
Fault Simulation
of MOS Digital Circuits

Randal E. Bryant and Michael D. Schuster
Department of Computer Science,
California Institute of Technology

Pasadena, CA

T

est engineers use fault simulators to determine how
well a sequence of test patterns applied to the inputs
of an integrated circuit can distinguish a good chip

from a defective one. The fault simulator is given a
description of the good circuit, a set of hypothetical faults
in the circuit, a specification of the observation points of
the test (e.g., the output pins of the chip), and a sequence
of test patterns. It then simulates how the good circuit and
all of the faulty circuits would behave when the test pat-
terns are applied to the inputs. A fault is considered de-
tected if at any time the simulation of that particular faulty
circuit produces a different logic value at some observation
point than the simulation of the good circuit produces. By
keeping track of which faults have been detected and
which have not, the fault simulator can determine the fault
coverage of the test sequence, which is defined as the ratio
of the number of faults detected to the total number sim-
ulated. The simulator can also give the user information
about which faults have not been detected, either because
the test sequence failed to exercise the defective part of the
circuit, or because the sequence failed to make the effect
of such an exercise visible at an observation point. This in-
formation guides the engineer in extending or modifying
the test sequence to improve its fault coverage. Such a tool
is invaluable in developing test patterns for today's com-
plex digital systems.

For a large integrated circuit such as a microprocessor
chip, many faults (e.g., more than 1000) must be sim-
ulated for adequate characterization of the fault coverage of
a test sequence. Furthermore, the test sequences can in-
volve thousands of patterns. Hence, a simple serial simula-
tion (in which the good circuit and each faulty circuit are
simulated separately) would require far too much computa-
tion. Fortunately, certain clever algorithms can reduce the
amount of computation considerably. A technique known
as concurrent simulation (Ulrich and Baker 1974) exploits
the fact that each faulty circuit typically differs only
slightly from a good circuit. Instead of simulating each cir-
cuit separately, it simulates only the good chip in its en-
tirety. For each faulty circuit, this technique keeps track of
how the network state of that circuit differs from the net-
work state of the good circuit by selectively simulating
portions of the faulty network. To the user, it appears as if
the program is simulating many circuits concurrently, but
the amount of CPU time required is only slightly (e.g.,
less than 10 times) greater than the time required to sim-

ulate the good circuit alone. Furthermore, the simulator
can easily determine when at an observation point a faulty
circuit produces a value that differs from the value
produced by the good circuit, without storing the entire
output history of the good circuit simulation. Once a fault
has been detected, the simulation of this particular circuit
can be dropped, thereby reducing the amount of computa-
tional required for the rest of the simulation. The faults
that cause great differences from the behavior of the good
circuit, and that therefore require the most computation ef-
fort, also are detected quickly. Therefore, this fault-
dropping technique greatly improves the overall
performance of the simulator.

Most existing logic simulators model a digital circuit as
a network of logic gates, in which each gate produces
values on its outputs based on the values applied to its in-
puts, and possibly based on the value of its internal state.
Some of these simulators extend the simple Boolean gate
model (in which only the value 0 or I is permitted on each
input and output) by using additional logic values and spe-
cial types of gates to model circuit structures such as buses
and pass transistors. These simulators are not suitable for
modeling faults in MOS digital circuits for the following
two reasons: First, many MOS circuit structures cannot be
adequately modeled as a set of logic gates. Creating gate-
level descriptions of pass-transistor networks, precharged
logic, and dynamic memory elements is at best tedious and
inaccurate, and at worst impossible—even with extended
gate models. The user must inevitably translate the logic
design by hand into a form compatible with the simulator.
Second, logic-gate simulators are especially poor at
predicting the behavior of a MOS circuit in the presence of
faults. Even simple logic gates can become seemingly
complex sequential circuits when a fault such as an open-
circuited transistor occurs (Wadsack 1978; Galiay et al.
1980). As a result, fault simulators based on logic gates
can model only a limited class of faults, such as gate out-
puts and inputs stuck at zero or stuck at one. Faults such
as short circuits across transistors and between wires, or
open circuits in transistors or wires, are beyond their
capability.

To remedy these problems with logic-gate simulators,
we propose that fault simulations of MOS circuits be per-
formed at the switch level with the transistor structure of
the circuit represented explicitly, but with each transistor
modeled in a very idealized way. This approach has proved

24 VLSI DESIGN October 1983

gate state n-type p-type d-type

0 0 1 1
1 1 0 1
x x X 1

TABLE 1. Transistor state as a function of its type and
as a function of the state of its gate node.

