3. List of Designers and Their Projects:

Summary of designs from BBN, updated 30-May-80 21:36:13
Allocated 41.00 sq-mm
Used 38.68 sq-mm
Remaining 2.32 sq-mm

ID: CCITTBBN [DH] Project Name: CCITT Facsimile Data Compressor
Designer: Julie Sussman
Bounding box = 2886 x 2152 microns, Area = 6.21 sq mm
Description: The chip accepts an input stream of black and white pixels and end-of-line indicators under control of a 4-part bit-at-a-time handshake. It outputs the CCITT encoding of the input stream under control of the same handshake. This prototype handles run-lengths of up to 5 black or 5 white pixels in a row.

ID: CRCBBN [DH] Project Name: CRC-CCITT checksum accumulator
Designer: Norton Greenfeld
Bounding box = 1596 x 1230 microns, Area = 1.96 sq mm
Description: An implementation of the usual multi-section shift register form of the CRC-CCITT polynomial error check circuit. The functionality includes RESET (set all internal bits to 1); INPUT a bit and accumulate checksum; HOLD the current value; READOUT the checksum; and TEST for the magic residual value indicating no errors in the message.

ID: NOISEBBN [DH] Project Name: Noise Generator
Designer: Jack Kloostad, Jerry Wolf
Bounding box = 4586 x 1450 microns, Area = 6.65 sq mm
Description: This pseudo-random noise generator is intended for use in speech synthesis as the source of white noise for unvoiced excitation. The random number generator is described in BSTJ, Nov. 1970, pp. 2303-2310, but we use PLAs instead of the flip-flops and XOR-gates described. The number generated is 11 bits in length, with a period of 33825, but this could be extended easily. The random number is generated in parallel, and there are output pads for each bit to facilitate project testing. In an eventual application, the output would be used by a synthesis filter implemented with bit-serial arithmetic elements, so a parallel-to-serial shift register and serial output are included.

ID: PSWGGBBN [DH] Project Name: Programmable Square Wave Generator
Designer: William W. Plummer
Bounding box = 2160 x 1896 microns, Area = 4.10 sq mm
Description: Programmable square-wave generator

ID: STACKBBN [AG] Project Name: Stack Cache
Designer: Harry Forsdick, Rick Schantz
Bounding box = 2758 x 1590 microns, Area = 4.39 sq mm
Description: The purpose of this project is to build a hardware Stack Cache so that references to main memory can be reduced. The operations on the Stack are Reset, Push, Pop and Hold. The Stack accepts one data input value (for Push) and produces three possible data output values: Status (always), Data Out (for Pop) and Data Overflow (for Push).

ID: VLFDDBBN [AG] Project Name: Variable Length Field Decoder
Designer: Don Allen, Jerry Burchfiel
Bounding box = 2218 x 2484 microns, Area = 5.51 sq mm
Description: This circuit permits the rapid decoding of extremely bit-efficient representations of computer programs and data.
ID: WOODSBBN [DH] Project Name: Contention Gate
Designer: Bill Woods
Bounding box = 4640 x 2126 microns, Area = 9.86 sq mm
Description: This chip permits a number of processors to compete for the attention of a serving processor over a single communication channel. It handles different requests on a priority basis with the highest priority message from any source always getting through. The gate takes a 16 bit message and transmits it serially onto the communication line. Each communicating process which is contending for the server would require one such chip. The circuit has the virtue that the highest priority message always gets through -- no channel capacity is lost due to clashes of competitors trying to send at the same time.

Summary of designs from CALTECH, updated 30-May-80 21:36:13
Allocated 387.00 sq-mm
Used 208.80 sq-mm
Remaining 178.20 sq-mm
**

ID: AMCALTECH [AC] Project Name: Associative Memory
Designer: Howard Derby
Bounding box = 3306 x 2328 microns, Area = 7.70 sq mm
Description: A memory which allows various operations on its contents.

ID: BYRKECALTECH [AC] Project Name: Byrket
Designer: University of Washington. Bruce Byrket
Bounding box = 2500 x 1860 microns, Area = 4.65 sq mm
Description: This circuit is designed to interface with inertial sensors. It produces a signal to drive the primary of a microsyn on a gyro or accelerometer and demodulates the output of the secondary of the microsyn and demodulates the output of the secondary of the microsyn. An A/D converter could be included on the chip to make a complete interface between an inertial sensor and the navigation system.

ID: CCRTCCALTECH [CB] Project Name: Chinese CRT Controller
Designer: Kuo Ting Ho
Bounding box = 2664 x 1252 microns, Area = 3.34 sq mm
Description: A CRT controller for the Chinese character set.

ID: CORBINCALTECH [AC] Project Name: Corbin
Designer: University of Washington. Vince Corbin
Bounding box = 2226 x 2004 microns, Area = 4.46 sq mm
Description: This is a partial Ethernet receiver chip that is also designed for testability. It includes the data paths for serial-to-parallel conversion and address recognition, including recognizing the broadcast address. The PLA is a finite-state-machine that controls the decoding and message reception processes. The CRC checker and Manchester decoder have yet to be added. The purpose of this chip is to experiment with hardware techniques for improving testability.

ID: DACHIPCALTECH [BG] Project Name: Dachip
Designer: University of Washington. J. Cole
Bounding box = 938 x 938 microns, Area = 0.88 sq mm
Description: This chip is a digital to analog converter after a circuit design suggested by Carver Mead.

ID: DANIELCALTECH [DA] Project Name: Daniel
Designer: University of Washington.
Bounding box = 3336 x 4058 microns, Area = 13.54 sq mm
Description: This circuit is a parallel multiplier. It multiplies two 8-bit positive integers to form a 16-bit product. The chip could easily be extended to perform signed magnitude or 2's complement multiplication with a small amount of internal or external circuitry.
ID: DIFETICALTECH [AC] Project Name: Difet1
Designer: University of Washington. John Cole
Bounding box = 1414 x 1010 microns, Area = 1.43 sq mm
Description: single transistors comprised of a large number of minimum sized source and drain diffusion areas separated by a single lattice-work gate.

ID: DIFET2CALTECH [BG] Project Name: Difet2
Designer: University of Washington. John Cole
Bounding box = 934 x 1010 microns, Area = 0.94 sq mm
Description: single transistors comprised of a large number of minimum sized source and drain diffusion areas separated by a single lattice-work gate.

ID: DIFETCALTECH [CG] Project Name: Difet
Designer: University of Washington. John Cole
Bounding box = 1414 x 1010 microns, Area = 1.43 sq mm
Description: single transistors comprised of a large number of minimum sized source and drain diffusion areas separated by a single lattice-work gate.

ID: FOOBARCALTECH [DA] Project Name: Self Timed Paging Control
Designer: Richard Segal
Bounding box = 1626 x 2126 microns, Area = 3.46 sq mm
Description: A self timed paged memory control element.

