3. Project Locator Maps and List of Designers and Their Projects:

This section contains:

(i) a map for each of the two wafer types, giving the locations of the various die-types in the wafers.
(ii) a set of maps of the 12 project die-types, showing and encoding the positions of all 82 projects.
(iii) a list associating the projects' wafer/die/location-codes and the MPC79 file-system project-ID's.
(iv) a list of all 82 projects, identifying their designers and the functions of the projects.

The list of all 82 MPC79 projects groups the projects by university, listing them alphabetically by project ID within each university grouping. Each project entry in the list includes (i) the wafer/die/position-number code for the project, (ii) the project ID, (iii) the project designer(s), (iv) a short description of the project's function, (v) the project's bounding box dimensions in microns, and (vi) the area of the project in square mm.

Using the information in these maps and lists, participants can locate their project by determining the die-type (B, C, D, E, F, G, I, J, K, L, M, N) and then the project-number suffix for their project. The boxed, packaged chips returned to the university project-lab coordinators are marked with these die-type/project-number codes. The associated marked-up custom wire-bonding maps for each project are marked with the same code. When searching through diced but unpackaged chips, note that each chip contains a large die-type code-letter in its upper right-hand corner (see the Bonding Map section; the maps clearly show the code-letters).
MPC79A Wafer Map

MPC79B Wafer Map
MPC79 Multiproject Chip Layouts
<table>
<thead>
<tr>
<th>Wafer</th>
<th>MPC79A</th>
<th>Wafer</th>
<th>MPC79B</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB-1</td>
<td>BataliMIT</td>
<td>BI-1</td>
<td>MaconberrySU</td>
</tr>
<tr>
<td>AB-2</td>
<td>GramlichMIT</td>
<td>BI-2</td>
<td>GehiachSU</td>
</tr>
<tr>
<td>AB-3</td>
<td>FichtenbaumMIT</td>
<td>BI-3</td>
<td>MarkesSU</td>
</tr>
<tr>
<td>AB-4</td>
<td>KhouryMIT</td>
<td>BI-4</td>
<td>NoisesSU</td>
</tr>
<tr>
<td>AB-5</td>
<td>GoodrichMIT</td>
<td>BI-5</td>
<td>ElshianSU</td>
</tr>
<tr>
<td>AB-6</td>
<td>GrondalskiMIT</td>
<td>BI-6</td>
<td>AtlasSU</td>
</tr>
<tr>
<td>AB-7</td>
<td>PicardMIT</td>
<td>BI-7</td>
<td>HerndonSU</td>
</tr>
<tr>
<td>AB-8</td>
<td>AllenMIT</td>
<td>BI-8</td>
<td>HannahSU</td>
</tr>
<tr>
<td>AC-1</td>
<td>HamiltonMIT</td>
<td>BI-9</td>
<td>WulfSU</td>
</tr>
<tr>
<td>AC-2</td>
<td>PasekMIT</td>
<td>BJ-1</td>
<td>CampbellCT</td>
</tr>
<tr>
<td>AC-3</td>
<td>GassnerOT</td>
<td>BJ-2</td>
<td>FuCT</td>
</tr>
<tr>
<td>AC-4</td>
<td>ChunMIT</td>
<td>BJ-3</td>
<td>PapachCT</td>
</tr>
<tr>
<td>AD-1</td>
<td>LuhukayUI</td>
<td>BJ-4</td>
<td>LiCT</td>
</tr>
<tr>
<td>AD-2</td>
<td>iHanesUI</td>
<td>BJ-5</td>
<td>BartonCT</td>
</tr>
<tr>
<td>AD-3</td>
<td>AdrianUI</td>
<td>BJ-6</td>
<td>CoconiCT</td>
</tr>
<tr>
<td>AD-4</td>
<td>MonteoyUI</td>
<td>BJ-7</td>
<td>PursifullCT</td>
</tr>
<tr>
<td>AE-1</td>
<td>GuptaCMU</td>
<td>BJ-8</td>
<td>BozutoCT</td>
</tr>
<tr>
<td>AE-2</td>
<td>ClassUI</td>
<td>BJ-9</td>
<td>KingsleyCT</td>
</tr>
<tr>
<td>AE-3</td>
<td>MurrayOT</td>
<td>BJ-10</td>
<td>HoCT</td>
</tr>
<tr>
<td>AE-4</td>
<td>RogersOT</td>
<td>BJ-11</td>
<td>WhitneyCT</td>
</tr>
<tr>
<td>AE-5</td>
<td>FbelingCMU</td>
<td>BJ-12</td>
<td>TannerCT</td>
</tr>
<tr>
<td>AE-6</td>
<td>KungCMU</td>
<td>BK-1</td>
<td>MathewsSU</td>
</tr>
<tr>
<td>AE-7</td>
<td>SongCMU</td>
<td>BK-2</td>
<td>ZarghanSU</td>
</tr>
<tr>
<td>AE-8</td>
<td>HoeyCMU</td>
<td>BK-3</td>
<td>Fro0iSU</td>
</tr>
<tr>
<td>AE-9</td>
<td>KehlOT</td>
<td>BK-4</td>
<td>BasketuSU</td>
</tr>
<tr>
<td>AF-1</td>
<td>Schip2</td>
<td>BK-5</td>
<td>Clark2SU</td>
</tr>
<tr>
<td>AG-1</td>
<td>WalpCT</td>
<td>BK-6</td>
<td>OhChinSU</td>
</tr>
<tr>
<td>AG-2</td>
<td>KattsaiMIT</td>
<td>BK-7</td>
<td>BechtolsheimSU</td>
</tr>
<tr>
<td>AG-3</td>
<td>RivesMIT</td>
<td>BK-8</td>
<td>ClarkSU</td>
</tr>
<tr>
<td>AG-4</td>
<td>SnyderOT</td>
<td>BL-1</td>
<td>HellerCT</td>
</tr>
<tr>
<td>AG-5</td>
<td>GoddeauMIT</td>
<td>BL-2</td>
<td>EatonCT</td>
</tr>
<tr>
<td>AH-1</td>
<td>LHDoc1</td>
<td>BL-3</td>
<td>WatteyneCT</td>
</tr>
<tr>
<td>AH-2</td>
<td>RHDoc1</td>
<td>BL-4</td>
<td>MostellerCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BL-5</td>
<td>GrayCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BL-6</td>
<td>PinesCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BL-7</td>
<td>DerbyCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BL-8</td>
<td>PedersenCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BM-1</td>
<td>LigockiCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BM-2</td>
<td>DeturiUCB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BM-3</td>
<td>FungUCB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BM-4</td>
<td>LandmanUCB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BM-5</td>
<td>RumphuyCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BM-6</td>
<td>EllisCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BM-7</td>
<td>SequinUCB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BN-1</td>
<td>WatanabeUR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BN-2</td>
<td>LyonsUR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BN-3</td>
<td>KedemUR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BN-4</td>
<td>SohmUR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BN-5</td>
<td>TiiweUR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BN-6</td>
<td>UliSU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BN-7</td>
<td>TarisiSU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BO-1</td>
<td>LHDoc1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BO-2</td>
<td>RHDoc1</td>
</tr>
</tbody>
</table>
List of Designers and their Projects

