. Instead, the next step is to further restrict the
strategy space by discretizing the parameters. Here, | discretize the strategies
in the 4-player restricted FPSB game by 40ths, yielding 135,000some profiles. |
simulated 100 games for each profile to construct the empirical payoff matrix.
[CLICK] (We typically represent empirical payoff matrices like this...) This graph
shows the epsilons for each symmetric profile, based on that empirical payoff
matrix. This is enough to see that there’s likely an equilibrium somewhere
around .7something. If we overlay the exact results from the previous slide
[CLICK], we can see that this is in fact giving us a reasonable idea of the
solution to the underlying game.

(And if you’re wondering why all the plotted points are above the exact epsilon
it's because all the payoff estimates that the empirical epsilons are based on
have sampling noise and since the epsilon calculation takes the max of a bunch
of noisy estimates, it will typically find one that’'s anomalously high. I'll talk about
reducing sampling noise next.)

Anyway, to get a more accurate estimate of the solution to the game using
brute-force Monte Carlo, | upped the number of samples per profile to 36,000.
At this point, we still can’t estimate the unique symmetric nash with very high
fidelity but it’s clear that anything in this range will have very low epsilon in the
underlying game.

[100 games per profile and 41+4-1 choose 4 = 135751 profiles]

<number>

Game Simulation: FPSB4

[
0.3
\
.
‘o
\
\
o °
3 0.2 \\\
3 °
n
Q, ®q
H .
AN .
e ®
0.1
° []
o ® o,
I ° 'Y °
Tl e® . o’
DR) 0.0'0..00.,.,9 -
0 9 ss
A
0 0.2 0.4 0.6 0.8 1

Symmetric strategy profile

So those results will be nice for comparison but we can’t get that sort of thing
for the real monster games. Instead, the next step is to further restrict the
strategy space by discretizing the parameters. Here, | discretize the strategies
in the 4-player restricted FPSB game by 40ths, yielding 135,000some profiles. |
simulated 100 games for each profile to construct the empirical payoff matrix.
[CLICK] (We typically represent empirical payoff matrices like this...) This graph
shows the epsilons for each symmetric profile, based on that empirical payoff
matrix. This is enough to see that there’s likely an equilibrium somewhere
around .7something. If we overlay the exact results from the previous slide
[CLICK], we can see that this is in fact giving us a reasonable idea of the
solution to the underlying game.

(And if you’re wondering why all the plotted points are above the exact epsilon
it’s because all the payoff estimates that the empirical epsilons are based on
have sampling noise and since the epsilon calculation takes the max of a bunch
of noisy estimates, it will typically find one that’'s anomalously high. I'll talk about
reducing sampling noise next.)

Anyway, to get a more accurate estimate of the solution to the game using
brute-force Monte Carlo, | upped the number of samples per profile to 36,000.
At this point, we still can’t estimate the unique symmetric nash with very high
fidelity but it’s clear that anything in this range will have very low epsilon in the
underlying game.

[100 games per profile and 41+4-1 choose 4 = 135751 profiles]

<number>

Game Simulation: FPSB4

Epsilon

.
h .

L oo
'""“f”"“ b

0.4 0.6
Symmetric strategy profile

0.8 1

So those results will be nice for comparison but we can’t get that sort of thing
for the real monster games. Instead, the next step is to further restrict the
strategy space by discretizing the parameters. Here, | discretize the strategies
in the 4-player restricted FPSB game by 40ths, yielding 135,000some profiles. |
simulated 100 games for each profile to construct the empirical payoff matrix.
[CLICK] (We typically represent empirical payoff matrices like this...) This graph
shows the epsilons for each symmetric profile, based on that empirical payoff
matrix. This is enough to see that there’s likely an equilibrium somewhere
around .7something. If we overlay the exact results from the previous slide
[CLICK], we can see that this is in fact giving us a reasonable idea of the
solution to the underlying game.

(And if you’re wondering why all the plotted points are above the exact epsilon
it’s because all the payoff estimates that the empirical epsilons are based on
have sampling noise and since the epsilon calculation takes the max of a bunch
of noisy estimates, it will typically find one that’'s anomalously high. I'll talk about
reducing sampling noise next.)

Anyway, to get a more accurate estimate of the solution to the game using
brute-force Monte Carlo, | upped the number of samples per profile to 36,000.
At this point, we still can’t estimate the unique symmetric nash with very high
fidelity but it’s clear that anything in this range will have very low epsilon in the
underlying game.

[100 games per profile and 41+4-1 choose 4 = 135751 profiles]

<number>

Control Variates

« Variance reduction by adjusting for luck

« FPSB: higher valuation means higher
expected payoff

« Suppose g(t) estimates payoffs; adjust
sampled payoffs by subtracting g(t)-E[g(t)]
(1—}ﬂ”1ﬂ

1%

J#i

g(t;) =

(1— k)t

(n + 1)1_[kj <number>
J#i

Elg(t;)] =

So this brings us to variance reduction. The idea of Control Variates, which is a
standard technique for Monte Carlo simulation, is to adjust the sampled payoffs
for luck. For example, in FPSB, we expect an agent’s valuation to correlate
positively with its surplus. So we bump up an agent’s payoff when it has a low
valuation (type) and scale it down when it has a high valuation such that the
positive and negative adjustments average out to zero. Then by sampling
these adjusted payoffs it will tend to take fewer samples to converge to a good
approximation of the true expected payoffs. And for any exogenously
determined estimating function g()—and I'll explain exogenously in a minute—
the average of the adjusted payoffs will always be unbiased and have less than
or equal the variance as for unadjusted samples. For FPSB, we can derive a
sort of best case control variable, namely, the exact expected payoff for an
agent of type t playing strategy k against an arbitrary set of other strategies.

(There are 3 special cases: (1) g(ti) = 0 if ki = 0 and for some j 6=, kj > 0,
) g(t) = 1/2nifki=0 Vi E {1, . n},

(2
(3) otherwise, with z players playlng k 0, ignore them and substitute n n-z
above.)

<number>

Control Variates: Estimating g(t)

Bootstrapping a g() — learning a function
from types to payoffs from empirical
samples

« Semi-automated approach: pick summary
statistics and perform linear regression

—g(t) =Bx(t) + A
« Unbiased as long as the regression

parameters are estimated from a distinct

data set (exogenously determined g())

<number>

Of course, in more complicated games, we can’t derive anything like that. But
instead we can estimate a function using machine learning methods. For
FPSB, with one-dimensional types, this is straightforward (for example, we can
use linear regression) but in general, with multidimensional types, including
other sources of randomness in the game, it may not be obvious how all the
random elements influence payoffs. In fact, the dimensionality doesn’t have to
be very high before it becomes very hard to empirically determine meaningful
relationships between types and payoffs. For example, imagine a game
involving bidding for many goods with an agent’s type being the vector of
valuations for each. Depending on the specifics of the game we might expect
the sum or the max of an agent’s valuations to correlate with payoff. It would
take a sophisticated learning algorithm with a lot of data (ie, many game
simulations) to rival a simple linear regression from sum or max valuation to
payoff. Thus, when we have sufficient domain knowledge—such as knowing
that the sum or the max are good summary statistics, we introduce control
variates manually.

[In fact, we haven'’t yet but intend to try introducing control variables of that
flavor in the SAA domain. For TAC, we have been using the control variates
method for some time, introducing 4 different control variables such as sum of
hotel and entertainment premiums, and initial flight quotes.]

