PIXEL-PLANES:
A VLSI-Oriented Design
for a Raster Graphics Engine

Henry Fuchs and John Poulton, University of North Carolina

e present here a VLSI-oriented design for a
WSpecial—purpose graphics engine capable of

rapidly rendering shaded three-dimensional im-
ages from a polygonal data base onto a raster-scan color
video display. The system achieves its speed by performing
the most time-consuming calculations with special hardware
at each pixel memory cell. These calculations (for polygon
definition, visibility, and color rendering) are achieved in a
distributed fashion which requires only a pair of one-bit
adders and a one-bit storage element at each pixel. This cir-
cuitry is combined at each pixel with the storage elements
required for a frame buffer, with only slightly more silicon
area than in a conventional memory design. The most bur-
densome parts of the image generation task—the separate
calculations for the 2'® to 2?° pixels—can therefore be car-
ried out in parallel at all the pixels in the entire image. The
other, less demanding computations (coordinate transfor-
mations, clipping, perspective scaling, and lighting) can
easily be handled in real time by current graphics systems.
One such system is the host for our raster-graphics engine.
Although we cannot give precise system execution times
(because the first chips are just now being fabricated) we
estimate that the system will be able to process 15,000 to
30,000 polygons per second.

The Pixel-planes system consists of two parts: 1) a
special-purpose computer (the ‘pre-processor’) which con-
verts polygon data from the host into a form suitable for
transmission to 2) a set of identical ‘smart’ memory chips.
The system performs visibility calculations using the
depth-buffer (z-buffer) algorithm, and can also execute a
Gouraud-like smooth shading algorithm. Important features
of the system are:

e Visibility and painting calculations are performed
polygon-by-polygon rather than in scanline order.

e The expected polygon processing time during image gen-
eration is as fast as line-processing in current real-time
line-drawing systems.

e Processing time for a polygon is independent of the size
and orientation of that polygon, and increases only
linearly with the number of vertices. Convex polygons
with any number of vertices can be processed.

e The ‘smart’ frame-buffer memory, implemented in a
number of identical chips, is easily expandable to ac-
commodate increased screen resolution.
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FIGURE 1: Steps required in raster-scan rendering of solid
objects. Dashed outline indicates scope of new Pixel-planes
hardware.

e The design retains the regularity and simplicity of con-
ventional memories, to take advantage of well-developed
techniques for memory system design; thus, layout, test-
ing, and communication are relatively simple.

e The system is double-buffered to enable smooth tran-
sitions between successive images.

e Line and two-dimensional objects can also be handled by
the system. Such objects can be processed somewhat
more rapidly than smooth-shaded solid objects.

Raster-Scan Graphics Fundamentals

There are many ways of rendering a raster-scan image
from a polygonal data base (Sutherland, Sproull, and
Schumaker, 1974). One such method is outlined in Figure 1
(Newman and Sproull, 1979). The data base contains a de-
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scription of a scene containing one or more objects, each of
which is described by a set of (planar) polygons which ap-
proximate its surface. (The current version of our system
lets polygons have any number of sides, but restricts the
polygons to convex shapes.) Polygons are processed by the
graphics system one at a time, in any order. Each polygon
is described by a sequence of vertices whose x,y,z coordi-
nates are expressed in the ‘world’ coordinate system. Asso-
ciated with each vertex is the triple R,G,B specifying the in-
trinsic vertex colors, and components of the unit normal to
the surface at the vertex. When a polygon is processed, the
coordinates of the vertices are first transformed to viewing
coordinates according to the viewing position and direction.
The polygon is then clipped to the viewing pyramid,
eliminating portions of the polygon outside the field of
view. Next the transformed and clipped polygon (now in
viewing coordinates) is scaled for an appearance of perspec-
tive and reexpressed in the coordinates of the display de-
vice. Then, lighting calculations are performed in which the
precise color at each vertex is calculated based on the di-
rection and distance to the light source(s), the intrinsic ver-
tex color, surface reflectivity, and other factors, if desired.
These calculations result in a new R,G,B triple for each ver-

tex, representing the light reflected by the object toward the
viewer.