CALTECH:

[Summary of designs from CalTech, updated 4-Dec-79 23:13:17]

BJ-5 BartonCT Designer: Eric Barton
Description: LED array driver
Reserved space = 2126 x 2126 microns, Area = 4.52 sq mm

BJ-8 BozzutoCT Designer: Rick Bozzuto
Description: Pulse width to binary converter
Reserved space = 2120 x 1288 microns, Area = 2.73 sq mm

BJ-1 CampbellCT Designer: James Campbell
Description: Logical processing unit with internal registers
Reserved space = 1856 x 1704 microns, Area = 3.16 sq mm

BJ-6 CocconiCT Designer: Alan Cocconi
Description: Array processor
Reserved space = 1896 x 1074 microns, Area = 2.04 sq mm

BL-7 DerbyCT Designer: Howard Derby
Description: Associative Memory
Reserved space = 2170 x 2566 microns, Area = 5.57 sq mm

BL-2 EatonCT Designer: Steve Eaton
Description: Counter/adder
Reserved space = 2500 x 1376 microns, Area = 3.44 sq mm

BM-6 EllisCT Designer: Mike Ellis
Description: Stepping motor controller
Reserved space = 2000 x 2500 microns, Area = 5.00 sq mm

BJ-2 FuCT Designer: Sai Wai Fu
Description: Square root generator
Reserved space = 1750 x 1626 microns, Area = 2.85 sq mm

BL-5 GrayCT Designer: Moshe Gray
Description: Array processor
Reserved space = 2534 x 2082 microns, Area = 5.28 sq mm