<number>

Unadjusted and adjusted Payoffs in
FPSB

Cumulative Probability

O, ') ‘I)) i
0 0.02 0.04 0.06 0.08 0.1
Payoff

Returning to our FPSB example, this graph gives a visual sense of what
adjustment via control variables can buy us. The blue line is an empirical
distribution of unadjusted payoffs for a particular profile. The green line shows
adjusted payoffs using a g() determined by linear regression. The pink line is
the same but with a separate g() custom fitted for the profile, which is
something that’s not typically feasible in realistic sized games where we may
have only a handful of games per profile. That’s plenty to find a generic
function from types to payoff estimates but not for tailoring the function for each
profile. | don’t have the analytically determined control variable included on this
graph but...

In the interest of time I'll just flash up the results quickly but these are cdfs of
unadjusted and adjusted payoffs for a particular profile of strategies (so the
more squished together the cdf the lower the variance.

<number>

Average Variance Reduction

0.008F

0.006

0.004

Variance

0.002

0

1 2 3 4 5

Control Variates
1. Unadjusted (0)
2. Linear regression, profile non-specific
3. Linear regression for this profile
4. Analytically determined g()
5. g() = exact expectation (sanity check)

<number>

Here are the average variances for several control variate methods applied to
the symmetric equilibrium profile of FPSB4. You can see that in this case it
turns out not to matter significantly whether we estimate the g() based on
the specific profile or across all profiles.

Unadjusted (0)

Linear regression, profile non-specific

Linear regression for this profile (happened to be about the same)
Analytically determined g() for FPSB4

g() = exact expectation (sanity check)

N o ok~

<number>

Other Variance Reduction
Techniques

Quasi-random Sampling
Importance Sampling

Stratified Sampling

Combined and Adaptive techniques

(Application requires special handling of
randomness from Nature)

<number>

There are a some other variance reduction techniques that we haven’t
employed in any experiments but that promise huge computational savings in
empirical payoff estimation. Just to mention them, in case anyone is taking
notes on how to apply this methodology to their own monster games, quasi-
random sampling and importance sampling are ways to tweak the distribution of
types that you sample from to reduce variance in the sampled payoffs.
Adaptive techniques combine various methods and adjust the parameters for
them automatically as more samples are gathered. Implementations of all of
these techniques are available as part of the GNU Scientific Library. Also, Ill
refer you to my forthcoming paper for how to deal with Nature when applying
these methods.

<number>

Player Reduction

« Definition: I'|,,

Wi(S1, vy Sp) = Ugei(S1se 382, cveyevySpy.ns)
q q q

« Theorem: unique symmetric equilibrium of
FPSBN|, is
n(p—1)
p+n(p—1)

<number>

The next method for taming monster games | call player reduction and the idea
is very simple: we can approximate an n-player game with one of, say, n/2
players by an n/2 player game where each player gets to pick a strategy for 2
players to play in the original game. Since game size is exponential in the
number of players, this can drastically cut an impossibly large game down to
size, as we'll see in the case of the Trading Agent Competition.

n
p=n/2
g=2=n/p

[player reduction description, yoking strategies, take a pq player game and
define the p-player game where each player picks one strategy for q players to

play]

<number>

Epsilons for Symmetric Profiles in
FPSB2, FPSB4 ,, FPSB4

0.05
[
0.04 L
®
0.03 L]
g)
=5
o .
o
7 0.02 o
L4 q
. ° °
i °
0.01F} ., °
[} B ° ®
e ./’,‘ \\‘; . [L
0 ‘*«—A»/] o*o '*»I/
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Symmetric strategy profile >

Now the question is whether the reduced game bears any similarity to the
original game. Of course in the worst case it won’t — we can make up a
pathological example where the payoffs vary in any erratic way you can
imagine. But our hypothesis was that for many natural games the degradation
would be graceful.

That’s borne out for FPSB ... [DESCRIBE]

FPSB2 -> 12
FPSB4r2 -> 2/3
FPSB4 -> 3/4

<number>

Theoretical Results for FPSB

« Theorem: Foralln>p=>1

eq(FPSBp) < eq(FPsBn),) < eq(FPSBn) and
= c(eq(FPSBn)) < £(eq(FPSBn|,)) < £(eq(FPSBp))
(reducing to p players always outperforms the p player version)

« Theorem: Foralln>p>qg=1

eq(FPSBn|,) < eq(FPSBn|,) < eq(FPSBn) and

= =(eq(FPSBn)) < £(eq(FPSBn|,)) < =(eq(FPSBn|,))

(solution quality degrades monotonically with more severe player reduction)
<number>

And in fact we proved that for FPSB, that generalizes to any number of players.

If you have an n-player game but computationally you can only handle p
players then you’re better off with the p-player reduction than the actual p-
player version, both in terms of absolute closeness to the n-player Nash
equilibrium and in terms of the epsilon metric.

And for FPSB, solution quality degrades monotonically with more severe player
reduction.

[Theorem 3.12 and 3.13]

<number>

Local-Effect Games

()1 2 (5)1 2 3 (g1 2 4 (10)1 2 5 (151 2 3 4 6

(p|ayers) reduced players... <numbers

So those are reassuring results for FPSB, but of course we don’t actually need
to approximate FPSBn since we already know the solution. So to further
evaluate the quality of reduced-game approximations, we turned to other
natural games of potential interest. Local-effect games fall under the category
of congestion games, for example deciding what roads to take when you have
to trade off taking the most direct route with the possibility that too many other
agents will choose the same and the route will be slower.

Just to summarize the conclusion: player reduction does well at approximating
games in this class as well and again we find that the solution quality degrades
gracefully with the degree of reduction.

I'll discuss player reduction in the context of the trading agent competition
shortly, where it was critical in getting any kind of strategic handle on that
monster game.

Figure 3.6: Local-effect games with 4, 6, 8, 10, and 12 players. Each group of
bars shows the average epsilon

for equilibria of reductions of the given game at increasing fidelity. The number
of players in the full game

is shown in parentheses, with the number in reduced games under each bar.
The bars extend upward to

indicate a 95% confidence upper bound on eps. To the left of each group is
shown the eps (with 95% confidence

interval) of the social optimum of the full game.

<number>

Analyzing Empirical Games

« Gambit
 Replicator Dynamics
 Function Minimization (Amoeba)

<number>

Everything so far has been about estimating an empirical game. Once we have
that, we have a standard normal form game with a finite payoff matrix and we
can apply any standard game solving techniques. Just to mention the ones
we’ve used: Gambit is the state of the art solver for finite games. But since it
doesn’t exploit symmetry we've used 2 other methods that do, namely replicator
dynamics and function minimization.

Replicator dynamics bears special mention. Although the idea is not new to me
and my colleagues (in fact, it originated as a model for how animals evolve
toward Nash equilibrium strategies) we are the first to our knowledge to apply it
as a solution technique for large games.

<number>

Example of Replicator Dynamics

The idea is simple...

Start with a population of strategies with each represented equally in the
population (1/5 each here). Then grab 5 of them from the population, play them
against each other, and adjust their numbers in the population in proportion to
how well they did. And repeat for as many generations as necessary till you
reach a fixed point, which corresponds to a mixed-strategy Nash equilibrium.

