Proceedings of the first International Conference on Very Large Scale Integration held at the University of Edinburgh from 18–21 August 1981, organised by the University of Edinburgh Departments of Computer Science and Electrical Engineering and the Wolfson Microelectronics Institute, with the assistance of CEP Consultants Ltd, 26 Albany Street, Edinburgh EH1 3QH
VLSI 81
Very Large Scale Integration

Edited by
John P. Gray

Department of Computer Science
University of Edinburgh

1981

ACADEMIC PRESS
A Subsidiary of Harcourt Brace Jovanovich, Publishers
London New York Toronto Sydney San Francisco
VLSI 81 is the first European Conference dedicated to all the subjects involved in the exploitation of silicon as a systems implementation medium. It has only recently become apparent, due to the pioneering work of Mead, that this emerging area of research embraces a very wide range of disciplines from device physics to branches of discrete mathematics.

One of the goals of the Programme Committee was to reflect this diversity by putting together a broad programme. Interestingly, many of the papers also reflect this diversity by bridging a number of apparently disparate subjects. Special emphasis has also been given to the more theoretical aspects of the subject. This is to give increased visibility to the areas which hold, the Committee believe, the more challenging problems, and more fundamental results, for progress in this subject.

John P. Gray
Chairman
Programme Committee
PROGRAMME COMMITTEE

J P Gray, Chairman, University of Edinburgh, UK
W Laing, Secretary, University of Edinburgh, UK
P Antognetti, University of Genoa, Italy
J Borel, EFCIS Grenoble, France
B G Bosch, Ruhr-Universität Bochum, FRG
A N Broers, IBM, USA
I Buchanan, University of Edinburgh, UK
D D Buss, Texas Instruments, USA
J Clark, Stanford University, USA
H de Man, Catholic University of Leuven, Belgium
D Eglin, International Computers Ltd, UK
W Heller, IBM, USA
S Kelly, General Instruments Ltd, UK
D Kinniment, Newcastle University, UK
F M Klaasen, Philips Research Laboratories, The Netherlands
D W Lewin, Brunel University, UK
J Mavor, University of Edinburgh, UK
D McCaughan, GEC Hirst Research Centre, UK
A D Milne, University of Edinburgh, UK
R Milne, Inmos Ltd, UK
R Milner, University of Edinburgh, UK
J P Mucha, University of Hanover, FRG
J C Mudge, CSIRO, Australia
M Newell, Xerox PARC, USA
D O Pederson, University of California, Berkeley, USA
F Preparata, University of Urbana, USA
D J Rees, University of Edinburgh, UK
M Rem, Eindhoven University of Technology, The Netherlands
J G L Rhodes, Pye TMC Ltd, UK
N Weste, Bell Laboratories, USA

ORGANISING COMMITTEE

From the University of Edinburgh Departments of Computer Science, Electrical Engineering and the Wolfson Micro-electronics Institute:

S Michaelson (Chairman)
G Plotkin, D J Rees (Joint Secretaries)
J P Gray, W Laing, J Mavor, A D Milne
P D Schofield, J B Tansley
ADDITIONAL REFEREES

B Ackland, N F Benschop, G Brebner
M R Hannah, R P Kramer, P Rashidi
L Smith, L Valiant, M C Van Lier
R Vervoordeeldink, R Wynhoven

CO-SPONSORS

British Computer Society
European Association for Theoretical Computer Science
Institution of Electrical Engineers
Institute of Electrical and Electronics Engineers
 (Region 8)
Institute of Physics

ACKNOWLEDGEMENT

This International Conference is organised with the support of the following:

Burroughs Machines Ltd
Compeda Ltd
Hewlett Packard Ltd
IBM (UK) Ltd
Inmos Ltd
Prestwick Circuits Ltd
Scottish Development Agency
Standard Telecommunication Laboratories Ltd
Plessey-UK Ltd
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ackland, B</td>
<td>117</td>
</tr>
<tr>
<td>Ahmed, H M</td>
<td>43</td>
</tr>
<tr>
<td>Banatre, J-P</td>
<td>141</td>
</tr>
<tr>
<td>Barton, E E</td>
<td>25</td>
</tr>
<tr>
<td>Batali, J</td>
<td>183</td>
</tr>
<tr>
<td>Blahut, D E</td>
<td>35</td>
</tr>
<tr>
<td>Bryant, R E</td>
<td>329</td>
</tr>
<tr>
<td>Cardelli, L</td>
<td>173</td>
</tr>
<tr>
<td>Chang, H</td>
<td>95</td>
</tr>
<tr>
<td>Chazelle, B</td>
<td>269</td>
</tr>
<tr>
<td>Colbry, B W</td>
<td>35</td>
</tr>
<tr>
<td>Collins, B</td>
<td>107</td>
</tr>
<tr>
<td>Courtois, B</td>
<td>341</td>
</tr>
<tr>
<td>Denyer, P B</td>
<td>151</td>
</tr>
<tr>
<td>Donath, W E</td>
<td>301</td>
</tr>
<tr>
<td>Foster, M J</td>
<td>75</td>
</tr>
<tr>
<td>Frison, P</td>
<td>141</td>
</tr>
<tr>
<td>Gordon, M</td>
<td>85</td>
</tr>
<tr>
<td>Gray, A</td>
<td>107</td>
</tr>
<tr>
<td>Hafer, L J</td>
<td>357</td>
</tr>
<tr>
<td>Harrison, M</td>
<td>35</td>
</tr>
<tr>
<td>Hong, S J</td>
<td>257</td>
</tr>
<tr>
<td>Hwang, J P</td>
<td>95</td>
</tr>
<tr>
<td>Kinniment, D J</td>
<td>193</td>
</tr>
<tr>
<td>Krambeck, R H</td>
<td>35</td>
</tr>
<tr>
<td>Kuhn, R H</td>
<td>279</td>
</tr>
<tr>
<td>Kung, H T</td>
<td>75</td>
</tr>
<tr>
<td>Larkin, M W</td>
<td>313</td>
</tr>
<tr>
<td>Law, H F S</td>
<td>35</td>
</tr>
<tr>
<td>Leighton, F T</td>
<td>289</td>
</tr>
<tr>
<td>Lerach, L</td>
<td>319</td>
</tr>
<tr>
<td>Lyon, R F</td>
<td>131</td>
</tr>
<tr>
<td>Marques, J A</td>
<td>53</td>
</tr>
<tr>
<td>Mayle, N</td>
<td>183</td>
</tr>
<tr>
<td>Mead, C A</td>
<td>3</td>
</tr>
<tr>
<td>Mikhail, W F</td>
<td>301</td>
</tr>
<tr>
<td>Miller, G L</td>
<td>289</td>
</tr>
<tr>
<td>Molzen, W W</td>
<td>95</td>
</tr>
<tr>
<td>Monier, L</td>
<td>269</td>
</tr>
<tr>
<td>Morf, M</td>
<td>43</td>
</tr>
<tr>
<td>Mosteller, R C</td>
<td>163</td>
</tr>
<tr>
<td>Mudge, J C</td>
<td>205</td>
</tr>
<tr>
<td>Mueller-Glaser, K D</td>
<td>319</td>
</tr>
<tr>
<td>Myers, D J</td>
<td>151</td>
</tr>
<tr>
<td>Nair, R</td>
<td>257</td>
</tr>
<tr>
<td>Parker, A C</td>
<td>357</td>
</tr>
<tr>
<td>Plotkin, G</td>
<td>173</td>
</tr>
<tr>
<td>Quinton, P</td>
<td>141</td>
</tr>
<tr>
<td>Rem, M</td>
<td>65</td>
</tr>
<tr>
<td>Roth, J P</td>
<td>351</td>
</tr>
<tr>
<td>Rupp, C R</td>
<td>227</td>
</tr>
<tr>
<td>Séquin, C H</td>
<td>13</td>
</tr>
<tr>
<td>Shapiro, E</td>
<td>257</td>
</tr>
<tr>
<td>Shrobe, H</td>
<td>183</td>
</tr>
<tr>
<td>Smith, K F</td>
<td>247</td>
</tr>
<tr>
<td>Snyder, L</td>
<td>237</td>
</tr>
<tr>
<td>So, H C</td>
<td>35</td>
</tr>
<tr>
<td>Soukup, J</td>
<td>35</td>
</tr>
<tr>
<td>Sussman, G</td>
<td>183</td>
</tr>
<tr>
<td>Weise, D</td>
<td>183</td>
</tr>
<tr>
<td>Weste, N</td>
<td>117</td>
</tr>
<tr>
<td>Whitney, T</td>
<td>217</td>
</tr>
<tr>
<td>Wu, J C</td>
<td>95</td>
</tr>
</tbody>
</table>
CONTENTS

