VLSI SYSTEMS AND COMPUTATIONS

Editors:
H. T. KUNG, BOB SPROULL, and GUY STEELE

Carnegie-Mellon University

COMPUTER SCIENCE PRESS
PREFACE

The papers in this book were presented at the CMU Conference on VLSI Systems and Computations, held October 19-21, 1981 in Pittsburgh, Pennsylvania. The conference was organized by the Computer Science Department, Carnegie-Mellon University and was partially supported by the National Science Foundation and the Office of Naval Research.

These proceedings focus on the theory and design of computational systems using VLSI. Until very recently, integrated-circuit research and development were concentrated in the device physics and fabrication design disciplines and in the integrated-circuit industry itself. Within the last few years, a community of researchers is growing to address issues closer to computer science: the relationship between computing structures and the physical structures that implement them; the specification and verification of computational processes implemented in VLSI; the use of massively parallel computing made possible by VLSI; the design of special-purpose computing architectures; and the changes in general-purpose computer architecture that VLSI makes possible. It is likely that the future exploitation of VLSI technology depends as much on structural and design innovations as on advances in fabrication technology.

The book is divided into nine sections:

- **Invited Papers**. Six distinguished researchers from industry and academia presented invited papers.

- **Models of Computation**. The papers in this section deal with abstracting the properties of VLSI circuits into models that can be used to analyze the chip area, time or energy required for a particular computation.

- **Complexity Theory**. This section shows how computations can be analyzed to obtain bounds on the resources (chip area, time, energy) required to perform some computation. The last paper in this section is a light-hearted reminder that complexity theories must acknowledge reality.

- **Layout Theory and Algorithms**. Papers in this section describe ways to route wires that connect together different circuits on a chip. This topic is of importance in computer-aided design, but also relates to the complexity of circuit layouts.

- **Languages and Verification**. This section presents several results on the specification and verification of circuits and of entire systems. The large number of communicating processes in some VLSI architectures must be designed methodically to insure proper operation.

- **Special-Purpose Architectures**. This section deals with systolic computing architectures and their application to areas such as signal processing.

- **Multiplier Designs**. The problem of designing an efficient multiplier is of both practical and theoretical interest. An important application for multipliers is in signal processing.

- **Processors**. Two papers in this section describe new designs for single-chip general-purpose computers whose architecture is influenced by VLSI design opportunities.

- **Systems and Processors**. This section contains papers describing frameworks for entire systems, such as parallel processing arrays and content-addressable memories.
Preface

These papers were selected by the program committee from among 120 extended abstracts submitted in response to the call for papers. Selection was based on originality and relevance to the theme of the conference, and was very difficult, owing to the large number of excellent papers submitted. Among the papers that could not be accepted were some excellent ones in design automation and computer-aided design, important areas beyond the scope of the conference.

We wish to express our thanks to the authors for making their works available while complying with strict deadlines and formats to aid in the timely appearance of the book; to the invited speakers for their excellent papers and for sharing their insights and experience; and to the program committee members for their careful evaluation of the many extended abstracts, despite the limited time made available to them. Especially, our grateful thanks go to Louis Monier, who contributed greatly in the planning of the conference and the publication of this book, and to Sharon Carmack, who was not only responsible for conference registration, but also handled the many details involved in the preparation of the conference.

The logo and cover design appearing on this book and throughout the conference were designed by E. Heidi Fieschko.

H. T. Kung and Bob Sproull

Fall 1981
Program Committee

Jim Clark, Stanford.
Danny Cohen, ISI, USC.
Jim Kajiya, Caltech.
Phil Kuekes, ESL Inc.
H.T. Kung, CMU.
Ed McCreight, Xerox PARC.
Ron Rivest, MIT.
Bob Sproull, CMU.
Guy Steele, CMU.
Earl Swartzlander, TRW Inc.
Jeff Ullman, Stanford.
Jean Vuillemin, INRIA.