ID: GR2CALTECH [DC] Project Name: GR2
Designer: Ricky Mosteller
Bounding box = 3592 x 3334 microns, Area = 11.98 sq mm
Description: Second version of the powerful GR stack machine.

ID: HLDCALTECH [CG] Project Name: High Low Digital Converter
Designer: Elliot Pines
Bounding box = 1868 x 1200 microns, Area = 2.24 sq mm
Description: ECPG - Counterpart.

ID: HLECALTECH [CG] Project Name: Hidden Line Eliminator
Designer: Terry Ligocki
Bounding box = 2442 x 1142 microns, Area = 2.79 sq mm
Description: A counter with tree structured carry chain.

ID: HOORNICALTECH [AC] Project Name: Hoorns
Designer: University of Washington. F. B. Hoornstra
Bounding box = 3636 x 916 microns, Area = 3.33 sq mm
Description: The "Hoornstra" 16-bit NMOS digital correlator is functionally patterned after the TRW TDC1004J 64-bit bipolar digital correlator. Both devices consist of strings of three independently clocked digital shift registers capable of parallel correlations, while both devices output current-sourced analog correlations. However, the TRW device employs TTL static latches for shift registers, whereas the NMOS device is designed with dynamic storage cells.

ID: JCOEICALTECH [DC] Project Name: Jcole
Designer: University of Washington. John C. Cole
Bounding box = 2694 x 2178 microns, Area = 5.87 sq mm
Description: This chip implements a simple algorithm for a constant false alarm rate (CFAR) threshold detector for a radar. A CFAR estimates the standard deviation of the received noise and establishes a threshold proportional to this estimated value. The received signal is compared with this threshold for a target/no target decision.
ID: JEXCALTECH [CB] Project Name: Jex
Designer: University of Washington.
Bounding box = 5452 x 2716 microns, Area = 14.81 sq mm
Description: The VLSI F/D chip contains six asynchronous up count registers, 16 bits wide. One for each sensor. They are fed parallel into a 16 bit static buffer connected to a parallel out 16 bit tri state output for the data bus. All control is implemented with an on-chip PLA.

ID: KAMCHIPCALTECH [DC] Project Name: KamChip
Designer: Kreg Martin
Bounding box = 3456 x 2196 microns, Area = 7.59 sq mm
Description: NMOS chip design.

ID: KOETHECALTECH [BF] Project Name: Koethe
Designer: University of Washington. Koether
Bounding box = 4550 x 1204 microns, Area = 5.48 sq mm
Description: A dual six bit register chip with bussed tristate outputs for use in an underwater autopilot system.

ID: LARSENCALTECH [CG] Project Name: Larsen
Designer: University of Washington. Donn Larsen
Bounding box = 2524 x 2303 microns, Area = 5.12 sq mm
Description: This is a storage array consisting of a "m" words by "n" bit serial/parallel input, serial/parallel output shifting array. The array uses dynamic refresh, serial/parallel input and output select wires a two phase clock and I/O pads. This array is 16 words by 8 bits but could have been any size with a change of two constants in the program. Such a storage array is required for each of the separate sections of the VLSI autopilot to optimize message traffic on a cyclical basis for multiparameter arithmetic, filtering, etc.

ID: LRUWMCALTECH [CG] Project Name: LRU-CAM
Designer: Telle Whitney
Bounding box = 2420 x 2386 microns, Area = 5.77 sq mm
Description: A translation buffer for virtual memories.

ID: MESSMECALTECH [BF] Project Name: Messme
Designer: University of Washington. Messmer
Bounding box = 2300 x 2772 microns, Area = 6.38 sq mm
Description: 10 4-bit counters with special count control used in an underwater autopilot system.

ID: MOERDYNICALTECH [CG] Project Name: Moerdy
Designer: University of Washington.
Bounding box = 4664 x 2888 microns, Area = 13.47 sq mm
Description: This chip multiplies two sixteen bit numbers together. The two numbers are entered 8 bits at a time with the lower bit entered first. Four entry cycles complete the loading of the chip. At this point one of the numbers is stored in register associated with the serial adder cells of the multiplier and the other is stored in shift register. After entering the two numbers the chip automatically starts the multiplication. When the multiplication is complete, the chip issues a signal and the result can be read 8 bits at a time.

ID: MULTIPLIERICALTECH [DA] Project Name: Multiplier
Designer: Bruce Pederson
Bounding box = 5986 x 474 microns, Area = 2.84 sq mm
Description: A digital serial multiplier.

ID: OINC2CALTECH [BG] Project Name: OINC2 Processor
Designer: Dave Johansson
Bounding box = 3168 x 3866 microns, Area = 12.25 sq mm
Description: A second version of the OINC processor.
ID: PERCIFCALTECH [BG] Project Name: Percif
Designer: Jeff Sonden
Bounding box = 3126 x 2834 microns, Area = 8.86 sq mm
Description: A PERCIF chip.

ID: PWMDICALTECH [CB] Project Name: PWM Digital Interface
Designer: Rick Bozzuto
Bounding box = 2420 x 1666 microns, Area = 4.03 sq mm
Description: A pulse width modulation interface circuit.

ID: RDGCALTECH [BF] Project Name: Rotating Display Generator
Designer: Steven Eaton
Bounding box = 2248 x 1426 microns, Area = 3.21 sq mm
Description: Manipulates data for a digital display.

ID: RUMPHCALTECH [DA] Project Name: FIFO Rumph
Designer: Dave Rumph
Bounding box = 1544 x 1714 microns, Area = 2.65 sq mm
Description: A FIFO

ID: SAMPLECALTECH [DC] Project Name: Sample
Designer: Dave Johannson
Bounding box = 2136 x 3196 microns, Area = 6.83 sq mm
Description: A test of the Bristle Blocks compiler.

ID: STACALTECH [BF] Project Name: Self Timed Adder
Designer: Martine Savalle, Thierry Watteyne
Bounding box = 1404 x 1060 microns, Area = 1.49 sq mm
Description: A self timed adder.

ID: STDPCALTECH [AC] Project Name: Self Timed Data Path
Designer: Eric Barton
Bounding box = 2854 x 3194 microns, Area = 9.12 sq mm
Description: A self-timed PDP-8 data path section.

ID: STFIFOCALTECH [BF] Project Name: Self Timed FIFO
Designer: Kreg Martin
Bounding box = 2376 x 2126 microns, Area = 5.05 sq mm
Description: A queue to buffer DMA data for a digital display.

ID: STPCALTECH [BG] Project Name: Self Timed Parts
Designer: Chris Lutz
Bounding box = 2720 x 1424 microns, Area = 3.87 sq mm
Description: A collection of self-timed elements for experimentation.

ID: SWICALTECH [BF] Project Name: Single Wire Interface
Designer: John Tanner
Bounding box = 1974 x 2500 microns, Area = 4.94 sq mm
Description: Interface for manipulator sensors.

