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Abstract tools for solving finite games. But for incomplete infor-
mation games with a continuum of actions available to the
agents—known as infinite games—we know of no avail-
able algorithms, though many particular infinite games of
incomplete information have been solved in the literature.

We describe an algorithm for computing best-
response strategies in a class of two-player in-
finite games of incomplete information, defined
by payoffs piecewise linear in agents’ types and We have so far left unsaid what we mean by solving a

actions, conditional on linear comparisons of game. For the case of a single agent, a solution is a pol-
agents’ actions. We show that this class includes  icy that maximizes the agent’s expected utility (payoff). In
many well-known games including a variety of the case of multiple agents, Nash (1951) proposed a so-

auctions and a novel allocation game. In some lution concept now known as thdash equilibrium and
cases, the best-response algorithm can be iterated  proved that for finite games (as long as agents can play

to compute Bayes-Nash equilibria. We demon- mixed strategies—i.e., randomize among actions) such an
strate the efficacy of our approach on existing and equilibrium always exists. A Nash equilibrium is a profile
new games. of strategies such that each strategy is a best response to the

rest of the profile. That is, each agent maximizes its own
utility given the strategies played by the othérs.

1 Introduction This definition of Nash equilibrium invites an obvious algo-

rithm for finding one: start with a profile of seed strategies
Game theory was founded by von Neumann and Morgens . jteratively compute best-response profiles until a fixed-

stern (1947) to study situations in which multiple agentspoint is reached. This process (when it converges) yields

(players) interact in order to each maximize an objective, pyofile which is a best response to itself and thus a Nash
(payoff) function determined not only by their own actions equilibrium.

but also the actions of other players. In a game of incom-

plete information, the payoffs also depend on informationThe notion of Nash equilibrium needs to be generalized
that is private to the individual agents. This information is slightly for the case of incomplete information games. An-
known as an agentype We consider one-shot games— other seminal game theorist, Harsanyi (1967), introduced
games in which an agent chooses a single action based oriff§e concept of agent types and used it to defiBagesian

on knowledge of its own type, the payoff function, and 9ame A Bayesian game is specified by a set of types

the distribution from which types are drawn. We assumeset of strategie§, a probability distributiorf- over types,
that the available actions, payoff function, and type distri-and a payoff functiorP. Harsanyi defines 8ayes-Nash
butions are common knowleddeA strategy in this context €quilibrium(sometimes known as a Bayesian equilibrium)
is a mapping from the set of types to the set of actions. Th&s the simple Nash equilibrium of the non-Bayesian game
case where these sets are finite (and especially when thevéth set of strategies being the set of functions fronto

are no types—complete information) has been well studS, and the payoff function being the expectatiorPofvith

ied in the computational game theory literature. In Sectespect td-.

tions 2 and 6 we discuss existing algorithms and software

*The latest version of this paper, along with a Math-  2The limitations of Nash equilibrium as a solution concept
ematica implementation of our algorithm, is available athave been well studied in the literature, particularly the prob-
http://ai.eecs.umich.edu/people/dreeves/equilibria.  |em of what agents will do in the face of multiple equilibria (van

1A fact is common knowledge (Fagin et al., 1995) if everyone Damme, 1983) yet finding Nash equilibria remains fundamental
knows it, everyone knows that everyone knows it, ad infinitum. to the analysis of games.



2 Finite Game Approximations equilibrium.) For the continuous action ranges [0, 1],

w = 1/2 constitutes a unique equilibrium. Whens lim-
GamBIT (McKelvey et al., 1992) is a software package ited to discrete values on a grid, however, additional equi-
incorporating several algorithms for solving finite gameslibria emerge. For example, when only increments of 0.05
(McKelvey and McLennan, 1996). The original 1992 are allowed, botiw = 0.45 andw = 0.50 represent sym-
implementation ofcAMBIT was limited to normal form metric equilibrium policies.

gamfs? thALA (r:(ollert. and Pffe.ffetr., 199f7) Ttrogjucfed The point of these examples is that whereas solving finite
constructs for schematic specitication ot extensive- Orm.alpproximationsto an infinite game can be instructive, it can
games, with a solver exploiting recent algorithmic ad'also produce misleading results. In Section 5.1 we show

vancesa(lﬁoller et aI.f, 1996). 'GA'Z'T subselquentlt)j/ mcor-h how our method immediately finds the solution to the full
porated theseALA features, and currently stands as the; ¢ o FpSB game.

standard in general finite game solvers.