BL-1 HellerCT Designer: Jack Heller
Description: Digital filter
Reserved space = 2708 x 1326 microns, Area = 3.59 sq mm

BJ-10 HoCT Designer: Kuo Ting Ho
Description: 10 bit rate multiplier
Reserved space = 2120 x 1110 microns, Area = 2.35 sq mm

BJ-9 KingsleyCT Designer: Chris Kingsley
Description: Serial Multiplier
Reserved space = 2200 x 2064 microns, Area = 4.54 sq mm
CALTECH (cont.):

BJ-4 LiCT Designer: Peggy Pey-Yun Li
Description: Two's-complement pipeline multiplier
Reserved space = 2176 x 1326 microns, Area = 2.89 sq mm

BM-1 LigockiCT Designer: Terry Ligocki
Description: Scan converter chip
Reserved space = 2000 x 4108 microns, Area = 8.22 sq mm

BL-4 MostellerCT Designers: Rick Mosteller, Greg Eflan, Dick Lang
Description: Stack-oriented microprocessor
Reserved space = 4300 x 2996 microns, Area = 12.88 sq mm

BJ-3 PapachCT Designer: A.C. Papachristidis
Description: Magnitude comparator
Reserved space = 2000 x 1126 microns, Area = 2.25 sq mm

BL-8 PedersenCT Designer: Bruce Pedersen
Description: Asynchronous FIFO
Reserved space = 1896 x 2000 microns, Area = 3.79 sq mm

BL-6 PinesCT Designer: Elliot Pines
Description: Expandable clocking pattern generator chip
Reserved space = 1780 x 1780 microns, Area = 3.17 sq mm

BJ-7 PursifullCT Designer: Ralph Pursifull
Description: Self-Timed Queue
Reserved space = 1590 x 1590 microns, Area = 2.53 sq mm

BM-5 RumphCT Designer: David Rumph
Description: DMA controller
Reserved space = 2442 x 2242 microns, Area = 5.47 sq mm

BJ-12 TannerCT Designers: John Tanner and Richard Segal
Description: Single wire interface for a Manipulator (SWIM)
Reserved space = 2000 x 3000 microns, Area = 6.00 sq mm

AG-1 WalpCT Designer: Pat Walp
Description: Array processor
Reserved space = 2126 x 2050 microns, Area = 4.36 sq mm

BL-3 WatteyneCT Designers: Thierry Watteyne and Martine Savalle
Description: BCD/binary comparator
Reserved space = 2100 x 1600 microns, Area = 3.36 sq mm

BJ-11 WhitneyCT Designer: Telle Whitney
Description: Address translator
Reserved space = 1940 x 2126 microns, Area = 4.12 sq mm
Carnegie-Mellon University:

<table>
<thead>
<tr>
<th>Design</th>
<th>Code</th>
<th>Designer(s)</th>
<th>Description</th>
<th>Reserved space</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE-5</td>
<td>EbelingCMU</td>
<td>Carl Ebeling</td>
<td>Rebound Sorter</td>
<td>1856 x 1856 microns</td>
<td>3.44 sq mm</td>
</tr>
<tr>
<td>AE-1</td>
<td>GuptaCMU</td>
<td>Satish Gupta</td>
<td>Video Buffer</td>
<td>1006 x 5668 microns</td>
<td>5.70 sq mm</td>
</tr>
<tr>
<td>AE-8</td>
<td>HoeyCMU</td>
<td>Dan Hoey</td>
<td>Experimental Adder</td>
<td>1188 x 1976 microns</td>
<td>2.35 sq mm</td>
</tr>
<tr>
<td>AE-6</td>
<td>KungCMU</td>
<td>H. T. Kung, S. W. Song</td>
<td>Image Processing Chip</td>
<td>4160 x 2948 microns</td>
<td>12.26 sq mm</td>
</tr>
<tr>
<td>AE-7</td>
<td>SongCMU</td>
<td>Siang W Song</td>
<td>A small database machine</td>
<td>2224 x 1954 microns</td>
<td>4.35 sq mm</td>
</tr>
</tbody>
</table>

MIT:

<table>
<thead>
<tr>
<th>Design</th>
<th>Code</th>
<th>Designer(s)</th>
<th>Description</th>
<th>Reserved space</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB-8</td>
<td>AllenMIT</td>
<td>Don Allen, Jerry Burchfiel</td>
<td>Variable Length Field Decoder</td>
<td>2218 x 2484 microns</td>
<td>5.51 sq mm</td>
</tr>
<tr>
<td>AB-1</td>
<td>BataliMIT</td>
<td>John Batali</td>
<td>Zero-Crossing Detector for Image Processing</td>
<td>2644 x 1738 microns</td>
<td>4.60 sq mm</td>
</tr>
<tr>
<td>AC-4</td>
<td>ChuMIT</td>
<td>Tam-Anh Chu, Nhl-Anh Chu, Steve McCormick</td>
<td>Second order digital filter stage</td>
<td>6146 x 2278 microns</td>
<td>14.00 sq mm</td>
</tr>
<tr>
<td>AB-3</td>
<td>FichtenbaumMIT</td>
<td>Matt Fichtenbaum</td>
<td>A digital pulse rate monitor</td>
<td>2500 x 2500 microns</td>
<td>6.25 sq mm</td>
</tr>
<tr>
<td>AG-5</td>
<td>GoddeauMIT</td>
<td>David Goddeau, Jonathan Sieber, Chris Terman</td>
<td>A first-in, priority-out buffer</td>
<td>2928 x 2954 microns</td>
<td>8.65 sq mm</td>
</tr>
</tbody>
</table>
MIT (cont.):

<table>
<thead>
<tr>
<th>Design Code</th>
<th>Designer(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB-5 GoodrichMIT</td>
<td>Earl Goodrich</td>
<td>CRT controller
Reserved space = 1856 x 1520 microns, Area = 2.82 sq mm</td>
</tr>
<tr>
<td>AB-2 GramlichMIT</td>
<td>Wayne Gramlich, Carl Seaquist</td>
<td>Writable PLA in which the programming of the AND and OR planes is defined by contents of static RAM cells.
Also can program feedback loops to form finite state machines.
Reserved space = 1524 x 1906 microns, Area = 2.90 sq mm</td>
</tr>
<tr>
<td>AB-6 GrondalskiMIT</td>
<td>Robert Grondalski</td>
<td>Writeable PLA
Reserved space = 2200 x 2200 microns, Area = 4.84 sq mm</td>
</tr>
<tr>
<td>AC-1 HamiltonMIT</td>
<td>Brian Hamilton</td>
<td>Digital Alarm Clock
Reserved space = 2500 x 2500 microns, Area = 6.25 sq mm</td>
</tr>
<tr>
<td>AG-2 KathailMIT</td>
<td>Vinod Kathail, Keshav Pingali</td>
<td>Interpreter for mapping programs onto a data flow computer
Reserved space = 1590 x 2228 microns, Area = 3.54 sq mm</td>
</tr>
<tr>
<td>AB-4 KhouryMIT</td>
<td>John Khoury</td>
<td>Up-Down counter with programmable modulus
Reserved space = 2000 x 1726 microns, Area = 3.45 sq mm</td>
</tr>
<tr>
<td>AC-2 PasemanMIT</td>
<td>Bill Paseman</td>
<td>Music Synthesizer
Reserved space = 4126 x 2842 microns, Area = 11.73 sq mm</td>
</tr>
<tr>
<td>AB-7 PicardMIT</td>
<td>Len Picard</td>
<td>Variable format field extractor and compactor
Reserved space = 2000 x 1688 microns, Area = 3.38 sq mm</td>
</tr>
<tr>
<td>AG-3 RivestMIT</td>
<td>Ron Rivest, Len Adleman, Adi Shamir</td>
<td>Section of a Multiplier
Reserved space = 2250 x 2250 microns, Area = 5.06 sq mm</td>
</tr>
</tbody>
</table>
Stanford University:

[Summary of designs from Stanford University, updated 4-Dec-79 23:13:17]

BI-6 AtlasSU
Designers: Les Atlas, Doug Galbraith
Description: This project is a neural-stim. interval timer
Reserved space = 2478 x 1378 microns, Area = 3.41 sq mm

BK-4 BasketSU
Designers: Forest Baskett
Description: This project is an Ethernet synchronizer
Reserved space = 2240 x 2720 microns, Area = 6.09 sq mm

BK-7 BechtolsheimSU
Designers: Andy Bechtolsheim, Thomas Gross
Description: A parallel search table for log arithmetic
Reserved space = 1514 x 3180 microns, Area = 4.81 sq mm