ID: TOUCHSENSCALTECH [CB] Project Name: Touch Sensor
Designer: John Tanner
Bounding box = 3096 x 2628 microns, Area = 8.14 sq mm
Description: An array processor for processing tactile information. A voltage comparator is included in each cell for pressure transduction.
ID: WELLINCALTECH [DA] Project Name: Wellin
Designer: University of Washington. Welling
Bounding box = 4576 x 1946 microns, Area = 8.90 sq mm
Description: This VLSI circuit is an eight bit serial multiplier featuring built in testability. The hardware is divided into eight identical stages with each stage containing a full adder and a set of shift registers. Timing is synchronized by a set of shift registers between stages. Two sets of testability shift registers and control lines allow data to be input and sampled from each stage independently or from all stages simultaneously. A variable sized multiplicand is multiplied by an eight bit multiplier. The multiplier and multiplicand are input simultaneously with the first output bit occurring after eight bits are shifted in. Thereafter each clock cycle shifts out another output bit until all bits are shifted out. Output will continue as long as data is fed in.

Summary of designs from CMU, updated 30-May-80 21:36:13
Allocated 113.00 sq-mm
Used 74.24 sq-mm
Remaining 38.76 sq-mm

ID: BARSHIFTCMU [AE] Project Name: 16-Bit Barrel Shifter
Designer: Mark Stehlik
Bounding box = 3438 x 3428 microns, Area = 11.79 sq mm
Description: This is an implementation of a 16-bit barrel shifter. It uses a 4-bit decoder to determine the shift function (and so requires 40 pads). The design is based on the shifter used in the OM2 Data Path Chip.

ID: BITARRPROCCMU [CH] Project Name: Bit Array Processor
Designer: Ed Frank & Carl Ebeling
Bounding box = 2370 x 2350 microns, Area = 5.57 sq mm
Description: This project is a 3x3 BAP. Each cell has one bit of static storage, and can compute its next state as a function of its current state and its eight nearest neighbors. In this design each cell has two functions: 1) tally and 2) shift. The shift function allows us to get data in and out of all cells (slowly). The tally function computes the next state based on the number of neighbors which are on. All cells work in parallel. The BAP can be expanded by interconnecting BAP chips.

ID: BS16BCMU [CH] Project Name: 16-Bit Barrel Shift And Mask
Designer: Jim Gasbarro
Bounding box = 3278 x 2958 microns, Area = 9.70 sq mm
Description: This shifter is capable of doing end around shifts as well as zero fill from both the left and right. This feature enables several of the chips to be cascaded to form larger shifters.

ID: CETTCMU [CH] Project Name: C-Element Timing Tester
Designer: Bob Sproull & Ed Frank
Bounding box = 1928 x 386 microns, Area = 0.74 sq mm
Description: This project uses a C element as a way of measuring some of the performance characteristics of nmos.

ID: DCHIPCMU [DE] Project Name: DataChip
Designer: Satish Gupta
Bounding box = 3630 x 2596 microns, Area = 9.42 sq mm
Description: This chip manipulates the data for each of the memory chips in the 8x8 display. It is a 4-bit bit-slice and many of these can be stacked for displays with more than 4-bits per pixel.

ID: ICSCMU [DE] Project Name: Iterative Cell Switch
Designer: Jin H. Kim & J. Carlos Danelo
Bounding box = 1510 x 1630 microns, Area = 2.46 sq mm
Description: MANUAL LAYOUT OF HYBRID REDUNDANCY UNIT
ID: PLACMU [DE] Project Name: Control Pla
Designer: Diane Detig
Bounding box = 2052 x 4074 microns, Area = 8.36 sq mm
Description: The pla to control my asynchronous deque. There are 21 output signals generated by the pla. There are 11 control signals for my deque cell, 3 signals for communication to other cells, 4 signals store the internal state, and 3 signals control the temporary state of a cell. There are 14 input signals to the pla. There are 4 internal state, 3 temporary state, 3 communication from other cells, and 4 commands from other states.

ID: POLTEXTCMU [AE] Project Name: Poltext
Designer: M. Ciesielski, W. Maly, & A. Strojwas
Bounding box = 2380 x 2400 microns, Area = 5.71 sq mm
Description: Chip displays text stored in ROM on the 8 character alphanumeric display

ID: SERIALMULTCMU [AE] Project Name: Serial Multiplier
Designer: Alexander Waibel
Bounding box = 1670 x 1034 microns, Area = 1.73 sq mm
Description: 3-bit serial multiplier

ID: TCHIPCMU [DE] Project Name: NETLTestChip
Designer: Hank Walker
Bounding box = 3180 x 3180 microns, Area = 10.11 sq mm
Description: 15 x 15 crossbar for NETL system

ID: UDSCOUNTERCMU [CH] Project Name: Up Down Counter
Designer: Dave Touretzky
Bounding box = 2920 x 1006 microns, Area = 2.94 sq mm
Description: up/down counter with ripple carry

ID: VIDEBUFCMU [BA] Project Name: Video Buffer
Designer: Satish Gupta
Bounding box = 1006 x 5668 microns, Area = 5.70 sq mm
Description: Video buffer for the 8x8 display.

Summary of designs from ISI, updated 30-May-80 21:36:13
Allocated 24.00 sq-mm
Used 19.89 sq-mm
Remaining 4.11 sq-mm

ID: ASTISI [AD] Project Name: Automatic Star Tracker
Designer: Vance Tyree
Bounding box = 1150 x 1480 microns, Area = 1.70 sq mm
Description: This project uses the limited analog capability of the NMOS digital technology to implement an optical sensor that will sense the position of a stellar image and indicate the magnitude of its displacement from a telescope optical axis.
ID: COMBLOCKUSC [AF] Project Name: Combination Lock
Designer: William T. Overman
Bounding box = 1590 x 1620 microns, Area = 2.58 sq mm
Description: A five input, one output finite state machine which implements a combination lock with a fixed combination. The output goes high when the proper sequence of inputs is entered. The implementation consists of a single PLA with key debounce and a clear command included in the PLA programming. The feedback variables have been brought out to output pins for testing. A completely separate circuit generates a two phase non-overlapping clock. The outputs from this circuit can be externally wired to the clock inputs for the finite state machine to make the chip completely self-contained.

ID: DPOMAISIB [AD] Project Name: Dual Port Memory Arbiterator
Designer: Richard R. Shiffman
Bounding box = 1366 x 958 microns, Area = 1.31 sq mm
Description: This is a state machine designed to solve the problem of conflicts for memory in a dual port memory system.

ID: MFLUNDH [BB] Project Name: Matched Filter
Designer: Yngvar Lundh
Bounding box = 2074 x 1892 microns, Area = 3.92 sq mm
Description: The matched filter will continuously compare an incoming serial data stream with a key loaded ahead. The key will probably be 8 (or perhaps 16) bits. After a delay of 4 clock cycles a 4-bit (or 5-bit) binary output will supply the number of matched bits.

