An Algorithm for
MOS Logic Simulation

Randal E. Bryant, Massachusetts Institute of Technology

ith the mtroduction of simplified MOS design
techmigues by Mead and Conway {1980} we have
seen a proliferation of custom LSI systems de-
stgned by non-spe

alists, For most people, however, V151
design 15 sull the whimate “batch job"” —a very complex
system must be designed, hand debugged and fabricated be-
fore it can be wned our, by which tme no correctiions can be
made, Il we are w realize the full potential of custom VIS,
we cannot spend the tume, patience, and personnel o hand-
verify designs and iterate through several prototypes, as cur-
rently done in indus

ry. Fortunately, well-designed sim-
ulation tools can eliminate much of this tediom, and greatly
increase the chances of Dirs-lime success.

Tradivionally, MOS designers have been lorced o use
cither logic-gate simulators or circuit simulators such as
SPICE (Nagel 1975). Neither choice works well. Logic-gate
simulators are based on the Boolean gate model in which a
network consists of a set of unidirecuonal logic gates con-
nected by one-way, memoryless wires, This does not reflect
the mature of MOS designs, which contain bidirectional
logic elements {(licld-elfect transistors) and - badrectional
wires with sullicient capacitance (including the attached
gate capacilances) o store signals dynamically. Numerous
ad foc extensions, such as high impedance states and uni-
directional models of pass transistors, have been added o
logic gate simulators, but they fail w correct the funda-
mental mismatch between the logie model and the logic
technology, Alternatively, circuit simulators can accurately
model any logic design, but do so with such grean detail than
[!Il' Armoant (I[l'l]'llll}l]"
nevded 1o set up the s
overwhelming,.

As an alternative o conventional logic and circuin simu-
lators, the simulator MOSSIM { Bryang 1980} was developed
specifically for the logical simulation of MOS LS1 MOSSIM
models a logic network as a set of nodes connected by FET

4

wom required and the human effon

mulation and interpren the resals are

switches'. This network maodel has the ollowing advan-
Lages

I. It 15 based on the actual stoructiure of the design rather

than on s intended [unction

2, Tt s wrmiversal, because MOSFE

inator for all MOS LSI designs,

Unlike circuir simulators, however, MOSSIM models the
network inoa highly idealized way, It unlizes only 3 logic
levels: 0,1, and X (for undefined or unknown). The fourth

“high-impedance™ state seen in other simulators is not
because MOSSIM automanically

S AT 3 COMITTO l!l T -

needed, simulates *'iri-

46 LAMBDA Fourth Quarter 1980

state” devices as a consequence of its network model. Tran-
sistors are moddeled as pedect switches, and no atempt s
made 1o model the tming in great detail, These idealizations
allow the simulator 1w operate at speeds approaching those
of conventonal logic simulators, Entire VLS designs can
be simulated in an interactive environment. MOSSIM has
shown great expressive power in modeling many varieties of
MO designs directly.

We have also had grear success in extracting the switch-
level network directly [rom the mask lavout [iles described
in CIF (Mead and Conway 1980), using a program writlen
by Clark Baker (Baker 1980) (see article in this issue of
LAMBDA). Because the simulator needs only a simple
description of the network strocture, the exiraction program
can be relatvely straightorward, This combination of auto-
matic network extraction, followed by simulation, uncovers
many crrors in both the logic design and the layouwt. It has
the advantage of testing the design which will actually be
implemented, rather than the one the designer thinks will
he implemented. With the wide variety of human and par.
tally-debugeed computer systems currently producing lay-
outs, this double-check has proved invaluable, As computer-
ized toals become more sophisticated and layouts are pro-
duced “untouched by human hands™
become less crucial, However, a switch-level simulator could
still be integrated into the design system o aid the logic
design checking,

In the following sections

i I.'d'!.'l}l]l EXIFACLIn]'l'l.i-l'!.'

an algorithm for a switch-level
simulator will be desenbed i sufficient detal w enable the
reader to implement it Programs will be presented in the
style used in Aho, Hoperolt and Ullman (Aho, Hoperoft and
Ullman 1974). The algorithm described here corresponds wo
the most recent version of MOSSIM. This program can model
both raticed nMOS and CMOS designs which operate either
with a conservative clocking scheme or with speed-inde-
pendent logic. It runs reasonably [ast, because it prepro-
cesses the network extensive

and because 10 simulates parts
of the network with functiional models, Some possible ex-
tensions of the basic program will be discussed at the end.

