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This chapter presents the basic concepts involved in implementing integrated system designs,
from the system designer's point of view. Tools are described which help the designer
produce the geometrical layout patierns for each layer of an integrated system given the
logic, circuit, or topological level design of the system. Procedures are described for
encoding these layout patterns and then using the encoded layouts in the patterning and
fabrication processes to implement the inlegrated system. In addition, we discuss how
design tools and procedures are likely 1o evolve towards fully integrated design systems,
under the influence of increased complexity of design and predictable changes in the

technologies of implementation.

To enable groups of readers to actually design moderate sized LSI systems, we've inciuded
descriptions of easily constructed LSI design tools and procedures for organizing and
implementing LS! multi-project chips. [In each case, the tools are described as part of a
complete system of design and implementation procedures, some of which are performed
manually while others are machine assisted. Those experienced in software system design
will recognize that construction of the machine-assisted portions of these systems is fairly
straightforward. Contrary to what many may think, designing your own LSI projects,
merging them onto collaborative multi-project chips, and having these implemented by
commercial maskmaking and wafer-fabrication firms is now well within the computational

and financial reach of most industrial R&D groups and university EE/CS departments.

We are firm believers in fearning by doing, and hope that the information provided in this
chapter will help and encoursge -many groups of readers to try their hand at building LSl
design tools and designing LSE systems. Such first-hand experience will lead to a deeper

understunding of the remaining material in this text
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An overview of the stages of iﬁlegrated system design, layout, and implementation is given
in figure 1. The designer first transforms the circuit and topological level designs into a
geometrical layout of the system, using procedures described later in this chapler. In order
to optlimize the layout, perform various design checks, and discover errors, the designer
usually iterates several times between design and fayour. The result is a set of design files
describing the layout. These files are in a particular representation called an intermediate

Sform, which efficiently and unambiguously describes the layout geometry.

The design files are then converted into files for driving ihe chosen patterning mechanism.
At present, design files are commonly converted into pattern generator {PG) files, for use
by a maskmaking firm for driving an optical pattern generator, the first step of
maskmaking. By a sequence of photolithographic steps, the mask house produces a set of
masks, which a commercial wafer fabricaiion firm may then use to pattern silicon wafers.
Each finished wafer contains an array of system chips. The wafers are then diced into

separate chips, which are packaged and tested to yield working systems,

From the system designer's point of view, maskmaking and fabrication can be visualized as
one would a film processing service: the designer produces the “artwork" (design files), from
which the mask house makes "negatives” (masks), which are then run on a fab line to
produce “prints” (wafers). The maskmaking and fabrication sequence is function, design,
and layout independent: the mask and fab firms do not require detailed information about
the integrated systems they fabricate. If the original layouts satify the design rules, and
satisfy a few constraints imposed by patterning and fabrication, then these processes will

yvield correctly patterned wafers.

One need not closely bind a system's design to the detailed processing specifications of
particular mask and fab firms. Various firms will differ somewhat in the minimum value
of the length unit A which they can successfully process. The transit time of the transistors
fabricated, and the resistance per square and capacitance per unit area of fabricated features
will also vary from one fab line to another. However, well structured and relatively process
independent nMOS designs will function correctly if scaled 1o a value of A appropriate for

the chosen fabrication Tacilities, and operated using an appropriate system clock period.

We next examine some of the present implementation procedures a bit more closely. to set
the stage for sections on design and layout. Those later sections will be clearer if one can

visualize how the design files are o be used during patterning and fabrication.
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PPatterning and Fabrication

On completion of design and layout, the system design is contained in sysiem layour files in
intermediate form. Prior to fabrication, a final check plor of the layout is usuaily generated
by converting these design files into files for driving a graphics plotter. Check plots are
used for visually checking for design rule violations and other design errors. Once the
designers have done as much visual checking as they are going to do, the system layout files
are converted into paitern generator (PG) files, 10 be sent to the maskmaking facility.
Figure 2 summarizes the sequence of patterning and fabrication procedures which then

follows, and identifies the artifacts passed on at each step in the sequence.

Maskmaking begins with partern generation 1o produce reticles. Present pattern generators
are projector-like systems containing (i) a precisely movable stage, (ii) an aperture of
precisely variable rectangular size and angular orientation, and (iii) a light source, all
program controllable by a computer system. To produce a reticle, a photographic plate is
mounted on the stage, and the PG file for a particular system layer is used to direct the
flashing of a sequence of rectangular exposures, of particular sizes and orientations, onto a

sequence of coordinate locations on the plate, as illustrated in figure 3.

The PG file contains a sequence of entries, each of which describes a rectangle. A typical
representation uses five numbers for each rectangle: the x,y coordinates of its center, and its
height, width, and angular orientation, as shown in figure 4. One can now visualize the
nature of the conversion from intermediate form 1o PG files: the layout of each layer must
be decomposed into its equivalent as a set of rectangles, each having [x.v,h,w,a] values
flashable by the particular pattern generator, and these rectangles must be sorted into an

efficient flashing sequence for that pattern generator.

When the flashing sequence is completed, the plate is developed, yielding the reticle. A
sketch of such a reticle is given in figure 5. Each reticle is a photographic master copy
much like a photo negative, of the layout of one system layer, usualty at a sciale ten times
(10x) the final system chip size. Photo entargements of reticles, called "blowbacks"”, may be
obtained from the mask house, io provide a further level of checking of design layout. PG
file conversion, and pattern generation. At the current value of A = 3 microns, blowbacks at
approximately 100 10150 times actual chip dimensions have sufficient detail 10 enable visual

checking of the smalltest features. Blowbacks of reticles may also be oblained in the form of
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color transparancies, to enable inspection of superposed overlays of various layers.

Once the 10x reticles have been generated, a /x master mask is made from each reticle using
a photorepeater, often called a step and repear camera. The photorepeater exposes a
photographic plate held on a moveable stage, as in the pattern generator. In this case,
however, each pilate exposure i1s a 10:1 pholo reduction of the reticle pattern. Between
exposures the stage is moved by a precise x,v stepping distance. This process is repeated
until a complete array of lx chip patterns for one layer of the system has been exposed.
The plate is then developed to produce a 1x master mask. Figure 6 sketches such a mask

made from the reticle in figure 3.

Note that when each reticle is inserted in the photorepeater, the position and angular
orientation of the reticle pattern is carefully adjusted by microscopic examination of two
fiducial marks on the reticle. These marks are placed as part of the pattern generation
process, and have the same precise position relative to the chip pattern origin on each of the
system's reticles, thus assuring that all mask levels produced with the photorepeater will

accurately register with each other.

A succession of contact prints is made from each master mask to yield a number of working
masks, sometimes called working plares, for each system layer. These are the actual masks
used in wafer fabrication. During the contact printing step of the typical wafer fabrication
procedure, the working plates occasionally become worn or damaged, so several are usually

made for each layer.

The wafer fabrication facility uses the working plates in the sequence of patterning and
process steps described in chapter 2, to produce finished wafers. The fab line requires no
detailed information about the design or mask patterns of the integrated system being
fabricated. However, several auxiliary patterns are normally included in the mask patterns,
some of which are replicated on each chip and are examined during wafer fabrication: (i)
alignmeni marks, which are used to accurately overlay successive masks with previous
patlerning steps, (ii) /ine width testers, sometimes called critical dimensions {C/D's), which
are lines in each mask layer of stated width that may be examined during maskmaking and
fabrication 1o control dimensional tolerances, and (iii) a few simple rest fransistors and
their associated probe pads. which may be electrically tested prior to packaging to verify

that the wafer fabrication process was successful.
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The finished wafers are divided. into chips and packaged by the sequence of steps sketched
in figure 7. The wafers are diced into individual chips by first scribing their surface along
the boundary lines belween chipﬁ, called scribe lines, with either a diamond Lipped scribe or
a diamond edged saw blade, and then fracturing them along these lines. Each individual
chip is then cemented into the cavity of a package. After fine wires are bonded between the
contact pads on the chip and the leads of the package, and a cover cemented over the cavity,

the system is ready for testing.

From the preceding we see that once a system's design files have been produced, all the
remaining implementation procedures are design and layout independent, and largely
aulomatic. However, the many extraneous parameters, patterns, and constraints involved in
maskmaking and fabrication must be carefully thought through and defined in order to
guarantee successful implementation within a reasonable turnaround time. The PG files
must be correctly sorted and formatied for the pattern generator to be used. The 10x
pattern of the chip must fit within the largest reticle that the pattern generator can produce.
The photorepeater used will determine the shape, size, and location of the fiducial marks on
the reticle. The size, surface material, and photographic‘polarity, either positive (clear
field-opague features) or negative (dark field-transparent features), of the working
plates will be a function of the fabrication facility to be used. Each fab line also typically
prescribes its own patterns for the alignment marks and test transistors o be inctuded along

with the system in the mask patierns.

While many designs may be scalable and have some longevity, the parameters, patterns, and
constraints of maskmuking an.d fabrication are changing rapidly as the technologies evolve.
This constant change complicates interactions with mask and fab firms. [ater we describe
procedures for implementating moderate sized LSI systems as part of multi-project chips.
Such chips are collaborative efforts of many designers, enabling many projects to be merged
into one maskmaking and wafer fabrication run. In this way the procedural overhead

involved may be shared.
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Hand Layout and !)igitization. using a Symbolic Layout Language

A simple und common method of producing system layouls is to draw them by hand. This
is typically done on a one lambda grid using the familiar color codes 1o identify various
system layers. Once the layout has been hand drawn it can then be digiiized, or translated
into machine readable form, by encoding it into a symbolic layout language. Hand layout
and digitization using a symbolic layout language is quite a practical method of generating
design files for highly structured system designs. Be warned, however, that implementing

irregular structures using these primitive procedures is a difficult and tedious task.

If a system has only a few cell types which are replicated over and over, and otherwise has
little "random wiring", one need draw only a single copy of each cell type, and then make
reproductions  or equivalent sized outlines of these cell drawings. All these cell
reproductions may then be patched together to plan and build up the overall layout.
Similarly, only one symbolic digitization need be made for each cell type. The replication
of cells in various orientations and locations in the system layout can then be easily
described using the symbolic layout language. In a sense, the ease with which a system’s
layout can be described using a primitive layout languge provides a measure of the regularity
of its design. The OM2 Data Chip pictured in the frontispiece was laid out and digitized in

this way, using only the simplest machine aids.