ID: MORSEISI [AD] Project Name: a morse code keyer
Designer: Danny Cohen
Bounding box = 1906 x 1832 microns, Area = 3.49 sq mm
Description: This device accepts morse keying in terms of Dot and Dash signals and converts them into xmt signals with the proper spacing, and with dash/dot ratio of 3. This device allows some keying-ahead.

ID: PADTESTISI [AD] Project Name: Pad-Test
Designer: Danny Cohen
Bounding box = 1108 x 1080 microns, Area = 1.20 sq mm
Description: This is a test of a clock-pad to produce PHI and PHI-BAR which are guaranteed not to be both HIGH.

ID: SERIALMULTISI [AD] Project Name: SerialMultiply
Designer: George Lewicki
Bounding box = 2422 x 1066 microns, Area = 2.58 sq mm
Description: A serial multiplier for use in a two-dimensional filter or interactive image processing.

ID: STGENISI [AD] Project Name: STGEN
Designer: W. Chiu, G. Finn, J. Lacos, D. Taylor
Bounding box = 2456 x 1266 microns, Area = 3.11 sq mm
Description: HP DMA State Generator Logic
Summary of designs from JPL, updated 30-May-80 21:36:13
Allocated 50.00 sq-mm
Used 48.55 sq-mm
Remaining 1.45 sq-mm

ID: MEMINTERJPL [BB] Project Name: Memory Interface
Designer: J. Wawrzynek
Bounding box = 3508 x 3000 microns, Area = 10.52 sq mm
Description: A HAMMING CODED MEMORY INTERFACE BUILDING BLOCK FOR USE IN A FAULT TOLERANT COMPUTER.

ID: SYNGENISI [BC] Project Name: Syndrome Generator
Designer: J. Wawrzynek
Bounding box = 1916 x 1816 microns, Area = 3.48 sq mm
Description: A SUBSECTION OF A HAMMING CODED MEMORY INTERFACE FOR USE IN A FAULT TOLERANT COMPUTER.

ID: TESTCHIPJPL [EE] Project Name: Test Chip
Designer: G. Bates, B. Hubbard, B. Blaes, & T. Griswold
Bounding box = 4678 x 7384 microns, Area = 34.54 sq mm
Description: THIS CIRCUIT contains EXPERIMENTAL TEST STRUCTURES FOR WAFER ACCEPTANCE TESTING AND YIELD/RELIABILITY ESTIMATION.

Summary of designs from MIT, updated 30-May-80 21:36:13
Allocated 150.00 sq-mm
Used 133.94 sq-mm
Remaining 16.06 sq-mm

ID: BATALIMIT [BA] Project Name: Zero-Crossing
Designer: John Batali
Bounding box = 5086 x 3876 microns, Area = 19.71 sq mm
Description: Zero crossing detector for image processing

ID: CGMIT [BA] Project Name: Clock Generator
Designer: M. Abbas
Bounding box = 1460 x 1358 microns, Area = 1.98 sq mm
Description: Programmable generator of two-phase clocks.

ID: EBEAM2MIT [BA] Project Name: EBeamTestStructure2
Designer: Dave Shaver
Bounding box = 252 x 916 microns, Area = 0.23 sq mm
Description: None

ID: EBEAMMIT [EB] Project Name: EBeamTestStructure1
Designer: Dave Shaver
Bounding box = 200 x 976 microns, Area = 0.20 sq mm
Description: None

ID: FANCIRCMIT [AE] Project Name: Fancy Circuits
Designer: Mark Johnson
Bounding box = 2044 x 3058 microns, Area = 6.25 sq mm
Description: High speed, low power circuits for output pad, clock driver, substrate bias, and parametric measurements
ID: GLASSERMIT [BA] Project Name: PLA City
Designer: Lance Glasser
Bounding box = 2536 x 1360 microns, Area = 3.45 sq mm
Description: Various PLA’s to try out their speed

ID: MAYLEMIT [AE] Project Name: Crossbar
Designer: Neil Mayle
Bounding box = 2250 x 2126 microns, Area = 4.78 sq mm
Description: Crossbar for AI constraint networks

ID: PORTALMIT [CD] Project Name: Portal Chip
Designer: Phyllis Koton, Carl Hewitt
Bounding box = 3740 x 5780 microns, Area = 21.62 sq mm
Description: Packet Interface between processors in a multiple processor system

ID: RIESMIMT [CD] Project Name: Fifo
Designer: Paul Ries
Bounding box = 1964 x 1918 microns, Area = 3.77 sq mm
Description: Dual Rail FIFO Buffer

ID: RIVESTMIT [EC] Project Name: Encryption Chip
Designer: Ron Rivest, Adi Shamir, Len Adleman
Bounding box = 5732 x 8084 microns, Area = 46.34 sq mm
Description: RSA Encryption Chip

ID: SECMIT [ED] Project Name: Small Encryption Chip
Designer: R. Rivest, A. Shamir, L. Adleman
Bounding box = 3872 x 6614 microns, Area = 25.61 sq mm
Description: RSA Encryption Chip

**
Summary of designs from STANFORD, updated 30-May-80 21:36:13
Allocated 195.00 sq-mm
Used 187.36 sq-mm
Remaining 7.64 sq-mm

**
ID: AESTANFORD [CE] Project Name: Adaptive Equalizer
Designer: Jonathan Green, Robert Jaffe
Bounding box = 4744 x 2658 microns, Area = 12.61 sq mm
Description: a 32-tap, 12-bit filter with weights changed adaptively based on an error input using the Widrow-Hoff algorithm

ID: ALUBSTANFORD [AB] Project Name: 8-Bit ALU
Designer: Bayegan/Hagiwara
Bounding box = 1856 x 2026 microns, Area = 3.76 sq mm
Description: an 8-bit ALU with 2 input sets and 16 operations

ID: ALUTESTSTANFORD [CF] Project Name: AluTest
Designer: Wayne Wolf
Bounding box = 2196 x 3146 microns, Area = 6.91 sq mm
Description: A test of the bit slice ALU.
ID: ASYNFIFOSTANFORD [DD] Project Name: Asynchronous FIFO
Designer: Fenwick, Jahn, Wantzelus
Bounding box = 4310 x 1350 microns, Area = 5.82 sq mm
Description: The project consists of a 4-phase clock generator/clock selector circuit controlling an asynchronous 4-bit by 16-word FIFO. A 1-bit adder circuit is also included.

ID: AWGSTANFORD [DB] Project Name: AudioWaveformGenerator
Designer: Won Kim, John Schur
Bounding box = 3058 x 3878 microns, Area = 11.86 sq mm
Description: This project samples data points in an external RAM at a requested frequency, using a 24 bit frequency specification and interpolating the 12 bit data points to output to a D/A converter.