Figure 3.7: Replicator dynamics for an SAA game with 5 players and 5
strategies {16, . . ., 20} evolving in

about 100 generations to a symmetric mixed equilibrium of all agents playing
strategy 16 with probability

0.754 and 17 otherwise.

<number>

Sensitivity Analysis

Distributions over payoff matrices

Distributions over functions of the payoff matrix
— Nash equilibrium

— Epsilon for a Nash candidate

Confidence bounds on mixture probabilities
Confidence bounds
on epsilon

tive Probability

Cumulaf
°

...finally, the last phase of our monster game taming methodology is assessing
solution quality with respect to the underlying game of interest, or at least with
respect to the exact restricted game, after reducing the strategy space and
possibly the number of players. To do this, we first need to estimate a
distribution representing our belief over the space of possible payoff matrices,
which we do based on our sampling data (though | won’t go into the details of
how we do that).

One method of sensitivity analysis, then, is to see if enough samples from the
payoff matrix distribution all yield the same equilibrium, in which case we can
conclude that our results are robust to sampling noise. One way to
operationalize that is to repeatedly sample payoff matrices, compute one or all
symmetric equilbria, and observe the empirical distributions over mixture
probabilities. [EXAMPLE] (we see that the equilibrium derived by replicator
dynamics from the previous slide actually has a fair bit of potential error —
confidence intervals on the mixture probabilities)

[We do this by making some conservative independence assumptions and
gathering sample statistics for individual cells in the payoff matrix. We exploit
the central limit theorem which tells us that as the number of samples grows,
the distribution of the sample mean approaches normal. It is this normal
distribution that we take as our belief over the individual expected payoffs in the
payoff matrix. We can now get sample payoff matrices by sampling the
individual cells.]

<number>

Sensitivity Analysis

200

150

Frequency
=
o
o

50

500 600

Epsilon

An alternative is to do the same for the epsilon metric. Here’s an example from
a different game in which we can say with 15% probability (that’s how much of
the probability mass is at zero) that this profile is an equilibrium.

[and compute, for a candidate equilibrium (like the equilibrium of the estimated
empirical game) an empirical distribution for epsilon, just like we did for mixture
probabilities. If a fraction p of the probability mass is at zero then we conclude
with confidence p that we have found an actual equilibrium of the underlying
restricted game. In the best case, p is near one and the conclusion is definite.
If not, we can at least give probabilistic bounds on epsilon and quantify the
degree to which the candidate equilibrium approximates an equilibrium to the
true game.]

Figure 3.10: eps-sensitivity analysis for a 2-player reduced TAC game with 35
strategies showing the empirical

pdf (histogram) for eps. The expected eps is 123 and the probability that the
candidate is an actual

equilibrium (eps = 0) is 15%. More probability mass near zero means a more
robust profile. The partial

payoff matrix was estimated from 14,000 samples spread (non-uniformly) over
the 630 profiles, adjusted

with control variates.

<number>

Conclusion:
Taming Monster Games

Restrict strategy space
Reduce number of players

Simulate game outcomes

— Adjust type distributions or adjust sampled
payoffs with control variables to reduce
variance

Analyze empirical game
Assess solutions wrt underlying game

<number>

<number>

(Simultaneous Auctions in)
TAC Travel

Day 1 Day2 Day3 Day4 Day 5

Air - Air - Air - Air -

=

Towers Towers Towers Towers

Shanties| Shanties| Shanties| Shanties|

£
H
El
H

U U u u
EEEN KN E S -

So, on to the real applications of monster game taming. We created the
Trading Agent Competition Travel shopping in 2000 and it has been growing
ever since. Starting in 2002 the Swedish Institute of Computer Science took
over running and we’ve been competing in it since then. The game pits 8 travel
agents against each other, all trying to put together travel packages for their
hypothetical clients. | won’t get into the intricacies of the game except to say
that there are 28 simultaneous auctions of different types that the agents have
to participate in to buy flights, hotels, and entertainment tickets. One of the key
strategic issues is the strong complementarity between hotels. If you have a
client staying in the Towers (that’s the hypothetically fancy hotel) on day 1 and
they don’t leave till day 3 then that first room is useless to you unless you also
get a room in the same hotel on day 2. Actually, it’s a bit messier than that
since you may be able shuffle your clients around, shorten their trips if you
haven’t bought their flights yet, etc. But fundamentally, we have a problem of
bidding for complementary goods in simultaneous ascending auctions. The
other domain we study distills that problem out specifically, making for a much
simpler game, though still a multistage game for which we need our empirical
game methodology to make any headway. That game is called SAA for
Simultaneous Ascending Auctions.

<number>

“Walverine”

wolverine Léon Walras

W,

<number>

The name of our agent is Walverine, from the Michigan mascot and the 19
century French economist, Walras, because the first foundational idea of our
agent was to predict market prices using a simple market model, namely
Walrasian equilibrium.

(The reason price prediction is important is because of the exposure problem.
Suppose | don’t care much about the nice vs cheap hotel but the current prices
are all low so | start bidding for the nice rooms for all the nights of my stay (and
remember, | can’t switch hotels mid-trip). Now imagine of the nice rooms starts
to skyrocket. | can drop out of the bidding of course but if I'm already winning a
nice room on the first night then I’'m stuck. I'd have to just eat it and pay for one
nice room that | can’t use. Whereas if I'd predicted which rooms would get
expensive | could’ve rearranged my trip when the flights where still cheap, or
just bid for the cheap hotel from the start.)

<number>

TAC Price Prediction

_ 7, livingagents
65 A PackaTAC. »
é ‘ Southampton. //
£ 60 = RoxyBot -
s é ‘ whitebear . //.U_\.-[BCTAC
i ‘ 5 .
2 55 ATTacO‘. // SICS
s
2 & 7
= ' e
b harami_ "
S s P
;j 4 ka\'ayaH. // cuhk
N s Best EVPP
“ [W7alcrars -~ k
s Walv erme. e
-
351 7 ATTac01
7 .
~
190 200 210 220 230 240

Euclidean distance to actual prices er>

Figure 4.2: Prediction quality for thirteen TAC-02 agents. Dashed lines delimit
the accuracy achievable

with constant predictions (independent of flight prices and own client
preferences): “best Euclidean distance”

and “best EVPP” for the two respective measures. The diagonal line is a least-
squares fit to the

points. Observe that the origin of this graph is at (190,32).

<number>

Parameterized TAC Agent

« Walrasian Price Predictor with...

« Variations on hotel bid shading
- Different entertainment trading strategies

« Parameterized decision process for flight
purchase timing

E[A]<T1?

Reducible trip AND
#clients > T3?

First ticket AND
surplus > T4?

BUY DELAY

But how this relates to our monster game methodology is that we started with

the baseline strategy of our Walrasian price predictor, and just like in the FPSB
example, introduced parameters to generalize it...

<number>

Searching for Walverine
(among 40 candidate strategies)

P Profiles Samples/Profile
total | evaluated % | min mean

8 | > 314M 2114 0 12 223

4 1 123,410 2114 1.7 | 12 22.3

2 820 586 | 71.5 | 15 31.7

1 40 40 | 100 | 25 86.5

Profiles Evaluated in Reduced TAC Games

<number>

Table 6.4: Profiles evaluated in reduced TAC games (TAC p).