The function of a symbolic layout language, in its simplest form, is similar to that of a
macro-assembler. The user defines symbols (macros) which describe the layout of basic
system cells. The locations and orientations of instances of these symbols are described in
the language, as a function of appropriate parameters. These symbolic descriptions may
then be mechanically processed in a manner similar to the expansion of a macro assembly
language program, to yield the intermediate form description of the system layout, which is
analogous to machine code for generating output files. An example intermediate form is
described in a later section. The intermediate form files may be processed to yield the PG
files: each layer being a machine encoded collection of rectangles encoded as [x,y,h,w,a]
values. The generation of PG files is analogous to the loading and execution of machine
code 10 produce output files: it is a process of "unrolling” and fully instantiating all symbol
descriptions into a sequence and format suitable for a particular output device. Definition
of simple layout languages and the construction of their assemblers is fairly straightforward.
The reader may define and implement layout languages by using the macro assembler or

higher level language facilities of any commonly available computer system (R, R3).
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The following example will clarify the concepts and procedures of hand layout and symbolic
layoul description:  We wish to creale an array of shift registers consisting of parallel
horizontal rows of inveriers coupled by clocked pass transistors, as in figure 5a., chapter 2,
Figure 8a sketches the stick diagram of one row of the array. The entire array can be
constructed from one basic cell containing an inverter, the pass transistor following it, VDD
and GND buses crossing through on metal, and a clock line passing through on poly. Figure
8b shows a hand sketch of the layout of the basic shift register cell, SRCELL, on a 1A grid,
subject to the design rules given in Ch.2, Sect.2. Since the inveriers are coupled by pass
transistors, the inverier pullup/pulldown ratio is ~ 8:1 (see Ch.1., Sect.2.). Also, while the
4Xx wide metal lines could be 1A narrower in between the contact regions, this would not
decresse the cell size, As an exercise, the reader might check for design rule violations, and

also for ways of further shrinking the cell size.

The SRCELL layout shown in figure 8b is composed using only rectangles placed at
orientations which are integer multiples of 90°. The illustrations and descriptions in this
section are considerably simplified by the use of such consulained layout constructions, and
yet still illustrate the general principles involved. Were completely arbitrary shapes used,
the SRCELL could be made somewhat smaller and still satisfy the design rules.
Interestingly, experience has shown that the simple extension of inctuding rectangles at
orientations which are integer multiples of 45° enables most cell layouts to reach within a
few percent of the minimum area achievable using arbitrary shapes. There is a clear
tradeoff here: the inclusion of increasingly complex geometrical objects in a layout will tend
to reduce the minimum achievable layout area, but will also increase the computational

complexity of the associated machine aids.

We can informally characterize a simple layout language by examining figure 9, which
contains a description of the layout of an array of SRCELLs using such a language. The
language describes layouts as collections of BOXes on various layers. BOX statements
describe each of these boxes by specifying their layer, the X.Y coordinates of their lower
left corner and then their length, LX, in the x direction, and LY, in the y direction. The use
of a box corner 1o encode its location simplifies the encoding task. BOX statements may
describe arravs of identical boxes, with the array’s lower left corner origin at XY, by
including optional parameters which specify the number NX uand replication interval IX in
the x direction. and NY and 1Y in the v direction. {imensions are given in the fength unit,

A. A SCALE statement defines the vatue of A for (his particular layout as A = 3.0 microns.
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In figure 9, the SRCELL is first described as a macro, or SYMBOL.. The reader can verify
that the collection of BOXes in the definition of the SYMBOL SRCELL, when ORed
together, produces the layout in figure 8b. This SRCELL is then replicated a number of

times in various layout locations according to parameters in several DRAW statements.

Fach DRAW statement describes the placement of an array of cells as follows: The cell
described by the named SYMBOL definition is considered to be drawn at the origin. It 1s
then mirrored {about the x and/or y axis), and/or rotared (by 0°, 90°, 180°, or 270°) about
the origin, as specified by MIRROR or ANGLE transformations. The cell thus positioned
may then be replicared NX times at distance intervals 1X in the x direction, and that row of
cells then be replicaied NY times at intervals 1Y in the y direction. The resulting array of

cells 1s then rransiated a distance X,Y from the origin, and placed into the layout.

SCALE LAMBDA:=30MICRON;

SYMBOL  START, SRCELL;
BOX DIFF,X=3,Y=0,1.X=4,LY=4,NY=2,1Y=19;
BOX DIFF,X=2,Y=4,LX=6,LY=E;
BOX DIFF,X=8,Y=%,LX=8,LY=z2; INVERTER OQUTPUT
BOX DIFF,X=16,Y=9,LX=4,LY=4;
BOX DIFF,X=4,Y=12,LX=2,LY=7

BOX IMPL,X=2,5,Y=9.5,LX=5LY=10 PULLUP IMPLANT
BOX POLY,X=0,Y=5,LX=10,LY=2; CELL INPUT

BOX POLY,X=12,Y=0,1.X=2,LY=26; CLOCKLINE

BOX POLY,X=16,Y=51X=5,LY=y CELL OUTPUT

BOX POLY,X=16,Y=7,LX=24,LY=3:
BOX POLY,X=2,Y=11,LX=6,LY=7;

BOX CUTS,X=4,Y=1,LX=2,LY=2,NY=2,1Y=19;

BOX CUTS,X=17,Y=8,LX=2,LY=4;

BOX CUTS,X=4,Y=9,LX=2,LY =4;

BOX METL,X=0,Y=0,LX=21,LY=4,NY=2,1Y=1% VDD & GND
BOX METL,X=3,Y=8,LX=4,LY=6:

BOX METL,X=16,Y=7,LX=4,LY=6:

SYMBOL END;

DRAW SRCELL,NX=4,NY=2,1X=21,1Y=38,X=0,Y=0;
DRAW SRCELL,MIRRORX,NX=4,1X=21,X=0,Y=42;

'

END;

Figure 9. Symbolic Description of Shift Register Array

The "program” in figure 9 describes an array of 3 rows and 4 columns of SRCELLs. After
machine assembly of this program, the resulting design file can be used to generate check

plots, which may be inspected (o detect errors made in encoding the layoul. A check plot of
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one SRCELL is given in figure 10a, and we see that the cell has been correctly digitized. A
sel of stipple patterns is used in this check plot to encode the different system layers, with
the coding specified in figure 10b. 1f available, color checkplols are much better: color
checkplots can be made denser and still be readable, and association of colors with layers
and functions is more easily made and subject to fewer errors in practice. Note: the implant

laver hasn't been plotted in fig. 10a, so that the other Jayers may be more easily seen.

A check plot of the complete 3 by 4 array of cells is given in figure 11 (again the implant
fayer is not plotted). Although figure 11 is of insufficient scale to check details within the
cells, it enables us to check for correct relative placement of the SRCELLs. The individual
cell outlines are included in figure 11, to indicate the nature of the placement of the central
row of the array. By mirroring the central row prior to i1s placement, that row is able to
share VDD and GND with the other two rows, thus reducing the overall array size. There is
one column of cells per 21 lambda in the x-direction, and one row of cells per 19 lambda in
the y-direction. It is very important 10 note that the cutcome of each DRAW statement is
determined by the order in which any mirror, rotate, replicate, and translate operations
occur (see the section on the Caltech Intermediate Form, and also R2, Ch.6). Any

permutation in the order of these operations may lead to a completely different result.

In chapter 3 we found that the PLA is a useful subsystem structure, often used to implement
finite state machines and combinatorial logic. We now present a worked out example of a
PLA's layout, 1o further clarify symbolic layout description. Chapter 3 contains several
stick diagrams of PLAs (figs. 13¢, 15f). An examination of these stick diagrams reveals that
the PLA can be constructed using 6 basic cell types and a slight amount of "random wiring”.
Once these 6 basic cells have been layed out by hand and symbolically digitized, it is easy to
construct symbolic descriptions of different sized PLAs having various numbers of inputs,

product-terms, and outputs.

The digitized layouts of four of these basic cells are check plotted in figure 12. The AND
and OR planes of the PLA are constructed as arravs of the 14X by 14X PLAcellpair cell
plotted in figure 12a, which contains two poly and two metal signal lines, and one ground
line on the diffusion laver. Diffusion paths may be added in any of four locations in such
cells to form transistors, and thus program the PLA. The connection between the AND and
OR planes is made using the PLAconnect cell plotted in figure 12b: these cells change the
signal paths from (he metal to the poly layer. The pullup transisters to be placed at the

edges of the AND and OR planes are implemented by the PullupPair cell in figure 12¢. The
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ground return paths, 10 be connected 1o the diffusion lines crossing Lthe planes, are
imptemented by the PLAground cell in figure 12d. The PLAground cell is structured so that
rows of the cell 'may be inserted at intervals within AND planes, and columns of the cell
inserted at intervals within OR planes, to provide proper ground returns in large PLA's.
The two other cell tvpes required are the input drivers and outputl inverters: these cell
layouts are left as exercises for the reader. The cells in figure 12 have been collectively
planned so as to fit on a 14\ pitch surrounding the PLA's planes. Figure 13 contains a
symbolic description of each of these cell types, and a description of a moderate sized PLA

constructed from these cells:

Figure 13. Symbolic Description of a 5-Input, 10-Pterm, 8-Output PLA

SCALE  LAMBDA=3.0MICRON;
: PLA CELL DEFINITIONS:

SYMBOL  START.PLACELLPAIR: [SEE FIGURE 12A.1
BOX DIFF.X=0Y=} LX=4LY=4NY=21Y=T,
BOX DIFF.X=8Y=0LX=2LY=14; DIFF TO GND

BOX POLY X=5Y=0LX=2LY=14 NX=21X=6;

BOX CUTS. X=1,Y=21L.X=2,LY=2 NY=21Y¥:7;

BOX METL,X=0,Y=1LX=14.LY=4NY=21Y=7; METL TO PULLUPS
SYMBOL  END;

SYMBOIL.  STARTPLACONNECT; [SEE FIGURE 12B.]
BOX DIFFX=0¥=1.LX=4LY=4.NY=21Y=7,
BOX DIFFX=9Y=4 1 X=4LY=4;
BOX DIFF X=13Y=4 LX=3LY=2;

BOX POLY.X=0,Y=1,LX=10LY=2 NY=21Y=8§;

BOX POLY X=3Y¥=1LX=3 LY=4NY=21Y=7;

BOX POLY . X=14Y:71LX=2LY=2:

BOX CUTSX=1Y=2LX=4LY=2NY=21Y=7

BOX CUTS X=10Y=51X=2,LY=2,

BOX MET!. X=9,Y=0.1LX=4.LY=14, GND
BOX METLX=0,Y=1,1.8=6,LY=4 NY=21Y=7;

SYMBOL  END;

SYMBOI.  START,PULLUPPAIR; [SEE FIGURE 12C.]
BOX IMPL X=8.5¥=05LX=11,LY=5 :
BOX IMPL.X=0.5Y=4.5LX=5LY=8;

BOX IMPL X=0.5¥=7.5LX=9,LY=5;

BOX DIFFX=0,Y=1,1.X=4,LY=4

BOX DIFFX=4Y=21X=16LY=2;

BOX DIFF X=2,Y=5LX=2LY=4

BOX DIFF.X=2Y=91LX=18LY=2;

BOX DIFF.X=9Y=8,LX=4LY=4

BOX POLY.X=10,Y=0.LX=8.LY=6;