ID: BLACKJACKSTANFORD [DB] Project Name: Blackjack
Designer: Lori Craven, Don Paulus
Bounding box = 2650 x 2620 microns, Area = 6.94 sq mm
Description: Input = dealer’s up card value, player’s card values
Output = total of player’s cards and hit or done or fold indication

ID: CCTSTANFORD [CE] Project Name: Counter Cell Tester
Designer: J. L. Redford
Bounding box = 1894 x 900 microns, Area = 1.70 sq mm
Description: a test of two counter cells before inclusion in a library

ID: CFIRFSSTANFORD [AB] Project Name: Cascadable FIR Filter Stage
Designer: Rex Heller, Rick Ottolini
Bounding box = 4828 x 1110 microns, Area = 5.36 sq mm
Description: This project is a convolver for on-site data reduction during collection of geophysical field data.

ID: CORSICASTANFORD [DB] Project Name: Corsica
Designer: Newman, Perry
Bounding box = 2536 x 1848 microns, Area = 4.69 sq mm
Description: this project uses the cordic algorithm to compute the sine and cosine of serial input data

ID: DCLOCKSTANFORD [BE] Project Name: Digital Clock
Designer: K. Doganis
Bounding box = 4126 x 1700 microns, Area = 7.01 sq mm
Description: Digital clock using 11 PLA’s in series, and a 3-7 decoder drives the MUX.

ID: DRAMSTANFORD [CF] Project Name: Dynamic RAM Controller
Designer: Marc R. Hannah
Bounding box = 2036 x 1964 microns, Area = 4.00 sq mm
Description: Test of a subsystem to be used in a graphics processor.

ID: DTUSTANFORD [CF] Project Name: Digital Timer Unit
Designer: k. wagner, c. caulfield
Bounding box = 2988 x 2254 microns, Area = 6.73 sq mm
Description: digital timer with stop/start reset that counts up to 100 minutes - unit to be used as a 'split' timer

ID: EDCCSTANFORD [DD] Project Name: ERROR DETECTION & CORRECTION CIRCUITRY FOR RAM
Designer: S. Z. Hassan, A. Mahmood, K. A. Kamal
Bounding box = 1990 x 1454 microns, Area = 2.89 sq mm
Description: The project is concerned with the detection and correction of random errors in RAMs.
ID: FREDSTANFORD [BE] Project Name: Fred
Designer: Borriello, Gaetano, and French, Paul
Bounding box = 1746 x 4896 microns, Area = 8.55 sq mm
Description: Graphics Memory. Stores coordinates of rectangles on a screen (4 types of shading) and supplies the boolean value of a pixel when supplied with the screen coordinates.

ID: IIRDSTANFORD [DB] Project Name: 2nd Order IIR Digital Filter
Designer: Amnon Alphas, Frank Soong
Bounding box = 3000 x 2650 microns, Area = 7.95 sq mm
Description: A ROM table lookup multiplication is used in this IIR filter implementation. Input data samples and output samples involved in the computation of the recursive filter equation:
\[y(n) = a0x(n) + a1x(n-1) + a2x(n-2) - b1y(n-1) - b2y(n-2) \]
will be stored in dynamic registers.

ID: M6800STANFORD [CE] Project Name: Motorola M6800 Co-Processor
Designer: Alain Guyot, Neville Harris
Bounding box = 2386 x 1652 microns, Area = 4.27 sq mm
Description: None

ID: MULTTESTSTANFORD [DD] Project Name: Multiplier Test
Designer: Lyle Smith
Bounding box = 2948 x 2320 microns, Area = 6.84 sq mm
Description: Test of Lyon's multiplier and a serial adder

ID: MULTSTANFORD [CE] Project Name: Multiplier
Designer: M. Ferrazano, S. Midkiff
Bounding box = 2228 x 1520 microns, Area = 3.39 sq mm
Description: A 4x4 to 8 Booth's Algorithm Multiplier

ID: MYCHIPSTANFORD [BE] Project Name: MYChip
Designer: Lena Yesil, Steve Morley
Bounding box = 2404 x 2446 microns, Area = 5.88 sq mm
Description: Two's complement multiplier using Booth's algorithm

ID: NEURONSTANFORD [CE] Project Name: Neuron
Designer: Wayne Wolf
Bounding box = 1764 x 2516 microns, Area = 4.44 sq mm
Description: A pair of neuron emulators.

ID: NUKESTANFORD [CF] Project Name: Library test chip
Designer: John Newkirk
Bounding box = 3756 x 1434 microns, Area = 5.39 sq mm
Description: This chip is a test of up/down counter, comparator, dual-port register, and geometric-distribution random-number generator cells contributed by Hahn et al.

ID: PFMSTANFORD [DD] Project Name: Programmable Frequency Multiplier
Designer: David Beal, James Ferenc
Bounding box = 1590 x 1326 microns, Area = 2.11 sq mm
Description: This project is a programmable 2^n frequency multiplier. The input consists of a square wave of frequency f. The output is then a 50% duty cycle square wave of frequency $(2^n)f$. The value n is a two bit number specified by the user.

ID: PGSTANFORD [AB] Project Name: Pattern Generator
Designer: Kenneth Ng Yu, Tahn-Joo Tan
Bounding box = 2500 x 2566 microns, Area = 6.42 sq mm
Description: None
ID: PHASEDECSTANFORD [EB] Project Name: Phase Decoder
Designer: Forrest Baskett
Bounding box = 1792 x 2176 microns, Area = 3.90 sq mm
Description: a phase decoder for implementing Ethernet, hopefully functional at speed this time

ID: PICSTANFORD [AB] Project Name: Programmable Interface Controller
Designer: Ang/Yuen
Bounding box = 2030 x 2406 microns, Area = 4.88 sq mm
Description: This project is a programmable interface controller that sits on a microprocessor bus.

ID: PMULTSTANFORD [AB] Project Name: Parallel Multiplier
Designer: Levis, Tinker
Bounding box = 2476 x 1910 microns, Area = 4.73 sq mm
Description: Pipelined parallel multiplier/adder. Computes R = AB + C where A is a 4 bit 2's complement fraction, and R, B, and C are 8 bit 2’s complement integers. The low order product terms are truncated.

ID: POTATOSTANFORD [DD] Project Name: Potato Chip
Designer: Hunt, Lozano, Hahn
Bounding box = 4500 x 3250 microns, Area = 14.63 sq mm
Description: P-CSMA/CD network interface.

ID: PSDSTANFORD [BE] Project Name: Programmable Sequence Detector (PSD)
Designer: D. Thompson, P. Decher
Bounding box = 1840 x 1344 microns, Area = 2.47 sq mm
Description: This chip is a programmable digital comparator that can monitor either a parallel or a serial data line.