Up to this point, the number of calculations in each step
depends only on the number of polygon vertices in a scene.
The above geometric transformations are carried out in real
time by current calligraphic systems, such as the Vector
General 3303 or the Evans & Sutherland Picture System II.
A recent VLSI-oriented project (Clark, 1980) promises to
make such transformation engines even more efficient and
less expensive. The much more burdensome subsequent
calcuations require the graphics system to:

a) identify all pixels which lie within the current polygon,
b) determine the visible pixels of each polygon, and
¢) paint each such pixel.

Pixel-planes performs the above three sub-tasks simulta-
neously for all pixels in the entire frame buffer. Therefore,
it may be connected to a transformation unit (in, say, a
line-drawing system) to form a complete system for rapid
rendering of shaded polygonal images. The memory portion
of the system serves as a frame buffer from which a con-
troller can refresh a video display.

System Description

Figure 2 is a diagram of the overall system. The host
graphics system contains a transformation unit which car-
ries out viewpoint transformations, clipping, and perspec-
tive scaling, as outlined above. The host also performs light-
ing calculations at each vertex. Data output by the host is
passed to the Pixel-planes pre-processor, a transformation
unit which converts polygon vertex data into coefficients of
planar equations (the form required by the enhanced mem-
ory system). The fundamental operation of the memory sys-
tem is the calculation, simultaneously at each pixel, of the
function F(x,y)=Ax+By+C, where x and y are the coordi-
nates of the pixel in the display space. The process of paint-
ing a polygon involves:

a) Processing polygon edges in sequence, where each edge

is encoded in the coefficients A,B,C of a linear equation

F(x,y)=Ax+By +C=0.

Performing the depth-buffer computation in which the

z-coordinate of each pixel is encoded in another set of

coefficients in the planar equation z=F(x,y).

c) Carrying out a shading algorithm in which the intensity
surface for each color in the polygon is approximated by
a series of planes each encoded in the coefficients of
three planar equations R,G,B=F(x,y).

b

=~

Figure 3 is a (conceptual) diagram of the memory system.
The system consists of an array of identical memory cells
connected to a grid which carries data to the cells. Two se-
rial multiplier trees, which we designed, appear at the top
and left-hand side of the array. These multipliers accept
data from the pre-processor and calculate, simultaneously
for all values of x or y, values for the functions Ax+C’ and
By+C’’. A bit-serial representation of these functions is
placed on the memory grid. Each memory cell contains an
adder which calculates the sum of these two functions in
order to generate F(x,y)=Ax+By+C’+C”’. (The separation
of the constant C into C’+C”’ is for convenience, as shown
below.) A block diagram for the x-multiplier is shown in
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FIGURE 3: Organization of ‘smart’ memory system.

Figure 4. (The y-multiplier is identical.) Data for the coeffi-
cients A and C’ is input to the multiplier in bit-serial form.
As shown, the multiplier calculates the expression Ax +C’
for all values of x in the range of the display (0 to 511 typi-
cal). The y-multiplier accepts bit-serial data for coefficients
B and C° and generates the expression By +C’’ synchron-
ously with the x-multiplier’s Ax+C’.

Figure 3 shows a conceptual scheme for raster-scanning
the memory cells. A row-select decoder driven by the dis-
play refresh controller selects a row of pixel memory cells,
whose data is output serially to a shift register. This shift
register then allows the video data to be shifted out to the
refresh controller. Because of the very large bandwidth re-
quired for video data, this scheme would be modified in
practice by transmitting data from a number of neighboring
cells simultaneously over a wide parallel data path, and by
multiplexing the shift register.

Figure 5 shows the structure of an individual pixel mem-
ory cell. The memory cell contains four registers: Z, which
contains the smallest z-value so far received at the pixel
{portion of displayed object closest, and therefore most
visible, to the viewer); F, which provides temporary storage
for the function (F(x,y) output by the adder; I, the image
register in which the results of the current polygon ‘paint-
ing’ operation are stored; and P, in which the intensity
values for the previously constructed complete image are
stored. The image stored in the P registers is the one cur-
rently being displayed. The P registers can be accessed by
the display refresh circuitry independently of any process-
ing operations in the pixel cells. Registers I and P can each
store either a single intensity value (B/W) or three intensity
values (R,G,B) in successive portions of the register. A
‘control decoder’ receives control signals broadcast syn-
chronously with A,B,C’,C”’ coefficient data, monitors the
adder and comparator, controls the flow of data among the
four registers, and sets the state of a one-bit ‘Enable’ regis-
ter (En) which determines at any time whether the cell is
enabled for further operations.
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‘Smart’ Memory Subsystem

1) When a new scene is to be painted, a control word
broadcast to all memory cells causes the Z registers to
be preset to all 1’s (infinite depth); polygon processing
then begins.

