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Abstract

We describe an algorithm for computing best-
response strategies in a class of two-player in-
finite games of incomplete information, defined
by payoffs piecewise linear in agents’ types and
actions, conditional on linear comparisons of
agents’ actions. We show that this class includes
many well-known games including a variety of
auctions and a novel allocation game. In some
cases, the best-response algorithm can be iterated
to compute Bayes-Nash equilibria. We demon-
strate the efficacy of our approach on existing and
new games.

1 Introduction

Game theory was founded by von Neumann and Morgen-
stern (1947) to study situations in which multiple agents
(players) interact in order to each maximize an objective
(payoff) function determined not only by their own actions
but also the actions of other players. In a game of incom-
plete information, the payoffs also depend on information
that is private to the individual agents. This information is
known as an agent’stype. We consider one-shot games—
games in which an agent chooses a single action based only
on knowledge of its own type, the payoff function, and
the distribution from which types are drawn. We assume
that the available actions, payoff function, and type distri-
butions are common knowledge.1 A strategy in this context
is a mapping from the set of types to the set of actions. The
case where these sets are finite (and especially when there
are no types—complete information) has been well stud-
ied in the computational game theory literature. In Sec-
tions 2 and 6 we discuss existing algorithms and software

∗ The latest version of this paper, along with a Math-
ematica implementation of our algorithm, is available at
http://ai.eecs.umich.edu/people/dreeves/equilibria.

1A fact is common knowledge (Fagin et al., 1995) if everyone
knows it, everyone knows that everyone knows it, ad infinitum.

tools for solving finite games. But for incomplete infor-
mation games with a continuum of actions available to the
agents—known as infinite games—we know of no avail-
able algorithms, though many particular infinite games of
incomplete information have been solved in the literature.

We have so far left unsaid what we mean by solving a
game. For the case of a single agent, a solution is a pol-
icy that maximizes the agent’s expected utility (payoff). In
the case of multiple agents, Nash (1951) proposed a so-
lution concept now known as theNash equilibrium, and
proved that for finite games (as long as agents can play
mixed strategies—i.e., randomize among actions) such an
equilibrium always exists. A Nash equilibrium is a profile
of strategies such that each strategy is a best response to the
rest of the profile. That is, each agent maximizes its own
utility given the strategies played by the others.2

This definition of Nash equilibrium invites an obvious algo-
rithm for finding one: start with a profile of seed strategies
and iteratively compute best-response profiles until a fixed-
point is reached. This process (when it converges) yields
a profile which is a best response to itself and thus a Nash
equilibrium.

The notion of Nash equilibrium needs to be generalized
slightly for the case of incomplete information games. An-
other seminal game theorist, Harsanyi (1967), introduced
the concept of agent types and used it to define aBayesian
game. A Bayesian game is specified by a set of typesT, a
set of strategiesS, a probability distributionF over types,
and a payoff functionP. Harsanyi defines aBayes-Nash
equilibrium(sometimes known as a Bayesian equilibrium)
as the simple Nash equilibrium of the non-Bayesian game
with set of strategies being the set of functions fromT to
S, and the payoff function being the expectation ofP with
respect toF .

2The limitations of Nash equilibrium as a solution concept
have been well studied in the literature, particularly the prob-
lem of what agents will do in the face of multiple equilibria (van
Damme, 1983) yet finding Nash equilibria remains fundamental
to the analysis of games.



2 Finite Game Approximations

GAMBIT (McKelvey et al., 1992) is a software package
incorporating several algorithms for solving finite games
(McKelvey and McLennan, 1996). The original 1992
implementation ofGAMBIT was limited to normal form
games.3 GALA (Koller and Pfeffer, 1997) introduced
constructs for schematic specification of extensive-form
games, with a solver exploiting recent algorithmic ad-
vances (Koller et al., 1996). GAMBIT subsequently incor-
porated theseGALA features, and currently stands as the
standard in general finite game solvers.

We employ a standard first-price sealed-bid auction (FPSB)
to compare our approach for the full infinite game to a dis-
cretized version amenable to finite game solvers. Consider
a discretization of (FPSB) with two players, nine types, and
nine actions. Both players have a randomly (uniform) de-
termined valuation (t) from the set{0, . . . ,8} and the avail-
able actions (a) are to bid an integer in the set{0, . . . ,8}.
Let [p,a;a′] denote the mixed strategy of performing action
a with probability p, anda′ with probability 1− p. (There
happened never to be mixed strategies with more than two
actions.)GAMBIT solves this game exactly, finding the fol-
lowing Bayes-Nash equilibrium:4

t : 0 1 2 3 4 5 6 7 8
a(t) : 0 0 1 1 2 [.455,2;3] 3 3 [.727,3;4]

This result is indeed close to the unique Bayes-Nash equi-
librium, a(t) = t/2, of the corresponding infinite game (see
Section 5.1). However, it varies asymmetrically, which im-
plies that the discretized version represents a qualitatively
different game.