We employ a standard first-price sealed-bid auction (FPSBY  |nfinite Games and Bayes-Nash Equilibria
to compare our approach for the full infinite game to a dis-
cretized version amenable to finite game solvers. Consid&ha consider a class of two-player games, defined by a

a'd|scret.|zat|on of (FPSB) with two players, nine types, andpayoff structure that is analytically restrictive, yet captures
nine actions. Both players have a randomly (uniform) de'many well-known games of interest. Lietlenote the sub-

tebrlmineql valuationtj frgrg the.set{O,....,SE1 and the avail- ject agent's type and its action, and’ and &’ the type
aole acgo/nze() are tr? \C ar(1j Integer mft € ?ét), L .8} . and action of the other agent. We assume that types are
Let [p,a @] denote the mixed strategy of performing action scalars drawn from piecewise-uniform probability distribu-

awith probability p, andaf with probapility ,1_ p. (There tions, and payoff functions take the following form:
happened never to be mixed strategies with more than two

actions.)GAMBIT solves this game exactly, finding the fol- yt a t’ &)
lowing Bayes-Nash equilibriurf:

Bt + pra+0it’ +pla + @ if —o<atoad <P
Bt +poat Bt +poa + ¢ ifpr<atad <P

8 i i ‘21 > 6 7 8 Bit+pa+ot'+pad+@ if B <at+od <+

1

at): 0 [4552;3 3 3 [727,3;4
Our class comprises games with payoffs that are Ihear

This result is indeed close to the unique Bayes-Nash equfunctions from own type and action, conditional on a lin-
librium, a(t) =t/2, of the corresponding infinite game (see ear comparison between own and other agent action. The
Section 5.1). However, it varies asymmetrically, which im-form is parametrized by, B, 8;, pi, 6/, p{, and@, where
plies that the discretized version represents a qualitatively € {1,...,1} indexes the comparison case. (We define
different game. B1 = —o andp, ;1 = +o for notational convenience in our

o - . . algorithm description below.) TH&, Bi+1 regions alternate
We observe a similar asymmetric divergencein anOtherd'sbetween open and closed intervals as this is without loss

crete approxmatlpn.. Con3|de'r the FPSB over a.contlnubf generality for arbitrary specification of boundary types
ous type range, distributed uniformly, but with actions re-(‘<, vs. *<") on the region and in particular allows the

stnc_:tgd to the forma(t) = W, with wa choice parameter, implementation of common tie-breaking rules for sealed-
(This is a very conservative comparison case in that it e“mbid auctions

inates all but a class of strategies that includes the known
This parameterized payoff function captures many known

*Normal form also known as strategic form, lists explicit pay- mechanisms. Table 1 shows the parameter settings for sev-
offs for every combination (profile) of agent strategies. In CoN- o1l such games

trast,extensive fornis a more compact representation for games
of imperfect information in which payoffs are given for sequencesGjyen a game description in this form, we search for Bayes-
of actions but only implicitly for combinations of agent strategies Nash equilibria through a straightforward iterative process.

(mappings from private information to actions). . . . .
4The calculation took 90 minutes of cpu time and 17MB of Starting with a seed strategy profile (typically based on a

memory on a machine with four 450MHz Pentium 2 processordYOPIC Or naive strategy such as truthful bidding), we re-
and 2.5GB RAM, running Linux kernel 2.4.18. When 2 addi- peatedly compute best-response profiles until reaching a
tional types and actions are added to the discretization, a similaft————

equilibrium results, requiring 23 hours of cpu time and 34MB of ~ °Functions with constant terms are technicaiffine rather
memory. G\MBIT’s algorithm (Koller et al., 1996) is worst-case than linear but we ignore that distinction from here on.
exponential in the size of the game tree which is itself €2e*) 8For example, to specify in (—c,a], Uy in (a,b], uzin (b,c),

in the size of the type/action spaces. Based on this complexity and, at ¢, andus in (c, ), translate to the alternating open/closed
our timing results, we conclude that we have reached the limit ofspecification:u; in (—c,a—¢€), up in [a—¢€,a], Uz in (a,b), uz in
whatGAMBIT's algorithm can compute. [b,b], uz in (b,c), ug in [c,c], us in (c, ).



Game 6 B o o’ » B «a
FPSB Auction 0,1/2,1 0-1/2,—-1 0,0,0 0,0,0 0 00 -1
Vickrey Auction (2nd Price) 0,1/2,1 0,0,0 0,0,0 0,-1/2,-1 0 00 -1
Vicious Vickrey Auction 0,5k 1k kk/2,0 —k—k/2,0 0KkI1k-1 0 00 -1
Supply Chain Game -1,-1,0 11,0 0,0,0 0,0,0 0 wvv 1
Bargaining Game  -Seller -1,-1,0 1-k1-kO0 0,0,0 k,k,0 0 00 -1

-Buyer 0,1,1 0,—k,—k 0,000 01-k1-k 0 00 -1
All-Pay Auction 0,1/2,1 -1,-1-1 0,0,0 0,0,0 0 00 -1
Voluntary Participation Game 0,1 0,—-1/2 0,0 0,1/2 0,-C/2 C 1
Shared-Good Auction 0,1/2,1 0,-1/4,-1/2 0,0,0 1/2,1/4,0 0 00 -1

Table 1: Various mechanisms as special cases of the parameterized payoff function in Equation 1. Note that the bargaining
game, being asymmetric, is described by two payoff functions. These games are discussed in Section 5.

fixed-point or cycle. A strategy profile that is a best re-strategy that responds best td itMost of the examples
sponse to itself is, by definition, a Bayes-Nash equilibrium presented in this paper are symmetric and have symmet-
We show that this process is effective at finding equilibriaric pure equilibria. For asymmetric games, we start with a
for certain games in our class. For all games in our clasgpair of seed strategies, on every iteration computing a best
the best-response algorithm can be used to verify candidatesponse to each to get the new pair.

equilibria ore-equilibria found by alternate means.

