It takes more than a visual once-over to reveal the real differences between CAE workstations.
Cover

Several of the new breed of computer-aided engineering (CAE) workstations obviously look different from one another, but the real differences lie in the breadth of their respective applications software packages, and in their intended enhancements. These tools are to the VLSI designer what oscilloscopes and logic analyzers are to conventional circuit designers. Cover illustration by Nancy Freeman, San Francisco, CA.

Departments

5 Letters
6 Calendar
8 From the Editor
10 People
17 News
43 Literature Review
62 Technology Insight
Two-layer Metal CMOS vs. Two-layer Poly CMOS
72 University Scene
78 VLSI DESIGN Billboard
80 Classified Advertising
80 Advertisers' Index
Articles

18 The 1983 CICC

If you want to find out what the future holds for full-custom ICs and gate arrays, you needn’t look beyond the fifth annual Custom Integrated Circuits Conference.

24 Software That Resides In Silicon

Ron Slamp and Jim Person, Intel Corporation

The authors point out several system-level issues that designers should consider before committing operating-system software to a chip.

34 Testability and Maintainability with a New 6K Gate Array

David R. Resnick, Control Data Corporation

This large gate array can test itself in the “Check-sum mode,” using a pseudo-random number generator to create test operands.

46 Sorting Out the CAE Workstations

Jerry Werner, Editor-in-Chief

This report describes the most useful features of the new computer-aided-engineering (CAE) workstations, and includes a comprehensive table of the various systems’ capabilities.

58 Benchmarking the Workstations

Gary Robson, Array Technology, Inc.

The author describes the results of a benchmark test that all of the CAE workstation manufacturers were asked to run, and provides suggestions for readers who want to do their own benchmarking.

65 Stick-Layout Notation for Bipolar VLSI

M.I. Elmasry, University of Waterloo, Ontario, Canada

The author demonstrates how to use symbolic design notation to describe FL, STTL, and ECL circuits.