We observe a similar asymmetric divergence in another dis-
crete approximation. Consider the FPSB over a continu-
ous type range, distributed uniformly, but with actions re-
stricted to the forma(t) = wt, with w a choice parameter.
(This is a very conservative comparison case in that it elim-
inates all but a class of strategies that includes the known

3Normal form, also known as strategic form, lists explicit pay-
offs for every combination (profile) of agent strategies. In con-
trast,extensive formis a more compact representation for games
of imperfect information in which payoffs are given for sequences
of actions but only implicitly for combinations of agent strategies
(mappings from private information to actions).

4The calculation took 90 minutes of cpu time and 17MB of
memory on a machine with four 450MHz Pentium 2 processors
and 2.5GB RAM, running Linux kernel 2.4.18. When 2 addi-
tional types and actions are added to the discretization, a similar
equilibrium results, requiring 23 hours of cpu time and 34MB of
memory. GAMBIT ’s algorithm (Koller et al., 1996) is worst-case
exponential in the size of the game tree which is itself sizeO(n4)
in the size of the type/action spaces. Based on this complexity and
our timing results, we conclude that we have reached the limit of
whatGAMBIT ’s algorithm can compute.

equilibrium.) For the continuous action rangew ∈ [0,1],
w = 1/2 constitutes a unique equilibrium. Whenw is lim-
ited to discrete values on a grid, however, additional equi-
libria emerge. For example, when only increments of 0.05
are allowed, bothw = 0.45 andw = 0.50 represent sym-
metric equilibrium policies.

The point of these examples is that whereas solving finite
approximations to an infinite game can be instructive, it can
also produce misleading results. In Section 5.1 we show
how our method immediately finds the solution to the full
infinite FPSB game.

3 Infinite Games and Bayes-Nash Equilibria

We consider a class of two-player games, defined by a
payoff structure that is analytically restrictive, yet captures
many well-known games of interest. Lett denote the sub-
ject agent’s type anda its action, andt ′ and a′ the type
and action of the other agent. We assume that types are
scalars drawn from piecewise-uniform probability distribu-
tions, and payoff functions take the following form:

u(t,a, t ′,a′) =


θ1t + ρ1a+ θ′1t ′+ ρ′1a′+ φ1 if −∞ < a+ αa′ < β2

θ2t + ρ2a+ θ′2t
′+ ρ′2a′+ φ2 if β2 ≤ a+ αa′ ≤ β3

· · ·
θI t + ρI a+ θ′I t ′+ ρ′Ia′+ φI if βI ≤ a+ αa′ ≤+∞

(1)

Our class comprises games with payoffs that are linear5

functions from own type and action, conditional on a lin-
ear comparison between own and other agent action. The
form is parametrized byα, βi, θi , ρi, θ′i , ρ′i, andφi , where
i ∈ {1, . . . , I} indexes the comparison case. (We define
β1 ≡−∞ andβI+1 ≡+∞ for notational convenience in our
algorithm description below.) Theβi ,βi+1 regions alternate
between open and closed intervals as this is without loss
of generality for arbitrary specification of boundary types
(‘<’ vs. ‘≤’) on the regions6 and in particular allows the
implementation of common tie-breaking rules for sealed-
bid auctions.

This parameterized payoff function captures many known
mechanisms. Table 1 shows the parameter settings for sev-
eral such games.

Given a game description in this form, we search for Bayes-
Nash equilibria through a straightforward iterative process.
Starting with a seed strategy profile (typically based on a
myopic or naive strategy such as truthful bidding), we re-
peatedly compute best-response profiles until reaching a

5Functions with constant terms are technicallyaffine rather
than linear but we ignore that distinction from here on.

6For example, to specifyu1 in (−∞,a], u2 in (a,b], u3 in (b,c),
u4 at c, andu5 in (c,∞), translate to the alternating open/closed
specification:u1 in (−∞,a− ε), u1 in [a− ε,a], u2 in (a,b), u2 in
[b,b], u3 in (b,c), u4 in [c,c], u5 in (c,∞).



Game ~θ ~ρ ~θ′ ~ρ′ ~φ ~β α
FPSB Auction 0,1/2,1 0,−1/2,−1 0,0,0 0,0,0 0 0,0 −1
Vickrey Auction (2nd Price) 0,1/2,1 0,0,0 0,0,0 0,−1/2,−1 0 0,0 −1
Vicious Vickrey Auction 0, 1−k

2 ,1−k k,k/2,0 −k,−k/2,0 0, k−1
2 ,k−1 0 0,0 −1

Supply Chain Game −1,−1,0 1,1,0 0,0,0 0,0,0 0 v,v 1
Bargaining Game -Seller −1,−1,0 1−k,1−k,0 0,0,0 k,k,0 0 0,0 −1

-Buyer 0,1,1 0,−k,−k 0,0,0 0,1−k,1−k 0 0,0 −1
All-Pay Auction 0,1/2,1 −1,−1,−1 0,0,0 0,0,0 0 0,0 −1
Voluntary Participation Game 0,1 0,−1/2 0,0 0,1/2 0,−C/2 C 1
Shared-Good Auction 0,1/2,1 0,−1/4,−1/2 0,0,0 1/2,1/4,0 0 0,0 −1

Table 1: Various mechanisms as special cases of the parameterized payoff function in Equation 1. Note that the bargaining
game, being asymmetric, is described by two payoff functions. These games are discussed in Section 5.

fixed-point or cycle. A strategy profile that is a best re-
sponse to itself is, by definition, a Bayes-Nash equilibrium.
We show that this process is effective at finding equilibria
for certain games in our class. For all games in our class,
the best-response algorithm can be used to verify candidate
equilibria orε-equilibria found by alternate means.