2) When a new polygon is to be processed, a control signal
sets the one-bit Enable registers (En) in all cells, en-
abling them for operation. Each polygon is processed by
a sequence of three operations:

a) Edge definition: Data representing successive edges
of the polygon are encoded in the coefficients of
F(x,y) and transmitted to the memory system. The
coefficients A,B,C’,C’’ are chosen such that F(x,y) is
positive or zero for pixels (x,y values) which lie in-
side the current polygon, and negative for pixels out-
side it. As the data for each edge is received at a
memory cell, the sign bit for F is checked at the ter-
mination of the data. If the sign bit is set, the En reg-
ister in the cell is cleared and the cell is disabled until
the next polygon is processed. Successive edges dis-
able more and more cells as pixels fall outside a
polygon edge. When all edges of the current polygon
have been transmitted and processed in this way,
only those pixels inside the polygon are enabled for
further processing; all others have been turned off.

b) Z-buffer calculation: The planar equation for the
polygon is encoded in the form z = F(x,y) =
Ax+By+C’+C’ and transmitted to the memory sys-
tem. Each pixel cell still enabled subtracts in bit-
serial fashion the z-coordinate stored in Z from the
newly received z-value, using a second one-bit adder
(the ‘Comparator’). The current value of z is stored
in F. At the end of transmission of z-data, Z and F
are compared by checking the sign bit from the
Comparator. If F>Z, then the portion of the polygon
at the pixel’s location is hidden and the En register is
cleared, disabling further processing. If, however,
F<Z, the pixel is visible; in this case the control de-
coder causes the contents of F to be loaded into Z,
thereby updating the z-buffer.
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¢) Pixel shading: The color intensities for the polygon
are encoded in the form of planar equations
I=Ax+By+C’+C’’, where I is, successively, R, G,
B. (This assumes that the set of values x,y,I for the
polygon vertices form a plane; this is not the case in
general, as discussed below.) These values for R, G,
and B are stored in successive portions of register I.
3) When all polygons in a scene have been painted in this
way, a control word is broadcast which causes the con-
tents of registers I to be loaded into registers P, causing
the newly completed image to appear on the display.

Pre-processor Subsystem

As shown in Figure 2, a single pre-processor unit con-
verts the vertex data from the host into the planar-
coefficient format needed by the ‘smart’ memory system. It
is assumed that the vertices will be transmitted in order,
such that each polygon is traversed in the same direction
(e.g., counter-clockwise), and that the last vertex will not
be transmitted, because it is the same as the first. Also as-
sumed is a control signal to indicate completion of each
polygon. The pre-processor in the Pixel-planes system must
convert this stream of data into the coefficients to be pro-
cessed by the memory system. It must also take into ac-
count the problem of the shading algorithm used by the sys-
tem. As noted above, this algorithm assumes that the shad-
ing surface for a polygon is planar (i.e., that the set of coor-
dinates x,y,I for a polygon lie in a plane). Since this is un-
likely to be true for an arbitrary polygon, the pre-processer
must first break an n-sided polygon into n-2 triangles, each
of which shares a common vertex (the first one processed).
Planar equations can then be calculated separately for each
triangle. The pre-processor consists of two parts, as shown
in Figure 6. An input unit stores the first vertex received for
a given polygon, and re-transmits the vertex data in the
order required by the coefficient unit.

The coefficients for expressions representing the edges of
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a polygon can readily be calculated by taking differences in
the x and y values for successive vertices. If the polygon is
traversed counterclockwise, the equation for the line con-
necting successive vertices is:

~E+D -yl +x@+D—x@ly
FE+D=yOk@) —x(@(+D-x@OyG) = 0

from which the coefficients A,B,C’,C"’ for the ith edge are
A = —-DE+D-y®]

B = [@+D—x@)]
C = —x()*A
C” = —y()B

Calculation of the planar equation coefficients in
+C”’ is somewhat more complicated. The equation can be
found by calculating the plane which passes through a given
point and is perpendicular to a given line. This line can be
found by forming the vector product of the first two di-
rected line segments in the polygon:

X
2—x1)
x3—x2)

y z
y2—yl) (z2—z1)
y3—y2) (z3-z2)
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FIGURE 7: Scheme for including copy of multiplier tree on
each memory chip. (The x-multiplier is shown.) ADD and
NO-ADD branching decisions are shown in traversal of tree
equivalent to standard serial multiplier with MSB's of x
stored in x-multiplier register. (This number is also the
x-address of chip.)

which gives a line with direction numbers
a=(y2-yz3-22)—(3-y2)z2-z1)
b=(2—z1)(x3—x2)—(z3—-22)(x2—x1)
c=@2—x1)}(y3-y2)—(x3—x2)(y2—y1)
The equation of the plane which is perpendicular to this
line and which passes through the point x1, y1, z1is

z = (—a/c)x + (—=b/c)y + (a/c)xl + (blc)yl + z1

from which the coefficients
A = —alc
B . = —-blc
C > (aeil = —A*xl
C” = (blc)yl +z1 = —B*yl +z1

are obtained. The planar equations for the red, green, and
blue intensity planes are obtained in the same way by re-
placing z(n) by R(n), G(n), and B(n) successively. The edge
equation coefficients and each of the coefficients for each of
the planes can be calculated using pipelined multipliers
(Lyon, 1976) and serial dividers. We note several simplifica-
tions in the above formulae: In general, C’ = —A*x1 and
C” = —B*yl [+z1], simplifying the calculations of C’ and
C’’. Furthermore, the direction number ¢ from each of the
vector cross-products is the same for the z-, R-, G- and
B-plane calculations, and only needs to be evaluated once.

System Speed

Speed can be estimated from the time required by the
memory system to complete the computation of F(x,y). If x-
and y-coordinates are represented as K-bit numbers, z-
coordinate as an L-bit number, color intensities as M bits
each, and screen resolution as N bits, then K+N+2 clock
cycles would be required to calculate the edge function
F(x,y), L+N+2 clock cycles would be required for the
z-coordinate, and 3*(M+N+2) cycles for the three color-in-
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tensity planes. Thus, for an n-sided polygon, [3K+L +
3IM+7(N+2)l(n—2) clock cycles would be needed to pro-
cess edge, z-coordinate, and color-intensity data where
smooth shading is required. Assuming, for example, K=10,
L=16, M=8, N=10, and a clock period of 200 nsec, pro-
cessing a four-sided polygon would require 62 mic-
roseconds. At this rate, approximately 540 such polygons
could be processed in one refresh period from a 30Hz dis-
play system. Where smooth shading is not required, only a
single color-intensity plane would be needed for an n-sided
polygon, and processing would take only [K+N+2Jn+L+
3M +4(N+2) clock cycles. Under the assumptions, 940
such 4-sided polygons could be processed in one refresh
period.

Implementation

The Pixel-planes systems achieves a very regular
structure by including a copy of the entire multiplier tree on
each memory chip. Therefore, the system can be im-
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plemented entirely with an array of identical chips. Little
additional chip area is required for the redundant portions
of the multipliers. For example, in a system designed for
512x512 resolution in which each chip contains 16x32 pixel
cells, the additional hardware needed for multiplier copies
would be 9 one-bit adders and 9 one-bit storage elements.
The portion of the multiplier tree needed on a given chip
can be determined according to Figure 7. At each branch
point in the tree, the multiplier A must either be ADDED or
NOT ADDED to the coefficient C’. (The coding of these
ADD and NOT-ADD decisions into x- and y-multiplier reg-
isters is shown in the figure. The result is a standard serial
multiplier. The muitiplier registers in the serial multipliers
on a given chip contain numbers which are identical to the
x- and y-addresses for that chip; this fact can be used to ad-
vantage in the addressing scheme.

Figure 8 shows a scheme for setting these coefficients au-
tomatically in an array of identical chips. When the system
is initialized, the chip at the lower left receives a serial
stream of 0’s at a column and a row input. Zeroes are
loaded into the x- and y-multiplier registers in this chip; the
chip then adds 1 to each of the multipliers and outputs the
results serially in row and column outputs. Neighboring
chips above and to the right receive these value of x- and
y-multipliers, load their multiplier registers, add 1 to the
multipliers, and pass them to neighboring chips above and
to the right. In this way, address information passes serially
through the entire memory array and eventually arrives on
the upper and right-hand edges of the array, where it can be
checked for correct value. A double-rail signalling conven-
tion would be used for this data transfer among chips (Mead
and Conway, 1980).