BK-5 Clark2SU
Designers: Jim Clark
Description: This project is a self-timed clock element
Reserved space = 1606 x 1688 microns, Area = 2.71 sq mm

BK-8 ClarkSU
Designers: Jim Clark
Description: This project is a simple graphics ALU
Reserved space = 2976 x 2764 microns, Area = 8.23 sq mm

BI-5 ElahianSU
Designers: Kamran Elahian, Fred Basham
Description: This project is a UART line speed determiner
Reserved space = 1856 x 1856 microns, Area = 3.44 sq mm

BK-3 FrolikSU
Designers: Bill Frolik, Roderick Young
Description: This project is a digital timer
Reserved space = 2120 x 2684 microns, Area = 5.69 sq mm

BI-2 GehlbachSU
Designers: Steve Gehlbach, Joe Sharp, Bill Jansen
Description: This project is a fast 16-input adder
Reserved space = 3180 x 1856 microns, Area = 5.90 sq mm

BI-8 HannahSU
Designers: Peter Eichenberger, Marc Hannah
Description: This project is a rectangle generator
Reserved space = 2386 x 2140 microns, Area = 5.11 sq mm

BI-7 HerndonSU
Designers: Matt Herndon, Jeff Thorson
Description: This project is a typesetting machine
Reserved space = 3170 x 2000 microns, Area = 6.34 sq mm

BI-1 MacomberSU
Designers: Scott Macomber, Bob Clark
Description: This project is a parallel/serial multiplier
Reserved space = 2000 x 2000 microns, Area = 4.00 sq mm

BI-3 MarkeeSU
Designers: Pat Markee, Irene Watson
Description: This project is a digital clock
Reserved space = 2120 x 1424 microns, Area = 3.02 sq mm
BK-1 MathewsSU
Designers: Rob Mathews, John Newkirk
Description: This project is the infamous Buffalo chip
Reserved space = 5180 x 1134 microns, Area = 5.87 sq mm

BI-4 NoiceSU
Designers: David Noice, Neil Midkiff
Description: This project is a multiplier/divider
Reserved space = 2888 x 1576 microns, Area = 4.55 sq mm

BK-6 OhChinSU
Designers: Soo-Young Oh, Dae-Je Chin
Description: An automatic thermostat time controller
Reserved space = 2120 x 1700 microns, Area = 3.60 sq mm

BN-7 TarsiSU
Designers: Mike Tarsi, Nagatsugu Yamanouchi
Description: This project is a multifunction digital clock
Reserved space = 2140 x 2276 microns, Area = 4.87 sq mm

BN-6 UttSU
Designers: Steve Utt, Shalom Ackelsberg
Description: This project is part of a pancreas prosthesis
Reserved space = 2000 x 2000 microns, Area = 4.00 sq mm

BI-9 WulfSU
Designers: Bob Wulf, Tom Bennett
Description: This project is a bit slice of a multiplier
Reserved space = 2120 x 1856 microns, Area = 3.93 sq mm

BK-2 ZarghanSU
Designers: Bahman Zargham, Jerry Huck
Description: This project is a multiplexed communications link
Reserved space = 1590 x 1550 microns, Area = 2.46 sq mm

U.C. Berkeley:

[Summary of designs from U.C. Berkeley, updated 4-Dec-79 23:13:17]

BM-2 DecuirUCB
Designers: J. Decuir, C.H. Sequin
Description: Squareroot of 3 approximator for radix-3 block in FFT computer
Reserved space = 2650 x 3278 microns, Area = 8.69 sq mm

BM-3 FungUCB
Designers: W.-C. Fung, C.H. Sequin
Description: General purpose barrel shifter for staggered pipeline data in an FFT computer
Reserved space = 2484 x 2650 microns, Area = 6.58 sq mm

BM-4 LandmanUCB
Designer: Howard A. Landman
Description: This project is a reprogrammable PLA, with 8 each inputs, pterms, and (tri-state) outputs.
Reserved space = 2600 x 1590 microns, Area = 4.13 sq mm

BM-7 SequinUCB
Designer: Carlo H. Sequin
Description: Dual 16-stage FIFO with double rail signalling
Reserved space = 2460 x 980 microns, Area = 2.41 sq mm
Univ. of Illinois:

[Summary of designs from University of Illinois, updated 4-Dec-79 23:13:17]

AD-3 AdrianUI
Designers: Frank Adrian, Nick Fiduccia, Bud Pflug
Description: Functional equivalent of AMD 2901 ALU to compare MOS, TTL
Reserved space = 2710 x 4388 microns, Area = 11.89 sq mm