Our method considers only pure strategies. Although
mixed strategies are generally required for infinite as well
as finite games, there are broad classes of infinite games for
which pure-strategy equilibria are known to exist. For ex-
ample, Debreu (1952) shows that equilibria in pure strate-
gies exist for infinite games of complete information with
action spaces that are compact, convex subsets of a Eu-
clidean spaceRn, and payoffs that are continuous and qua-
siconcave in the actions. Athey (2001) proves the existence
of pure-strategy Nash equilibria for games of incomplete
information satisfying a property called the single-crossing
condition (SCC). These results encompass many famil-
iar games of economic relevance, including auction games
such as FPSB. Our class includes games violating SCC, for
which search in the space of pure strategies may not be suf-
ficient. Nevertheless, an ability to compute best responses
for the broadest possible games is useful in itself.

The best-response algorithm takes as input a piecewise lin-
ear strategy withK pieces (K−1 piece boundaries),

s(t) =




m1t +b1 if −∞ < t ≤ c2

m2t +b2 if c2 < t ≤ c3

. . .
mK−1t +bK−1 if cK−1 < t ≤ cK

mKt +bK if cK < t ≤+∞,

(2)

represented by the vectors~c, ~m, and~b. The piecewise-
linear strategy class is sufficiently flexible to approximate
any strategy, although of course the complexity of the strat-
egy or quality of the approximation suffers as nonlinearity
increases.

A two-player game issymmetricif both players face the
same payoff function. For symmetric games we start with
a single seed strategy, to be repeatedly replaced with the

strategy that responds best to it.7 Most of the examples
presented in this paper are symmetric and have symmet-
ric pure equilibria. For asymmetric games, we start with a
pair of seed strategies, on every iteration computing a best
response to each to get the new pair.

4 Existence and Computation of Piecewise
Linear Best-Response Strategies

Here we present our algorithm to compute the best response
to a given strategy by way of a constructive proof that in our
class of games, best responses to piecewise linear strategies
are themselves piecewise linear. Intuitively, the proof pro-
ceeds by first deriving an algebraic expression for expected
utility against the given strategy in terms of the payoff pa-
rameters, the distribution parameters, the opponent strat-
egy parameters, own type, and own action. By appropri-
ate partitioning of the action space, the expected utility is
expressed as a piecewise polynomial in the agent’s action.
We then show that the action maximizing that expression
(the best response) is a piecewise linear expression of the
agent’s type. Finally, we establish a bound for the number
of pieces in the best-response strategy.

Theorem 1 Given a payoff function with I regions as in
Equation 1, an opponent type distribution with cdf F that
is piecewise uniform with J pieces and J−1 piece bound-
aries{d2, . . . ,dJ}, and a piecewise linear strategy function
with K pieces as in Equation 2, the best-response strat-
egy is itself a piecewise linear function with no more than
2(I −1)(J+K−2) piece boundaries.

7It can be shown that symmetric games must have symmet-
ric equilibria, although there are some symmetric games with
only asymmetricpure equilibria (Cheng et al., 2004). Iterating
from a single strategy (equivalently, a symmetric profile) does not
limit the search to symmetric equilibria since a cycle of length
two (given our restriction to two-player games, but regardless of
whether the game is symmetric) constitutes an asymmetric equi-
librium.



Proof. Finding the best response strategy means maximiz-
ing expected utility over the other agent’s type distribution.
Let T be the random variable denoting the other agent’s
type.

First, redefines(t) to include additional redundant bound-
ary points{d2, . . . ,dJ} so there are nowJ+K−2 boundary
points ofs(t), {c2, . . . ,cJ+K−1}, and

s(t) =




m1t +b1 if −∞ < t ≤ c2

. . .
mJ+K−1t +bJ+K−1 if cJ+K−1 < t ≤+∞.

We now express the expected utility, factored over the
pieces ofs() andu(), as

EU(t,a) = ET [u(t,a,T,s(T))] =
I

∑
i=1

J+K−1

∑
j=1

E[(θit + ρia+ θ′iT + ρ′i(mjT +bj)+ φi |

cj < T ≤ cj+1, βi
..
< a+ α(mjT +bj)

..
< βi+1]

·Pr(cj < T ≤ cj+1, βi
..
< a+ α(mjT +bj)

..
< βi+1).

(We use the notation “xi
..
< y” to denotexi < y if i is odd and

xi ≤ y if i is even.)

If αmj = 0 then the summand reduces to




(θit + ρia+(θ′i + ρ′imj)
cj +cj+1

2
+ ρ′ibj + φi)

·(F(cj+1)−F(cj)) if βi −αbj
..
< a

..
< βi+1−αbj

0 otherwise.

(The derivation of the cdfF() of a piecewise uniform dis-
tribution is in Appendix A.)