BOX POLY. X=18,Y=1,LX=2LY=4

BOX POLY N=8,Y=81.X=2LY=4

BOX POLY X=0,¥Y=71.X=8.LY=6;

BOX POLY X=0%=0,1.X=0LY=1;

BOX CUTS.X=1Y=20 X=2 LY =2 NX=21X=17;
BOX CUTSX=8Y=91 XN=4 LY=2;

BOX METLX=0,Y=01.X=41Y=14; VDD
BON METT N=7. Y =K 1L.X=6,1.Y=4

BOXN METLX=17Y=11 X=41Y=4

SYMBOE END;

10
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SYMBOL  START PLAGROUND; [SEE FIGURE 12D.]
BOX DIFF.X=8.Y=!,LX=2.LY=9; .
BOX DIFF X=6Y=31LX=4LY=4,

BOX POL Y. X=3.Y=20.LX=2,LY=10;

BOX POLY X=5Y=0,LX=2 LY=2NY=2,1¥=%;

BOX POLY X=11,¥=1,LX=21LY=9,

BOX CUTS. X=7.¥=4LX=2LY=2;

BOX METL X=0Y=3,LX=14LY=4; GND

SYMBOL  END;

SYMBOL  START,PLAINPUT;

[ insert symbal definition; size: 14 wide by ~35 high ]

SYMBOL  END;,

SYMBOL START,PLAOUTPUT;

[ insert symbol definition; size: 14 wide by ~41 high ]

SYMBOL END;

LAYOUT S5-INPUT,10-PTERME-OUTPUT PLA:

[SEE FIGURE 14]
DRAW PLACELLPAIRNX=35NY=51X=14,1Y=14X=0,Y=0;
DRAW PLACONNECT.NY=51Y=14,X=70,Y=0;
DRAW PULLUPPAIRNY=5]1Y=14X=-19Y=0;
DRAW PLAGROUNDNX=5NY=2IX=141Y=79,X=0,Y=-10;
DRAW PLACELLPAIR ANGLE=270.NX=4NY=51X=141Y=14X=86.Y=14;
DRAW PULLUPPAIR ANGLE=270,NX=41X=14,X=86,Y=89;
DRAW PLAGROUNDANGLE=270,NY:=51Y=14X=14]Y=14,
DRAW  PLAINPUT NX=51X=14X=0Y =-44,
DRAW PLAOUTPUT NX=51X=14X=86,Y=-4],
BOX DIFF X=70Y=-151LX=4,LY=4;
BOX CUTS X=71Y=-14LX=2,LY=2;
BOX METLX=70.Y=-15LX=4,LY=4;
BOX METL.X=-19,Y=701.X=4,LY=%; VDD
BOX METL. X=-19Y=79LX=1051LY=4; YDD
BOX METL.X=K2.Y=83LX=4,LY=6; vDD
BOX METLX=142¥=85L.X=9,LY=4; YDD
BOX \fIEILX 151.Y=-40,LX=4 LY=129; VDD
BOX METL, X=142Y=-40LX=9,LY=4, vDD
BOX METL X=-19.Y=-15LX=19LY=4; vDD
BOX WFTLX--]‘)\--IHX:-i LY=11, vyDD
BOX METL X=70,Y=71,LX=9,LY=4, GND
BOX METLX=70,Y=-7TLX=9LY=4; GND
BOX METL.X=T0,Y=-24 1.X=9.LY=4: GND
BOX METL, X=79,Y=-45LX=4,1.Y=45; GND
BOX METL.X=83Y=-21,LX=3,LY=4; GND
BOX METL.X=142Y=-211LX=2LY=4; GND
BOX METEL X=144Y=-21LX=4LY=21; GND
BOX POLY . X=-4Y=-43LX=41Y=2; PH1
BOX POLY.X=142,Y=-7LX=15LY=2; PH2
{ insert the PLA ‘“program”, using BOXes on the diffusion

layer

to form

transistors

in

the PLAcellpair cells ]

11

+

{ insert the PLA's input, outpui, clock, and power connections ]

END:

A check plot of the PLA described above is given in figure 14. This check plot has been
simplified to include only the outlines of the basic cells, plus the additional wirimg necessary
1o complete the PLA.  The dimensions and orientations of the cells may be found by

comparing these outlines with the cell details in figure 12, Note that in figure 12 some of



[Chd., Sectl]

ir
N T s 2 BRI + 0+ |+ o+ ]+ + 1+ 0+
+ o+ |+ o+ |+ o+ |+ o+
N T T . RS e | R I S A B A O
' ' —— e+
NI R T2 B SR A e I T R
4
+ + {+ + |+ + |+ =+
4+ T+ T+ Ht T+ T 1 S I S R N S A
' i — 4
+ 4+ F + ++ o+ 4 b e e + o+ i+ o+ |+ e+
+ o+ |+ o+ |+ o+ |+ o+
T N e B A I S T L B
' t A ————+——+——+
PR T T G R T e SR S + o+ i+ o+ |+ o+ |+ o+
+ + 1+ + |+ o+ |+ +
P TR A T SRR SR § 1+ t i+ + [+ +g+ 4
FUT. N R IR R R L N
PullupPair || cellpair conmect [cellpair { + + |+ + |+ +
o4+ T+ T+t AR T S I A [
PLA- | ] 1 1
ground . —t . ] T ]
Tt from ot y——t bt
) PLAouippt
| PLAinput 1
4 -+ +
phl =t T + 1 t T T =+
) + t + -+ ¥R O¥R O ORRXN N
X1 X2 X3 X4 X5 Zl 72 Z3 Z4 Z5 Z6 Z7 I8

Fig. 14. Check Plot using only Cell Outlines, of the S5-Input, 10-Pterm, 8-Output PLA

[dimensions in lambdas; symbol labels on origin cells of the fig.]1} DRAW statements ]
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the conneciion points, where pafhs leave or enter al cell edges or where internal connections
may be fater inserted, are tagged with tick marks. Cell placements and orientations in the
check plot may be visualized by locating and identifying the appropriate connection point
marks. A comparison of the check plot with the symbolic description above will ¢larify the
function of the various DRAW statements. To assist in this comparison, the origin cell of
the array of cells produced by each DRAW statement has been marked in figure 14 with its
cell name. Note that this PLA layout could contain the PLA example of chapter 3, fig. 15f.

Symbolic layout languages are easy to define, and may be primitive or sophisticated,
according to the requirements of the user. The function of the assembler for such a
language is simply to scan and decode the statements and translate them into design files in
intermediate form. Conversion of design files into check plot or pattern generator output
files is straightforward for the above simpie language, since we have used only boxes with a
severe constraint on angular orientations. MIRROR and ANGLE transformations are easily
handlied: x and y coordinates of symbols and boxes are simply replaced by £x or =y,
according to the specific parameters, during the instantiation of symbols and drawing of

boxes prior to their replication and translation into the layout output file.

The effectiveness of the above language could be further increased by constructing an
assembler capable of handling nested sysmboels. By using nested symbols, system layouts
may be described in a hierarchical manner, leading to very compact descriptions of
structured designs. At the lowest level, one might define symbols for such small but
commonly encountered structures as the various forms of contacts. Boxes and these simple
symbols coutd then be used to construct cells such as those in the PLA example above. The
PLLA could be constructed with these cells, and then defined as a symhol (0 be used in a
larger design. An example of the sort of function one might add to create a much more
sophisticated language, and language processor, would be the capability of generating the
layout description of a PLA from the collection of basic cells, as a function of its input,

pterm, and output size parameters and logic function parameters.

Figure 15 summarizes the procedures and artifacts of hand layout, und layout description
and digitization using a layout langauge. By studying figure 15, and thinking back over the
material and examples of this section, one can visualize a complete. though primitive,
sequence of steps sufficient to prepare a design for implementation. ‘these procedures are
entirely sdequate for preparing small LSI projects for implementation. The procedures may

also e used for those furge 1S systems which have highly structured designs,
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The primary obstacle that these primitive procedures place in the path of the system
designer is the sheer lime and effort it takes to get through the loop to a new check plot
each time a small design change is made. The enthusiasm aroused by a sudden insight, such
as the conception of a completely new topological possibility for an important system cell,
can be dampened by the tedious tasks of hand layout and box digitization required before

one can really see the full effect of the idea on the overall system layout.

Though often supported by large batch mode CAD systems for containing, modifying,
checkplotting, and simulating designs, the majority of LSI layout now done in industry
begins with hand layout. Digitization is usually simplified by the use of digitizing tables,
which are much like graphics plotters in reverse: a new section of a design, laid out by hand,
is placed on the table and digitized by tapping switches while manually following the
outlines of the cell's boxes with a pointer. Although this is less tedious than digitization

using a layout language, it is still time-consuming and hardly interactive.

The next section describes an interactive graphics layout system which enables the system

designer to quickly sketch new layout ideas and see their effect immediately.
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An Interactive Eayout System

[Section ¢ontribuied by Douglas  Fairbairn, Xerox PARC, and James Rowson, Cultech]

Computing hardware of sufficient power to support highly interactive graphics has in the
past quile expensive, und this has inhibited the widespread application of interactive
computing techniques. However, because of expected advances in VLSI technology, we are
rapidly approaching the day when many will have access to personal computers with
computing power rivaling today's medium 10 large-scale systems. It will be more difficult
to provide effective software for these systems than it will be to build the computers
Lhemselves.3 In this section we describe a highly interactive layout system which runs on a
modesl personal computer, rather than on an expensive, limited access, centralized system.
This system was developed anticipating the work environment of the future, in which most

"knowledge" workers will have personal computers as part of their normal office equipment.

ICARUS1 (Integrated Circuit ARtwork Utitity System) is a software system which enables
the user 10 create and modify an integrated system layout directly on a CRT display screen.
ICARUS was conceived with the idea that the designer would create and edit a layout at the
display, without doing any more than a rough sketch or "stick diagram” before beginning
work. Creating and moving items is fast and easy enough so that the designer can truly
sketch on the screen.  Once the layout is basically correct, the ilems can be moved or

modified to arrive at the most compact layout.

The user is required to remember very little about the available commands or their use
because the commands themselves are displayed on the screen and the system prompts the
user for additional information as it is needed. The system can format and output check
plots 1o matrix type printers or on raster-scan laser printers. 1CARUS design files can be
used 1o create standard pattern generation files from which masks can be made. An
overview of design and layout procedures using the system is given in figure 16. It is

instructive to compare this with figure 15, which presents equivalent steps for hand layout.