Simulator Features
Network Model

In MOSSIM a logic network consists of a set of nodes con-

u{'m-ti by & set of ransistors. There are three IHu\ of nodes:

- It provides a strong signal 1o the cir
from off-chip (e.g., Vdd, Gnd, Phil, Phi2, et}

2. Pullup avached via a pullup resistor to Vad: will pro-

it

vide a | signal unless grounded (eg., the output of an
nMOS inverter.)

5, Normal provides no signal but is capable of storing a
stgnal dynamically,

source

gate ._l

drain

FIGURE 1. A transistor is a three-node device.

A tranststor 15 a three-node device as shown in Figure 1,
Mo distinction 15 made between the source and dran con-
nections of a transistor, Transistors can be either n-type,
petype, or d-type. All act as voltage-controlled switches as
shown in Tahle 1.

N1 |t YNNI VOOVRRNOTOIN .-
gate signal eMect gate signal eMect gate signal effect

i] QpEn] closed a closed
1 closed 1 CpEn 1 closed
X unknown X unknown X closed

TABLE 1. Transistor types and behavlor.

D-type (for “depletion™) transistors are used 1o model the
paly-diffusion crossovers seen in some MOS designs, They are
not used 1o model depletion loads,

User Interface

A simulator requires two kinds of information: the network
tor be simulated, and the operations 1o be perlormed on i For
the simulator wo aid the design of complex VLSI systems, i
must provide the user with power and flexibility, while
avoiding unnecessary wdinm or awkward conventions. Aflwr
several penerations, MOSSIM has evolved into a program
which allows the user to test a design in a reasonably pleas-
ant, interactive environment, as documenced in { Bryant 1980),

Network Input

MOSSIM can accept a network description in several dif-
ferent [ormats. A preprocessing program takes one of these
descriptions, performs a lopological analysis, and creates a
file for the simulation control program. By keeping the front
end of this program modular, it can easily be adapted o new
network formats.

For describing networks prior to mask layout, the macro
language NDL (Network Description Language) was de-
veloped. This language provides the [ollowing [

Lures:

nes for ne H.!t‘!i

« symbolic

« pre-defined system elements such as transistors, varnouos
logic gates, e

smacro expansion of user-delined subnetworks,

NDL allows the user to specify large systems as a hierarchy
of subnetworks. It has proved somewhan awkward o use,
however, because it lacks many features of a lirst-class pro-
gramming language, such as ineger arithmetic, neration,
conditionals, ew. Rather than extending the language
further, it seems wise 10 embed a set of network description
primitives into an existing programming language.

For simulating svstems based on a layout, the layour ex-
traction program described previowsly can be used, In the
fuure, the network description should be incorporated into
an integrated VLSI design system.

Simulator Control

Testing a VLSI system has many of the characteristics ol
testing a large computer program. Because of its size, the
design must be viewed modularly and at several dillerent
levels of detail, Errors may ocour deep within one part of
the design and propagate in entirely unexpected ways, Thus,
an interactive soltware debugeer forms a useful model for
a simulation control program

With MOSSIM, the user can exercise a network through a
serquence of inputs and set or probe nodes using symbaolic
names. User-delined clocking schemes can be applied, and
collections of nodes can be combined into vectors. A section
of the network can be tested in isolanon by “forcing™ sig-
nals onto selected nodes, temporarily toming them into
inpuil nodes.