Co-Sponsors

Carnegie-Mellon University.
National Science Foundation.
Office of Naval Research.
Authors

Arun, K.S. 235 Nash, J.G. 367
Baratz, A.E. 153 Nudd, G.R. 367
Baskett, F. 20, 337 Obrebska, M. 347
Baudet, G.M. 100 Owicki, S.S. 203
Bilardi, G. 81 Patterson, D.A. 327
Bromley, K. 273 Peek, J.B. 327
Brown, D.J. 178 Peshkess, Z. 327
Cappello, P.R. 245 Peterson, J. 21
Carter, T.M. 396 Pinter, R.Y. 126, 160
Chiang, A.M. 408 Powell, N. 41
Cohen, D. 124, 213 Pracchi, M. 81
Davis, A. 226 Preparata, F.P. 81, 311
Dolev, D. 143 Rao, D.V.B. 235
Fisher, A. 265 Rattner, J. 50
Fitzpatrick, D.T. 327 Rau, B.R. 389
Foderaro, J.K. 327 Reusens, P. 301
Foster, M.J. 196 Rivest, R.L. 153, 178
Gill, J. 337 Rosenberg, A.L. 69
Glaeser, C.D. 389 Ruano, L.M. 255
Hall, J.S. 379 Ruzzo, W.L. 119
Hansen, S. 367 Savage, C. 296
Hennessy, J. 337 Savage, J.E. 61
Hu, Y.H. 235 Sawai, A. 29
Hunt, C.E. 396 Séquin, C.H. 327
Johnsson, L. 213 Sherburne, R.W. 327
Jouppi, N. 337 Siegel, A. 143
Katevenis, M.G.H. 327 Siewiorek, D.P. 357
Kedem, Z.M. 52 Smith, K.F. 396
Ku, W.H. 301 Snyder, L. 119
Kuekes, P.J. 389 Speiser, J.M. 273
Kung, H.T. 255 Steiglitz, K. 245
Kung, S.Y. 235 Symanski, J.J. 273
Landman, H.A. 327 Thompson, C.D. 108
Lehman, P.L. 285 Tsao, M.M. 357
Leiserson, C.E. 126 Tseng, C.J. 357
Lengauer, T. 89 Van Dyke, K.S. 327
Luk, W.K. 317 Weiser, U. 226
Lyons, R.F. 1 Whitehouse, H.J. 273
Malachi, Y. 203 Wilson, A.W. 357
Mao, Y.H. 301 Wise, D.S. 186
McGarity, R.C. 357 Yen, D.W.L. 255
Mehlhorn, K. 89 Zorat, A. 52
Miller, G. 153
Contents

Preface
Preface vi

Program Committee, Co-Sponsors
Program Committee, Co-Sponsors vii

Authors Index
Authors Index viii

Invited Papers

The Optical Mouse, and an Architectural Methodology for Smart Digital Sensors
R.F. Lyon 1

Designing a VLSI Processor - Aids and Architectures
F. Baskett 20

Keys to Successful VLSI System Design
J.G. Peterson 21

Programmable LSI Digital Signal Processor Development
A. Sawai 29

Functional Parallelism in VLSI Systems and Computations
N.R. Powell 41

Functional Extensibility: Making The World Safe for VLSI
J. Rattner 50

Models of Computation

Replication of Inputs May Save Computational Resources in VLSI
Z.M. Kedem and A. Zorat 52

Planar Circuit Complexity and the Performance of VLSI Algorithms
J.E. Savage 61

Three-Dimensional Integrated Circuitry
A.L. Rosenberg 69

A Critique and an Appraisal of VLSI Models of Computation
G. Bilardi, M. Pracchi and F.P. Preparata 81

Complexity Theory

On the Complexity of VLSI Computations
T. Lengauer and K. Mehlhorn 89

On the Area Required by VLSI Circuits
G.M. Baudet 100

The VLSI Complexity of Sorting
C.D. Thompson 108

Minimum Edge Length Planar Embeddings of Trees
W.L. Ruzzo and L. Snyder 119

The VLSI Approach to Computational Complexity
D. Cohen 124

Layout Theory and Algorithms

Optimal Placement for River Routing
C.E. Leiserson and R.Y. Pinter 126

The Separation for General Single-Layer Wiring Barriers
A. Siegel and D. Dolev 143

Provably Good Channel Routing Algorithms
R.L. Rivest, A.E. Baratz and G. Miller 153