-Ypc
Yin

w r2

I Y,

kz bus

data

C, C2 data

k, m, k, mz

FIGURE 1. Three-transistor dynamic RAM.

successful for logic simulation in programs such as MOS-
SIM (Bryant 1980 and 1981) and MOSSIM II (Bryant et
al. 1982), because properties such as the bidirectional na-
ture of field-effect transistors and the charge storage capa-
bilities of the nodes in a MOS circuit are modeled directly,
instead of through an artificial translation into logic gates.

We have adapted the technique of concurrent simulation
to implement a fault simulator for MOS circuits, for which
the problem is viewed as one of simulating many nearly
identical switch-level networks. This program FMOSSIM
can simulate many MOS circuits under a variety of fault
conditions at much higher speeds than would be possible
with serial simulation. Other concurrent fault simulators for
MOS have been implemented (Bose et al. 1982), but these
can model only a very limited class of networks. In this
article we present an overview of the switch-level model,
and explain how different faults can be represented in it.
We also present some performance results from
FMOSSIM.

The Network Model

The following network model is implemented in the sim-
ulators MOSSIM II and FMOSSIM. It includes a more
general transistor model than other switch-level simulators
do, giving better capabilities for fault injection. A switch-
level network consists of a set of nodes connected by a set
of transistors. Each node has a state 0, 1 or X, where 0
and 1 represent low and high voltages, respectively. The X
state represents an indeterminate voltage arising from an
uninitialized node, from a short circuit, or from improper
charge-sharing. No restrictions are placed on how transis-
tors are interconnected.

Each node is classified as either an input node or a
storage node. An input node provides a strong signal to
the network, as does a voltage source in an electrical cir-

cuit. Its state is not affected by the actions of the network.
Examples include the power and ground nodes V DD and
GND, which act as constant sources of 1 and 0 voltages,
respectively, as well as any clock or data inputs. The state
of a storage node is determined by the operation of the net-
work. Much like a capacitor in an electrical circuit, a
storage node holds its state in the absence of connections
to input nodes. To provide a simple model of charge
sharing, each node is assigned a discrete size from the set
{k,,kz,...,ky} where the value on a larger node overrides the
value on a smaller one when the nodes share charge. The
number of different sizes q required depends on the circuit
to be simulated. Most circuits can be represented with just
two node sizes. In this representation, high-capacitance
nodes such as buses are assigned size k2 , and all other
nodes are assigned size k1.

A transistor is a device with terminals labeled gate,
source, and drain. No distinction is made between the
source and drain connections; each transistor is symmetric
and bidirectional. Because transistors can be either n-type,
p-type, or d-type, both nMOS and CMOS circuits can be
modeled. A d-type transistor corresponds to a negative-
threshold depletion-mode device. A transistor acts as a
resistive switch connecting or disconnecting its source and
drain nodes according to its type and the state of its gate
node, as shown in Table 1. Transistor states 0 and l repre-
sent open (nonconducting) and closed (fully conducting)
conditions, respectively. The X gate state represents an in-
determinate condition between open and closed, inclusive.

To model the behavior of ratioed circuits, each transistor
is assigned a discrete strength from the set {'y, Y 2 yn},
in which a stronger transistor is assumed to have much
greater conductance than a weaker one. The total number
of strengths p required depends on the circuit to be
modeled. Most CMOS circuits do not use ratioed logic,
and hence can be modeled with just one transistor strength.
Most nMOS circuits require only two strengths. Pull-up
loads are assigned strength y , and all others are assigned
strength Y,• (In some cases, more strengths are required.)

As an example of a switch-level network, consider the
three-transistor dynamic RAM circuit shown in Figure 1.
The bus node has size k,, to indicate that it can supply its
state to the size k t storage node (either mt or in,) of the
selected memory element during a WRITE operation (when
w t or w2 is 1) and to the size k, drain node (either c 1 or c7)

of the storage transistor during a READ operation (when r1
or r, is I). The d-type pull-up transistor in the input inver-
ter has strength -y'. to indicate that it can drive the bus
high only when the pull-down transistor having strength y,
is not conducting. The strengths of all other transistors in
the circuit are arbitrary, because they are not involved in
ratioed path formation (except possibly when faults are
present).