Possible future extensions include breakpoints and maore
sophisticated Tevels of conrol, such as user-deflined proce-
dures. Once again, these leatures would best be provided by
embedding the simulation control within an existing pro-
gramming language,

Design Philosophy

MOSSIM is designed o test the funcuonality of a partic-
ular class of VLSI systems. I does not iy o model detailed
electrical and timing behavior, It assumes that in clocked
systems, the clock signals are spaced far enough aparn o
allow the circuit o settle between each signal change, but
close enough weether o prevent the loss of swored charge
due 1o leakage, Furthermore, the circuit must contain no
critical races, That is, the circuit should settle 10 a unigue
state regardless of the individual signal delavs, Systems built
with two-phase, non-overlapping clocks generally fulfill
these requirements, as do most sell-nmed sysiems. For the
purposes of this discussion, clocked svatems wall be assumed.
Likewise, the simulator will not caich electrical errors such
as improper inverter rauos, or muliplesthreshold voliage
drops,

The behavior of MOSSIM is based on that of an abstract
madel of MOS circuits. Any implementation should not de-
pend on the details of the actual program code. For example,
no anomalous behavior should arse from a chanee ordening
of events or [rom artifacts of the daa swructures used in the
implementation, Furthermore, any questions about the cor-
rectness of the simulaor should be resolved by studying the
absract model. With this i mind, very few design decisions
must be made arbitrarily. The absiract model for MOSSIM
is deseribed inomy thesis (Bryant, in preparation).

LAMBODA Fourth Quarter 1950 47

SIMULATION

Detailed Description
of the Simulator

Simulator Operation
Topeological Analysis

As an aid o boah e speed and the understanading of the simulation
alggorithims, it helps o stroeine the pevwaork Girse through a wopaological
anmilvsis.

Input Node Splitting

Tnpasr podes. provide sirong signals wothe network, These si
not be moedilied by the intermal operations of the network, Thos we can

splin each logical AL e inie a

umber of physical inpan nodes, one
lear ench ransistoe v which it is conmected. For example, imstesd of view.
ing o mamber ol logie gates as sharing a single node God, each pulldown
transistor can be viewed as hiving o5 own source of @ 0 impuat, a5 shown

in Figure 3y G5

Tnpar pode splittimg scrves two purposci. Fiest, 10 presvents anomiloos
behavior cavsed by short cireuies {when two input nodes with difleren

stares are conneded | irom sproading throoghoon the setwork. Witk dng o

nexbe splitting, neades alomg the sharing path{s)of a shor circwin are set pullup node

e X, while others are unalleoved, Second, o belps w lagment the nemwork

it smaller entites called " transisior groops. « narmal node {b) circuit diagram of network after
In the mmplementation, a map must be msinained froem the logical e input mode nade splitting and partitioning

inpat nodes seen by the wser o the physical anpuot nedes wen by the simuo
I, Every tme the user sers the state of an impu node, the program miuso
updare the corresponding inwernal nesdes.

Transistor Groups di
paatr ol vermiees, il the corresponding modes [omm the source and deain fon
s tranaiston. This graph can be partioned e is connected com-
v be chancierized i inpu ponenuts using the algorithm described in Appendis 1 The secof nodes and
o ouiput. This property, while imporiant for modeling MOS designs. transistors cortespanding o the vertices and edges ina component foom a
cavses difliculey dn devesig sirmulacion algonithms and in applyving a network partitioned ino transision
perlormance improvements sech as selective node updating. arowpes is shown in Figure 2k, Noae that a splic inpae nede may L in
Fhe gate node of a tnsistor, however, s a0 pure inpot o the logic several groups.

clement: its state determines the state of the switch, but the gate node is noy

divectly allecied by pransistonr operations, We cin explodt the unidirectional Network nmm‘uﬂnn

comnection of the gate nodes by panitoning the network into a ser of

transistor groups. Modes within a panssion group ane

Transisior groups can be defined in the Tollowing way: creae an un-
roted graph with a vertex for every netwaork nnde and an edge betwesn a

Our pevwork model is unigue in thae the logic element s o bilaeral
device where nedther the source nor the

transiston group. An example of

Let us asswme thal we have a logic network inowhich all inpui nodes
have been splic, and ahe nodes aml tansistors have been paniioned inwo a
total of g transistor groups. We can represent the structuare of a netwark,
LL in the following way:

werconnecied

thraugh the bilateral nodes ol transisors, Boween transistor groups, anly
unilaeral ineractions ocour from o node inone gooap i the gae ol a
transisten 10 another group,

FIGURE 2. Topological analysls of network.

whuare

Nefnglizigg)