All the software 1o accomplish these various steps runs on a small experimental
minicomputer known as the Alto. This machine was designed by researchers at Xerox
PARC uas a general purpose personal computer sutlable for both text and graphics
upp]ications3. No additional, speéial Rardware is used by ICARUS. The ICARUS system 1s
programmed in BCPL, an ALGOL-tike high level language. There are about 30K words of
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compiled code in the system of which half is in memory at any given time. At minimum,
the Alio memory has 64K 16 bit words. A 2.5 Mbyte cartridge disk drive is an integral part
of the system. The user interacts with the system through an unencoded keyboard (sofiware
definable keys) and with a pointing device called a mouse (R2, pl73). A cursor is
controlled on the screen by moving the mouse around on a small area of the user's desk. A
bit map display with a resolution of 600x800 dots is used for output, and printers for doing

check plots are available through an in-house computer network.

The ICARUS display features two windows which provide a flexible working view of the
layout, as shown in figure 17. The upper window is normally used for viewing a large piece
of the layout at small magnification, and the lower window used for looking at a smaller

section in more detail. The magnifications of the windows may be set independently.

In addition 1o the two windows there are various menus and status lines presented in the
display. The menu on the left is the command menu. The menu under the upper window is
the parameter menu. Under the parameter menu is the stipple menu, containing the mask
level codes. Rectangles at a given level are stippled with the pattern for that level. The
palterns were chosen so that, where necessary, one pattern could be seen through the other to
verify that appropriate layers are overlapping properly. Current drawing coordinates and

the status of system memory space are displayed to the right of the stipple menu.

The user interface is implemented principally through the display, the mouse and five
conveniently located keys on the keyboard. Frequently used commands are given using only
one or (wo stmple hand operations, and can be done without glancing away from the
display. These characteristics, coupled with rapid display redrawing, enhance the system's

interactiveness.

The internal data representation in ICARUS is based on three types of items: rectangles,
symbols, and text strings. The organization of these items into memory data structures, and

the typical run-time memory space atlocation is illustrated in figure 18.

Rectangles are created with the aid of the mouse. They may have angular orientations
which are integer multiples of 45°. They can be moved, copied, or deleted using the mouse
and one key. As items are created, Lhey are added to an item list in main memory. Fach
rectangle is stored as 6 words in memory: the first word 15 the pointer to the next item, the

second specifies what Taver iU is on, what tvpe of item it is, etc. The third through sixth
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words specify the minimum and.maximum x and y coordinates. The items are kept in order

of increasing values of minimum x coordinate, so that the display may be quickly redrawn.

When « symbol is defined by the user, the items which are contained within il are stored on
the disk, while a pointer, the name and the bounding box for the symbol are placed in main
memory. Symbols can be nested to any level. Once a symbol definition has been created,
one is free to define symbol instances which are references to that definition. The symbol
instance may be a command to draw one copy of the symbol at a certain location, or a
whole array. The size of the symbol instance, which resides in main memory, is the same in
both cases. The use of symbols wherever possible tends to preserve main memory space.
Rather large systems can be designed using ICARUS, if the sysiems are well structured and
make extensive use of symbols. This is true even when using a minimum sized 64K

memory, which leaves little space for layout data.

Text is used for identifying data and control lines and is merely a memory aid to the user.
There is no attempt to make use of the text or other information in the drawing for

connectivity or other types of checking.

Operations more complex than those such as draw and move are implemented through the
use of menus as shown in figure 17. The desired command is chosen by pointing at it with
the cursor and clicking ¢ mouse button. The selected command is then inverted to white-on
black video to identify its selection, which the user then confirms with a key on the
kevboard. At this point, the system prompts the user with instructions presented in the
display area normally holding the stipple menn. The instructions lead the user through the

individual steps required, for example, to mirror or rotate a group of items.

Operations on symbols are defined in a secondary menu which can be reached by selecting
the command "symbols" on the primary menu. The secondary menu offers commands such
as define symbol, draw symbol, list the names of the symbols is the symbol library, or
expand symbol. This last command is used to modify a symbol which is already defined,

the modified symbol definition immediately updating all symbol instances which point to it.

Various system parameters are displaved in the parameter line directly below the top
window.  Values such as the default line widhh for the currently selected Jayer, the
magnification of the top and bottom windows, and the spacing of the tick marks are all

displaved.  The parameter values can be changed at any time by selecting the desired one
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and lyping the new parameter value on the keyboard. The XY layout coordinates of the
point last clicked with the mouse are displayed at the right of the screen. The DX,DY
distunces between the last two clicks are also displayed. This feature provides a convenient

“ruler” for measuring distances on the layout,

The construction of an interactive layout system such as ICARUS is a relatively
straightforward task for one who is experienced in interactive computer graphics (R2), given
a display oriented minicomputer system and effective systems building software. A first
version of ICARUS was constructed in 3 man-months, and a mature version produced in an

additienal 4 man-months.

ICARUS has been used internally in Xerox to lay out many integrated system projects, and
to organize a number of multi project chips. Among the users were a number of individuals
previously unfamiliar with integrated circuit layout, who nevertheless successfully completed
1.SI projects with up to 10,000 transistors. We find that the interactive nature of such a
system not only aids the experienced designer, but also enhances the learning process for the
novice. We believe that such interactive, personal design systems greatly enhance the
creative ability of the designer by enabling easy generation and examination of many more
design alternatives per unit time than would be the case with centralized, non-interactive

design systems.

However, there is more to integrated system design than circuit layout. Design rules must be
checked, logic transfer functions tested, and, in ceriain cases, circuit transfer functions
computed to determine delays and predict system performance. We believe that the
direction in which to search for further improvements in design tools is in the replacement
of the primitive ICARUS type of data structure with one which allows design functions
other than just layout to also interactively operate upon the same data base. This is the

subject of the later seciion on fully integrated design systems.

17
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The Caltech Intermediate Form for LSI Layout Description

[Section Contributed by Robert F. Sproull, Carnegie Mellon University, and Richard F. Lyon, Xerox PARC]

The Caliech Intermediate Form (CIF Version 2.0) is a means of describing graphic items
(mask features) of interest to LSI circuit and system designers. lts purpose is 1o serve as a
standard machine readable representation from which other forms can be constructed for
specific output devices such as plotters, video displays, and pattern-generation machines.
The intermediate form is not intended as a symbolic layout language: CIF files will usually
be created by computer programs from other representations, such as a symbolic layout
fanguage or an interactive design program. Nevertheless, the form is a fairly readable text

file, in order to simplify combining files and tracing difficuities.

The basic idea of the form is 1o specify literally every geometric object in the design using
ample precision. Use of this form provides participating design groups easy access 1o output
devices other than their own, enables sharing designs with others, allows combining several
designs to form a larger chip, and the like. [t is not necessary for all participating groups to
implement the entire set of features of CIF, as long as their programs and documents
contain warnings about unimplemented functions; nevertheless, the syntax must be correctly

interpreted by all programs that read CIF, to assure a reasonable result.

CIF thus serves as the common denominator in the descriptions of various integrated system
projects. No matter what the original input methods are (hand layout and coding, or a
design system), the designs will be translated to CIF as an intermediate, before being

translated again to a variety of formats for output devices or other design aids.

The original CIF was conceived by Ivan Sutherland and Ron Ayers in 1976. Subsequent
improvements were contributed by Carlo Sequin, Douglas Fairbairn, and Stephen

Trimberger.

This specification is divided into four parts: a description of the syntax of the form, a
description of the semantics, an explanation of the transformations used, and a discussion

of the conversion of wires 1o boxes.
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Syntax

A CIF file is composed of a sequence of characters in a limited character set. The file

contains a list of commands, followed by an end marker; the commands are separated with

semicolons. Commands are:

Command

Polygor with a path

Box with tength, width, center, and direction
{direction defaults to (1,0} if omitted)-

Round Hash with diameter and center

Wire with width and path

Layer specification

Start symbol definition with index, a, b
(a and b both default to 1 if omitted)

Finish symbol detinition

Delete symbci definitions

Calt symbol

Liser extension
Comments with arbitrary text
End marker

Form
P path
B integer integer point point

R integer point
W integer path

L. shortname

DS integer integer integer
DF

DD integer

C integer transformation
digit userText

{ commentText )
E

A more formal definition of the syntax is given below. The standard notation proposed by
Niklaus Wirth1? is used: production rules use equals = to relate identifiers to expressions,

"on

vertical bar | for or, and double quotes around terminal characters; curly brackets {}
indicate repetition any number of times including zero; square brackets [ ] indicate optional
factors (i. e. zero or one repetition); parentheses () are used for grouping; rules are
terminated by period. Note that the syntax allows blanks before and after commands, and
blanks or other kinds of separators (almost any character) before integers, etc. The syntax

reflects the fact that symbol definitions may not nest

{ { btank } [ command ] semi ] endCommand { blank }.

primCommand | defDeleteCommand |

defStariCommand semi { { blank } [ primCommand ] semi } defFinishCommand.
primCommand = polygonCommand | boxCommand | roundFlashCommand | wireCommand |
layerCommand | caliCommand | userExtensionCommand | commentCommand.

cifFile
command

"P" path.

"B" integer sep integer sep peint [ sep point ].
"R" integer sep point.

"W" injeger sep path.

"L" { blank } shoriname.

"D" { blank } "S" integer [ sep integer sep integer ].
"D { blank } "F".

“D" { blank } "D" integer.

"C" integer transformation.

digit userText.

"(" commentText ")".

"E".

polygonCommand
boxCommand
roundFiashCommand
wireCommand
tayerCommand
defStartCommand
defFinishCommand
defDeleteCommand
callCommand
userExtensionCommand
commentCommand
endCommand

L LT T R [ S T S IR T I

iHowouoh



[Chd, Sect.2: CIF by R. F. Sproull and R. F. Lyon ]<Conway>impZ.visi January 28, 1978 10:16 AM

transformation

{ { blank } { “T" point | "M" { blank } "X" | "M" { blank } "Y" | "R" point )}

path = point { sep point }.
point = slinteger sep sinteger.
sinteger = {sep } [ "-" ] integerD.
integer = { sep } integerD.
integerD = digit { digit }.
shortname = c[clfel[ec]
c = digit | upperChar.
userText = { userChar }.
commentText = { commentChar } | commentText "(" commentText )" commentText.
semi = {blank } ";" { blank }. °
sep = upperChar | blank.
digit S QN | M| MRt | M3 | AT | UE" | eT | 7T | et | ne.
upperChar < CAM BN CM | .| M2
blank = any ASCH character except digit, upperChar, <", "(", ")", or "".
userChar = any ASCH character except "
commentChar = any ASCH character except "{" or ")".
Semantics

The fundamental idea of the intermediate form is to describe unambiguously the geometry
of patterns for LSI circuits and systems. Consequently, it is important that all readers and
writers of files in this form have exactly the same understanding of how the file is o be
interpreted. Many of the decisions in designing the file format were made to avoid
ambiguily or small but troublesome errors: floating point numbers are avoided, there are no

iterative constructs, though there may be in future additions to CIF.

A simple file format might include only primitive geometric constructs, such as pelygons,
boxes, flashes and wires. Unfortunately, the geometric description of a chip with hundreds
of thousands of rectangles on it would require an immense file of this sort. Consequently,
we have made provision for defining and calling symbols; this should reduce the size of the

file substamtially.