<number>

Performance of 8 Walverine
Variants

‘
4200 |

o

3800

w
a
=)
=}

Average Score

3400

3200

. , , . .
0 2 4 6 8
Strategies

I'll skip the details but based on our empirical game theoretic analysis of playing
variants of Walverine against each other we ended up with several candidate
strategies which we then tested in real tournament conditions, in the seeding
and qualifying rounds, before settling on the final tournament version of
Walverine...

Figure 6.9: Performance of eight Walverine variants, {3, 4, 16, 17, 35, 37, 39,
40}, in the TAC-05 seeding

rounds, based on 507 games.

<number>

Walverine in Third...

A
I~

)

Competitive Benchmarking for The Trading Agent Community

LOGIN | SEARCH | FAQ | LEGAL NOTICES

GENERAL TAC 2005 Finals | TAC 2005 Semi-Finals | TAC 2005 Seeding | TAC 2005 Qualifying
Home
About TAC .
News Score tables for TAC 2005 Finals - 3rd August
Press i
calendar TAC Classic
Contact Info
JOIN NEWS LIST Position Agent Average Games Zero
user@domain.con JO‘I’II Score played Games

1 Mertacor (tacl, tac2) 4126.49 30 0
TAC 2005 p

whitebear05
Info & Call 2 (tact, tac2) 4105.68 80 0
e Walverine (tacl, tac2) 4053.90 20 2
TADA Workshop ——— :
Results 4 Dolphin (tact, tac2) 4022.79 30 0
SICS02 (tacl, tac2) 3972.29 80 0

PREVIOUS RESULTS F——
TAC 2004 5 (t':["tagc;)" s 3899.24 80 0
TAC 2003 == -
TAC 2002 7 e-Agent (tacl, tac2?) 3451.25 80 i

8 RoxyBot (tacl, tac2) 3167.64 80 10

TAC COMMUNITY

Research Groups

Ed ti i TAC
Educatng LSO TAC | TAC SCM

And here are the official results.

The scores have been combined from the TAC 2005 finals at tacl.sics.se and tacl.sics.se.

<number>

Walverine Rules (p=.17)

Recalculated Scores for TAC 2005 Finals

|Pusiliun | Agent | Average Score | Games Played |Zer0 Games
1 Walverine (tacl. tac2) | 4157.10 sg| 0
2 [RoxyBot (tacl. tac2) | 4066.94 | 58| 0
3 [Mertacor (tacl. tac2) | 4063.17 | 58| 0
4 whitebear05 (tacl. tac2) | 4001.89 | 58| 0
5 Dolphin (tacl. tac2) | 399331 58| 0
6 SICS02 (tacl. tac2) | 3904.70| 58| 0
7 [LearnAgents (tacl. tac2) | 378536 5g| 0
8 |e-Agent (tacl. tac2) | 3369.99| 5g| 0

The scores have baen combined from the TAC 2005 finals at tacl.sics.se (games
30563-30391) and tacl.sics.se (games [2108-12136).

This is a recalculation of the TAC 2005 final scores where some problem games have
been removed (RoxyBot was running two agents on tac1.sics_se and no agent at
tac2 sics.se during the first games).

And | just have to mention that although officially Walverine came in third, the
organizers also published these unofficial results with some tainted games
removed (including 2 in which we had a network outage) and so unofficially
Walverine kicked butt (at the p=.17 significance level).

<number>

Strategy Generation Summary

« First algorithm to compute best-response strategies in a
broad class of infinite games of incomplete information

« Empirical game methodology for applying game-theoretic
analysis to much larger games than previously possible

- Theoretical and experimental evidence of the efficacy of
our methodology

« A price-prediction approach to strategy generation in
simultaneous auctions for complementary goods

 Application of the above methods to find good strategies
in complex games (TAC and SAA)

« Future Work: new domains (multiattribute auctions,
sponsored search auctions), computational mechanism
design

<number>

So, to conclude, I've shown you my best response solver for a broad class of
infinite games, our empirical game methodology for taming monster games,
demonstrated it on simple games like FPSB, and showed how it helped us
(unofficially) win the Trading Agent Competition in 2005.

In future work, | plan to apply these techniques to new domains like
multiattribute auctions and other complex market mechanisms including
potentially sponsored search auctions.

And I'm especially eager to apply my strategy generation techniques to
computational mechanism design problems. The reason that strategy
generation is key to that problem is that, say Yahoo is considering various
changes to the sponsored search auction. The only way to evaluate potential
changes to the mechanism is to predict what advertisers will actually do in
response, and that means strategy generation.

So whether we model these games as one-shot infinite games that are
captured by my analytic techniques or as more complex games for which my
empirical methodology is needed, strategy generation is critical for agents and
mechanism designers alike.

<number>

Click to add title

e Click to add an outline

<number>

<number>

Backup Slides

Click to add text

<number>

<number>

Strategy Metrics

Strategy | Count Max Sum
17 24 0.499 539
4 19 0.729 486
21 17 0.501 4.68
16 18 0.892 3.77
23 14 0542 334
6 16 0.699 325
9 16 0.367 3.09
5 23 0.247 2.63
24 17 0232 234
35 15 0.041 2.04
40 20 0.180 1.95
3 8 0.401 170
34 7 0307 1.05
7 6 0.099 037
38 5 0.091 035
39 3 0.126 0.18

Table 6.6: For all strategies appearing in an unrefuted equilibrium of a clique in

TAC 2, the number of

<number>

equilibria, the maximum mixture probability, and the sum of all mixture

probabilities across equilibria.

<number>

Applying 2004-derived control variates achieves 17.5%
variance reduction in 2005.

Comparison of TAC-05 Scores

4200

4000

@ 3800

>
< 3600

3400

3200

|

MEAN DIFF TESTS:

3

4

4
Agents

5

6

1 0.172 0.063 0.008 0.012 0.002 0.005 O.

ON O L1 W W N

0.312 0.116 0.122 0.045
0.237 0.241 0.104 0.056 O.

0.488 0.268 0.119 O.

0.291 0.129 0.
0.215 O.

0.03 0.

8

<number>

<number>

Sensitivity Analysis 1

[Lo
I po
18 .

Cumulative Probability

0 0.2 0.4 0.6 0.8
Equilibrium Population Proportion

[describe] Unfortunately, we often don’t have the simulation time needed to get
the sample variances low enough to be able to say anything at all about the
likely ranges of mixture probabilities in equilibrium. (though whenever a pure
equilibrium is identified it tends to be far more robust, less sensitive, and this
method can be useful to confirm equilibria even with relatively few samples) So
as an alternative sensitivity assessment, we use our epsilon metric...

<number>

Price Prediction for Complementary
Goods in Simultaneous Auctions

Point vs. distribution prediction
Self-confirming prediction

Walrasian price equilibrium prediction
— Prices such that supply meets demand

Both can be found (at least approximately)
by an iterative process

<number>

In chapter 4 | describe those 2 games in detail and lay out our approach to
applying the first step of the empirical game methodology, namely generating
candidate strategies. That approach for both TAC and SAA is price prediction.
There are 2 basic kinds of price prediction: point predictions of final prices and
predicting by coming up with a probability distribution representing your belief
about the final prices. One key method of predicting prices is self-confirming
prediction: the idea there is to define a prediction based strategy
parameterized by the prediction vector or prediction distribution and then find a
prediction such that if everyone plays that prediction strategy the prediction will
turn out to be right.