Our method considers only pure strategies. Althoughy Existence and Computation of Piecewise
mixed strategies are generally required for infinite as well . ) .
as finite games, there are broad classes of infinite games for Linear Best-Response Strategies

which pure-strategy equilibria are known to exist. For ex-

ample, Debreu (1952) shows that equilibria in pure strateHere we present our algorithm to compute the best response
gies exist for infinite games of complete information with to a given strategy by way of a constructive proof thatin our
action spaces that are compact, convex subsets of a Eglass of games, best responses to piecewise linear strategies
clidean spac®", and payoffs that are continuous and qua-are themselves piecewise linear. Intuitively, the proof pro-
siconcave in the actions. Athey (2001) proves the existenceeeds by first deriving an algebraic expression for expected
of pure-strategy Nash equilibria for games of incompleteutility against the given strategy in terms of the payoff pa-
information satisfying a property called the single-crossingameters, the distribution parameters, the opponent strat-
condition (SCC). These results encompass many familegy parameters, own type, and own action. By appropri-
iar games of economic relevance, including auction game8te partitioning of the action space, the expected utility is
such as FPSB. Our class includes games violating SCC, f@xpressed as a piecewise polynomial in the agent's action.
which search in the space of pure strategies may not be suf¥e then show that the action maximizing that expression
ficient. Nevertheless, an ability to compute best responseéhe best response) is a piecewise linear expression of the
for the broadest possible games is useful in itself. agent's type. Finally, we establish a bound for the number

. . _ . of pieces in the best-response strategy.
The best-response algorithm takes as input a piecewise lin-

ear strategy withK pieces K — 1 piece boundaries), . : . . :
9y P K P ) Theorem 1 Given a payoff function with | regions as in

mut + by if —o<t<e Equation 1, an opponent type distribution with cdf F that
mpt + by ifco<t<cs is piecewise uniform with J pieces and-d piece bound-
st)y=< ... (2) aries{dy,...,ds}, and a piecewise linear strategy function
mg_1t+bx_1 ifekor <t<ck with K pieces as in Equation 2, the best-response strat-
mkt + bk if ck <t < 4oo, egy is itself a piecewise linear function with no more than

. . ) 2(1 — 1)(J+ K — 2) piece boundaries.
represented by the vectots m, andb. The piecewise-
linear strategy class is sufficiently flexible to approximate77 .

any strategy, although of course the complexity of the strat-,_ It ¢an be shown that symmetric games must have symmet-

lity of th imati f l it ric equilibria, although there are some symmetric games with
€gy or quality or the approximation Suflers as nonlineari yonIy asymmetricpure equilibria (Cheng et al., 2004). Iterating

Increases. from a single strategy (equivalently, a symmetric profile) does not

. - limit the search to symmetric equilibria since a cycle of length
A two-player game isymmetricif both players face the 14 (given our restriction to two-player games, but regardiess of
same payoff function. For symmetric games we start withyhether the game is symmetric) constitutes an asymmetric equi-
a single seed strategy, to be repeatedly replaced with thiérium.



Proof. Finding the best response strategy means maximi2#/e can now express the expected utily) (t,a), as

ing expected utility over the other agent's type distribution. | J4K-1

Let T be the random variable denoting the other agent’sX1 z (Bt -+ pia-+ (6] +pim;)X%;; (@) +pibj + @) - pij (a).
type. =1 = .

First, redefines(t) to include additional redundant bound-
ary points{da, ...,d;} so there are nod+K — 2 boundary ~ This expression is a piecewise second degree polynomial
points ofs(t), {c,...,Cc31k-1}, and in a and simply linear int. Treating it as a function of
a, parameterized bt, we can find the boundaries for the
mut + by if —co<t<c polynomial pieces (which will be expressionstdf This
is done by setting the arguments of the maxes and mins
{ Mypk_1t +bgik_1 if Capk_1 <t < +oo, equal and solving foa, yielding the following four action
boundaries for each regidif;, Bi+1} in u() and each region
i,Cj1} ins():

s(t) =

c
We now express the expected utility, factored over the

pieces of() andu(), as Ciri=Yij@ = a=Pir1—0a-(mcjr1+bj)
¢j=Vyij@ = a=Biq1—a-(mcj+bj)
EU(t,a) =Er[u(t,a T,(T))] = Cir1=Xj(@ = a=pi—o-(mcjr1+Dbj)
I J+K—-1 R @i~ (micj+bj)
21 S ElBit+pia+ 6T +p{(mT+bj)+@ | cj=xj@ = a=pi-a-(mcj+b;
=1 =1 This yields a total of at most(2— 1)(J+ K — 2) unique
cj < T <cjr1, Bi <a+a(mT +bj) < Biy1) action boundaries. So expected utility is now expressible

as a piecewise polynomial an(parameterized bt) with at

Pr(c; < T <cjq1, Bi <a+a(mT +bj) < Bita). i
(cj < Cja, B <ata(mT +bj) <Biva) most 21 —1)(J+ K — 2) + 1 pieces.