{4} logic: diagam dempies the sen of modes, amd

T=fw | 1sisgl
denvones the ser of ransisior. [n bial cases, the Gt subsenpt indicates the
C agroaupr ombier, anad the second indicates the element within the groug.
Inlormanion aboul the nodes and ransisiors 5 encoded inche following
o Tunctieas;

NTYPE: N o= gty puliup, normel |, the node rype
TTYPE: I—fnpdl the transismon vy pe
Phi2 GATE: T—=N. the grate node
SOURCE: T—N, the source pode
DRAIN: T—N, e drain nesde

48 LAMBDA Fourth Quarter 1950

SIMULATION continued

Ihe state of the network is defined as:
M={(5%X)
wlhene
S={s | 1=isgl
denates the node states, sij is an element of {0, 1, X], ad
Nefew | l=iz=g)
demodes the transistor sianes, xik 15 an element of [open, closed, undefimed]
Timing Model

With MOSSIM the flow of vime is viewed at three bevels of granalarity:
cvele: A complete sequencing of the sysiem clocks.
phase: One set of clock and daca input values,
step: The atommac tme wnit of the simulaor. Within a
phase, unit steps are taken untl the circuit seteles,
Acclock im MOSSIM is delimed as a et of sequences w be applied oacl-
cally 1o a set of nodes, For example, a two-phase, non-overlapping clock
can be defined as:

Plal: 0100 Pha2: 0001,

where boah Phil and Phi2 are mput nodes. A phase corresponds oo a
single setting of the inpul nodes (oth data and clock), The above example
has four {!} phases within each clock cvele. Implementing the phase
simuelation requires soae effor. Once this is done, implementng the cvcle
level and other aspeets of the user interface reguires a lair amount of efior
b nor theoretical insiglhns.

Phase Simulation

Program 1 shows how a phase simulation s perfformed. The procedure
15 given a list A cont pairs of values < njj. v =, v is an element of
P 1, X), indicaning a node and s new seaee, AL the very sean of the
sirmularion:

A=f<npX=| njeN|

i, all podes are 1o be ininalized o X, The progrom works by mainaining
an event list E containing those group numbers in which a node or tran-
sistow state has been changed, bur the groap has not been resimulaced,
First, the requested node changes are applied, and the iransisiors with
these modes as gate nodes are updared. The procedure SET _ TRANS seis
the transisior state according o Table 1
added 1o E. Next, a series of unin seeps is taken umiil the evene list E is
empuicd, indicating the network has settled. Onee the netwark setiles, a
new phase can begin.

This canses new groups o be

Program I. Phase Simulation

Input: A network £, a network state M, and a list A containing

node state pairs <mij, y=.
Result: M is updated by simulating the effects of the new values
in A

procedure PHASE(D, M, A):
begin

E — &)
for each <ny, y= in A do
begin

f:ii:ﬂ:_lgi};

for each k1 such that GATE(f1; = m do

begin
xkr — SET _ TRANS{TTYPE{fi1). ¥):
E — B |kl

end

end;
while E = & do
E — UNIT _ STEP{{l, M, E).
end

As an implementation consideration, the maximum number of uni
stepss for a clocked system can be limived 1o | N I - L the wral noember
of nodes in the etwark, This will prevent non-terminating simulations
vaused by oscillatory behavior. This limit anises becavuse the number ol
unit seeps required is related o the depthoof the combinational logic.

Unit Step Simulation

The unit step simulation is shown in Program 11 Durnng a unit step,
the transistor states are held fixed. while the flow of signals through the
transistors is simulated with the procedure GROUP _ STEP. This pro-
vedure is applied only 1w groups on the event lise Each upening resules
in some number (possibly) of nodes changing sae. These nodes are
avcumulated in the Ser I Following the charge (low simulation, the iran-
sistors which have gate nodes in I are updated, and the groups in which
these ranaistors lie ane added 1o a new event list E for use in the next unit
sief

Program IL Unit Step Simulation

Input: A network {1, &8 network state M, and a list of groups E
Result: M is updated by simulating the groups in E

Output: A new list of groups requiring simulation.

procedure UMNIT _ STEP({l, M, E):
begin

D-&;
for each i in E do
D — D'JGROUP —_ STEP{fl, M, i);
E' —&;
for each njj € D do
for each fir such that GATE(fk1) = mij do

n
“51 — SET _ TRANS(TTYPE(tu1). sij);
E' ~ E U [k]:
and;
return (E')
end

By first changing the node staes while holding the transistors Tixed
anad then changing the transistor states with the nodes fixed, the iransisiors
im effect switch | oime unit alter their sate nodes change. Henee the erm
“unit delay™. Thas wechmigue also ensares thar the simulation behavior
15 independent of the ordering of groups m E.