Another key method of predicting prices is Walrasian price equilibrium, and this
is how our TAC agent, Walverine, got its name.

A Walrasian price equilibrium is a set of prices such that supply meets demand.

Of course, it’s a bit trickier than that (for one thing, price equilibria need not
exist in these games, though they seem to at least approximately in the
examples we’ve studied) but also, we don’t actually know the other agents’
demands since those are determined by their types, ie, their valuations for
possible bundles of goods. But we do know the distribution...

<number>

Performance of Self-Confirming
Prediction in SAA Games

SAA . (m.n) [ex (PP(FPY)) =% Pr(e=0) Pr(PPIF™Y))
E(3,3 0 0 1.00 1.00
E(3,5) 0 .09 600 996
F(3,8) 83 85 0 —
E(5,3) 0 0 1.00 999
E(5,5) 0 0l 900 998
E(5,8) 60 64 0 —
E(7,3) 0 .06 667 992
E(7,6) 04 10 567 549
U(3,3) 1.24 1.26 0 725
U(3,5) 0 0 1.00 1.00
U(3,8) 56 53 0 —
U(5,3) 135 135 0 809
U(5,8) 1.59 1.62 0 —
U(7,3) 81 84 0 942
U(7,6) 52 52 0 929
U(7,8) 498 4.94 0 —

Table 5.3: Performance of PP(FSC) as a candidate symmetric equilibrium for

various SAA, U and
SAA, E environments.

<number>

<number>

The Trading Agent Competition

12 minute games, 8 agents competing per game

Agents perform as travel agents, purchasing
travel goods for clients at auction

Each travel agent given clients requests,
defining objective function. Net value is objective
minus expenditure

Assembile trip for each client, comprising flight,
hotel, and entertainment

Goods are interdependent, each presents
interesting issues

<number>

Shading vs. Non-Shading
Walverine

3600F ® ® ® ® ® [] [] ® L

2800¢

w
S
o
o

w
o
o
o

Expected Payoff

2 6 O O L [] [J [L)]]] [J L
Strategy Profiles

<number>

Figure 6.1: Empirical payoff matrix for shading vs. non-shading Walverine,
based on roughly 100 games

per profile. The profile of all shaders is on the left and all non-shaders on the
right.

<number>

Symmetric Strategies in TAC |

3500

Strategies

<number>

Figure 6.4: Average payoffs for (symmetric) strategy profiles in TAC 1. Error
bars delimit 95% confidence

intervals.

<number>

Prisoners’ Dilemma

17 (D) | 34 (C)
17 (D) | 3971 | 4377
34 (C) | 3907 | 4302

<number>

Table 6.5: The TAC game restricted to strategies 17 and 34 constitutes a
prisoner’s dilemma where 34 is

“cooperate” and 17 is “defect”. Note that the temptation payoff > reward payoff
> punishment payoff >

sucker payoff. Additionally, the reward payoff exceeds the average of the
temptation and sucker payoffs.

<number>

Why “Strategy Generation”? (SG)

Infinite Games: SG is meant in the sense of a
ame solver (3eneratlng equilibrium strategies
rom a game description)

Monster Games: SG refers to the process of

generating a set of candidate strategies as well

as choosing among them

Price Prediction: families of strategies from
which we generate prediction specific strategies

TAC/SAA: applying empirical game methodology
to establish good strategies in two market
games

<number>

<number>

TAC-05 (if not for meddling kids)

Agent Raw Score Adjusted Score 95% C.1.
Walverine 4157.1 413242 4+ 1384
RoxyBot 4066.94 402953 +£1673
Mertacor 4063.17 39739 £1523
whitebear05 4001.89 3902.01 + 1304
Dolphin 3993.31 389895 +1485
SICS02 3904.7 3842 .61 + 140.6
LearnAgents 3785.36 3718.81 +£280.0
e-Agent 3369.99 334152 £ 1172

<number>

Price Prediction Can Help

Agent {1} {2} {3} {1,2}y {1,3} {2,3} {1,2,3}

l 0 0 0 0 0 0 15
2 8 6 5 8 8 6 8
3 10 8 6 10 10 8 10

<number>

4.2: Agent valuation functions for a problem illustrating the value of price
prediction over SB and

sunk-aware agents.

<number>

Control Variates for FPSB4

Figure 3.3: Four control variates, g(t), for FPSB4.

<number>

Empirical Payoff Matrix

Expected Payoff

° > o 9 ® » ® ¢ o © o > o ¢ o 9 [p R
sii
beoe |
ey
+
‘ [
e nl*
+* 4 g
" ' blHe
"
4 4 " e
ELd
o4 ¢
sos vod b
4 L seete
4 b t
+ e [T} Ldsl]
sees e
e R
+
oveed
seeeeg > o [» © o o o o o > o o o o [> o o

strategy Profiles

<number>

Finite Game Approximations

 Finite game solvers:
— Gambit
- Gala
— Gametracer
« Why not discretize?
— Introduces qualitative differences
— Computationally intractable

<number>

<number>

Price Prediction Strategies
for Market-Based Scheduling

Jeffrey K. MacKie-Mason
Anna Osepayshvili
Daniel M. Reeves

Michael P. Wellman

University of Michigan

<number>

[Introduction] First, a quick caveat: scheduling is the domain that we’ve applied
our approach to but we're not making claims about solving scheduling
problems and in particular, we don'’t claim that markets are a good
mechanism for solving scheduling problems. What we are interested in is
price prediction strategies in the domain of market-based scheduling.

[Clarify about what the mechanism is really trying to do: social welfare?
Feasible allocation?]

[say upfront that this question of strategy for SAA is an open problem in general
and that the results are not specific to *this* scheduling problem.]

[start with disclaimer about how we are not interested in scheduling (more
diplomatic way to say that) and that this is about finding good strategies for
a particular (not necessarily good) mechanism for solving the scheduling
problem. In other words, we are not claiming that markets are the right way
to solve scheduling problems. Our result is that price prediction is a good
strategic approach to SAA. Price prediction is not just for scheduling, but for
any domain with SAA. There is no known better strategy.]

[motivation for SAA: ebay and auctions for time slots for TV ads]

[when talking about the exposure problem maybe mention how in a single
sotheby’s auction there’s no exposure problem because you just stop
bidding when the price gets too high. Very simple.]

<number>

Factory Scheduling Example

Agent 2
value = $16
length = 2hr.

deadline = 12:00

ey 1 L (] pl"
dd a
Agentil Factory
value = $10 9:00
length = 2hr.
10:00
deadline = 13:00
11:00
12:00
13:00
Agent 3 14:00
alue =
value = $6 1500
length = 1hr.
. 16:00
deadline = 12:00

Here’s the basic scheduling problem were interested in. Consider a factory with
several time slots available. A set of agents have valuations for different
combinations of slots, defined in terms of number of slots needed to complete
their job and values for completing it depending on when the latest slot is
finished by. The example here is the special single deadline case where every
agent has one deadline and one value, with implicitly zero value for not
completing the job by that one deadline. The problem is to compute an
allocation of slots to agents. Al people might naturally be inclined to encode this
kind of problem as a CSP. Indeed, that would be quite straightforward, as

would the solution.