For the case ofαmj 6= 0, first definexi j (a) ≡ (βi −αbj −
a)/(αmj) andyi j (a)≡ (βi+1−αbj −a)/(αmj) with x and
y swapped ifαmj < 0. We also introducemm(a,b,x) ≡
min(b,max(a,x)).

We consider first the probability term in the summand,
rewriting it as

pi j (a)≡Pr
(

βi
..
< a+ α · (mjT +bj)

..
< βi+1 & cj < T ≤ cj+1

)
=Pr

(
xi j (a)

..
< T

..
< yi j (a) & cj < T ≤ cj+1

)
=F(mm(cj ,cj+1,yi j (a)))−F(mm(cj ,cj+1,xi j (a))).

For the expectation term in the summand, we first define

xyi j (a)≡E[T |mm(cj ,cj+1,xi j (a))
..
< T

..
< mm(cj ,cj+1,yi j (a))]

=
mm(cj ,cj+1,xi j (a))+mm(cj ,cj+1,yi j (a))

2
.

We can now express the expected utility,EU(t,a), as

I

∑
i=1

J+K−1

∑
j=1

(θi t +ρia+(θ′i +ρ′imj)xyi j (a)+ρ′ibj +φi)·pi j (a).

(3)

This expression is a piecewise second degree polynomial
in a and simply linear int. Treating it as a function of
a, parameterized byt, we can find the boundaries for the
polynomial pieces (which will be expressions oft). This
is done by setting the arguments of the maxes and mins
equal and solving fora, yielding the following four action
boundaries for each region{βi,βi+1} in u() and each region
{cj ,cj+1} in s():

cj+1 = yi j (a) ⇒ a = βi+1−α · (mjcj+1 +bj)
cj = yi j (a) ⇒ a = βi+1−α · (mjcj +bj)

cj+1 = xi j (a) ⇒ a = βi −α · (mjcj+1 +bj)
cj = xi j (a) ⇒ a = βi −α · (mjcj +bj)

This yields a total of at most 2(I − 1)(J + K − 2) unique
action boundaries. So expected utility is now expressible
as a piecewise polynomial ina (parameterized byt) with at
most 2(I −1)(J+K−2)+1 pieces.

For arbitraryt, we can find the actiona that maximizes
EU(t,a) by evaluating at each of the boundaries above and
wherever the derivative (of each piece) with respect toa
is zero. This yields up to 2(I − 1)(J + K − 2) + 1 criti-
cal points, all simple linear functions oft. Call this set of
candidate actionsC and the corresponding set of expected
utilities EU(t,C). The best-response function can then be
expressed, for givent, as argmaxC(EU(t,C)). This is a
“piecewise max” of the linear functions inC, and so it is
piecewise linear.

It remains to establish an upper bound on the resulting
number of distinct ranges fort. We claim the size ofC,
2(I − 1)(J + K − 2) + 1, is such an upper bound. To see
this, first note that the piecewise max of a set of linear func-
tions must be convex (since, inductively, the max of a line
and convex function is convex). It is now sufficient to show
that at most one newt range can be added by taking the
max of a linear function oft and a piecewise linear convex
function oft. Suppose the opposite, that the addition of one
line adds two pieces. They cannot be contiguous else they
would be one piece. So there must be a piece of the con-
vex function between the two pieces of the line. This means
the convex function goes below, then above, then below the
line and this violates convexity. Therefore, each line inC
adds at most one piece to the piecewise max ofC and there-
fore the piecewise linear best response tos() has at most
2(I −1)(J+K−2)+1 pieces and thus 2(I−1)(J+K−2)
type boundaries.2

Our algorithm for finding a best response follows this con-
structive proof. FindingC takes timeO(IJK). To actu-
ally find the piecewise linear function, argmaxC(EU(t,C)),



we employ a brute force approach that requiresO((IJK)2)
time. First, we find all possible piece boundaries by taking
all pairs in C, setting them equal, and solving fort. For each
t range we then compute argmaxC(EU(t,C)) and merge
whenever contiguous ranges have the same argmax. As the
proof shows, this will yield at most 2(I−1)(J+K−2) type
boundaries. Thus, we have shown how to find the piece-
wise linear best response to a piecewise linear strategy in
polynomial time. The resulting function is converted to the
same strategy representation (~c, ~m, ~b) that the algorithm
takes as a seed for the opponent strategy.

5 Examples

Here we consider existing and new games and show that
our method for finding best responses can confirm or re-
discover known results as well as find previously unknown
equilibria.

There are many games not analyzed here to which our ap-
proach is amenable, such as the All-Pay auction (both win-
ner and loser pay their bids; encoded in Table 1), incom-
plete information versions of Cournot or Bertrand games,
the War of Attrition (both winner and loser pay the second
highest price), and voluntary participation games (agents
choose an amount to contribute for a joint good and receive
utility based on the sum of both contributions; encoded in
Table 1). Our approach is not needed for incentive com-
patible mechanisms such as the Vickrey auction, but, re-
assuringly, our algorithm returns the dominant strategy of
truthful bidding as a best response to any other strategy in
that domain.