It is important that programs processing CIF files operate cautiously, maintaining a constant
vigilance for mistakes or entries that will not be processed properly. The description below

mentions implementation suggestions or cause for caution inside brackets [].
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Measurements. The intermediate form uses a right-handed coordinate system shown in
Figure 19a, with x increasing to the right and y increasing upward. (Directions and
distances are alWays* interpreted in terms of the front surface of the finished chip, not in
terms of the various sizes and mirrorings of the intermediate artifacts.) The units of
distance measurement are hundredths of a micron (um); there is no limit on the size of a
number. [Programs reading numbers from CIF files should check carefully 1o be sure that the number does
not overflow the number of bits in the internal representation used, and should specify their own limits, if

any.]

Directions. Rather than measure rotation by angles, CIF uses a pair of integers to specify a
“direction vector.” (This eliminates the need for trigonometric functions in many
applications, and avoids the problem of choosing units of angular measure.) The first
integer is the component of the direction vector along the x axis; the second integer along
the y axis. Thus a direction vector pointing to the right (the +x axis) could be represented
as direction (1 @), or equivatently as (17 0); in fact, the first number can be any positive
integer as long as the second is zero. A direction vector pointing NorthEast (i.e., rotated 45
degrees counterclockwise from the x axis) would have direction (1 1), or equivalently (3 3),

and so on. [A (0 0) direction vector may be defaulted to mean the +x axis; a warning should be generated].

Geomeiric primitives. The various primitives that specify geometric objects are not intended
to be mutually exclusive or exhaustive. CIF may be extended occasionally to accommodate
more exotic geometries. At the same time, it is not necessary 1o use a primitive just because
it is provided. Notice in the examples below that lower case comments and other characters
within a command are treated as blanks, and that blanks and upper case characters are

acceptable separators.

Boxes: Box Width 60 Length 25 Center 80,40 Direction -20,20; {or B80 .25 80 40 -20 20;}

The fields which define a box are shown graphically in Figure 19a. Center and direction
(optional, defaults to +x axis) specify the position and orientation of the box, respectively.
Length is the dimension of the box parellel to the direction, and Width is the dimension

perpendicular to the direction.

Polygons: Polygon A 0,0 B 10,20 C -30.40; {or PQ 0 10 20 -30 40))
A polygon is an enclosed region determined by the vertices given in the path, in order. For
a polygon with n sides, n vertices are specified in the path (the edge connecting the last

vertex with the first is implied; see Figure 19b). [Programs that try to interpret polygons may place
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various restrictions on their paths; no set of constrainis has been generally zccepted, and no program currently

exists for comverting completely gemeral polygons to pattern generator output.]

Flashes: RoundFlash Diam 200 Center -500,800; (or R200 -500 800;}
The diameter of a flash is sufficient to specify its shape, and the center specifies its
position. (see Figure 19b). [Some programs may substitute octagons, or other approximations, for round

flashes.]

Wires: Wire Width 50 A 0.0 B 10,20 C -30,40; (or W5C 0 0 10 20 -30 40;)

It is sometimes convenient to describe a long, uniform width run by the path along its
centerline. We call this construct a wire (see Figure 19b). An ideal wire is the locus of
points within one half-width of the given path, Each segment of the ideal wire therefore
includes semicircular caps on both ends. Connecting segments of the wire is a transparent
operation, as is connecling new wires to an existing one: the semicircular overlap ensures a
smooth conneclion between segments in a wire and between touching wires. [For output
devices that have a hard time constructing circles, we approximate the ideal wire with squared-off ends. Notice
that squared-off ends work nicely for segments mecting at right angles, but cause problems if wires or wire
segments are connected at arbitrary angles. A way 1o circumvent this problem is t¢ convert, prior to output, any
wires in a file into connected sets of boxes of appropriate length, width, angle and center positi{)n (Figure 1%9¢).
The width of each box js the same as the width of the wire. The length of the boxes must be adjusted 10
minimize unfilled wedges and overlapping "ears”. An aigorithm for constructing boxes from a wire description
is given in a later subsection. If the wire is specified within & symbol definition, the approximation need be

computed only once, and can then be used each time the symbol is instantiated.]

Layer specification. Layer ND nmos diffusion; (or LND;)

Fach primitive geometry element (poiygon, box, flash, or wire) must be labeled with the
exact name of a fabrication mask on which it belongs. Rather than cite the name of the
layer for each primitive separately, the layer is specified as a "mode” that applies to all
subsequent primitives, until the layer is set again (layer mode is preserved across symbol

calls, which are discussed later).

The argument to the layer specification is a short name of the layer. Names are used to
improve the legibility of the file, and to avoid interfering with the various biases of
designers and fabricators about numbers (one person's “first layer” is another's "last”). [The
intention of the laver specification command is to label locally the layer for a particular geometry., It is
therefure senseless to specify a box, wire, polygon or flash if no layer huas been specified. In order 1o detect

this error. the command LZZZZ is implicitly inserted at the beginning of the file, and as the first command of
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a symbol definition (DS; see below). Any attempt o generate geometric output on layer ZZZZ will result in an

error. ]

[t is important that layer names be unique, so that combining several files in intermediate
form will not generate conflicts. The general idea is that the first character of the name
denotes the technology, and the remainder is mnemonic for the layer. At present, the

following layers are defined:

ND NMOS Ditfusion

NP NMOS Polysilicon

NC NMOS Contact cut

N NMOS Metal

NI NMOS depletion mode Implant
NB NMOS Buried contact

NG NMOS overGlass openings

New layer names will be defined as needed.

[Programs that read CIF wil! want to check to be sure that layer names used do in fact correspond to
fabrication masks being constructed. However, the file may cite layer names not used in a particular pass over

the CIF file. Tt would be helpful for the program to provide a list of the layer names that it ignored.]

Symbols. Because many LSI layouts include items that are often repeated, it is helpful to
define often-used items as "symbols." This facility, together with the ability to "call" for an
instance of the symbol o be generated at a specific position, greatly reduces the bulk of the

intermediate form,

The symbal facilities are deliberately limited, in order to avoid mushrooming difficulties of
implementing programs that process CIF files. For example, symbols have no parameters;
calling a symbol does not allow the symbo! geometry to be scaled up or down; there are no
direct facilities for iteration. The main reason for symbol facilities is to limit the file size;
if the symbol mechanism is not adequate for some application, the desired geometry can still
be achieved with less use of symbols, and more use of explicit geometrical primitives.
[Symbols need not be used at all; this eliminates the need for intermediate storage for symbol definitions, but
results in larger design files. Machines which must process a fully-instantiated representation of a layer (such
as pattern generators) might only accept CIF files witheut symbol definitions, to reduce the cost of
implementation. Therefore, it would be useful to have a program that would convert general CIF files w fully

instantiated CIF files, and mavbe to sott by layer, location, or whatever.]

The ability to call for iterations (arrays) of symbols is not provided in CIF Version 2.0.
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This is primarily due to the difficulty of defining a standard method of specifying
iterations, without introducing machine-dependent computation problems. It is still
possible to acheive a great deal of file compaction by defining several layers of symbols (e.g.
cell, row, double-row, array, etc.). However, the ability to iterate symbol calls is a likely

prospect for a future addition 1o CIF.

Defining symbols: Definition Start #57 A/B = 100/1; ... ; Definition Finish; (or DS57 100 1; ... \DF})

A symbol is defined by preceding the symbol geometry with the DS command, and
following it with the DF command. The first argum-ent of the DS command is an
identifying symbol number (unrelated to the order of listing of symbol definitions in the
file).

The mechanism for symbol definition includes a convenient way 1o scale distance
measurements. The second and third argumenis 1o the DS command are called a and b
respectively. As the intermediate form is read, each distance (position or size) measurement
cited in the various commands (polygons, boxes, flashes, wires and calls) in the symbol
definition is scaled to (a*distance)/b. For example, if the designer uses a grid of 1 micron,
the symbol definition might cite all distances in microns, and specify a=100, b=1. Or the
designer might choose lambda (characteristic fabrication dimension) as a convenient unit,
This mechanism reduces the number of characters in the file by shrinking the integers that
specify dimensions and may improve the legibility of the file (it does not provide scaling, or

the ability to change the size of a symbol called within the definition).

Definitions may not nest. That is, after a DS command is specified, the terminating DF
must come before the next DS. The definition may, however, contain calls to other

symbols, which may in turn call other symbols.

There is only one restriction on the placement of symbol definitions in the file: a symbol
must be defined before its instantiation becomes necessary. This constraint can be satisfied
by placing all symbol definitions first in the file, and then calls on the symbols. In fact, it
is often convenient to have the file consist exclusively of symbol definitions and ONE call
on a symbol. This call will be the last command in the file before the end command. [If a
definition tedefines a symbol that already exists, the previous definition is discarded; a warning message should
be generated. When several people contribute to a design, some symbol management is therefore necessary; see

Delering svmbol definitions below.]
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Calling symbols: Call Symbol #57 Mirrored in X Rotated to -1.1 then Translated to 10,20;
The C command is used to call a specified symbol and to specify a transformation that
should be applied to all the geometry contained in the symbol definition. The call
command identifies the symbol to be called with its "symbol index,” established when the

symbol was defined.

The transformation to be applied to the symbol is specified by a list of primitive

transformations given in the call command. The primitive iransformations are:

T point Translate the current symbol origin to this point.
M X Mirror in X, i.e., multiply X coordinate by =1.
MY Mirror in Y, i.e., multiply Y coordinate by -1.

R point Rotate symbol's x axis to this direction.

Intuitively, each coordinate given in the symbol is transformed according to the first
primitive tranformation in the catl command, then according to the second, etc. Thus "CH1
7500 0 MX" will first add 500 to each x coordinate from symbol 1, then multiply the x
coordinate by -1. However, "C1 MX T500 0" will first multiply the x coordinate by -1, and
then add 500 to it: the order of application of the transformations is therefore important.
In order to implement the transformations, it is not necessary to perform each primitive
operation separately; the several operations can be combined into one matrix multiplication

(see the subsection on transformations).

Symbol calls may nest; that is, a symbol definition may contain a call to another symbol.
When calls nest, it is necessary to "concatenate" the effects of the transformations specified

in the various calls (see the subsection on transformations). [There is no sensible way in which a
symbol may be invoked recursively (i.e., call iwself, either directly or indirectly). Programs that read the
intermediate form should check that no recursion occurs. This can be achieved by retaining a single flag with
each symbol tw indicate whether the symbol is currently being instantiated; the flags are initialized to "false.”
When a symbol is zbout to be instantiated, we check the flag; if it is "true,” we have detected recursion, print
an error message and do not perform the call. Otherwise, we mark the flag “true,” instartiate the symbol as

specified, and mark the flag "false" when the instantiation is complete.]