ID: RANDOMSTANFORD [AB] Project Name: Random chip
Designer: K. Karplus, A. Strong
Bounding box = 1810 x 1416 microns, Area = 2.56 sq mm
Description: A feedback shift register random number generator, has extra "decay bit" with programmable probability of being hi [A functional subunit of the guitar chip.]

ID: SDRTSTANFORD [BE] Project Name: Serial data receiver and transmitter
Designer: Roy Matsuyama, Mark Phillips
Bounding box = 2376 x 2626 microns, Area = 6.24 sq mm
Description: we are designing a four bit serial data receiver and transmitter which operate independently of each other.

ID: SMSTANFORD [CE] Project Name: Switch Matrix
Designer: Saeed Bozorgui-Nesbat, Steve Butner
Bounding box = 1766 x 2390 microns, Area = 4.22 sq mm
Description: 4 X 4 switching matrix --- any input line (or its complement) may be ORed-in to any output line. Any output line may be complemented. Uses include programmable NOR gates, programmable PLA (requires 2 units), point-to-point switching, or programmable FSMs (requires 2 units).

ID: TICTACSTANFORD [CF] Project Name: TicTac
Designer: Aviles, Woodson
Bounding box = 3588 x 2288 microns, Area = 8.21 sq mm
Description: this is a tic-tac-toe player
Summary of designs from SPECIAL, updated 30-May-80 21:36:13
Allocated 212.00 sq-mm
Used 98.99 sq-mm
Remaining 113.01 sq-mm

ID: ALANSPECIAL [AI], [BI], [CI] Project Name: Alan Picture
Designer: Strollo
Estimated Bounding box = 5750 x 5750 microns, Area = 33.06 sq mm
Description: Picture of Alan Bell which appeared in Lambda. DO NOT ROTATE.

ID: BILLSPECIAL [DI] Project Name: Bill Picture
Designer: Strollo
Estimated Bounding box = 5750 x 5750 microns, Area = 33.06 sq mm
Description: Picture of Bill Plummer and Ann Tomlinson. DO NOT ROTATE.

ID: HPTESTSPECIAL [AY], [BY], [CY], [DY], [EY] Project Name: HPTest
Designer: Wilner
Bounding box = 4000 x 3000 microns, Area = 12.00 sq mm
Description: These are the twelve test patterns designed by Xerox to be compatible with an HP test system. They need only appear once on each die.

ID: MultiSpec [CC] Project Name: Multi580
Designer: Lyon
Bounding box = 5954 x 2556 microns, Area = 15.22 sq mm
Description: Pair of 16-bit mults w/ extras. Do not rotate if possible.

ID: TALLYSPECIAL [DG] Project Name: Tally580
Designer: H. Landman
Bounding box = 1554 x 1490 microns, Area = 2.32 sq mm
Description: A tally circuit a la Mead & Conway. The one I did for the 8/79 internal MPC was found not to work even though everyone (including Dick Lyon & Alan Bell) who looked at it believed it to be correct. This one will try to find out why.

ID: TPS8OSPECIAL [AY], [BY], [CY], [DY], [EY] Project Name: TP580
Designer: Landman
Bounding box = 1000 x 570 microns, Area = 0.57 sq mm
Description: Resolution and alignment test patterns.

ID: XARB [AB] Project Name: Arbiter
Designer: Chuck Thacker
Bounding box = 2916 x 948 microns, Area = 2.76 sq mm
Description: None

Summary of designs from UCB, updated 30-May-80 21:36:13
Allocated 190.00 sq-mm
Used 91.38 sq-mm
Remaining 98.62 sq-mm

ID: AFIFOUCB [DG] Project Name: AFIFO
Designer: Jim Kleckner
Bounding box = 4186 x 2980 microns, Area = 12.47 sq mm
Description: An asynchronous FIFO.
ID: CLSUCLB [BH] Project Name: CLS
Designer: Mark Hofmann, Yiannos Manoli
Bounding box = 4410 x 3688 microns, Area = 16.26 sq mm
Description: A Cascadable Linear Sorter, from which one can build (serial) sorting networks which run in linear time and require O(n**2) hardware.

ID: NIMUCB [AA] Project Name: NIM
Designer: Lee Melton
Bounding box = 2256 x 2526 microns, Area = 5.70 sq mm
Description: A chip to play nim.

ID: RIDAMUCB [DG] Project Name: RIDAM
Designer: Manolis Katevenis
Bounding box = 2764 x 2156 microns, Area = 5.96 sq mm
Description: A Random Insert/Delete/Access Memory.

ID: XbarUCB [DG] Project Name: XBARUCB
Designer: David J. Hahaway
Bounding box = 2650 x 2510 microns, Area = 6.65 sq mm
Description: An 8 by 8 crossbar switch.

ID: XFIROUCB [DG] Project Name: XFIFO
Designer: Howard A. Landman
Bounding box = 1920 x 1920 microns, Area = 3.69 sq mm
Description: A single FIFO cell from the XPORT project with individual access to all control lines.

ID: XHECUCLB [AA] Project Name: XHEC
Designer: Howard A. Landman, Ion Ratiu
Bounding box = 4160 x 2668 microns, Area = 11.10 sq mm
Description: 14-bit Hamming Encoder/Corrector from XPORT project. Allows single error correction / double error detection for 9 data bits. Can be used as Hamming bit generator or as corrector for already-encoded word.

ID: XIBUCB [EF] Project Name: Xib
Designer: H. A. Landman, Ion Ratiu, Joseph Decuir
Bounding box = 4478 x 6598 microns, Area = 29.55 sq mm
Description: An integrated input buffer for the X-port project. Preliminary report available from Landman

**
Summary of designs from UCLA, updated 30-May-80 21:36:13
Allocated 69.00 sq:mm
Used 30.12 sq:mm
Remaining 38.88 sq:mm
**

ID: ADDER[ISI [BB] Project Name: ADDER
Designer: Vojin G. Oklobdzija
Bounding box = 1116 x 600 microns, Area = 0.67 sq mm
Description: Design of a 4-bit adder with Manchester carry chain.

ID: FIFOISI [BC] Project Name: FIFO
Designer: Duyet Huu Nguyen
Bounding box = 1600 x 2954 microns, Area = 4.15 sq mm
Description: Dual 4-bit,8-stage,speed-independent fifo.
ID: FOURADDERISI [BC] Project Name: 4X4Adder
Designer: Mohammad Dadanesht
Bounding box = 2386 x 2220 microns, Area = 5.30 sq mm
Description: Using Conditional Sum addition scheme, a multi-operand adder is implemented. Each operand has 4 bits and there are a total of 4 operands. This project is intended to be used as a building block for a multiplier.

ID: IARBISI [BC] Project Name: Interrupt-Arbiter
Designer: Frederick G. Weiss
Bounding box = 1530 x 1228 microns, Area = 1.88 sq mm
Description: AN INTERRUPT ARBITER AFTER THE DESIGN OF MEAD AND SUTHERLAND AT CALTECH.