5.1 First-Price Sealed-Bid Auction

We consider the first-price sealed-bid auction (FPSB) with
types that are drawn fromU [0,1] and the following payoff
function:

u(t,a,a′) =




t−a if a > a′
(t−a)/2 if a = a′
0 otherwise.

In words, two agents have private valuations for a good and
they submit sealed bids expressing their willingness to pay.
The agent with the higher bid wins the good and pays its
bid, thus receiving a surplus of its valuation minus its bid.
The losing agent gets zero payoff. In the case of a tie, a
winner is chosen randomly, so the expected utility is the
average of the winning and losing utility.

This game can be given to our solver by setting the pay-
off parameters as in Table 1. The algorithm also needs
a seed strategy, for which we can use the default strat-
egy of truthful bidding (always bidding one’s true valua-
tion: a(t) = t for t ∈ [0,1]). This strategy is encoded as
~t = 〈0,1〉, ~m = 〈0,1,0〉, and~b = 〈0,0,0〉 (see Section 3).

Figure 1: Supply Chain game with two producers in series.

Note that the first and last elements of~m and~b are irrele-
vant as they correspond to type ranges that occur with zero
probability. After a single iteration (a fraction of a second
of cpu time), our solver returns the strategya(t) = t/2 for
t ∈ [0,1] which is the known Bayes-Nash equilibrium for
this game (McAfee and McMillan, 1987, p709). We find
that in fact we reach this fixed point in one or two iterations
from a variety of seed strategies—specifically, strategies
a(t) = mt for m> 0. We approach the fixed point asymp-
totically (within 0.001 in ten iterations) for seed strategies
a(t) = mt+b with b > 0.

5.2 Supply-Chain Game

This example derives from our previous work in mecha-
nisms for supply chain formation (Walsh et al., 2000). Con-
sider a supply chain with two producers in series, and one
consumer (see Figure 1). Producer 1 has outputg1 and
no input. Producer 2 has inputg1 and outputg2. The
consumer—which is not an agent in this model—wants
good g2. The producer costs,t1 and t2, are chosen ran-
domly fromU [0,1]. A producer knows its own cost with
certainty, but not the other producer’s cost—only the dis-
tribution (which is common knowledge). The consumer’s
value,v≥ 1, for goodg2 is also common knowledge.

The producers place bidsa1 anda2. If a1+a2 ≤ v, then all
agents win their bids in the auction and the surplus of pro-
duceri is ai − ti. Otherwise, all agents receive zero surplus.
In other words, the two producers each ask for a portion of
the available surplus,v, and get what they ask minus their
costs if the sum of their bids is less thanv.

Walsh et al. (2000) propose a strategy for supply-chain
games defined on general graphs. In the more general set-
ting, it is the best known strategy (for lack of any other
proposed strategies in the literature). For the particular in-
stance of Figure 1, the strategy works out to:

a(t) =
{

t/2+(v/2−1/4) if 0 ≤ t < v−1
3t/4+v/4 otherwise.

Our best-response finder proves that this strategy is not
a Nash equilibrium and shows how to optimally exploit
agents who are playing it.

Figure 2 shows this strategy for the game withv = (10−√
5)/5 ≈ 1.55 (chosen so that there is a 0.9 probability

of positive available surplus) along with the best response,
as determined by our algorithm and confirmed by Monte
Carlo simulation.
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Figure 2: Hand-coded strategy for the Supply Chain game
of Section 5.2, along with best response and empirical ver-
ification of best response (the error bars for the empirically
estimated strategy are explained in Appendix E).

When we perform further best-response iterations it even-
tually falls into a cycle of period two consisting of the fol-
lowing strategies (wherex = 3/4):

a1(t1) =
{

x if t1 ≤ x
v otherwise

(4)

a2(t2) =
{

v−x if t2 ≤ v−x
v otherwise.

(5)

The following theorem confirms that we have found an
equilibrium, and follows an analogous result (Nash, 1953)
for the similar (complete information)Nash demand game.

Theorem 2 Equations 4 and 5 constitute an asymmetric
Bayes-Nash equilibrium for the supply-chain game, for any
x∈ [0,v].

Proof. Assume producer 2 bids according to Equation 5.
Since producer 1 cannot improve its chance of winning
with a bid belowx, and can never win with a bid above
x, producer 1 effectively has the choice of winning with a
bid of x or getting nothing. Producer 1 would choose to win
atx precisely whent1 ≤ x. Hence, (4) is a best response by
producer 1. By a similar argument, (5) is a best response
by producer 2, if producer 1 follows Equation 4.2

Following is a more interesting equilibrium, which our
solver didnot find but we were able to derive manually
and our best-response finder confirms.

Theorem 3 When v∈ [3/2,3], the following strategy is a
symmetric Bayes-Nash equilibrium for the Supply Chain
game:

a(t) =
{

2/3v−1/2 if t ≤ 2/3v−1
t/2+v/3 otherwise.

Appendix B contains the proof which is essentially an ap-
plication of our best-response algorithm to the particular
game and strategy above. When this strategy is used as the
seed strategy for our solver with any particularv, the same
strategy is output, thus confirming that it is a Bayes-Nash
equilibrium.