Layer settings are preserved across symbol calls and definitions. Thus, in the sequence:

LNM:

§6 20 0;

C 57 T45 13,
DS 114..;

DF;

LNM;

8300
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the second LNM is not necessary, regardless of the specification of symbols 57 and 114.

Deleting symbol definitions: Delete Detinitions greater than or equal to +00; (or DD100;)

The DD command signals the program reading the file that all symbols with indices greater
than or equal to the argument to DD can be "forgotten™ ~- they will not be instantiated
again. This feature is included so that several intermediate form files can be appended and
processed as one. In such a case, it is essential to delete symbol definitions used in the first
part of the file both because the definitions may conflict with definitions made later and

because a great deal of storage can usually be saved by discarding the old definitions.

The argument to DD that allows some definitions to be kept and some deleted is intended to
be used in conjunction with a standard "library” of definitions that a group may develop.
For example, suppose we use symbol indices in the range 0 to 99 for standard symbols
(putlup transistors, contacts, etc.) and want to design a chip that has 2 student projects on it.
Each project defines symbols with indices 100 or greater. The CIF file will look like:

/Detinitions of library symbols;

08 0100 1

/ ..definition of symbol O in library;
DF;

DS 1 100 1,

/ ..definition of symbol 1,

DF;

/ ..remainder of library;

/Begin project 1;

DS100 100 1;

/ .. first student's first symbol definition;
DF;

DS109 100 1;

/ . dirst student's main symbol detinition,

DF;

C108 T403 -110;/ call on first student's main symbol;

DD100;/Preserve only symbols 1 to 98;

/Begin project 2;

DS100 100 ¥;

/ ..second studeni's first symbol definition;
DF;

DS113 100 1,

/ ..second student's main symbol detinition;

C1 T-3 45;/Call on library symbol, still available,;

DF;

C113 T401 0:/ call on second student's main symbol;

E

User expansion. 3'SYMBOL.LIBRARY'. 5:NONSTANDARD DESIGN RULES: LAMBDA = 4.0
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Several command formats (an}," command starting with & digit) are reserved for expansion
by individual users; the authors of the intermediate form agree never to use these formats in
future expansions of the standard format. For example, privale expansions might provide
for (1) requesting that another file be "inserted”™ at this point in the processing, thus
simplifying the use of symbol libraries; (2) inserting instructions to a preprocessor that will
be ignored by any program reading only standard intermediate form constructs; or (3)
recording ancillary information or data structures (e.g., circuit diagrams, design-rule check
results) that are to be maintained in parallel with the geometry specified in the style of the

intermediate form.

Comments: (HISTORY OF THIS DESIGN:);
The comment facility is provided simply to make the file easier to read. [It is possible to
deactivate any number of commands by simply enclosing them within a pair ¢f parentheses, even if they already

include balanced parentheses.]

End Command: End of iile.
The final E signals the end of the CIF file. {[Programs that read CIF should gave an error message if

the file ends without an End Command, or a warning if more text other than blanks foliows the E.]

10
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Transformations (see also reference R2)

When we are expanding a symbb], we need to apply a transformation to the specification of
an item in the symbol definition to get the specification into the coordinate system of the
chip. There are three sorts of measurements that must be transformed: distances (for
widths, lengths), absolute coordinates {for "points” in all primitives}) and directions (for

boxes).

Distances are never changed by a symbol call, because we allow no scaling in the call. Thus

a distance requires no transformation.

A point (x,y) given in the symbol is transformed to a point (x%y") in the chip coordinate

system by a 3x3 transformation matrix T:

Ix vy 1] = [x vy 11 T

[t is a good idea to check either the lasi column of T, or the 1 at the end of the transformed vector, even

though they never need 10 be computed.]

T is itself the product of primitive transformations specified in the call: T = T1 72 T3,
where T1 is a primitive transformation matrix obtained from the first transformation
primitive given in the call, T2 from the second, and T3 from the third (of course, there may
be fewer or more than 3 primitive transformations specified in the call). These matrices are

obtained using the following templates for each kind of primitive transformation:

Tab. Tn = 1 0 0
o} 1 0
a b 1
M X. Tn = -1 0 Q
o] 1 0
o] 0 1
MY Tn = 1 0 o]
0 | 0
o] ) 1
Rab. Tn = a‘e b/c 0
-b/c a/c 0 where ¢ = Sqrt(32+b2)
0 0 1

Transformation of direction vectors (x y) is slightly different than the transformation of

coordinates. ‘We form the vector [x y 0], and transform it by T into the new vector [x" y'
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0]. The transformed direction vector is simply (x' ¥'). [Note that some output devices may require
rotations to be specified by angles, rather than direction vectors. Conversion into this form may be delayed

until necessary 10 generate the output file. Then we calculate the angle as ArcTan(y/x), applying care when

x=0.]

Nested calls require that we combine the transformations already in effect with those
specified in the new call. Suppose we are expanding a symbol a, as described above,
transforming each coordinate in the symbol to a coordinate on the chip by applying matrix
Tac. Now we encounter, in a's definition, a call to b. What is to happen to coordinates
specified in b? Clearly, the transformations specified in the call will yield a matrix Tba
that will transform coordinates specified in symbol b to the coordinate sysitem used in
symbol a. Now these must be transformed by Tac to convert from the system of symbol a

1o that of the chip. Thus, the full transformation becomes
[x ¥y 1] = {x y 1] Tba Tac

The two matrices may be multiplied together to form one transformation Tbc = (Tbha Tac)
that can be applied to convert directly from the coordinates in symbol b to the chip. This

procedure can be carried to an arbitrary depth of nesting.

To implement transformations, we proceed as follows: we maintain a “current
transformation matrix” T, which s initialized to the identity matrix. We use this matrix to

transform all coordinates. When we encounter a symbol call, we:

1. "Push" the current transformation and layer name on a stack.

2. Set layer name to ZZZZ. '

3. Collect the individual primitive transformations specified in the call into the
matrices Tt1, T2, T3 etc.

4. Replace the current transformation T with T1 T2 T4 .. T, i.e., premultiply
the existing transformation by the new primitive transformations, in order).

5. Now process the symbol, using the new T matrix.

6. When we have completed the symbol expansion, "pop” the saved matrix and
layer name from the stack. This restores the transformation to its state

immediately before the call.

12
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Decomposing Wires Into Boxes

The following algorithm for decomposing wires into boxes was developed by Carver
Mead, and first implemented at Cattech by Ron Ayers; it was was further modified to be
consistenl with the use of direction vectors, to allow more general path lengths, and to
avoid use of trigonometric functions. [Note that this decomposition covers more area than the
locus of points within w/2 of the path for small angles of bend, but less area for sufficiently sharp bends;
i particutar, if a path bends by 180 degrees (reverses) it will have no exiension past the point of reversat (it

is missing a full semicircle). Other decompositions are possible, and may better approximale the correct

shape.]

Let the wire consist of a path of n points p,,...p,.
Let w represent the width of the wire.
"Initialization:”
if n = 0 THEN DONE; "no path"
'Fn =1 THEN
{MAKEFLASK[ Diameter « w, Center « p,]; "single-point gets a flash™;
DONE; };
1+« 1;
OldEntension « w/2; "initial end of wire"
Segment « p, - p;; "p, and p, are points in path, Segment is a vector (a point)”
"LoopConditions:™
FOR p;, P;,q In path UNTIL p; 4 is last DO
“calculate the box for the segment from p; to p;, 2"
(F p,,, is last THEN { Entension « w/2; "final end of wire" }
ELSE
{ "compute Entension for intermediate point"
NextSegment « p._, - p;,; next vector in path”
T « MATRIX[ X[Segment], -v[Segment},
yY[Segment], X[Segment] T
T transforms Segment to +x axis."
Bend « muLTIPLY[ NextSegment, T ]; "relative direction vector”
"if Bend is (0 0), delete p,,,, reduce n, and start over”
Entension « w/2 * ( ABs[yY[Bend]] /
( LENGTH[Bend] + ABS[Xx[Bend]] ) )
|5
MAKEBOX [ { Length  « LENGTH[Segment] + Entension + OldEntension; },
{ Width «w },
{ Center « (p;, + p;,))/2 + ( Segment / LENGTH[Segment] ) *
(Entension - OldEntension)/2; },
{ Direction « Segment; "careful, may be zero vector” } J;
iei+1;
OldEntension « Entension;
Segment « NextSegment; "next vector in path”
ENDLOOP;
DONE;

13
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Fig. 19a. Box Representation in Intermediate Form
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Fig. 19b. Other Items in the Intermediate Form

T transforms Segment to the +X axis

AB = Segment * T Similar triangles BCD, EFG, BFH
BC = NextSegment * T BC:CD:DB :: EF:FG:GE : BF:FH:HB
Bend = Vector BC ‘ FG = FB + BG
Extension = BG = BH .~ ¢ \> - BH * (BC/DB) + BG
—= / = (1 + BC/DB) * BG
(\ g J,// BG = FG / (1 + BC/DB)
d 1 d = GE * (BC/DB) / (1 + BC/DB)
A H\B f// = GE * (CD 7 (DB + BC))
E or Extension = w/2 * Y[Bend] 7 (LENGTH[Bend] + X[Bend])

fig. 19¢. Converting Wires to Boxes
(cif 19.press)



[Ch4: Implementing Integrated System Designs: Sect.3]<Conway>imp3.visi January 30, 1978 4:33 PM

The Multi-Project Chip

[nsight into integrated system design is most quickly gained by actually carrying through to
completion several LSI design projects, each of increasing scope. A large, complex VLSI
system could be quickly and successfully developed by designers able to easily implement
and test prototypes of its subsystems. The separate subsystems can be implemented, tested,
debugged, and then merged together to produce the overall system layout. However, such
activities are only practical if a scheme exists for carrying out implementation with

minimum turnaround time and low procedural overhead per project.

In this section we describe procedures for organizing and implementating many small
projects by merging their layouts onto one multi-project chip. Then each designer of a
small project or subsystem need not carry the entire procedural burden involved in
maskmaking and fabrication. We also include a collection of practical tips and hints that
may prove useful to those undertaking their first projects or organizing their first multi
project chips. While the details in this section are specific to present maskmaking and
fabrication technology, they nevertheless give a feeling for the sort of things that must be
done to implement projects in general. In a later section we discuss how multiple project

implementation might be done in the future.

Figure 20 contains a photomicrograph of a Caltech class project chip containing 15 separate
student projects. The individual projects were simply mergéd together onto one typically
sized chip layout, approximately 3 mm by 4 mm, and implemented simultaneously as one
chip type. Most of these projects are prototypes of digital subsysiems designed using the
methodology of this text. By implementing a small "slice” of a prototype subsystem array,
one can verify that its design, layout, and implementation are correct, and measure its power
and delay characteristics as yielded by the particular fabrication process, thus gaining almost

as much information as would be obtained by implementing the full array.