ID: M16COUNTISI [BB] Project Name: Mod 16 Counter
Designer: Constantine Ananiades
Bounding box = 1376 x 990 microns, Area = 1.36 sq mm
Description: Two-phase dynamic counter with fast carry generation.

ID: OLRADDERISI [BC] Project Name: On-Line Redundant Adder
Designer: Srinivas V. Makam
Bounding box = 1626 x 1828 microns, Area = 2.97 sq mm
Description: Signed-digit Adder for radix=10, redundancy factor=7

ID: OLSORTERISI [BC] Project Name: On-Line Sorter
Designer: Gobad Karimi
Bounding box = 2124 x 1728 microns, Area = 3.67 sq mm
Description:
1. THE BOUNING BOX IS X1=0,Y1=0 X2=2150,Y2=1750
2. THE NUMBER OF I/O PADS ARE 19
3. THE GLOBAL SCALE FACTOR IS 100/1
4. IT SORTS TWO 4-BIT SERIAL-BIT INPUT WORDS AND PRODUCE A 4-BIT SERIAL-BIT OUTPUT WORD

ID: TESTUCLA [BB] Project Name: Test chip
Designer: R. Conilogue
Bounding box = 730 x 1530 microns, Area = 1.12 sq mm
Description: This chip is a test structure to be used to characterize the device parameters on this MPC run. It is submitted by the Electrical Sciences and Engineering Department at UCLA. This project chip should not be wire-bonded in its package. A probe-card is being prepared for testing this chip.

ID: WEISSUCLA [AD] Project Name: Transient digitizer
Designer: F. Weiss
Bounding box = 3000 x 3000 microns, Area = 9.00 sq mm
Description: A pass-transistor sample and hold array with delay line.
Summary of designs from UoFC, updated 30-May-80 21:36:13
Allocated 65.00 sq-mm
Used 47.94 sq-mm
Remaining 17.06 sq-mm

ID: AMKUoFC [CC] Project Name: Automatic Morse Keyer
Designer: Rod Schlater, Ron Meredith
Bounding box = 1464 x 1090 microns, Area = 1.60 sq mm
Description: Forms properly timed and spaced dots and dashes from Automatic Keyer inputs.

ID: DCOMPUoFC [CC] Project Name: Data Compressor
Designer: David Neuder, Noel Zellmer
Bounding box = 2050 x 1906 microns, Area = 3.91 sq mm
Description: Compress serial timing data (4-bit words) into a counted-occurrence format

ID: DDCUoFC [CC] Project Name: Distributed Dynamic RAM Controller
Designer: J. Redman, R. Sud
Bounding box = 2604 x 1326 microns, Area = 3.45 sq mm
Description: A SYNCHRONOUS DISTRIBUTED DYNAMIC RAM CONTROLLER.

ID: DIGSCLUoFC [AH] Project Name: Digital System Clock
Designer: J. Redfield, K. Mason
Bounding box = 2536 x 2294 microns, Area = 5.82 sq mm
Description: A MICROPROCESSOR COMPATIBLE DIGITAL CLOCK.

ID: ELECTBOOKUoFC [AG] Project Name: ElectronicBook
Designer: Jim Murray
Bounding box = 3618 x 3678 microns, Area = 13.31 sq mm
Description: ELECTRONIC BOOK. This design is the prototype PLA-based version of the ROM structure to be used in conjunction with an intelligent controller in the implementation of an ELECTRONIC BOOK.

ID: FIFO2UoFC [AH] Project Name: FIFO
Designer: Don Zimmer, Dan Oldfield
Bounding box = 2000 x 1900 microns, Area = 3.80 sq mm
Description: Synchronous FIFO

ID: ICPSUoFC [CC] Project Name: Interrupt Controller Peripheral Subsystem
Designer: M. Janes, E. Schade
Bounding box = 1630 x 958 microns, Area = 1.56 sq mm
Description: A VECTOR GENERATION CIRCUIT FOR AN INTERRUPT CONTROLLER

ID: OPAMPUoFC [AH] Project Name: Op Amp
Designer: Rich Davis, Wayne Gravelle
Bounding box = 1650 x 1630 microns, Area = 2.69 sq mm
Description: Dual NMOS operational amplifier

ID: RAMCUoFC [AG] Project Name: RAM Controller
Designer: Kathy Ader, Jerry Kinsley
Bounding box = 1590 x 1060 microns, Area = 1.69 sq mm
Description: 8-stage shift register and R-S flops implementing a dynamic RAM timing generator
ID: SEQCOMPUofC [AG] Project Name: Sequential Comparator
Designer: Paul Sherwood, Kent Hardage
Bounding box = 2000 x 1590 microns, Area = 3.18 sq mm
Description: This circuit performs the type of sequential comparisons commonly found in logic analyzers.

ID: SPGUofC [AG] Project Name: Symmetric Polynomial Generator
Designer: Richard Lary
Bounding box = 1856 x 1856 microns, Area = 3.44 sq mm
Description: Calculates symmetric polynomials in AND and OR via two methods; firstly, for comparison, a modification of the tally circuit is used; secondly, a direct implementation of the recurrence relation defining symmetric polynomials is used.

ID: SPM3BUofC [BD] Project Name: 3-BIT SERIAL/PARALLEL MULTIPLIER
Designer: K. Black
Bounding box = 2120 x 1650 microns, Area = 3.50 sq mm
Description: A THREE BIT SERIAL/PARALLEL MULTIPLIER.

Summary of designs from UofI, updated 30-May-80 21:36:13
Allocated 97.00 sq-mm
Used 79.09 sq-mm
Remaining 17.91 sq-mm

ID: ARRDIVUofI [CH] Project Name: Array Divider
Designer: Larry Hanes, David Yen
Bounding box = 2616 x 2636 microns, Area = 6.90 sq mm
Description: FOUR BIT TWO'S COMPLEMENT ARRAY DIVIDER

ID: CORRELUofI [EA] Project Name: Correlator
Designer: Bob Bury, Dan Halperin, Larry Ruane
Bounding box = 6440 x 2796 microns, Area = 18.01 sq mm
Description: Correlator chip to be used by the Radio Astronomy Department to process signals from other galaxies.

ID: DELTANETUofI [EA] Project Name: Delta Network
Designer: Ken Huang, Alex Videnbaum
Bounding box = 2700 x 6792 microns, Area = 18.34 sq mm
Description: Slice of a Delta Network (invented by J. Patel) for Processor-Memory Interconnection. This chip can connect 4 processors to 4 memory modules; data path width is 4 bits. Multiple chips can be used for larger arrays and data path widths.

ID: MULTCHANANUofI [BD] Project Name: Multichannel Analyzer
Designer: Kent Fuchs, Tim Skitberg
Bounding box = 3570 x 1726 microns, Area = 6.16 sq mm
Description: Programmable Multichannel Analyzer to be used for data acquisition in conjunction with particle detectors.