Signal Flow Simulation

Thus far, we have remained external o the ransistor groups, amd the
simularor appears much like an event-driven, unit-delay Iogic gae sim-
ulator, Within a transistor growps, howeser, things operate mouoch dilleremly.

Prosgram 111 shows the signal flow simulanon, Ar the stam we are given
a transdstor group containing a sel ol modes and a ser of rransistors, O
task 15 1o update the node states according 1o the Thow of signals throegh
the ransistors. First, all pullup nodes are initialised w1 Then, we con-
sider the undirected graph cor

b mesde in the group
and an edge comresponding w each iransiswor in the “closed™ staee. The
connecied COMMENEns ol the grzph pEarinion the set of nesbes inta a set
of equivalence classes called CLASSES. An algorithm for perlorming this
p.'lraillrm I given in .-‘|.|1|:-|'nr.|'ix I. An mmecsal n:-e:llr||m|;.||::i-::lr| of the state for
cach class is performed by the procedure STATE. shoswn im Progrom [V
Tnihis prescedure, the “stromgese ™ nodedspoan the class are inspeoed. where
node strengths are ordered as mpat = padlup = normal. The strength of
the o lass s delined as the siength of s srongest node(s). IF the sues of
the strengest podes are equal, the class state becomes this state; otherwise
it becoames X, The Laer case represents either a shore-circuin (for i
or charge-shaning {(for nommal), W the class sirength s pm'hrp. the rlass
state alwiys becomes 1.

NI & VETIEN r”l' [+

A l.i|'|?||:|I|' fand conerived) :-x:nmpl:' ol signal flow simuliticn 15 shicnwn
in Figure ¥, showing a group consisting of a NAND gate with a chain o
1wk pass Esistors on is output, With the tmansistor gates set as shown,

s twir erquivalence classes are formed. The first class comtaims the ground
nemde. Henwe the olass strengih s eagead and the class siane is 0. The second
class comains two normal nodes with dilberenn sties, Hence the class
stremiggth s erorreal and the class siaw is X

IF the group contains X-ransisiors (0o poype mansisiors having X oon
their gaee modes), o
classes. The siate of an x-transistor is unknown. Hence, it is assumed 1o
have an unpredictable bebosdor: aomg

nowe must look at potential intescions bevween the

¢ b e, losed, o somewhere in
between., T deal with them consistently, the [ollowing philosophy s
wdospriedd: 1 @ noade has o unigue siae regardless of the behavior of the
s-transistons in the group, then the node will be set o this saie; otherase
1 owill be ser 1o X

T'hus far, we have computed the state of each class assuming all x-tran-

50 LAMBDA Fourth Quarter 1980

FIGURE 3. Simulation example 1.

Clazs Strengih Staig

1 gl o

2 marmal X
Mede Old State Maw Stala

1 Q a

2 1 o

3 1 1]

4] X

5 1 X

S
(1)

sistons are ser Copen’. The second pare of the signal Oow simulaion
amilyees the classes and sers the ste of aockess wo X000 some combination of
w-transistors could be set o Cclossd” and result in a differen cliss state,
First, a supergraph s formed contsining a vertes for cach eguivalencoe
class and an edge between a pair of vericoes i an x-rnsisior connects 1w
network modes in the correspomding classes. The conmeoed componenis
of the supergraph partition the classes into s set of superclisses, in which
eadch superclass containg a ser of classes linked by s-ransisiors,

W a superclass contains anly one element, no Tunber analyvsis is re-
cuired. Chherwise the srength ol the superclass s compued as the