AE-2 ClassUI
Designers: Class
Description: Twos complement 4 x 4 array multiplier
Reserved space = 1714 x 1498 microns, Area = 2.57 sq mm

AD-2 HanesUI
Designers: Larry Hanes, Dave Yen
Description: Twos complement array divider
Reserved space = 2616 x 2636 microns, Area = 6.90 sq mm

AD-1 LuhukayUI
Designer: Joe Luhukay
Description: Pipelined multiplier, registers also used for testability
Reserved space = 2572 x 4140 microns, Area = 10.65 sq mm

AD-4 MontoyeUI
Designers: Bob Montoye, Al Casavant
Description: Carry lookahead adder
(solu. proposed by Gajski and Kung)
Reserved space = 2628 x 2626 microns, Area = 6.90 sq mm

Univ. of Rochester:

[Summary of designs from University of Rochester, updated 4-Dec-79 23:13:17]

BN-3 KedemUR
Designers: Gershon Kedem and Michel Denber
Description: Infinite precision multiplier
Reserved space = 2698 x 2786 microns, Area = 7.52 sq mm

BN-2 LyonsUR
Designer: Bob Lyons
Description: Programmable Frequency Generator
Reserved space = 2748 x 2276 microns, Area = 6.25 sq mm

BN-4 SohmUR
Designers: Larry Sohm, Pat Chan, Bill Notowitz
Description: Digital Phase lock loop
Reserved space = 3610 x 2634 microns, Area = 9.51 sq mm

BN-5 TiloVEUR
Designers: Bob Tilo, Jarek Rossignac
Description: This is a bit slice coordinate transformer
Reserved space = 1934 x 1326 microns, Area = 2.56 sq mm

BN-1 WatanabeUR
Designer: Yuki Watanabe
Description: Sorter slice
Reserved space = 2008 x 2240 microns, Area = 4.50 sq mm
Other places:

[Summary of designs from Other places, updated 4-Dec-79 23:13:17]

AC-3 GlasserOT Designer: Lance Glasser, MIT, via Univ. of Washington
Description: Modulo-6 counter for dice game
Reserved space = 1486 x 808 microns, Area = 1.20 sq mm

AE-9 KehlOT Designers: Ted Kehl, Ram Rao, Ed Lazowska,
Univ. of Washington, Seattle
Description: Address intercept logic for microcomputer
Reserved space = 1818 x 1782 microns, Area = 3.24 sq mm

AE-3 MurrayOT Designer: John Murray, Univ. of Colorado, Colorado Springs,
via Univ. of Washington
Description: 3-bit identity comparator
Reserved space = 1512 x 1642 microns, Area = 2.48 sq mm

AE-4 RogersOT Designer: Mike Rogers, Univ. of Bristol, Bristol, England,
via Univ. of Washington
Description: Simple 3-bit enciphering/deciphering chip.
Reserved space = 1248 x 1708 microns, Area = 2.13 sq mm

AF-1 Schip2 Designers: Gerry Sussman, Jack Holloway, Guy Steele, Alan Bell
MIT-AI Laboratory/Xerox PARC-SSL
Description: Lisp Microprocessor
Reserved space = 5926 x 7548 microns, Area = 44.73 sq mm

AG-4 SnyderOT Designer: Larry Snyder, Yale University,
via University of Washington
Description: A binary tree processor that computes boolean
functions, with inputs at the leaves and output at the root.
Reserved space = 3418 x 3430 microns, Area = 11.72 sq mm

AH-1 LhDoc1 Designer: Lynn Conway
Description: This is the Left Half of a "document chip",
describing MPC79, for use on MPC79A wafers.
Reserved space = 2918 x 4688 microns, Area = 13.68 sq mm

BO-1 LhDoc2 This is the Left Half of the "document chip",
for use on MPC79B wafers.
Reserved space = 2918 x 4688 microns, Area = 13.68 sq mm

AH-2 RHDoc1 Designer: Lynn Conway
Description: This is the Right Half of a "document chip",
flowcharting MPC79, for use on MPC79A wafers.
Reserved space = 3548 x 4424 microns, Area = 15.70 sq mm

BO-2 RHDoc2 This is the Right Half of the "document chip",
for use on MPC79B wafers.
Reserved space = 3548 x 4424 microns, Area = 15.70 sq mm