(We use the notation < y” to denotex; < yif iisoddand For arbitraryt, we can find the actiom that maximizes

X <yifiis even.) EU(t,a) by evaluating at each of the boundaries above and
wherever the derivative (of each piece) with respec to
is zero. This yields up to@—1)(J+ K —2)+1 criti-

cal points, all simple linear functions of Call this set of

If am; = 0 then the summand reduces to

Cj+Cj+1

(Bit + pia+ (6 + pim;) +pibj+ @) cgpdidate action§ and the corresponding set of expected
(F(Ci 1) —F(c: it Bi—ob: < a<B.1—ab; utilities EU(t,C). The best-response function can then be
0 (F(Gjer) = F(cp)) otﬁlerwisé. Pt J expressed, for giveh, as argmax(EU(t,C)). This is a

“piecewise max” of the linear functions i@, and so it is

(The derivation of the cdf () of a piecewise uniform dis- piecewise linear.

tribution is in Appendix A.) It remains to establish an upper bound on the resulting
For the case ofim; # 0, first definex; (a) = (B — abj — number of distinct ranges far We claim the size o€,

. ol . N 2(1 -=1)(3+ K —2) +1, is such an upper bound. To see
a)/(am;) andyjj (a) = (Bi1—ab i a)/(am;) with xand this, first note that the piecewise max of a set of linear func-
y swapped ifam; < 0. We also introducenm(a,b,x) = L . ) . .

: tions must be convex (since, inductively, the max of a line
min(b, maxa,x)). o . -
and convex function is convex). It is now sufficient to show
We consider first the probability term in the summand,that at most one newrange can be added by taking the
rewriting it as max of a linear function of and a piecewise linear convex
function oft. Suppose the opposite, that the addition of one

pij(a) = pr(Bi Sa+a - (MT+b) <Pia&c<T< Cj+1) line adds two pieces. They cannot be contiguous else they
N would be one piece. So there must be a piece of the con-

= pr(x”- (@ <T<yj@&c;<T< cj+1) vex function between the two pieces of the line. This means
the convex function goes below, then above, then below the
=F(mm(cj, ¢j+1,¥ij(a))) — F(MM(C;, ¢j+1,% (@)).  jine and this violates convexity. Therefore, each lin€Cin

adds at most one piece to the piecewise maxaind there-

For the expectation term in the summand, we first define fore the piecewise linear best response(tohas at most
2(1 —1)(J+K —2) +1 pieces and thus2—1)(J+K — 2)

Xy;j (@) =E[T [ mm(c),cj1a,%; (@) < T type boundaries
< mm(cj,Cj+1,Yij(a))] Our algorithm for finding a best response follows this con-
:mn(CjaCj+17Xij (a)) + mm(cj,Cjr1,Vij(a)) structive proof. FindingC takes timeO(l1JK). To actu-

> . ally find the piecewise linear function, argnagkU(t,C)),



we employ a brute force approach that requid¢d JK)?) Producer 1 g, Producer 2 e, Consumer

time. First, we find all possible piece boundaries by takin (cost t,, bid a,) (cost t,, bid a,) (value v)

all pairs in C, setting them equal, and solvingtfoFor each

t range we then compute argmdkU(t,C)) and merge

whenever contiguous ranges have the same argmax. As tf@gure 1: Supply Chain game with two producers in series.
proof shows, this will yield at most(2—1)(J+K — 2) type
boundaries. Thus, we have shown how to find the piece-

wise linear best response to a piecewise linear strategy iote tha:l the first and ?St elementsmfar;]db are |rre'leh-
polynomial time. The resulting function is converted to the Vant as they correspond to type ranges that occur with zero

same strategy representatiah (i, B) that the algorithm probability. After a single iteration (a fraction of a second

takes as a seed for the opponent strategy. of cpu time), our solver returns the stratesy) = .t/g for
t € [0,1] which is the known Bayes-Nash equilibrium for

this game (McAfee and McMillan, 1987, p709). We find
5 Examples that in fact we reach this fixed point in one or two iterations

from a variety of seed strategies—specifically, strategies
Here we consider existing and new games and show theg(t) = mt for m> 0. We approach the fixed point asymp-

our method for finding best responses can confirm or retotically (within 0.001 in ten iterations) for seed strategies
discover known results as well as find previously unknowng(t) = mt+ b with b > 0.
equilibria.