5.3 Bargaining Game

The supply chain game is similar to a two-player sealed-bid
double auction, or bargaining game. In this game there is
a buyer with valuev′ and a seller with costc′, each drawn
from distributions that are common knowledge. The buyer
and seller place bids and if the buyer’s is greater than the
seller’s, they exchange the good at a price that is some lin-
ear combination of the two bids. In the supply-chain exam-
ple, we can model the seller as producer 1, withc′ = t1. Be-
cause the consumer reports its true value, which is common
knowledge, we can model the buyer as the combination of
the consumer and producer 2, withv′ = v− t2. However, to
make the double auction game isomorphic to our supply-
chain example, we need to alter the game so that excess
surplus is thrown away instead of shared.

The bargaining game as defined above has been well stud-
ied in the literature (Chatterjee and Samuelson, 1983;
Leininger et al., 1989; Satterthwaite and Williams, 1989).
We consider the special case of the bargaining game where
the sale price is halfway between the buy and sell offers,
and the valuations areU [0,1]. The payoff function for this
game is encoded in Table 1.

The following is a known equilibrium (Chatterjee and
Samuelson, 1983) for a seller (1) and buyer (2):

a1(t1) = 2/3t1+1/4

a2(t2) = 2/3t2+1/12

Our solver finds this equilibrium after several iterations
(with tolerance 0.001) when seeded with truthful bidding.

5.4 Shared-Good Auction

Consider two agents who jointly own an inherently un-
sharable good and seek a mechanism to decide who should
buy the other out and at what price. (For example, two
roommates could use this mechanism to decide who gets
the better bedroom.8) Assume that it is common knowledge
that the agents’ valuations (types) are drawn fromU [A,B].
We propose the mechanism

u(t,a,a′) =
{

t−a/2 if a > a′
a′/2 otherwise

which we chose because it has the property that if players
bid their true valuations, the mechanism would allocate the

8Thanks to Kevin Lochner who both inspired the need for and
helped define this mechanism.
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Figure 3:a(t) = 2t/3 is a best response to truthful bidding
in the shared-good auction with[A,B] = [0,1]. This strat-
egy is in turn a best response to itself, thus confirming the
equilibrium.

good to the agent who valued it most and split the surplus
evenly between the two (each agent would get a payoff of
t/2 wheret is the larger of the two valuations). The fol-
lowing Bayes-Nash equilibrium also allocates the good to
the agent who values it most, but that agent gets up to twice
as much surplus as the other agent, depending on the mini-
mum valuationA.

Theorem 4 The following is a Bayes-Nash equilibrium for
the shared-good auction game when valuations are drawn
from U[A,B]:

a(t) =
2t +A

3
.

Appendix C contains the proof.

Our solver finds this equilibrium exactly (for any specific
[A,B]) in one iteration from truthful bidding. We confirm
the result via simulation as shown in Figure 3.

5.5 Vicious Vickrey Auction

Brandt and Weiß (2001) introduce the following auction
game:

u(t,a, t ′,a′)=




(1−k)(t−a′) if a > a′
((1−k)(t−a′)−k(t ′ −a))/2 if a = a′
−k(t ′ −a) otherwise.

It is a Vickrey auction generalized by the parameterk which
allows agents to be “antisocial” in the sense of getting disu-
tility from the other agent’s utility. (This might be the case
for businesses that are competitors.)

Brandt and Weiß derive an equilibrium only for a complete
information version of this game. Our game solver can ad-
dress the more general incomplete information setting.

Theorem 5 The following is a Bayes-Nash equilibrium
for the vicious Vickrey auction game when valuations are
drawn from U[0,1]:

a(t) =
k+ t
k+1

.

Appendix D contains the proof.

Our solver finds this equilibrium (for various specific val-
ues ofk) within several iterations from a variety of seed
strategies.

6 Related Work

The seminal works on game theory are von Neumann and
Morgenstern (1947) and Nash (1951). There are several
modern general texts (Aumann and Hart, 1992; Fuden-
berg and Tirole, 1991; Mas-Colell et al., 1995) that analyze
many of the games in Section 5. Algorithms for solving
finite games include the classic Lemke-Howson algorithm
(Lemke and Howson, Jr., 1964) for solving bimatrix games
(two-agent finite games of complete information). In addi-
tion to the algorithms discussed in connection with GAM -
BIT in Section 2, there has been recent work (La Mura,
2000; Kearns et al., 2001) in algorithms for computing
Nash equilibria in finite games by exploiting compact rep-
resentations of games. Govindan and Wilson (2003, 2002)
have recently found new algorithms for searching for equi-
libria in normal form and extensive form games that are
faster than any algorithm implemented in GAMBIT . Blum
et al. (2003) have extended and implemented these algo-
rithms in a package called GAMETRACER. Singh et al.
(2004) adapt graphical-game algorithms for the incomplete
information case, including a class of games with continu-
ous type ranges and discrete actions.