The address of a given chip for the raster-scan wiring is
also determined in this way. Data communications in such a
system is simple: coefficient data is broadcast from the

pre-processor to all memory chips simultaneously over a
parallel data path of sufficient bandwidth to match the
internal serial processing speed. Raster-scan addresses are
likewise broadcast to all chips; each chip recognizes its own
address, stored in the x- and y-multiplier registers. The x-
and y-addresses can be multiplexed, because the y-address
need only be changed and latched into the memory chips at
the end of a horizontal scan. The x-addressing must be in-
terleaved so that neighboring locations on a scan line of the
display are stored in memory elements on separate chips. In
this way, N pixels are read simultaneously from N neigh-
boring chips onto a data bus (N pixels wide) of sufficient
bandwidth to keep pace with the requirements of the
display refresh (see Figure 9).

Current Work

We have designed and fabricated a very small memory
chip of the kind described above; testing is now underway.
This design project was undertaken as part of a VLSI sys-
tems course taught at the University of North Carolina De-
partment of Computer Science, in fall 1980. Introduction to
VLSI Systems (Mead and Conway, 1980) was the text, and
the approach set forth therein greatly influenced our design
efforts. The current chip implements one branch each of the
x- and y-multiplier trees, and a 2x2 pixel memory array.
This design was our first ntMOS design project. We felt that
a relatively small project utilizing standard cells where pos-
sible would be a useful learning experience; therefore, the
chip uses space very inefficiently. (All memory cells are
constructed using shift registers, and the adders and control
circuits were implemented as standard-cell PLLA’s.) Never-
theless, the chip contains enough circuitry to form a nearly
self-contained memory system, and it will be useful for test-
ing most of the elements needed for a graphics system of
practical size. In particular, each chip can be connected to
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others to form a larger system. Figure 10 is a photograph of
the chip layout.

Future plans include designing of a much larger memory
chip using dynamic RAM cells for the pixel memory. This
implementation will include the ability to trade display
spatial resolution for increased color-intensity resolution,
and will be expandable to a display of practical size. The
design of the pre-processor is also under way. The first
full-scale system will use the computational and display
portions of one of our in-house graphics systems.

Further Enhancements

® No F register needed: Referring to Figure 5 showing the
registers within a pixel cell, we note that the F register is
not necessary. If it is eliminated, however, the
z-coefficients must be passed twice (once for comparison
with the z stored at each pixel, and a second time to load
the new value of z in the appropriate (visible) pixels).
With this saving, the amount of memory in the system is
the same as that required for a conventional frame buffer
in which the z-buffer algorithm is to be executed.

® Dynamic RAM cells: Figure 11 shows a rough layout for
the next version of the memory system, using three-
transistor dynamic RAM cells (Lyon, 1980). Placing the
bits for a pixel along a single column of the memory array
allows 1) a flexible allocation of the bits among the Z, I,
and P registers and 2) one control circuit to be shared by
all RAM cells.

® Min-Max decoders: Additional circuitry could be added
to the memory system to allow only pixels within a
specified rectangular region to be enabled, this region to
be specified by xmin, xmax, ymin, ymax (Fuchs, et al.
1981). This circuitry would be especially useful for
(colored) line drawings, which can be generated by
specifying the end-points to the rectangle-enable logic and
by passing only one set of planar coefficients. With this
modification, some degree of anti-aliased line drawing
may also be possible.
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e Concave polygons: The ‘Min-Max’ decoders would also
let our system handle concave polygons. (This method
was suggested to us in a private communication from
Satish Gupta and Mark Faust at Carnegie-Mellon Univer-
sity.) The technique is based on the classic notion of de-
termining whether a point is inside or outside a concave
polygon by counting the number of edge crossings which
are encountered on a line between the point and a known
outside point (e.g., the right edge of the screen).

® Additional multipliers: Performance could be further im-
proved by adding another pair of multipliers (or more).
With two multipliers each for x- and y-coefficients, two
planar functions could be calculated simultaneously,
thereby doubling the speed of the system at the expense
of relatively little silicon area.
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