There are many games not analyzed here to which our a2 Supply-Chain Game

proach is amenable, such as the All-Pay auction (both win-_ ) ) )
ner and loser pay their bids; encoded in Table 1), incomJhis example derives from our previous work in mecha-

plete information versions of Cournot or Bertrand gamesNiSMS for supply chain formation (Walsh etal., 2000). Con-
the War of Attrition (both winner and loser pay the secondSider @ supply chain with two producers in series, and one
highest price), and voluntary participation games (agent§°nsumer (see Figure 1). Producer 1 has ougpuind
choose an amount to contribute for a joint good and receiv8© iNput. Producer 2 has inpgh and outputg. The
utility based on the sum of both contributions; encoded inconsumer—which is not an agent in this model—wants
Table 1). Our approach is not needed for incentive comd00d 2. The producer costs; andtp, are chosen ran-
patible mechanisms such as the Vickrey auction, but, redomly fromU[0,1]. A producer knows its own cost with
assuringly, our algorithm returns the dominant strategy of€rtainty, but not the other producer’s cost—only the dis-

truthful bidding as a best response to any other strategy ifiPution (which is common knowledge). The consumer’s
that domain. value,v > 1, for goodg; is also common knowledge.

The producers place bidg anday. If a; +az < v, then all
5.1 First-Price Sealed-Bid Auction agents win their bids in the auction and the surplus of pro-
duceri is a —t;. Otherwise, all agents receive zero surplus.
We consider the first-price sealed-bid auction (FPSB) with, other words, the two producers each ask for a portion of
types that are drawn frotd [0, 1] and the following payoff  the available surplus;, and get what they ask minus their

function: costs if the sum of their bids is less than
t—a if a>a Walsh et al. (2000) propose a strategy for supply-chain
ut.ad)=< (t-a)/2 ifa=a games defined on general graphs. In the more general set-
0 otherwise. ting, it is the best known strategy (for lack of any other

roposed strategies in the literature). For the particular in-

In words, two agents have private valuations for a good an tance of Figure 1, the strategy works out to:

they submit sealed bids expressing their willingness to pay.
The agent with the higher bid wins the good and pays its t/2+(v/2—1/4) fo<t<v—1

bid, thus receiving a surplus of its valuation minus its bid. alt) = { 3t/4+v/4 otherwise.

The losing agent gets zero payoff. In the case of a tie, a

winner is chosen randomly, so the expected utility is theOQur best-response finder proves that this strategy is not
average of the winning and losing utility. a Nash equilibrium and shows how to optimally exploit

This game can be given to our solver by setting the pay_agents who are playing it.

off parameters as in Table 1. The algorithm also needsgigure 2 shows this strategy for the game with (10—

a seed strategy, for which we can use the default straty/5)/5 ~ 1.55 (chosen so that there is @Qprobability
egy of truthful bidding (always bidding one’s true valua- of positive available surplus) along with the best response,
tion: a(t) =t fort € [0,1]). This strategy is encoded as as determined by our algorithm and confirmed by Monte
t=(0,1), m= (0,1,0), andb = (0,0,0) (see Section 3). Carlo simulation.



Appendix B contains the proof which is essentially an ap-
plication of our best-response algorithm to the particular

1 1 game and strategy above. When this strategy is used as the
seed strategy for our solver with any particuathe same
0.9 1 strategy is output, thus confirming that it is a Bayes-Nash
g equilibrium.
0.8

5.3 Bargaining Game

The supply chain game is similar to a two-player sealed-bid
double auction, or bargaining game. In this game there is
: —— - — —- -~ a buyer with value/ and a seller with cost, each drawn

Tvpe from distributions that are common knowledge. The buyer
) ) and seller place bids and if the buyer’s is greater than the
Figure 2: Hand-coded strategy for the Supply Chain gamggyier's. they exchange the good at a price that is some lin-

of Section 5.2, along with best response and empirical Verz 5 - -ombination of the two bids. In the supply-chain exam-

ification of best response (the error bars for the empiricallyp|e we can model the seller as producer 1, with t;. Be-

estimated strategy are explained in Appendix E). cause the consumer reports its true value, which is common
knowledge, we can model the buyer as the combination of

When we perform further best-response iterations it event-he consumer and producer 2, with=v —t,. However, to

tually falls into a cycle of period two consisting of the fol- maI§e the double auction game isomorphic to our supply-
lowing strategies (where— 3/4): chain example, we need to alter the game so that excess

surplus is thrown away instead of shared.

ar(ty) = x ifty < X @) The bargaining game as defined above has been well stud-
v otherwise ied in the literature (Chatterjee and Samuelson, 1983;
VX iftp<v—x Leininger et al., 1989; Satterthwaite and Williams, 1989).

ap(t2) = { v otherwise. (3)  We consider the special case of the bargaining game where

the sale price is halfway between the buy and sell offers,

. ! and the valuations até[0,1]. The payoff function for this
The following theorem confirms that we have found angame is encoded in Table 1.

equilibrium, and follows an analogous result (Nash, 1953) o o .
for the similar (complete informatioash demand game The following is a known equilibrium (Chatterjee and

Samuelson, 1983) for a seller (1) and buyer (2):
Theorem 2 Equations 4 and 5 constitute an asymmetric