Agent 4
value = $14.5
length = 4hr.
deadline = 17:00

<number>

<number>

Schedy|ekecsdaquigorium

AL 1. | F.?-Ctory
Agent 1 Ud a Agent 2
value = $10 $6.25 9:00 value = $16
length = 2hr $6.25 10:00F length = 2hr
deadline = 13:00 N - : deadline = 12:00
$6.25 11:00
N $0.25 12:00
$0.25 13:00 N
Agent 3 $0.25 14:00 Agent 4
;falueh= $fh $0.25 15:00 :'alueh= $:léll.5
ength = lhr ength = 4hr
. $0.25 16:00(| _
deadline = 12:00 deadline = 17:00
<number>

But what if the agents are autonomous and their preferences are private? One
way to determine an allocation while respecting their autonomy is to find a set
of prices that induces an allocation. In this example, the prices are such that
every agent wants a certain bundle of slots and every slot is wanted by at most
one agent. Prices satisfying that property are said to be in equilibrium and
whenever a price equilibrium exists the corresponding allocation maximizes
social welfare. Unfortunately, price equilibria don’t always exist. Nonetheless,
market mechanisms — that is, price-based mechanisms are ubiquitous for
resource allocation problems such as this scheduling domain.

Claimed that prices isolate the factors an agent needs to make a decision. We
say that the prices are in equilibrium if the decisions that the agents make given
the prices are consistent with each other.

[Explain why this system is in equilibrium.]

Equilibrium is important because it is what we need to implement the allocation
in a decentralized manner. Since the agents are autonomous, we need to
reconcile their authority with the requirement that the resulting allocation is
feasible.

Also point out that allocation from a price equilibriim is not arbitrary, but tends to
support the most efficient allocations (more later). In example, only alternative
would be to substitute agent 3’s job, but the price system shows clearly why this
would lead to less total value.

<number>

The Market Mechanism

« Agent Preferences
—Job length
— Deadline values

- Simultaneous Ascending Auctions
— One auction per time slot
— Price quotes announced after each round
— Auctions clear when all are quiescent

<number>

The particular market mechanism we consider is Simultaneous Ascending
Auctions. The mechanism (ie, game) that agents are faced with is defined in
terms of a distribution from which agent preferences drawn. (preferences being
job lengths and valuations for finishing at different times) .. As well as a set of
auction rules, namely, that agents place bids in each auction at every round,
the auctioneer publishes price quotes which are the current winning bids, and
then the next round starts. The mechanism ends when it's quiescent; in other
words, no agent chooses to place a new bid in any auction.

Now suppose that an agent is faced with such a market; how should it behave?

<number>

Exposure Problem

« Balance benefit of acquiring enough slots
with risk of buying unusable slots

« Price prediction can mitigate the exposure
problem

« Knowing the eventual price of a slot
means you can avoid committing to it

Agent 1 3 15
Agent 2 1 4

Name Job Length (A) v(1) v(2) v(3)
8 6
Agent 3 1 10 8 6 ™

What makes this problem hard is the complementarities between slots. That is,
getting any one slot only helps me if | get enough other slots to complete my
job.

The complementarities (along with the fact that the mechanism doesn’t allow
agents to repudiate bids) are what cause the exposure problem, which is the
problem of bidding for a slot and risking that you’ll win it and be stuck with it
without winning the other slots you need.

| should also mention that there are other market mechanisms — such as the
combinatorial auction — that don’t have the exposure problem and a
combinatorial auction is a great thing to use when possible but it won’t always
be possible. For various reasons, Simultaneous Ascending Auctions are a fact
of life and that’s the mechanism we’re interested in.

One way to mitigate the exposure problem is to predict where prices are
heading.

We hypothesized that this would help by allowing an agent to avoid committing
to slots that it can predict will become too expensive.

For example, if Agent 1 knew enough about Agent 2 and 3’s preferences to see
that there’s no way it can win its 3 slots for less than its value of 15 then it can
avoid bidding altogether

[also mention that a combinatorial mechanism would solve this problem but, 1,
it’s complex in terms of computation and communication and, 2, SAA are a fact

of life.]
<number>

Straightforward [ses AERE
Blddlng (SB) oricea(cp) | $10| 89 | $5

Slots the
agent is yes

No attempt to anticipate | winning
other agents’ strategies:

Perceived $10 | $10 | $6

« Perceived prices prices
« Best bundle
.. Job length 2 slots

- maximizes surplus at Deadline 535 | 525 | Surplus -
perceived prices Values Value - Cost
- assumes it will win the ~ [Bundie 2 | yes | yes | - | 35-20-$10
whole bundle Bundle {1,3} | yes | -~ | yes | 25-16-$9
Bundle {2,3} | --- | yes | yes | sBufberg$9

We'll start by describing a basic myopic strategy we call Straightforward
Bidding.

Consider the case of 3 slots which have so far been bid up to 10, 9, and 5
dollars. Our agent is the current winner of slot 1.

We assume a minimum bid increment of 1 dollar, so the agent decides its
“perceived prices” for the slots as the current price quote for any slot its winning
and the price quote plus the bid increment for slots it's not winning. The idea is
that these are the minimum prices it can expect to pay for the slots.

The agent uses its perceived prices to determine what slots to bid on. [CLICK]

It needs 2 slots for its jobs so the possible bundles are 12, 13, and 23, plus
implicitly the empty bundle which always has value and cost of 0.

So given the perceived prices and our deadline values, we can compute
surpluses for the possible bundles and pick the one with highest surplus and
place bids on the slots in that bundle that we aren’t already winning.

[make sure not to say “these”, rather, eg, “perceived prices” or “bundle 17]

<number>

Modification
Of SB

Estimate final prices:

« Perceived prices

« Information on market
prices

« Best bundle

- maximizes surplus at
estimated final prices

- assumes it will win the
whole bundle

Our price prediction strategy is a modification of straightforward bidding that
takes into account a vector of predicted prices (and I'll talk about how we come

up with such predictions shortly).

Slots

Current
prices (CP)

$10

$9

$5

Slots the
agent is
winning

yes

Perceived
prices

$10

$10

$6

Vector of
predicted
prices ()

Adjusted
prediction =
max{perc, m}

Job length

2 slots

Deadline
values

$35

$25

Surplus =
Value - Cost

Bundle {1,2}

yes

yes

35-7

Bundle {1,3}

yes

yes

25-7

Bundle {2,3}

yes

yes

<nyrgher>

<number>

Price Slots 1]2]s
. C
Predictors pricos(cp) | $10 89 | 95
Slots the
. . . ti
Estimate final prices: winning | 7"
« Perceived prices Drioee °0 | 810 | $10 | $6
« Vector of predicted Vector of
] predicted $20 | $15 | $1
prICGS prices ()
« Adjusted prediction e e | 520 | 815 | 6
« Best bundle mextpere. m
- maximizes surplus at JD°b;|e_"gth 2 slots o
. . n =
adjusted predicted valdes $35 | $25 | \aie - cost
prices Bundle {1,2} | yes | yes 35-35=$0
- assumes it will win the | Bundle (1,3} | yes yes | 25-26=-$1
whole bundle Bundle {2,3} yes | yes | zsumbpergs

The idea is, instead of using the perceived prices, a price predicting
bidder simply uses its price prediction to determine the optimal bundle of
slots to bid on. Of course, if the price quote ever exceeds a prediction,
like for slot 3 here, then the prediction was obviously wrong and is
adjusted. In other words, a predicting agent is just like a SB except it
uses as perceived prices the max of its predictions and its original
perceived prices. And we see the difference it makes in this case: slot 1
is predicted to be very expensive so the most attractive bundle is now

{2,3}.