Program II1. Signal Flow Simulation

Input; A network {1 a network state M, and a group numbser i.
Result: The node states in group | are updat
Qutput: A list of those nodes which have changed state.

procedure GROUP _ STEP{[L M, i}:
begin
0 for each nj such that NTYPE(ni) = puliup do sij — 1.
G ~ lorm an undirected graph with WV = [mijl
and E = [<k,1 =~Tlor Some fog!
SDUHGE } = nik, IﬂaAlN{tpq} = i1, and Xpg
CLASSES - FAFITITION[GJ
for each Cj ¢ CLASSES do
strength|j). state ||| — STATE (). M Ci)
5 — form an undirected graph wrth V=
and E = {<k,1= | for some |}
EGUHGE Ipq] € G, UHFJN"pq} € G4, and Xpg =

known'i;
S0 F'EHCLASEES — PARTITION|SG);
for each 5C; ¢ SUPERCLASSES do
]G/~

Alasses

ugm
- SLIF'ERSTATE:stmngth state, SCi};

Ck € 5Ci| state|k| =y,
PDI OM(P, strength);
for each Ci ¢ P do state|k| — X

BaE end;
for ear:h Cj ¢ CLASSES do
tor each my ¢ G do
i NTYP'Emin # input & sk # state|j|
then

n
5k — state(|;
D — DU fmikl;
and
returni D)

strengih of bis stromgest olassies) The staee of the superclass is compured
as the state of the strongest classies) iF they are all equal, aned as X0 they
are pot. The procedurne SUPERSTATE closely resembles the procedure
showwn in Program IV, Any class witha st different from e superelass
stte st be sen e X, becanse i stane wou ld be changed il all x-tansistiors
were sel to U closed T We will call these classes poisoned . Furthermore,
i porisoned class can podson aoneighbor, unless the nenghbeor s sironger,
vvens if the meighbos's ooiginal stave cquals the superclass siae. Thar is,
the state of the neighbor would be changed if the x-tramsistor conmecting
atges the poisoned class were set Vclosed " while all oahers were set Topen”
This P SOMEE Cin -;|:||1";||1 thraugh the olasses, ﬂr:|:|mi only ||'!' ilisses
with greater strength than the oniginal poisoncd classes. The procedore
POISOM, shoswn i Program V, expands the inital set of possoned classes
ter inehede these wowhich the poisoning spreads. This procedore works
by computing a value, “pstrengeh,” Tor each class indicating either s
ariginal strength (il not poisoned | or the strength with which 1 is por-
somedd. ALl podisoned classes muost e se o X

Program IV. Class State Computation

Input: A network {1, a network state M, and a set of nodes C.
Output: The combined strength and state of the nodes.

Eroooduu STATE(IL M, C):
eqgin

k = null;
¥ =X
for each ny ¢ C do

comment node types are ordered inpul = pullup = aormal =oull
I NTYPE(} > K
en

in
Mﬂk — NTYPE(ny);
¥ By
end
else
WNTYPE(nij] =k &sj=y
then vy — X,

return (k,y)

The n.|pr|~,,au,li||;_5 o X through the classes |Ir~|w-|1|:h o the exaci |rs|u':-|u_q1.'
al the supergraph as shown in Figore 4. In example A, the poisoned cliss
Lz van pni\rm 3. becanse they are of 4'r|uill sirength. In 4'xilll||i|1' B, i
revmaing i the 1 ospae because the poisoning from Gz cannot spread
thraugh Oy,

FIGURE 4. Spreading of X through classes.

Exampla A
Ca
Ca
*a Mew State
Initial Final
1 1 1
2 i} X
a 1 X
Class Mew State
Initial Final
1 1 1
2 4] X
a 1 1

LAMBDA Fourth Quarier 1980 51

SIMULATION contimnued

Program V. Spreading of X through a Superclass

Imput: An initial set of poisoned classes P, a supergraph of classes
5G, and strength: an array indicating the strength of sach
class.