Preface v
Programme Committee, Organising Committee vii
Additional Referees, Co-sponsors, Acknowledgement viii
Authors ix

SESSION 1

VLSI and Technological Innovation
C A Mead 3

Generalized IC Layout Rules and Layout Representations
C H Séquin 13

A Non-Metric Design Methodology for VLSI
E E Barton 25

Top Down Design of a One Chip 32-Bit CPU
R H Krambeck, D E Blahut, H F S Law, B W Colbry
H C So, M Harrison and J Soukup 35

Synthesis and Control of Signal Processing
Architectures Based on Rotations
H M Ahmed and M Morf 43

Mosaic: A Modular Architecture for VLSI System Circuits
J A Marques 53

SESSION 2

The VLSI Challenge: Complexity Bridling
M Rem 65

Recognize Regular Languages with Programmable
Building-Blocks
M J Foster and H T Kung 75

A Very Simple Model of Sequential Behavior of nMOS
M Gordon 85

Magnetic-Bubble VLSI Integrated Systems
H Chang, W W Molzen, J P Hwang and J C Wu 95
SESSION 3

The Inmos Hardware Description Language and Interactive Simulator
B Collins and A Gray

A Pragmatic Approach to Topological Symbolic IC Design
N Weste and B Ackland

A Bit-Serial VLSI Architectural Methodology for Signal Processing
R F Lyon

A Network for the Detection of Words in Continuous Speech
J-P Banatre, P Prison and P Quinton

Carry-Save Arrays for VLSI Signal Processing
P B Denyer and D J Myers

SESSION 4

REST - A Leaf Cell Design System
R C Mosteller

An Algebraic Approach to VLSI Design
L Cardelli and G Plotkin

The DPL/Daedalus Design Environment
J Batali, N Mayle, H Shrobe, G Sussman and D Weise

Regular Programmable Control Structures
D J Kinniment

SESSION 5

VLSI Chip Design at the Crossroads
J C Mudge

A Hierarchical Design Analysis Front End
T Whitney

Components of a Silicon Compiler System
C R Rupp

Overview of the CHiP Computer
L Snyder

Implementation of SLA's in NMOS Technology
K F Smith

A Physical Design Machine
S J Hong, R Nair and E Shapiro
SESSION 6

Optimality in VLSI
B Chazelle and L Monier 269

Chip Bandwidth Bounds by Logic-Memory Tradeoffs
R H Kuhn 279

Optimal Layouts for Small Shuffle-Exchange Graphs
F T Leighton and G L Miller 289

Wiring Space Estimation for Rectangular Gate Arrays
W E Donath and W F Mikhail 301

SESSION 7

Impact of Technology on the Development of VLSI
M W Larkin 313

A General Cell Approach for Special Purpose VLSI-Chips
K D Mueller-Glaser and L Lerach 319

A Switch-Level Model of MOS Logic Circuits
R E Bryant 329

Failure Mechanisms, Fault Hypotheses and Analytical
Testing of LSI-NMOS (HMOS) Circuits
B Courtois 341

Automatic Synthesis, Verification and Testing
J P Roth 351

Automating the Design of Testable Hardware
A C Parker and L J Hafer 357
The term VLSI, as an acronym for very large scale integration, is an apparent contradiction, describing as it does the superimposition of complex electronic circuits onto the silicon chip — an object which is anything but large. Nevertheless, as the size of individual device features become smaller, the scope of systems it is possible to integrate onto these chips increases. The progress of basic integrated circuit technology has caused the fusion of ideas from previously separate subjects so that a base of principles and theory for the implementation and application of VLSI is emerging. Thus, although the subject matter has been gestating in computer science and microelectronics for a number of years, it is only recently that the study of VLSI has become a discipline in its own right.

This book contains the papers delivered at the Edinburgh International Conference, VLSI 81, the first meeting to be devoted exclusively to this subject. Rather than a formal organization under traditional subject headings, the papers are grouped to reflect the multidisciplinary nature of the topic of very large scale integration. Within this arrangement the fields of interest covered are the application of discrete mathematics to VLSI systems, novel architectures, design methodologies, design tools, applications of VLSI systems and the design of circuits. Throughout the contributions special emphasis is given to theoretical aspects of the subject and to work which bridges the gap between disciplines.

As the first book of its kind, VLSI 81 will be an invaluable reference work for professional engineers, research workers and postgraduate students in both hardware and software disciplines. The heterogeneity of the subject matter means it will also be appreciated by mathematicians, and by undergraduates in computer science and engineering.