The approach of finding Nash equilibria by iterated best-
response, sometimes termedbest-reply dynamics, dates
back to Cournot (1838). A similar approach known asfic-
titious playwas introduced by Robinson (1951) and Brown
(1951) in the early days of modern game theory. Ficti-
tious play employs a best response, not to the single strat-
egy from the last iteration, but a composite strategy formed
by mixing the strategies encountered in previous iterations
according to their historical frequency. This method gener-
ally has better convergence properties than best-response,
but Shapley (1964) showed that fictitious play need not
converge in general. Milgrom and Roberts (1991) cast
both of these iterative methods as special cases of what
they termadaptive learningand show that in a class of
games of complete information, all adaptive learning meth-
ods converge to the unique Nash equilibrium. Fudenberg
and Levine (1998) provide a good general text on iterative
solution methods (i.e., learning) for finite games. Hon-
Snir et al. (1998) apply this approach to a particular auc-
tion game with complete information. Therelaxation algo-



rithm (Uryasev and Rubinstein, 1994), applicable to infinite
games, but only complete information games, is a general-
ization of best-response dynamics that has been shown to
converge for some classes of games.

The literature is rife with examples of analytically com-
puted equilibria for particular auction games. For example,
Milgrom and Weber (1982) derive equilibria for first- and
second-price auctions with affiliated signals. Gordy (1998)
finds closed-form equilibria in certain common-value auc-
tions given particular signal distributions.

7 Conclusion

We have presented a proof that best responses to piecewise
linear strategies in a class of infinite games of incomplete
information are piecewise linear. The proof is constructive
and contains a polynomial-time algorithm for finding such
best-responses. To our knowledge, this is the first algo-
rithm for finding best response strategies in a broad class
of infinite games of incomplete information.

For some games, this best-response algorithm can be it-
erated to find Bayes-Nash equilibria. It remains a goal
to characterize the class of games for which iterated best-
response converges. Our method confirms known equilib-
ria from the literature (e.g., auction games such as FPSB
and Vickrey), confirms an equilibrium we derive here (in
the Supply Chain game), and discovers new equilibria (in
the Shared Good auction and an incomplete information
Vicious Vickrey auction).
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A CDF of a Piecewise Uniform Distribution

Given a piecewise uniform distribution with pdf

f (x) =




0 if −∞ < x≤ d2

f2 if d2 < x≤ d3

. . .
fJ−1 if dJ−1 < x≤ dJ

0 if dJ < x≤+∞

it is straightforward to derive the cdf (definingf1 ≡ 0, fJ ≡
0, d1 ≡−∞, anddJ+1 ≡+∞):

F(x) =
{

fi · (x−di)+ ∑i−1
j=1 f j · (dj+1−dj)

if di < x≤ di+1.

The expectation (not needed for our best-response algo-
rithm) is ∑n−1

i=0 fi/2 · (d2
i+1−d2

i ).

B Proof of Theorem 3

We show that the following is a symmetric Bayes-Nash
equilibrium whenv ∈ [3/2,3] (which includes the game
with v = 1.55 analyzed in Section 5.2):

s(t) =
{

2/3v−1/2 if t ≤ 2/3v−1
t/2+v/3 otherwise

(6)

The expected utility (surplus) for agent typet bidding a



against agent typeT ∼U [0,1] playing (6) is:

EU(t,a) = ET [u(t,a,T,s(T)]
= (a− t)Pr(a+s(T)≤ v)
= (a− t)[Pr(T ≤ 2/3v−1)

·Pr(a+2/3v−1/2≤ v | T ≤ 2/3v−1)
+Pr(T > 2/3v−1)
·Pr(a+T/2+v/3≤ v | T > 2/3v−1)].

We consider three cases, conditioned on the range ofa.

Case 1: a≤ 2/3v−1/2.

The expected surplus is:

EU(t,a) =(a− t)[(2/3v−1)+ (2−2/3v)]
=a− t.

Since the expected surplus is monotonic ina, the optimal
bid is found at the upper boundary, namely,a= 2/3v−1/2,
giving usEU(t,a) = 2/3v−1/2− t.

Case 2: a∈ [2/3v−1/2, v/3+1/2].

The expected surplus is:

EU(t,a) =(a− t)[(2/3v−1)+(2/3v−2a+1)]
=(a− t)(4/3v−2a).

(7)

Equation 7 is maximized ata = t/2 + v/3. With v ∈
[3/2 ,3], we need consider whether this point occurs be-
low the lower boundary ofa. This gives us two cases. If
t > 2/3v− 1 then the maximum of (7) lies in the range
of bids we consider here, and the best response isa1 =
t1/2+ v/3, giving usEU(t,a) = (3t − 2v)2/18. If t >
2/3v− 1 then the maximum occurs at the lower bound-
ary, and the best response isa = 2/3v− 1/2, giving us
EU(t,a) = 2/3v−1/2− t.

Case 3: a> v/3+1/2.

The expected surplus is always zero in this range.

The expected surplus of Case 2 is always positive, and al-
ways at least as high as Case 1, hence it must specify the
best-response policy. But Case 2 gives us the bidding pol-
icy specified by (6) whenv≤ 3.