The behavior of a switch-level network is described by
its steady-state response. This parameter can be defined in-
formally as the set of states that would form on the storage
nodes for a particular set of transistor states, input node
states, and initial storage node states, assuming the transis-
tors are held fixed. This response is computed in both
MOSSIM II and FMOSSIM by the solution of a set of
equations in a simple discrete algebra (Bryant 1983). For

VLSI DESIGN October 1983 25

each set of inputs, a circuit is simulated with a series of
unit step functions until a stable state is reached. Each unit
step involves computing the steady-state response of the
network, setting the storage nodes to these values, and set-
ting the transistors according to the states of their gate
nodes. This simulation can proceed very quickly, because
it re-computes the node states only for those parts of the
network where activity occurs.

Fault Injection

Conceptually, faults are represented in FMOSSIM as
though extra fault transistors were added to the network.
In the implementation, however, many of these faults are
injected without actually adding the fault transistors; never-
theless, the behavior is equivalent to that described below.
The gate nodes of the fault transistors are considered to be
extra fault inputs to the network that control the presence
or absence of the failures. A variety of MOS failures can

be modeled with this method. For example, a short circuit
between two nodes is modeled by connecting the nodes
with a fault transistor that is open in the good circuit and
closed in the faulty circuit. Similarly, an open circuit is
modeled by splitting a node into two parts and connecting
the resulting nodes with a fault transistor that is closed in
the good circuit and open in the faulty circuit. By adjusting
the strength of the fault transistor, the resistance of the
short or open can be modeled in an approximate way. For
example, if the strength of the fault transistor is set to y,,, I
(i.e., a strength greater than that of any normal transistor),
then setting this transistor state to I shorts the source and
drain nodes together such that they act as a single node.

Moreover, because the state of each fault transistor can be
controlled independently, both single and multiple faults
can be injected.

Figure 2 illustrates the use of fault transistors to create a
variety of circuit faults. The transistors with gate nodes
labled f arc normally 0, but are set to I to create the fault;
the transistors with gate nodes labeled . Tare normally 1, but
are set to 0 to create the fault. A stuck-at-zero or stuck-at-
one node fault can he modeled by inserting a strength YPi1
fault transistor to short the node to GND or to Vj)1),
respectively. A stuck-closed transistor fault is injected by
shorting the transistor's source and drain together with a
fault transistor whose strength equals that of the failing
transistor. Similarly, a stuck-open transistor fault is
modeled by putting a fault transistor in series with it. In
FMOSSIM, both stuck-at node states and stuck-at transis-
tor states are implemented without extra fault transistors,
while other faults require that additional transistors be in-
serted in the network.

Performance Results

As a test case for evaluating the performance of FMOS-
SIM, we simulated a 64-hit dynamic RAM circuit
containing 374 transistors. This circuit incorporates a vari-
ety of MOS structures such as logic gates, bidirectional
pass transistors, dynamic latches, precharged buses, and
three-transistor dynamic memory elements. The circuit was
simulated with 428 faults—each storage node stuck at 0,
each storage node stuck at 1, and pairs of adjacent buses

shorted together. To validate the program, we also sim-

p+l f 'YP,, f

n 1

Node n stuck at one
Node n stuck at zero

Y1 t Y, Y,

Y , ^--^ f

Transistor t stuck open Transistor t stuck closed

f f

I I
n ^^ m n, nz

Yp!1 YP'1

Short nodes n and m Open node n into n, and n2

FIGURE 2. Modeling MOS failures
with fault transistors.

ulated other faults, including transistors stuck open and

closed. The simulator was implemented in the MAI NSAIL
programming language (Xidak 1982), and executed on a
DEC-20/60.

Figure 3 illustrates the performance of FMOSSIM in
simulating a test sequence consisting of a marching test
(Winegarden and Pannell 1981) of the memory, together
with special tests for the control logic. The curve climbing
diagonally upward indicates the total number of faults de-
tected as the test progresses. All faults were detected after
407 patterns. The falling curve indicates the CPU time re-
quired to simulate each pattern. This time started at 27
seconds when the circuits were initialized. However, after
100 patterns, it dropped to around I second as faults were
detected and the simulations of these circuits were
dropped. This time finally reached 0.3 seconds at the end,
when only the good circuit was being simulated.