ID: PWMSUofI [BD] Project Name: Programmable Wave form Music Synthesizer
Designer: Glenn Poole
Bounding box = 3566 x 3574 microns, Area = 12.74 sq mm
Description: A 4-channel programmable waveform music synthesizer, using waveforms stored in external RAM.
ID: SYSTMULTUofI [AH] Project Name: Systolic Multiplier
Designer: Bob Montoye, R. Kuhn
Bounding box = 3570 x 2344 microns, Area = 8.37 sq mm
Description: Implementation of a 12-bit serial systolic multiplier. Does a multiply in O(n) area and O(n) time.

ID: TPMUofI [BD] Project Name: Testable Pipelined Multiplier
Designer: Joe Luukay, Bob Montoye
Bounding box = 2210 x 1387 microns, Area = 8.57 sq mm
Description: 4 X 4 pipelined array multiplier based on Serra and Cimbera design, and using the pipeline registers for LSSD-like testability.

Summary of designs from UoF, updated 30-May-80 21:36:13
Allocated 39.00 sq-mm
Used 10.19 sq-mm
Remaining 28.81 sq-mm

ID: OESUofI [AH] Project Name: Odd Even Sorter
Designer: Hiro Yuki Watanabe
Bounding box = 2246 x 1616 microns, Area = 3.63 sq mm
Description: ODD EVEN SORTER This project sorts 6 words, 8 bits each, using data structure called uniform ladder. It is designed so that extensions are easily done. The uniform ladder performs an odd-even sort in highly concurrent

ID: RTMULTUofI [AH] Project Name: Real Time Multiplier
Designer: Gershon Kedem
Bounding box = 1592 x 1690 microns, Area = 2.69 sq mm
Description: REAL TIME BIT SERIAL MULTIPLIER: This project implements a multiplier suggested by A. J. Atrubin. (see Knuth Vol2 ,4.3.3-E). The multiplier is a Chain of finite state machines. This chip is only one finite state machine.

ID: SCDACUofI [AH] Project Name: Switched Capacitor DAC
Designer: Mark Kahrs
Bounding box = 2242 x 1722 microns, Area = 3.86 sq mm
Description: 13 bit switched capacitor DAC

Summary of designs from USC, updated 30-May-80 21:36:13
Allocated 98.00 sq-mm
Used 80.36 sq-mm
Remaining 17.64 sq-mm

ID: CELLOUSC [AF] Project Name: booth
Designer: jain, voskanian
Bounding box = 4990 x 2000 microns, Area = 9.98 sq mm
description: controller for 10800 alu to carry out booth's algorithm

ID: CELL4USC [DF] Project Name: ahead
Designer: fernandez, mohamad
Bounding box = 2874 x 2276 microns, Area = 6.54 sq mm
description: 4-bit adder with carry look ahead
ID: CORDICUSC [CA] Project Name: CORDIC
Designer: P. Menon, S. Sastry
Bounding box = 5656 x 4982 microns, Area = 28.18 sq mm
Description: trigonometric function evaluator using the cordic algorithm

ID: FINALUSC [DF] Project Name: 4-bit bitslice microprocessor
Designer: hayes, sridhar
Bounding box = 2750 x 3250 microns, Area = 8.94 sq mm
Description: 4-bit bit slice microprocessor

ID: HURAKUSC [DF] Project Name: array
Designer: rao, hu
Bounding box = 2818 x 2202 microns, Area = 6.21 sq mm
Description: array processing element for h. t. kungs highly concurrent signal processor

ID: JAGOSZUSC [DF] Project Name: focal
Designer: jagosz
Bounding box = 3500 x 2192 microns, Area = 7.67 sq mm
Description: controller for electro-optical focal plane array sensor

ID: MULTUSC [AF] Project Name: Multiplier
Designer:
Bounding box = 2736 x 2374 microns, Area = 6.50 sq mm
Description: Bit serial multiplier

ID: SortUSC [AF] Project Name: Self-Sorting-Memory
Designer: O. Koeneke
Bounding box = 2010 x 1360 microns, Area = 2.73 sq mm
Description: Memory sorts entries serially but provides random access output.

ID: SRUUSC [AF] Project Name: sru-for-fpt
Designer: Y. Ehrlich
Bounding box = 1900 x 1900 microns, Area = 3.61 sq mm
Description: shift and rotate unit for fast polynomial transform microprocessor

Summary of designs from WUSTL, updated 30-May-80 21:36:13
Allocated 35.00 sq-mm
Used 21.97 sq-mm
Remaining 13.03 sq-mm

ID: CRSPNTWUSTL [BH] Project Name: Crosspoint switch
Designer: T. Ravi, W. Thomas
Bounding box = 1100 x 1626 microns, Area = 1.79 sq mm
Description: 2x2 2-bit crosspoint switch

ID: MINDISWUSTL [AA] Project Name: Mindis
Designer: D. Goldfarb
Bounding box = 1714 x 3376 microns, Area = 5.79 sq mm
Description: Minimum controller for raster display
ID: TAUTEVENTL [BH] Project Name: Tau Tester
Designer: T. Chaney & F. Rosenberger
Bounding box = 1126 x 1670 microns, Area = 1.88 sq mm
description: Test circuit for flip-flop resolving time parameter measurement by wafer probing.

ID: THNGLTWUSTL [AA] Project Name: THNGLT
Designer: T. Chaney
Bounding box = 1360 x 326 microns, Area = 0.44 sq mm
Description: FLIP-FLOP TEST CIRCUIT

ID: TMBPLAWUSTL [AA] Project Name: TMBPLA
Designer: C. Molnar, T. Fang
Bounding box = 1486 x 1220 microns, Area = 1.81 sq mm
description: sequence counter and state control for TRIMOSBUS.

ID: TRIMOSBUSWUSTL [BH] Project Name: TriMosBus-R-S
Designer: W. Bosch & T. Fang
Bounding box = 1500 x 1856 microns, Area = 2.78 sq mm
Description: PART OF CONTROL LOGIC FOR TRIMOSBUS INCLUDING THE RECEIVE AND SEND CONTROL

ID: TRMOBUWUSTL [BH] Project Name: TMBPLW
Designer: C. Molnar, T. Fang
Bounding box = 1486 x 1220 microns, Area = 1.81 sq mm
Description: TRIMOSBUS CONTROL WITH WEAK PULL-DOWN

ID: UNARYDAWUSTL [AA] Project Name: UNARYDA
Designer: E. Johnson
Bounding box = 2786 x 1726 microns, Area = 4.81 sq mm
description: Six bit unary weighted D/A converter with no decoding.

ID: VCOVUSTL [BH] Project Name: VCO
Designer: J. DeLargy
Bounding box = 1068 x 796 microns, Area = 0.85 sq mm
description: A voltage controlled oscillator using voltage control of the gates of depletion mode