Bayes-Nash equilibrium for the supply-chain game, for any ai(ty) = 2/3t1+1/4
X € [0,v]. ap(tz) =2/3t2+1/12

Proof. Assume producer 2 bids according to Equation 50ur solver finds this equilibrium after several iterations

Since producer 1 cannot improve its chance of winning(with tolerance 01) when seeded with truthful bidding.

with a bid belowx, and can never win with a bid above

X, producer 1 effectively has the choice of winning with a5.4 Shared-Good Auction

bid of x or getting nothing. Producer 1 would choose to win

atx precisely wher; < x. Hence, (4) is a best response by Consider two agents who jointly own an inherently un-

producer 1. By a similar argument, (5) is a best responsgéharable good and seek a mechanism to decide who should

by producer 2, if producer 1 follows Equation. buy the other out and at what price. (For example, two
roommates could use this mechanism to decide who gets

Following is a more interesting equilibrium, which our the better bedroorf). Assume that it is common knowledge

solver didnot find but we were able to derive manually that the agents’ valuations (types) are drawn ftdfA, B].

and our best-response finder confirms. We propose the mechanism

t—a/2 ifa>ad

Theorem 3 When ve [3/2,3], the following strategy is a ut,aa) = { a/2 otherwise

symmetric Bayes-Nash equilibrium for the Supply Chain
game: which we chose because it has the property that if players
bid their true valuations, the mechanism would allocate the

8Thanks to Kevin Lochner who both inspired the need for and

alt) = { 2/3v—-1/2 ift<2/3v-1
helped define this mechanism.

t/24+v/3  otherwise.



Action

Theorem 5 The following is a Bayes-Nash equilibrium
for the vicious Vickrey auction game when valuations are
drawn from U0, 1]:

k+t
alt) = P
Appendix D contains the proof.

Our solver finds this equilibrium (for various specific val-
ues ofk) within several iterations from a variety of seed
strategies.

0 0.2 0.4 0.6 0.8 1
Type

6 Related Work
Figure 3:a(t) = 2t /3 is a best response to truthful bidding _
in the shared-good auction wifA B] = [0,1]. This strat- The seminal works on game theory are von Neumann and

egy is in turn a best response to itself, thus confirming thévlorgenstern (1947) and Nash (1951). There are several
equilibrium. modern general texts (Aumann and Hart, 1992; Fuden-

berg and Tirole, 1991; Mas-Colell et al., 1995) that analyze

many of the games in Section 5. Algorithms for solving
good to the agent who valued it most and split the surpluginite games include the classic Lemke-Howson algorithm
evenly between the two (each agent would get a payoff o{fLemke and Howson, Jr., 1964) for solving bimatrix games
t/2 wheret is the larger of the two valuations). The fol- (two-agent finite games of complete information). In addi-
lowing Bayes-Nash equilibrium also allocates the good tation to the algorithms discussed in connection withnG
the agent who values it most, but that agent gets up to twiceIT in Section 2, there has been recent work (La Mura,
as much surplus as the other agent, depending on the mir®000; Kearns et al., 2001) in algorithms for computing
mum valuationA. Nash equilibria in finite games by exploiting compact rep-

resentations of games. Govindan and Wilson (2003, 2002)
Theorem 4 The following is a Bayes-Nash equilibrium for have recently found new algorithms for searching for equi-
the shared-good auction game when valuations are drawtibria in normal form and extensive form games that are

from U[A, BJ: faster than any algorithm implemented im@g1T. Blum
alt) = 2t+A et al. (2003) have extended and implemented these algo-
3 rithms in a package called AMETRACER. Singh et al.
(2004) adapt graphical-game algorithms for the incomplete
Appendix C contains the proof. information case, including a class of games with continu-

Our solver finds this equilibrium exactly (for any specific ous type ranges and discrete actions.

[A,B]) in one iteration from truthful bidding. We confirm The approach of finding Nash equilibria by iterated best-

the result via simulation as shown in Figure 3. response, sometimes termédst-reply dynamigsdates
back to Cournot (1838). A similar approach knowrfias
5.5 Vicious Vickrey Auction titious playwas introduced by Robinson (1951) and Brown

(1951) in the early days of modern game theory. Ficti-
Brandt and Weif3 (2001) introduce the following auctiontious play employs a best response, not to the single strat-

game: egy from the last iteration, but a composite strategy formed
by mixing the strategies encountered in previous iterations
(1-k)(t—a) if a>a according to their historical frequency. This method gener-

ut,at’a@)={ ((L-k)(t—a)—k{t'—a)/2 ifa=a ally has better convergence properties than best-response,
—k(t’'—a) otherwise. but Shapley (1964) showed that fictitious play need not

converge in general. Milgrom and Roberts (1991) cast
Itis a Vickrey auction generalized by the paramétehich  poth of these iterative methods as special cases of what
allows agents to be “antisocial” in the sense of getting disuthey termadaptive learningand show that in a class of
tility from the other agent's utility. (This might be the case games of complete information, all adaptive learning meth-
for businesses that are competitors.) ods converge to the unique Nash equilibrium. Fudenberg