Result: P is expanded 1o include other poisoned classes.

edure POISON(P, SG, strength)
n
Esiregglh = gtrength;

while B # @ do
n
j =~ an element of B with maximal strength;
B-B-[GCjh
for each Ck adhumnt to Cjin SG do
i pstrength|k| = pstrength(j]
or {pstrength|k| = pstrength|j| & C § P)
then

B-—BU [Ckl
pstrength(k| — pstrangthlj|
end
end
end

FIGURE 5. Simulation example II.

\ 5C2

“‘“‘“"‘"—-—.. —
et T
3 %
\ 5::1)
~N

Onee the class states have been computed, the state of sach non-inpu
nesde 15 sel o ihe state o s class,

In implementing the procedure POISOMN, one should mow tha there
are only @ small number of possible class sirengihs (e, 300 Thos, we can
implement the sel Bowith a set of “hackets™, one for each strength. This
permiis bodh inserton amnd ordered removal in consann tme,

Figure 5 shows the signal flow simulation for the same transisim
group as before, bt with several x-transisiors,

Time Complexty

I the simulation is coded carcfully, especially the graph paritoning,
then the procesure GROUP _ STEP requires a ume proportional e
the number of podes and transistors in the growp, Fooall bt a few pratho-
logical networks, each group will be resirulated only a constant mumber
al times within each phase. Thus, cach phase will have a time complexity
ofd [N]+]T]0

Node Old State MNew State

Initial Final
0

L S]
Y

]
1
1
1

ik i B

Class Strengih State

Initial Final
input

narmal

pullup

normal

£ L B =
-]
- O

Strangth
input
2 puliup 1

Superclass State
1 0

X 1
ki

Extensions

Onee the basic simulator has been developed, it can be
extended in several wavs w provide greater speed, generaliny,
or [uncuonality. Unlike many simulators which try o in-
crease their generality through a number of ad hoe ex-
tensions, MOSSIM permits additional features o be built
upon a solid foundation.

Mixed-Mode Simulation

After performing the wpological analysis of a network,
one often finds that a large number of tansistor groups con-
tain some simple combination of circuit elements, For
example, a group may contain a single inverter such as Gz
in Figure 2{b), a NAND or NOR gate, or a gate with a single

52 LAMBDA Fourth Quarter 1980

pass wansistor on its output such as Gg in Figure 2(b). For
such common and easily-understood configurations, it scems
wasteful to model them at a transistor level. Instead, follow-
ing the topology analysis, we can ry 1o match each group
against a small set of canonical configurations, For those
groups which can be matched, the list of wansistors can be
replaced wth information which will allow the simulator 10
apply a lunctional simulation analogous to a logic gate sim-
ulator, Since the simulator 1s event-driven at the group level,
these two modes {(transistor-based and funclion-based) can
be merged quite easily. This optimization affects only the
simulation speed, not its functionality.

One could apply mixed-mode simulaton echniques 1o
designs in which the user wants to describe some portions of
the network procedurally and other parts in terms of in-

dividual ransistors. This would allow incomplete designs
to be simulated, as well as sysiems which must interface
with other modules. As long as a subsyvstem can be character-
ized in terms of some input-output behavior, the program
for the unit step stmulation can treat it as if 10 were a tran-
S1SLOT IO,

Charge Transfer Logic

Some MOS circuit designs depend on the relative sizes of
several capaciiances lor their logical behavior, This s seen
frequently with pre-charged buses, in which a charge is
first placed on a bus, and then this bus drives its signal
through a pass transistor onto a smaller capacitance node,
sich as the storage node of a dynamic RAM cell. In the pro-
gram just described, the nodes will be set to X (unless they
were previously in the same state), because the simulator
does not know the relative capacitance values.

This shorteoming can be remedied by allowing dillerent
kinds of normal nodes, eg., “big” nodes and “small ™ nodes,
The previously described algorithms can be extended by
ranking the node tvpes as;

input = pullup = big = small.