<number>

Predictors

« SB = Straightforward Bidding = PP(0)

- BL = Baseline = Predict average prices for SB agents

+ SC = Self-Confirming W o

« ECE = Expected . R R
Competitive Equilibrium

« EDCE = Competitive
Equilibrium for .
expected demand R AR

.......
..................

..................

Prediction Methods Predicted Finél Price Vectors

SB (=PP(0)) 0 0 0 0 0
PP(rtBl) 148 107 7.6 46 1.9 30
PP(1t5¢) 13.0 87 54 30 1.2
PP(mttCE) 260 142 6.9 25 03
PP(rEDCE) 200 12.0 80 2.0 0.0

So that’s how an agent turns price predictions into a bidding strategy. But how
does it come up with price predictions? We considered 5 different price
predictors.

The first is to predict all zeros which is not a predictor at all but just our old
friend SB which is the same as predicting 0 prices because of this [back] max
adjustment step.

Next, what we call our baseline prediction is to just predict the average prices
achieved by all straightforward bidders, found by monte carlo simulation.

Self Confirming prediction is defined as a prediction vector such that if all
agents use that prediction, the prediction will be true in expectation.

We found that by some extensive simulation [click]. Starting with an arbitrary
price prediction we simulate a slough of games to find prices achieved by those
price predictors, then start over with agents predicting *those* prices and keep
iterating until we reach a fixed point.

Finally, we added two price predictions based on economic theory, which |
won'’t describe here, but they’re described in the paper.

[click] And here are the resulting price vectors.

<number>

Example Payoff Matrix
(2 strategies)

s 4
e Y

Average Payoff
=
o
Y
y

0 1 2 3 4 5
Number of Agents Playing PP (7°%)

Now that we have some candidate strategies, how do they do? How any one
agent performs depends on the strategies of the other agents, which means we
need to create a payoff matrix. Here’s a representation of a payoff matrix for a
particular environment (5 agents, 5 slots, preferences drawn from a particular
distribution) where the possible strategies available to any agent are just
straightforward bidding vs price prediction with self confirming prices. It turns
out that price prediction blows SB away in this case. In general, we want to find
Nash Equilibria and we can find the only equilibrium (in fact, a dominant
strategy) here by inspection. Notice that [click] if everyone is SB then you have
an incentive to deviate to predicting. [click] and that holds for all profiles,
leaving all predictors as the only profile no one would want to deviate from, and
hence the only Nash Equilibrium.

<number>

Payoff Matrix for 5-Strategy Game

8,

Expected Payoff
w 1N Ul (o)) ~

N

Strategy Profiles

Of course, it’s not always that easy. Here’s a representation of the game where
all 5 predictors are available strategies.

| won't try to parse this for you here, but in cases like this we need to employ
various game solving tools to find equilibria.

It turns out that, unlike the last example, there’s *no* profile of strategies here
such that no one wants to deviate, which means the only Nash Equilibrium is in
mixed strategies, meaning that your best strategy is to randomize between 2 or
more other strategies. I'll say what those strategies are shortly...

<number>

Participation-Only Prediction

Predictors always beat straightforward bidders
Why does prediction help?

Decompose behavior of predictor

— Finding the best bundle

— Deciding whether to bid on it

Modified (PO) Predictor:

— Pick best bundle as per SB

— Only bid on it if positive surplus at predicted prices

<number>

So, | hate to spoil the punchline, but price prediction blows away straightforward
bidding in all cases; so we wanted to test the other part of our hypothesis about
why price prediction is so helpful.

We did that by decomposing the behavior of the price predictor into 2 decisions
— finding the best bundle, and deciding whether to bid on it (which is really one
decision since the empty bundle is one of the possible bundles). But as a way
to find out what’s going on with price prediction, we tested a modified version
that ignores its predictions in deciding the best bundle but then holds back on
bidding on that bundle if it predicts the prices will be too high. We call this a
participation-only predictor.

<number>

Equilibria and Efficiency Results

» 98% of performance improvement is due to
correct choice of participation or not

« SC and EDCE are supported in an equilibrium of
5-predictor game

 Prediction greatly improves agent (buyer)
performance with a small efficiency loss (ie,
hurts the seller)

— Buyer surplus three times greater for equilibrium price
predictors than all SB agents

— Market efficiency (aggregate utility as fraction of
optimal allocation) drops from 87% to 86%

<number>

The basic conclusion of that is that nearly all the benefit of prediction is not in
choosing better bundles but just refraining from bidding on whatever bundle you
pick, if you can predict that it will get too expensive. In other words, avoiding
the exposure problem.

As to what predictions work best: in the game where all 5 predictors (including
the degenerate predictor SB) are available as strategies (that’s this game [back
2]) we found a Nash equilibrium that consisted of everyone randomizing with
close to equal probabilities between the self-confirming prices and one of the
econ theory predictions.

More generally, our results show that prediction is a huge win for agents (about
3 times greater surplus) and this comes at a cost of a slightly less efficient
market.

(for the non-economists, we find market efficiency by solving the centralized
version of the scheduling problem — ie, find the optimal allocation of slots to
agents knowing everyone’s preferences — and compare the aggregate utility in
that case with the aggregate utility achieved by the market)

The reason that the agents can all do better yet aggregate utility goes down is
that the seller is the one to suffer because of the smarter buyers. The buyers
avoid spurious purchases at great savings to themselves but at high cost to the
seller. The net result is slightly less efficient allocations.

<number>

Conclusion: Price Prediction Helps
in SAA

« Price prediction can significantly improve
performance by reducing the exposure risk

« Performance depends on the quality of
prediction and on how it is used

« Computational game theoretic approach to
assessing strategies

« Results specific to particular scheduling domain

« But this is the best known strategic approach to
bidding in any Simultaneous Ascending
Auctions

« We expect price distribution predictors to
perform much better...

<number>

To conclude, we've shown that price prediction greatly helps performance for
bidding in simultaneous ascending auctions with complementarities and the
reason it helps is by avoiding the exposure problem.

By comparing different predictors and ways of using prediction (for example,
whether or not to use participation-only prediction) we found that performance
depends on prediction quality and how it's used.

We've described our computational game theoretic approach of simulating
games to derive empirical payoff matrices for strategy subsets and then finding
Nash equilibria given the resulting payoff matrices.

As I've said, the results here are specific to a particular scheduling game but we
expect the conclusions to apply generally to other Simultaneous Auction
mechansims.

Finally, we noted that performance depends on how a prediction is used. One
way we’d expect to improve performance is to predict price *distributions™ rather
than single point predictions.

And in fact, that is being born out in our current work on this problem...