Brandt and WeiR derive an equilibrium only for a complete@d Levine (1998) provide a good general text on iterative

information version of this game. Our game solver can agSolution methods (i.e., learning) for finite games. Hon-
dress the more general incomplete information setting.  Snir et al. (1998) apply this approach to a particular auc-
tion game with complete information. Tihelaxation algo-



rithm (Uryasev and Rubinstein, 1994), applicable to infinite games. IrEighteenth International Joint Conference on
games, but only complete information games, is a general- Artificial Intelligence pages 757—764, Acapulco, 2003.

ization of best-response dynamics that has been shown lix Brandt and Gerhard WeiR. Antisocial agents and
converge for some classes of games. Vickrey auctions. IrEighth International Workshop on
The literature is rife with examples of analytically com-  Agent Theories, Architectures, and Languagesume
puted equilibria for particular auction games. For example, 2333 ofLecture Notes in Computer Scienpages 335—
Milgrom and Weber (1982) derive equilibria for first- and 347, Seattle, 2001. Springer.

second-price auctions with affiliated signals. Gordy (1998)g \. Brown. Iterative solution of games by fictitious play.
finds closed-form equilibria in certain common-value auc- |4 1. C. Koopmans, editorctivity Analysis of Produc-

tions given particular signal distributions. tion and Allocation pages 374-376. Wiley, New York,
1951.
7 Conclusion K. Chatterjee and W. Samuelson. Bargaining under incom-

plete information. Operations Researc831:835-851,
We have presented a proof that best responses to piecewisel983.

linear strategies in a class of infinite games of incompletesin_Fen Cheng, Daniel M. Reeves, Yevgeniy Vorobey-
information are piecewise linear. The proofis constructive ik and Mich,ael P. Wellman. Nétes on equilibria in

and contains a polynomial-time algorithm for finding such symmetric games. Technical report, University of Michi-
best-responses. To our knowledge, this is the first algo- gan, 2004. In Preparation.

rithm for finding best response strategies in a broad class ] . o
of infinite games of incomplete information. A. Cournot. Researches into the mathematical principles

_ _ _of the theory of wealth, 1838. English Edition, ed. N.
For some games, this best-response algorithm can be it- Bacon (Macmillan, 1897).

erated to find Bayes-Nash equilibria. It remains a goal . A .

to characterize the class of games for which iterated besferard Debreu. A social equilibrium existence theorem.
response converges. Our method confirms known equilib- -roceedings of the National Academy of Scienegs

ria from the literature (e.g., auction games such as FPSB 886-893, 1952.

and Vickrey), confirms an equilibrium we derive here (in Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and
the Supply Chain game), and discovers new equilibria (in Moshe Y. Vardi. Reasoning about KnowledgeMIT

the Shared Good auction and an incomplete information Press, 1995.

Vicious Vickrey auction). Drew Fudenberg and David K. LevineThe Theory of

Learning in GamesMIT Press, 1998.
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against agent typ€ ~ U|[0, 1] playing (6) is: Given that the other agent employs the strategy in (8) for its

typeT ~ U0, 1], we show that (8) is a best response. The
EU(t,a) = Erfut,aT,s(T)] expected utility (surplus) for an agent playing bidgainst

(a—t)Prla+s(T) <v) an agent bidding according to (8) is

a—t)[Pr(T <2/3v-1

(a—y)PHT < 2/3v—1) oA

-Prla+2/3v—-1/2<v|T <2/3v—-1) EU(t,a) =E |u|(t,a, 3

+PrT >2/3v-1)

‘Prla+T/2+v/3<v|T>2/3v-1)].

=(t—a/2)Prla>s(T))

[ 2T +A
+E|1/2- + |a< s(T)] Pria< s(T))
We consider three cases, conditioned on the range of L 30 A
a_
Case 1: a< 2/3v—1/2. =(t-a/2)Pr——>T)
The expected surplus is: L E 'ZTJA ‘ 3a2—A - T} _ Pr(3a2—A _ T) .
EU(t,a) =(a—t)[(2/3v—1)+ (2—2/3V)] - )

=a—t.

) i o i We consider two cases, conditioned on the range of
Since the expected surplus is monotoni@jrthe optimal

bid is found at the upper boundary, namaly: 2/3v—1/2, Case 1: a> (2B+A)/3.
giving usEU(t,a) = 2/3v—1/2—t. The expected surplus is:
Case 2. ac [2/3v—1/2,v/3+1/2].
2/ 12V /2 EU(t,a)=t—a/2
The expected surplus is:
EU(t,a) =(a—t)[(2/3v—1) + (2/3v—2a+ 1)]
=(a—t)(4/3v—2a).

which implies an optimal action at the left boundaayy =
(7) (2B+A)/3.

Case 2: a< (2B+A)/3.