Following fabrication, the wafers containing such multi project chips are scribed, diced, and
then divided up among the participants. The typical minimum fabrication run is about 10
wafers, each ~7.5 to 10 cm in diameter. Thus even a minimum run provides a few thousand

chips, and each participant ends up with many chips, Participants may then each package
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Fig. 20. Photomicrograph of a Caltech Class Project Chip
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their chips, bonding the package leads to the contact pads of their individual project. Since
most such projects are relatively small in area, yields are unusually high: if a project's design

and layoul have been done correctly, most of the corresponding chips will work.

Organizing a multi-project chip involves: (i) creating the layout of a starting frame, into
which the various projects are to be merged, (ii) gathering, relocating, and merging the
project layouts into the starting frame to create one design file and generating from this the
PG files for the overall project chip, and (iii) documenting various parameters and

specifications to be used during maskmaking and fabrication.

The starting frame contains all the auxiiiary portions of the chip layout: scribe lines,
alignment marks, line width testers (critical dimension marks), and test patterns. The
starting frame may contain fiducial marks on each mask level if these are not to be placed
by the mask house, and in some cases may contain a parity mark on each level to mark the
appropriate reticle side and orientation during step and repeat reduction. A tip: placing a
mask level name or symbol somewhere within the chip's scribe line boundary on each level
helps prevent the fatal error of level interchange at some time during project merging,

maskmaking, or fabrication.

The contents of this starting frame must be carefully worked out to meet the requirements
and constraints of the chosen mask house and fab line. The important factor of turnaround
time for the entire mask and fab sequence may be reduced to some extent by repeatedly
using a relatively standard starting frame which then becomes familiar to all those involved.
Some typical values for the time involved: 2 to 3 weeks for maskmaking, and then 3 to 4

weeks for fabrication, longer if large work queues exist at the mask or fab firms.

When a multi-project chip is scheduled, a tentative chip partition for each project can be
negotiated among the participants. Project design and layout can then proceed, with
iterations on the space allocation being done right up till the final merging. The gathering
and merging of project layout files into one design file is simplified if they are in a common
intermediate form. Projects may then be relocated to their respective partitions of the chip,
displayed, plotied, or otherwise checked, using minimum and consistent software operating
upon manageable sized files. When the project chip appears correctly organized, pattern

generator (PG) files are produced and written on a mag tape to be sent 1o the mask house.

An alternative to the merging of projects at the intermediate form level, is the relocation



[Ch.4: Implementing integrated System Designs: Sect.3]<Conway>imp3.visi January 30, 1978 433 PM

and merging of their PG files. . However, the PG files for major designs, containing fully
instantiated artwork, become unwieldy in size even at today's complexity. The PG file
merging scheme is workable for projects of small to moderate size, and does provide a
contingency plan for including projects having alien intermediate forms. If designs are
relocated and merged at the PG level, additional software should be provided for displaying
or plotting the chip at that level, so that merging errors may be spotied. A tip: it is a good
idea in any case to have some bounds checking to prevent stray items of one project from

¢lobbering another.

A thought: the interface between design groups and mask houses would be cleaner if design
files in a common intermediate form, such as CIF, rather than PG files were used to
transmit designs to the patterning process. Files would be much smaller. The use of data
links would be eased. The process to convert and sort design files into PG files, involving
patterning mechanism dependent optimization, would be appropriately located: in

association with the particular patterning mechanism,

Fxamples of Muilti-Project Chips:

The above concepts and some further possibilities may be clarified by examining the details
of some specific examples. Figure 21 illustrates a collaborative Xerox PARC/Ca]téch
multi-project chip set [organized by D. Fairbairn, D. Johannsen, R. Lyon, J. Rowson, S, Trimberger]. The
figure was produced as a softwére blowback from the PG file, of the metal level of this chip
set. Projects in the set ranged in scope from the test of a few cells of an experimental, low
power shift register [C. Scquin, U. C. Berkeley, and R. Lyon, Xerox PARC], up to a complete content

addressible cache memory system [D. Fairbairn].

Although several of the projects in the set are fairly large, all were individually designed to
vield chip sizes packagable in standard 40 pin packages, which can hold chips up to ~ 7 mm
square. The pattern generator at the intended mask house was a GCA/D.W.Mann 3600, and
the photorepeater was a Mann 3696. Together, these can produce 10x reticles having field
sizes as large as 10 cm square, and can reduce, step, and repeat these at a maximum of 1¢mm
x,y intervals onto masks. Therefore, the 3600/3696 can provide masks for square chips up
to 10 mm (10,0004) on a side. A 10mm square chip can hold the patterns of several
normally sized chips. By including interior scribe lines in the starting frame, as indicated

in figure 21, one reticle sel can be patterned on the Mann 3600 to contain a number of
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different chips, each of which may contain more than one project. When masks are made,
each reticle is photorepeated at intervals in x,y corresponding to its outer dimensions minus
some scribe line overlap. In the example in figure 21, the x,y stepping distances were both
~9700 microns. Fabricated wafers are scribed and diced on all scribe lines, including the
interior ones, to vield chips of typical sizes. One of the projects, on the lower left chip in
figure 21, is an experimental charge coupled device array [R. Davies]. The CCDs rode along
on this chip set to obtain working masks for use in a completely different process

technology (triple poly) from the standard nMOS the other projects used.

Figure 22 provides a higher magnification PG file software blowback of the region near the
center of the left scribe line of the chip set. Alignment marks and line width testers
(C/D's) were placed in this region, as noted in the figure. Software blowbacks of individual
mask levels, more closely resembling the reticles and masks than would a composite design
checkplot of all levels, are useful in conveying such location information to the mask and
fab houses. Parity marks were not needed on the reticles for this project chip set. Fiducial
marks were placed on the reticles by the mask house. Since the software converting the
design files to PG files had just been constructed prior to organizing this chip set, reticle
blowbacks were requested before proceeding further with maskmaking to verify that

everything through patiern generation had worked correctly.

Some other practical details: Participants in the chip set shared some of the commonly used
layout items normally required in any project. Examples were input contact pads with
attached "lightning arrestor™ circuits to protect the input MOSFET gates, and output drivers
snaked around and attached to output pads. Even at current device sizes, pads occupy a
farge fraction of the chip area for large collections of projects, and participants tend to
make the pads as small as their bonding skill allows. A square pad ~75pm on a side is a
rather small bonding target, and 125um on a side is easier for the novice to hit. Perhaps
~100um square pads separated by ~75pm is a good compromise, and these should be at least
25um from any other metal lines to avoid shorting the lines when bonding.

The scribe lines on this chip set were laid out as 140pm wide cuts down to 160um wide
paths on the diffusion level, 1o provide lanes free of oxide for scribing or sawing. Metal
paths 30um wide were then laid out straddling the boundaries of these scribe lines, to
provide electrical contact from the substrate to the metal during the eiching of the metal
layer. Since all the projects on this chip set were prototype designs, and were not intended

10 be placed in extended use, the chips were not overglassed. Eliminating the overglassing
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meant that a mask level for défining cuts through overglassing over the contact pads and
scribe lines was not needed, reducing maskmaking costs, On the other hand, the chip set
included a mask level to pattern the thin gate oxide, to provide buried contacts between
diffusion and poly that do not require metal coverage as does the butting contact. Such
buried contacts enable more compact layouts, but are subject to a rather complex set of

design rules, require an extra mask level, and sometimes reduce yield and reliability.

Deleting the overglassing process step also made it possible to electrically probe interior
points on the chips during testing, probing small metal fESL pads included in the layouts.
Such pads must be placed with care, however, because they hang relatively large capacitances
onto circuitry and stow it down. Note that test pad probing requires special jigs and a stereo
microscope, and that it is only possible to directty probe the metal layer. Testing uncovered
chips may also require reduced light levels., The operation of dynamic circuits, i.e. those
which use a pass transistor input into a gate having no other elecirical connection, can be
severely affected by light. Light induces leakage currents in the n-p junction between source
and drain regions and the substrate. At room temperature, charge stored on dynamic nodes
can be retained for many milliseconds in the absence of light. However, in normal room
light the retention time is reduced to tens of microseconds. Thus care should be taken to
avoid high light levels when long clocking periods are used. Dynamic memory chips are

packaged in opaque black packages because of this effect.

A software blowback of the metal mask PG file of another project set, organtzed at Caltech,
is shown in figure 23. The total area of this multi-project chip set is ~ 1 em?. It is
subdivided into four major sections; The lower right quadrant contains the OM2 Data
Engine described in Chapter 5, layed out using A = 2.5um., The upper right quadrant
contains a 16 by 16 bit multiplier with on-board accumulator [by Rod Masumoto, Caltech], also
using A = 2.5um. The lower left quadrant contains a subsystem, laid out using A = 2.9um,
which converts output from one port of a computer memory into the red, green, and blue
analog signals for driving a color TV monitor, The upper left quadrant contains 28 projects,
mostly from students in an LSI Systems course at Caltech. Other small projects are located
along the left edge of the multiplier, and in the unused area within the TV subsystem
project. The source material for this project chip set was generated on three different
computer systems, in two different languages. Check plotting and viewing were done on
three other systems. In addition to the Caltech projects, this chip set contains projects from
Carnegie-Mellon Universily, Washington University (St. Louis), University of California,

lrvine, and the Jet Propulsion Laboratory. Approximately 500,000 pattern generator
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rectangles were required to pattern the reticles for the five mask levels used in this project
set. Conversion from intermediate form to PG files required ~10 CPU hours on the Caltech
DECsystem 20. ‘

The masks for the multi-project chip sets shown in figures 21 and 23 were produced by
Siticon Valley mask houses from PG tapes, accompanied by PG file software blowbacks
showing the locations of auxiliary layout items to be used during implementation, and by
spec sheets containing a list of mask and fab specifications and parameters. These spec

sheets contain two types of infoermation:

(i)} that which the mask house will need for reading the PG tape, generating the reticles, and
stepping the master masks. This includes whether dimensions are in Metric or English
units, whether fiducials and parity marks have been laid out or are to be placed by the mask
house, desired reticle magnification (usually 10X, sometimes 5X), the x,y step and repeat
distances, the type and magnification of reticle blowbacks desired, and whether maskmaking
beyond reticle generation is to be contingent upon blowback inspection. This information is

independent of the chosen fab line,

(ii) that which is specific to the fab line, or lines, on which the wafers will be fabricated.
Examples here are the number, size, and type of working plates desired, and the
photographic polarity of the working plates, i.e. whether they are a positive or negat'ive
image of the PG pattern. The polarity of the working plates depends on the process step
and on whether positive or négative resist is used. In addition, it is customary to specify
how much, if any, the lines in the image will be expanded or contracted to compensate for
growth or shrinkage of regions due 1o the process. This so-called "pulling" of line widths in
maskmaking may begin as far back as at pattern generation. Thus, while the patterning and
fabrication processes are design and layout independent, they are usually couptled, and masks

made for a run on one fab line are not necessarily useable elsewhere.