Figure 4 illustrates the performance advantage of concur-
rent simulation over simulating each faulty circuit sepa-
rately. The curve falling diagonally to the right indicates
the number of circuits being simulated as the test proceeds.
The other curve indicates the CPU time required to sim-
ulate each pattern divided by the number of circuits being
simulated f or that pattern. This curve started at about 0.05
seconds per pattern, dropped to a low of 0.005 seconds

once those faults causing major differences from the good
circuit were dropped, and finally climbed back to 0.3
seconds when only the good circuit was being simulated.
Considering that simulating a single circuit requires about
0.3 seconds per pattern, the effective benefit of simulating
all of the circuits concurrently starts at 6 times serial
simulation, rises to 60 times, and drops back down to I.

VLSI DESIGN October- 1983 29

FIGURE 3. Performance of FMOSSIM
on a memory circuit.

Over the entire test sequence, simulating the good ma-
chine alone required 2.5 CPU minutes. Our fault simula-
tion required I I CPU minutes, whereas simulating each
faulty circuit serially until it produced a different result
than the good circuit produced would take almost 6
hours. Thus, in this case, concurrent simulation has a
thirty-fold net advantage over serial simulation. Such a per-
formance gain is clearly well worth the effort.

Conclusion

Our initial experience with FMOSSIM has shown it to
be very useful in developing test sequences, especially for

novice test designers. Even when developing a test for a
small section of an integrated circuit (such as an ALU or a
register array), the fault simulator provides information that
is hard to obtain by any other means. It quickly directs de-
signers to the areas of a circuit that require further tests.
We expect that this type of simulator will become a stan-
dard tool for the MOS designer. q

References

Bose, A., P. Kozak, C-Y Lo, H.N. Nham, E. Pacas-Skewes, and
K. Wu. July 1982. "A Fault Simulator for MOS LSI
Circuits," 19th Design Automation Conference Proceedings,
Las Vegas, NV.

Bryant, R. Fourth Quarter 1980. "An Algorithm for MOS Logic
Simulation," LAMBDA.

Bryant, R. July 1981. "MOSSIM: A Switch-Level Simulator for
MOS LSI,'' 18th Design Automation Conference
Proceedings, Nashville, TN.

Bryant, R., M. Schuster, and D. Whiting. March 1982. MOSSIM
II: A Switch-Level Simulator for MOS LSI, User's Manual,
Technical Report 5033, Department of Computer Science,
California Institute of Technology.

Bryant, R. January 1983. A Switch-Level Model and Simulator
for MOS Digital Systems, Technical Report 5065,
Department of Computer Science, California Institute of
Technology.

450 .40

400
.35

350
CPU time: .30
patterNCircuit

30B

.25

25B

.20

" 200

15

150 Number of
cncuils simulated

1 0
100

.05
50

0 .00
0 100 200 300 400

Patterns

FIGURE 4. Effective concurrency for test case.

Galiay, J., et al. June 1980. "Physical versus Logical Fault
Models MOS LSI Circuits: Impact on Their Testability,"
IEEE Transactions on Computers.

Ulrich, E. and T. Baker. June 1973. "The Concurrent Simulation
of Nearly Identical Digital Networks," Design Automation
Workshop Proceedings, (also IEEE Computer, April 1974.)

Wadsack, R. May/June 1978. "Fault Modeling and Logic
Simulation of CMOS and MOS Integrated Circuits," Bell
System Technical Journal.

Winegarden, S. and D. Pannell. 1981. "Paragons for Memory
Test," International Test Conference, Philadelphia, PA.

Xidak, Inc. 1982. MANSAIL Language Manual. Menlo Park,
CA.

About the Authors

Randy Bryant received the B.S.
degree in applied mathematics from the
University of Michigan in 1973, and the
S.M. (1977), E.E. (1978), and Ph.D.
(1981) degrees in electrical engineering
and computer science from M.I.T. Since
1 981, he has been an assistant professor

of computer science at the California
Institute of Technology, teaching courses

in computer architecture and switching
theory, and conducting research in switch-level models of MOS
circuits.

Michael D. Schuster received the B.A.
degree in applied physics and information
science from the University of California
at San Diego in 1977. He then joined

Burroughs Corp., where he was a project
leader in the semiconductor design aids

group. He represented Burroughs on the
Silicon Structures Project at the
California Institute of Technology during
the 1981-1982 school year. He is
currently pursuing the Ph.D. degree in computer science at
Caltech in the areas of modeling, simulation , analysis, and testing
of MOS integrated circuits.

^ Y 1
r r,•

30 VLSI DESIGN October 1983