Optimal Routing in Rectilinear Channels
R.Y. Pinter 160
New Lower Bounds for Channel Width
D.J. Brown and R.L. Rivest 178

Compact Layouts of Banyan/FFT Networks
D.S. Wise 186

Languages and Verification
Syntax-Directed Verification of Circuit Function
M.J. Foster 196

Temporal Specifications of Self-Timed Systems
Y. Malachi and S.S. Owicki 203

A Mathematical Approach to Modelling the Flow of Data and Control in Computational Networks
L. Johnsson and D. Cohen 213

A Wavefront Notation Tool for VLSI Array Design
U. Weiser and A. Davis 226

A Matrix Data Flow Language/Architecture for Parallel Matrix Operations Based on Computational Wavefront Concept

Special-Purpose Architectures
Digital Signal Processing Applications of Systolic Algorithms
P.R. Cappello and K. Steiglitz 245

A Two-Level Pipelined Systolic Array for Convolutions
H.T. Kung, L.M. Ruane and D.W.L. Yen 255

Systolic Algorithms for Running Order Statistics in Signal and Image Processing
A. Fisher 265

Systolic Array Processor Developments
K. Bromley, J.J. Symanski, J.M. Speiser and H.J. Whitehouse 273

A Systolic (VLSI) Array for Processing Simple Relational Queries
P.L. Lehman 285

A Systolic Data Structure Chip for Connectivity Problems
C. Savage 296

Multiplier Designs
Fixed-Point High-Speed Parallel Multipliers in VLSI
P. Reusens, W.H. Ku and Y.H. Mao 301

A Mesh-Connected Area-Time Optimal VLSI Integer Multiplier
F.P. Preparata 311

A Regular Layout for Parallel Multiplier of O(log2n) Time
W.K. Luk 317

Processors
VLSI Implementations of a Reduced Instruction Set Computer

MIPS: A VLSI Processor Architecture
J. Hennessy, N. Jouppi, F. Baskett and J. Gill 337

Comparative Survey of Different Design Methodologies for Control Parts of Microprocessors
M. Oobrebska 347
C.FAST: A Fault Tolerant and Self Testing Microprocessor
 M.M. Tsao, A.W. Wilson, R.C. McGarity, C.J. Tseng and D.P. Siewiorek 357

Systems and Processors
VLSI Processor Arrays for Matrix Manipulation
 J.G. Nash, S. Hansen and G.R. Nudd 367

A General-Purpose CAM-Based System
 J.S. Hall 379

A Statically Scheduled VLSI Interconnect for Parallel Processors
 B.R. Rau, P.J. Kuekes and C.D. Glaeser 389

The CMOS SLA Implementation and SLA Program Structures
 K.F. Smith, T.M. Carter and C.E. Hunt 396

A New CCD Parallel Processing Architecture
 A.M. Chiang 408
ABOUT THE EDITORS

H.T. Kung is Associate Professor of Computer Science at Carnegie-Mellon University, where he received a Ph.D. in 1974. In the last several years, he has been working on paradigms of mapping algorithms and applications directly on VLSI chips and on theoretical foundations of VLSI computations. Together with industry and students at CMU, he designs and implements high performance systolic systems for signal and image processing. Kung has published over 50 technical papers in computer science.

Robert F. Sproull is Associate Professor of Computer Science at Carnegie-Mellon University, where he leads a research group exploring innovations in design and design aids for VLSI structures. He participated in the design of the Caltech Intermediate Form for conveying chip geometries to a fabrication line, which has become the basis for the multi-project chip prototyping facility. Additional work in design aids has centered on testing, simulation, and geometric artwork analysis. As a designer, one of Sproull’s major interests is in developing novel VLSI structures to support interactive raster graphics displays. Sproull is co-author of the standard text on interactive computer graphics and author of over 30 technical publications.

Guy Steele Jr. is Assistant Professor of Computer Science at Carnegie-Mellon University. He received his AB degree in applied mathematics from Harvard in 1975, and his SM and PhD degrees in computer science from M.I.T. in 1977 and 1980. His current research interests include programming language design and implementation, compiler construction, design of VLSI circuits, and computer architectures.

ISBN 0-914894-35-8