Maskmaking and patterning technology will remain in a state of transition for years to
come. The present shift is from contact printing with working plates to projection
alignment using original master masks. These two alternatives are illusirated in figure 24.
From the system designer's point of view, at the interface to the mask and fab firms, they
present no essential differences, requiring perhaps slightly different specs. and yielding
different intermediate artifacts. !n the next section we discuss the future evolution of these

technologies, presenting several implementation schemes likely to become commonplace over
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the next decade. These schemes will enable fabrication of systems much denser and faster
than present ones. However, the basic concepts of the design methodology will still apply.
Remembering o_ur film processing analogy, we will have “finer grain" and "faster” film

available as time passes. However, the basic art of photography remains.

Patterning and Fabrication in the Future

As A is scaled down toward its minimum value, ultimately limited by the physics of
semiconductors to about 0.1pm, it will become feasible to imptement single chip, maximum
density VLSI systems of enormous functional power. Patterning and fabrication at such
small values of A requires that certain fundamental problems be overcome?. In this section
we will discuss alternative solutions to two of the major problems: At values of A of ~2 um,
a problem of runout is encountered, causing successive patterning steps to misalign over
targe regions of the wafers. This problem is solved by using less than full wafer exposure.
At values of A under 0.5 pm, the wave length of light used in photolithography is too long
to allow sufficient patterning resolution. This problem is solved by using non-optical

lithography, exposing the resist with electron beams or x-rays.

Historically, silicon wafers have been paiterned using full wafer exposure, i.e. using masks
which covered the entire surface of the wafer. The pattern for one layer of one chip is
stepped and repeated during the fabrication of the mask itself, so that the mask contains the
patterns for a large array of chips. During the fabrication of each successive layer on the
wafer, that layer's mask is aligned at two points with the pattern already on the wafer, and
the entire wafer then exposed through the mask. In the future, as feature sizes are scaled

down, full wafer exposure will not likely be possible for reasons developed in this section.

The earliest integrated circuits, circa 1960, were fabricated using wafers of 2.5 cm diameter,
and typical chips were 1 to 2 mm, with a minimum feature size of ~25pum. In 1978,
production wafers are 7.5 to 10 cm, typical commercially manufactured LSI chips are 5 mm,
and minimum feature size is ~5u. The concurrent development of ever finer features sizes
and larger wafer sizes has placed an increasingly severe strain on the process of full wafer

exposure. The reasons lie in the physics of wafer distortion.

When a wafer is heated to a high temperature, it expands by an amount determined by the
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thermal coefficient of expansion of silicon. A bare wafer will contract exactly the same
amount upon cooling, and will therefore remain exactly the same size. Suppose, however,
that a layer of Si0, 1s grown on the wafer when it is at the high temperature. The thermal
coefficient of expansion of Si0, is approximately 1710 that of silicon. As the wafer is
cooled, the silicon will shrink at a rate much greater than that of the Si0,. Normally the
resulting wafer will not be flat, but convex on the §i0; side. If the wafer is cooled slowly
enough, it is possible to "relieve” the stress induced by the difference in thermal contraction.
Wafers in which such stress relief has been achieved are nearly flat but are, of necessity, a

different size than they were originally 3.

It might seem that subsequent masks could be scaled to just match the wafer distortion
introduced up to the appropriate point in the process. Unfortunately no such correction can
be introduced without a knowledge of the pattern of $i0, on the wafer. During cooling,
dislocations are induced in the underlying silicon crystal at the edges of openings in the
oxide pattern.  Hence, the magnitude and direction of wafer distortion is dependent in
complex ways upon the thickness and distribution of Si0y on the surface and upon the
details of the thermal cycle. While it is in principle péssible to compute a geometric
correction for each pattern to be produced, it is clearly not possible to apply one correction
for all possible patterns. Misalignment between subsequent layers due to distortion of this
type is often referred to as runous. Runout due to wafer distortion is today the largest
single contributor to misalignment between masking steps. Attempts to use finer feature
sizes, which require more precise alignment, on larger wafer sizes, which induce larger

distortions, seem doomed to failure unless full wafer exposure is abandoned.

Two attractive alternatives to full wafer exposure are now being exptored: (i) electron beam

exposure, and (ii) exposure using step and repeat of the chip pattern directly on the wafer.

A scanning electron beam system can be used to expose resist material, and is also capable
of sensing a previous pattern on the surface of a wafer. The beam can initially scan an area
covering the alignment marks of a particular chip. Information gained from this sensing
operation can be used to compute the local distortion, and the chip can be exposed in nearly
perfect alignment using these computed values. The process can be repeated for each chip

on the wafer, until all have been exposed.

This technique has several virtues. No masks are required. A digital description of the chip

can be exposéd directly onto a silicon wafer. A different chip can be placed al each chip
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location, and this opens up the possibility of greatly extending the multi-project chip
concept. However there are also limitations. Data is transferred serially. FEven at the
highest data rates which can be conveniently generated, a long time is required to expose
each ¢hip. More fundamentally, the physics of electron beam interactions places severe
restrictions on the minimum practical feature size attainable. When a beam of electrons
enters a resist-coated wafer, scattering occurs both in the resist and in the wafer. This
backscattering contributes a partial exposure at points up to.a few microns away from the

original point of beam impingement, and has a number of implications:

(i) The exposure, or spatial distribution of energy dissipation, varies with depth in the

resist. Thus resist cross section is not readily controllable.

(ii) Exposure at any particular point depends on all patterns exposed within a few microns.
This is known as the "cooperative exposure” or "proximity” effect and necessitates pattern-

dependent exposure correctionsS.

(iii} Exposure latitude becomes narrower as the spatial period of a pattern is reduced. This
is illustrated in figure 25, which shows the rise in background level exposure as a function
of lateral distance for four different spatial periods: (a) 2um, (b) 1pm, (¢) 0.5pm, (d) 0.3pm.
The beam diameter is 250 angstrom units, the energy 10keV, the resist thickness 0.4um. The
consequences of this background rise are particularly troublesome for high-speed, low-
contrast resists. Experimental results show somewhat greater line broadening than predicted

by the model’.

For the above reasons, the writing time and the difficulty of exposing desired geometries

increase rapidly for linewidths below about 0.5 micron®.

An immediate prospect for achieving feature sizes of 1-2um with large wafers is offered by
stepping the chip pattern directly on the wafer rather than on a mask. This technique
avoids the serial nature of the electron beam writing by exposing an entire chip at once.
Using good optical systems it has been possible for many years to produce patterns with
feature sizes in the range 1 to 2um. Recent progress in the design of optical projection
systems may even make 1/2 to 3/4 micron line width patterns over several millimeter
diameter areas pructicalm. Techniques are known for using light to achieve alignments to a
small fraction of a wavelength. Recently, an interferometric optical alignment technique

has demonstrated an alignment precision of 0.02 micron and should be capable of a
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reregistration uncertainty less than 0.01 micron11.

It would seem that devices of ultimately
small dimensions (0.25pm) could be fabricated using optical alignment. It must be stressed
that a realignment to the underlying pattern must be done at each chip location to achieve

the real potential of the technique.

The step-and-align technique can be extended to ultimately small dimensions by
substituting an x-ray source for the optical one, while retaining the automatic optical
alignment system. X-rays require a very thin mask support, e.,g. Mylar, upon which a heavy
material such as gold or tungsten i1s used as the opaque pattern. Interactions of x-rays with
matter tend to be isolated, local events. No back-scattering of the x-rays occurs, and
electrons produced when an x-ray is absorbed are sufficiently low in energy that their range
is limited to a small fraction of a micron. For this reason, patterns formed by x-rays in
resist materials on silicon wafers are much cleaner and better defined than those attainable
by any other known technique (see figure 26). X-rays of very high intensity can be
efficiently oblained from the synchrotron radiation of an electron storage ring. The time
required for exposing a chip with such a source is no more than that required at present
using optical exposures. Both optical and x-ray techniques have the property that the total
exposure time per wafer can be made independant of how much of the wafer is exposed at a
step. Therefore, the only penalty in a step and align process is the time required for

mechanical motion and alignment.

It appears that we have in hand all of the techniques for ultra fine line lithography, even on
larger silicon wafers. Both electron beam and optical stepping work must, however, focus

on local alignment as the crucial step in achieving high density, high performance LSI

We now describe a production lithography system for ultimately small dimensions. A major
component of the system is a 500 to 700 MeV electron storage ring, approximately 5 meters
in diameter, shaped in the form of a many sided polygon. The electron beam within this
storage ring is deflected at each vertex by a superconducting magnet. This deflection results
in a centripetal acceleration of the electrons, and hence in an intense tangential emission of
synchrotron radiation. The most important component of such radiation is soft x-rays in
the 280 to 1000 eV quantum energy range (wavelengths of 0.004 to 0.001 gm). Such x-rays

are ideal for exposing resist materials with line widths in the 0.1um range12’13.

One exposure station is fitted to each vertex of the storage ring. Each exposure station has

an automatic optical alignment system for individual alignment of each chipll. Coarse

10
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alignment is controlled by a laser interferometer and the wafer brought mto position by
ordinary lead screws moving a conventional stepping stage such as those in current
photorepeaters.  Auxiliary alignment features are placed on each mask level within each
chip. Misalignment of two such patterns on the wafer relative to those in the mask
produces Moire patterns which are detected by photosensors and fed to a computer system.
Piezoeleciric transducers driven by the computer system  bring ihe wafer into final
alignment under the mask. Each exposure station in such a system is capable of aligning
and exposing one layer of one chip every few seconds. Each chip' may contain of the order

of 107 devices, which is the equivalent of several wafers at today's scale.

An overview of the possible routes from design files to finished chips with sub-micron
layout geometries is shown in figure 27. In the immediate future, alignments much better
than those achievable today will be possible with the optical step and align technique
(leftmost path in figure 27). [n addition, this scheme eliminates the step and repeat process
in mask making, enabling considerably shorter turnaround time. The rightmost path, direct
electron beam writing on the wafer, promises the ultimate in short turnaround time. It can
be viewed as using the fab area as a computer output device. For high volume
manufacturing, at ultimately small dimensions, the center path as described above will most

likely become the workhorse of the industry.

11
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12

Fully lntcgrated,' Interactive Design Systems
{ in preparation }

- - - creating a data structure which allows the various levels of interactive processes 1o

operate on the same data base - - - nodes, transistors, cells, and instances - - - operations
on the data base ~ - - interactive logic transfer function tests - - - interactive circuit
transfer function tests - - ~ interactive design rule checking - - - the filing problem - ~ -

System Simulation, Test Generation, and Testing
{ in preparation }
~ - - system-level /register-transfer-level design description and simulation - - - testing

the system design = ~ - practical strategies for structured VLSI sysiem development - - -

designing for testability - - - generation of lest sequences - - - lesting the chips - - -
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