We have shown that (6) is a best response to itself for all
ranges ofv∈ [3/2,3], hence it is a symmetric Bayes-Nash
equilibrium.2

C Proof of Theorem 4

We show that the following is a Bayes-Nash equilibrium of
the auction game from Section 5.4:

a(t) =
2t +A

3
(8)

Given that the other agent employs the strategy in (8) for its
typeT ∼U [0,1], we show that (8) is a best response. The
expected utility (surplus) for an agent playing bida against
an agent bidding according to (8) is

EU(t,a) =E

[
u

(
t,a,

2T +A
3

)]
=(t−a/2)Pr(a > s(T))

+E

[
1/2 · 2T +A

3
| a < s(T)

]
Pr(a < s(T))

=(t−a/2)Pr(
3a−A

2
> T)

+E

[
2T +A

6

∣∣∣∣ 3a−A
2

< T

]
·Pr

(
3a−A

2
< T

)
.

(9)

We consider two cases, conditioned on the range ofa.

Case 1: a> (2B+A)/3.

The expected surplus is:

EU(t,a) = t−a/2

which implies an optimal action at the left boundary,a∗1 =
(2B+A)/3.

Case 2: a< (2B+A)/3.

In this case, both the probabilities in (9) are nonzero and
the expected surplus is:

EU(a) =(t−a/2)
3a−A

2 −A

B−A

+1/6

(
2 ·

3a−A
2 +B

2
+A

)
· B− 3a−A

2

B−A

which implies an optimal action where the derivative with
respect toa is zero,a∗2 = (2t +A)/3.

Comparing the expected surpluses of the candidate action
functions,

EU(a∗2)−EU(a∗1) =
(B− t)2

2(B−A)
> 0

thereforea∗2 = (2t + A)/3 is a best response to itself and
therefore a Bayes-Nash equilibrium.2

D Proof of Theorem 5

We show that the following is a Bayes-Nash equilibrium of
the Vicious Vickrey auction described in Section 5.5:

a(t) =
k+ t
k+1

. (10)



Given that the other agent bids according to (10) for its
typeT ∼U [0,1], we show that (10) is a best response. The
expected utility for biddinga against an agent playing (10)
is

EU(t,a) =E

[
−k(T−a)

∣∣∣∣ a <
T +k
1+k

]
·Pr(a <

T +k
1+k

)

+E

[
(1−k)(t− T +k

1+k
)
∣∣∣∣ a >

T +k
1+k

]

·Pr(a >
T +k
1+k

)

=−k(
1+a(1+k)−k

2
−a)(1−a(1+k)+k)

+ (1−k)(t− 1/2 ·a(1+k)−1/2·k+k
1+k

)

· (a(1+k)−k)
(11)

Tie-breaking cases can be ignored here since they oc-
cur with zero probability given the type distribution and
form of the opponent strategy. We can now simply check
the first-order condition of (11) to find the maximizinga,
which is the best response:

a∗ =
k+ t
k+1

Since (10) is a best response to itself, it is a symmetric
Bayes-Nash equilibrium.

E Monte Carlo Best-Response Finder

Here we describe the simulation technique we used to
sanity-check equilibria found by our analytic best-response
solver. The approach takes as input an arbitrary payoff
function from types and actions of all agents to real-valued
payoffs. It also takes an arbitrary strategy function, which
is a one-dimensional function from type to action. The
strategies and payoffs are represented as arbitrary Mathe-
matica functions. Additionally, it takes an arbitrary prob-
ability distribution from which types are drawn. From
these three inputs, it computes an empirical best-response
function. Figure 2 shows an example of our Monte Carlo
method finding the best response to a particular strategy
(see Section 5.2).

At the core of the method for empirically generating best-
response strategies is a simulator that takes the given pay-
off function, other agent strategy, other agent type distribu-
tion, and a particular own type and action. The simulator
then repeatedly samples from the other agent type distribu-
tion, computing for each sampled type the action according
to the known other agent strategy. The resulting payoff is
then computed for the given own type and action by eval-
uating the payoff function. Sample statistics for these pay-
offs are then recorded and the process is repeated for every
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Figure 4: Empirically estimating the best action for a given
type (0) against a given strategy (see Figure 2). After< 20
simulations per action the best action is determined, based
on the 95% confidence intervals, to be between 0.25 and 1.
The maximum likelihood best action is 0.62 (after 100 total
samples) and the actual best action is 0.582.

combination of own type and action, down to a specified
granularity. However, certain shortcuts are taken to avoid
needless simulation. First, when simulating different ac-
tions for a given type, a confidence bound is continually
computed using the sampling statistics for the various ac-
tions sampled so far. Further simulation is limited to the
range of actions within the confidence bound (designated in
Figure 4 by the two larger dots ata = 0.25 anda = 1). The
confidence bounds are determined by performing mean dif-
ference tests on pairs of expected payoff sample statistics
and considering any actions that fail at the 95% level to
be within the confidence bound for best action. It is these
confidence bounds that the error bars represent in Figure 2.
The amount of simulation for each type-action pair is dy-
namically determined based on the confidence intervals for
the expected payoffs. And within the confidence bound of
possible actions, the confidence intervals are compared to
prioritize the computation for different actions.

Figure 4 shows the Monte Carlo best-response method
sampling possible actions for a specific type. It dynami-
cally limits the actions that it samples from by comparing
expected payoffs and finding an interval likely to contain
the best action.