<number>

Prices

Convergence to Self-Confirming
Price Predictions

BooR
N

=
(@]

5 10 15 20 25 30
Iterations

Equilibria and Efficiency Results
Table

» Click to add an outline

Games (i,c‘, strategy sets) Equilibrivm Profiles % Eff. Payoff Average Final Price Vectors
{SB, PP(rT)} all PP(2T) 86 415 112 68 38 20 077
{SB, PP(rEL) w/ PO} all PP;:BL)“ PO. 85 407 118 69 37 17 058
{SB, PP(™")} all PP(n*°) 88 305 130 87 54 30 117
{SB, PP(rL), PP(n*C), PP(rECE), PP(rEPCE)} 0.45 SC, 0.55 EDCE 86 425 106 65 40 22 091
Additional Profiles
alSB 87 135 148 107 76 46 190
all PP(nECE) 74 580 47 21 17 12 055

all PP(rEDCE) 83 5.24 81 45 27 16 070

Walverine

a TAC-02 Agent from the
University of Michigan

university michigan

artificial Trading
intelligence I A‘ Agent
laboratory Competition

Architecture

OPT

Flight & Hotel Buyer

Entertainment Dealer B

Proxy

<number>

Flight & Hotel Loop

« Initial
— Get flight prices
— Initial predict
— Client-by-client best-trip optimization
— Buy flights
« Starting at 3:00, each minute:
— Get quotes, transactions
— Price prediction
— Optimal package, buy flights if nec.
— Get marginal values
— Construct hotel bids

<number>

Price Prediction

Given 1nitial flight prices, calculate

hotel prices.

Premises:
— Trip choices driven in large part by relative flight
prices.

— Aggregate behavior reasonably approximated by
competitive model.

<number>

Calculating Competitive Eq.

« lterative price adjustment (tatonnement):
Pu1 < Py + Gt[X(pt) - 16]
where x(p,) is aggregate demand at hypothetical
prices

« Demand estimation
— For our own clients (8), calculate hotel rooms demanded for
best package at hypothetical prices
— For other agents’ clients (56), employ analytic expression for
expected demand based on client preference distribution
« Mid-game:
— Employ quote/closing as price floors

— Fix own demand at holdings for closed hotels <number>

Hedging

« Equilibrium method yields point estimate,
decisions highly sensitive.

« “Outlier probability”
— Represents likelihood that prediction is wrong for a

given hotel.

— Qutlier prediction defined as max(2p,400).
— Walverine uses 0.06 per open hotel.

« Results in hedged package choices, hotel
valuations.

<number>

Optimizer

« Integer linear program representing optimal

package allocation

« Inputs: prices (actual, predicted), holdings
— Reported separately by hotel, entertainment modules

« Outputs:

— Optimal package
— Marginal values (each unit)
— Hedged marginal values

OPT

" Flight & Hotel

Entertainment

<number>

Hotel Bidding

« Compute hedged MV given predicted prices

« Compute optimal shading
— Separately for each unit

— Based on analytic model of other clients’ MV
distribution (similar to demand calc. approach)
— Maximize bid value, accounting for:
« Prob of winning unit & setting price
 Prob of winning & not setting
» Expected price if no bid
« Number of other units affected

« Adjust optimal shades for BTQ rule

conditional on ASK

<number>

Entertainment Dealing

Derived a trading policy via Q-learning.

Action is bid

— to buy/sell unit in given entertainment auction

— represented as offset from marginal value

State space:

— Game time, MV, holdings, Bid/Ask, day

— Coarse distinctions, still 12852 states

Rewards: Entertainment cash flow + fun bonus

<number>

Learning to Trade

« Two giant Q-tables shared by all auctions
(one each for days 1/4, 2/3)

 Played various policies, gathering
transition and reward data
— livingagents, “Exploit”, “Explore”
— Games on SICS/own servers, variously

populated

— 14839 total games (x 12 auctions)

<number>

Summary: Walverine

« Price prediction based on competitive eq.
« Model-based optimal bidding.
» Q-Learned entertainment trading policy.

Flight & Hotel Buyer Entertainment Dealer

|
Data Free! Model Free!

<number>

Online Auction Environments

Auctions are efficient mechanisms for allocating
resources

Online auction space growing

— Consumer — ebay, amazon

— B2B

— Electronic Trading Network (finance)

Agents aid in the automation of trade in such
auctions

<number>

Flights

« Agents are buyers
« One flight per day each way

 Prices determined by stochastic process
— Random walk with upward drift

= In expectation, flight prices increase
over time, but different auctions
increase at different rates

<number>

Hotels

Two hotels (Towers, Shanties)

Each with fixed number (16) of rooms
available per day.

Sold in simultaneous ascending 16™ price
auctions.

To avoid sniping: One hotel closes
randomly every minute

<number>

Entertainment Tickets

- Fixed pool of tickets for Museum,
Amusement Park, Alligator Wrestling, by
date, divided among agents.

- Clients have different preferences for
event type.

- Agents trade among themselves through
Continuous Double Auctions (e.g., stock
market)

<number>

Agent Objectives

Maximize total “profit”:
[sum over clients: trip utility] minus expenditures

Client preferences: arrive/depart days, hotel
premium, entertainment prefs

Feasible trip: round trip airline, hotel room for
interval

Trip utility:
— zero if infeasible
— if feasible... (next)

<number>

Feasible Trip Utility

Trip utility =

1000 - travel penalty + hotel bonus + fun bonus
travel penalty = 100 per day deviation
hotel bonus = {1 if Towers} x premium

fun bonus =
Sum over types: {1 if ticket} x value

<number>

HotelAgent behavior

 First 30 seconds:
— Generate hotel price predictions
— Calculate optimal package, hedging for price volatility
— Purchase flights in optimal package
- Before each hotel closing
— Update price predictions
— Calculate hedged marginal values of hotels
— Calculate/submit an optimal bid for each hotel

<number>

Price Prediction

« Given
— Distribution over client preferences
— Assumptions about other agents’ bidding
— Known initial flight prices

« Compute Walrasian equilibrium prices for
hotels

— Prices for which supply meets expected
demand

<number>

Hedging

« Equilibrium method yields point estimate,
decisions highly sensitive.
« “Outlier probability”

— Represents likelihood that prediction is wrong
for a given hotel.

« Calculate hedged package choices, hotel
valuations.

<number>

Hotel Bidding

« Compute hedged MV given predicted
prices

« Compute optimal bids
— Separately for each unit

— Based on analytic model of other clients’ MV
distribution (similar to demand calc. approach)

— Maximize bid value, accounting for:
« Probability of winning
« Expected impact on closing price

<number>

Walverine's Entertainment
bidding:
* Entertainment accounts for ~40% of Walverine’s total score.
* Our approach: Completely model-free.
* Policy derived through Q-learning algorithm.
* Reward: sum of cash-flow plus fun bonus.

* State space defined in terms of six dimensions: time, bid/ask
quotes, ticket holdings, and marginal values to buy/sell.

* Actions: bid in terms of offsets from marginal value. <number>

Decision Tree for Flight Buying

E[A’] < T1?

Y N
DELAY E[A] > T2?
Y N
BUY Reducible trip AND
#clients > T3?
Y N

First ticket AND BUY
surplus > T4?
Y N

BUY DELAY

<numper>

Figure 6.2: Decision tree for deciding whether to delay flight purchases.

<number>

How to Bid in Ebay

 Single good with independent private
values: Bid your max!

« Multiple goods

— Need to know the number of bidders and type
distribution (a probability distribution over
possible valuation functions for bundles of
goods)

— Compute self-confirming distribution
prediction

<number>

Game Theory Primer

(Private) action

Information

Strategy

(Private) Strat
. rate; .
Information & action

(Private) Strate
Information & Jaction

(Multi-stage)

Actions, infinite game, payoff function, types, incomplete information, Nature,

one-shot vs multi-stage game, strategy,

Payoff
Function

<number>

<number>

Randomness from Nature