Equation 7 is maximized a& = t/2+v/3. With vE  In this case, both the probabilities in (9) are nonzero and

[3/2,3], we need consider whether this point occurs bethe expected surplus is:

low the lower boundary o&. This gives us two cases. If

t > 2/3v— 1 then the maximum of (7) lies in the range BA_A

of bids we consider here, and the best responss is EU(a) =(t—a/2) B—A

t1/2+v/3, giving usEU(t,a) = (3t — 2v)?/18. Ift > sa A | B_ 3aA

2/3v—1 then the maximum occurs at the lower bound- +1/6 (2- 2 +A> . z

ary, and the best responseds= 2/3v—1/2, giving us 2 B—A

EU(t,a)=2/3v—-1/2—t.

Case 3: &> v/3+1/2. which implies an optimal action where the derivative with
respect tais zero,a; = (2t +A)/3.

The expected surplus is always zero in this range. ) . .
Comparing the expected surpluses of the candidate action

The expected surplus of Case 2 is always positive, and akunctions,
ways at least as high as Case 1, hence it must specify the
best-response policy. But Case 2 gives us the bidding pol-

icy specified by (6) wher < 3.

* * (B - t)z
E —E = 7
U(a;) —EU(a)) 2B_A) >0
We have shown that (6) is a best response to itself for al
ranges ol € [3/2,3], hence it is a symmetric Bayes-Nash
equilibrium.O

{hereforea§ = (2t + A)/3 is a best response to itself and
therefore a Bayes-Nash equilibrium.

C Proof of Theorem 4 D Proof of Theorem 5

We show that the following is a Bayes-Nash equilibrium of We show that the following is a Bayes-Nash equilibrium of
the auction game from Section 5.4: the Vicious Vickrey auction described in Section 5.5:

arn = 212 (®) alt) = o (10)



Given that the other agent bids according to (10) for its , | ‘ ‘
typeT ~ U|[0, 1], we show that (10) is a best response. The

expected utility for bidding against an agent playing (10) ©°s +
is
- 0.4 ° ¢
T+k T+k £,
EU(t,a) =E [—k(T—a) a< m] -Pr(a< m) 2 o |
T+k T+k Bes
T+k
. - ol@ e o o 00
Pr(a > T k)
1 14+k) =k o 0.25 s 0.7 1 125 s
:—k(—+a(2+ ) K 1—a1+K+K it
ARt - 1/2-a(1+k)—1/2-k+k Figure 4: Empirically estimating the best action for a given
1+k type (0) against a given strategy (see Figure 2). A#&0
-(a(1l+k) —k) simulations per action the best action is determined, based

(11)  onthe 95% confidence intervals, to be between 0.25 and 1.
The maximum likelihood best action is 0.62 (after 100 total
Tie-breaking cases can be ignored here since they osamples) and the actual best action is 0.582.
cur with zero probability given the type distribution and

form of the opponent strategy. We can now simply check o ) .
the first-order condition of (11) to find the maximiziag ~ Combination of own type and action, down o a specified

which is the best response: granularity. However, certain shortcuts are taken to avoid
needless simulation. First, when simulating different ac-

. k4t tions for a given type, a confidence bound is continually

T k+1 computed using the sampling statistics for the various ac-

tions sampled so far. Further simulation is limited to the

Since (10) is a best response to itself, it is & symmetriGapge of actions within the confidence bound (designated in

Bayes-Nash equilibrium. Figure 4 by the two larger dots at= 0.25 anda = 1). The
confidence bounds are determined by performing mean dif-
E Monte Carlo Best-Response Finder ference tests on pairs of expected payoff sample statistics

and considering any actions that fail at the 95% level to
Here we describe the simulation technique we used tde within the confidence bound for best action. It is these
sanity-check equilibria found by our analytic best-responsgonfidence bounds that the error bars represent in Figure 2.
solver. The approach takes as input an arbitrary payoff he amount of simulation for each type-action pair is dy-
function from types and actions of all agents to real-valuednamically determined based on the confidence intervals for
payoffs. It also takes an arbitrary strategy function, whichthe expected payoffs. And within the confidence bound of
is a one-dimensional function from type to action. Thepossible actions, the confidence intervals are compared to

strategies and payoffs are represented as arbitrary Mathgrioritize the computation for different actions.

matica functions. Additionally, it takes an arbitrary prob- Figure 4 shows the Monte Carlo best-response method
ability dlstrlk_)utlon f_rom which types are drawn. From sampling possible actions for a specific type. It dynami-
these three inputs, it computes an empirical best-responge, v |imits the actions that it samples from by comparing

function. Figure 2 shows an example of our Monte Carlog,yected payoffs and finding an interval likely to contain
method finding the best response to a particular strategy, e pest action

(see Section 5.2).

At the core of the method for empirically generating best-
response strategies is a simulator that takes the given pay-
off function, other agent strategy, other agent type distribu-
tion, and a particular own type and action. The simulator
then repeatedly samples from the other agent type distribu-
tion, computing for each sampled type the action according
to the known other agent strategy. The resulting payoff is
then computed for the given own type and action by eval-
uating the payoff function. Sample statistics for these pay-
offs are then recorded and the process is repeated for every