All other aspects of the simulation remain unchanged,

Node Forcing

In debugging a logic design, it olten helps wo isolate a por-
tion of the design [rom the rest of the network aned ese s
input-output behavior. To do this, we must be able o force
signals onto a set of nodes, and these signals must override
the normal actions of the network, If we define a new node
strength, Cforced, ' where

forced = input = pullup = ..,
then we find that the algorithm that has already been devel-
oped implements this feature,

Implementation

MOSSIM has been implemented on a DEC-20 system as a
series of CLU programs. Executable versions of the program
are available from the author, as is user documentation,

A program called CONVERT takes network descriptions
either written in a macro language or from the outpuat of a
layour analyzer and creates a description suitable [or simu-
latiom, In this new description, the network s parttioned
inte transistor groups. The [ollowing configurations are
replaced by their funcuional equivalemis: NOT, NAND,
NOR, NOTp, NANDp, and NORp, where the "p” indicates a
single pass transistor on the output of the logic gate, These
improvements save memory space a5 well as CPU tme,

The program RUNSIM allows the user to read in a net-
work produced by CONVERT and exercise the design inter-
actively. This program implements the algorithm just pre-
sented, although table lookup methods are applied when-
ever possible (o reduce the number of conditional statements.
For example, the state and swength of a node, class, or super-
class are encoded as a single meger, and this value is used as
an index into tables for computing class siates, superclass
states, et

Eun time figures vary greatly depending on the size of the
network and the amount of activity 1o be simulated. For
small and medium-size networks (up o 1000 ransistors),
less than | second of CPU tame is required for cach clock oycle.

For a LISF microprocessor chip containing 10,000 tran-
sistors, between 5 and 12 seconds of CPU iime are required per
cycle. These speeds have been found adequate for inter-
actively exercising a varicty of svstems and could be reduced
with further optimizations,

References

Aho, A ¥V.; Hoporoft, 1.E.; and Ullman, 110 1974, The Design and
Analysis of Compeater dlgorithms, Reading: Addison-Wesley,

Baker, C, M. June 1980, Ariwork Analysis Tools for VESEH Cireuiils,
M.5. thesis, MLLT. Department of EECS,

Brvam, K. E. July 1980. MOSSIM: A Logic-Level Stmulator Jor
MOs ESLL Users Manuael, Inegraned Circoie Memo 8021,
M.LT. Deganiment of EECS.

Brvami, B. E. in preparation. Logic Samulation af MOS L8] PhD
thesis, MIT Deparment of EECS,

Mead, CA. and Conway, LA, 1980, fatraduction to FLST Systems,
Reading: Addison Wesley,

Magel, 1. May 1975, SPICEZ2: 4 Compuater Program o Simulate
Semiconductor Coreuts, Technical Report UCE ERL-M250,
Elecoromics Research Labovatory, University ol Calilornia,
Berkeley, A

Appendix I —Partitioning of an Undirected Graph

An algovithm o paricon an undiveced graph inm is conneceed
cornpenents is required at several different poines in MOSSIM. Bun
time statistics show that as muoch as 50% of the ol execation tme
may be spent computing these partitions, Thus, a very careful and
efficient codling 1s reguired.

A variation of the depih-first search algorithm (5.2) of Aho, Hop-
croft, and Ullman (1974) is shown in Progeam VI This algorithm
takes 0 | vV | + | E t b e il the marking of a vertex as “new ™ o
“old" is encoded as a Boolean armay and a pointer 15 mainined w
the first “new " veriex,

Program VI. Partitioning of an Undirected Graph

Input: A graph G = (V, E}, where V is a set of vertices, and E is a set
of edges.

Qutput: A sel of classes Gy, Cgsuch that Ch U U Cg =V, GiNEGj =
@ 0#] and ve G, wadacenttovin G= we E:i.

procedurs PARTITION{G):
btqlln
-1
for all vin V do mark v “new";
wl;’ll.a there exists a vertex v in ¥V marked “new” da
in

i — vl
SEARCHI{Ci, v
I =1+1

end;
Mrahlm“ C1....Gi-1f)

procedure SEARCH(C, vi:
bagin
mark v “old”;
for each vertex w adjacent to v in G do
i w is marked “new”

then
in
=G UE w i
SEARCHIC, w)
end
end
About the Author

Randal E. Brvant received his BS in Ap-
plied Math from the Universiy of Mich-
igan in 1975, his M5 in Elecirical Engin-
eering from MIT i 1977, and 15 currenely
completing his FhDY a0 MIT, His research
imterests include logic simulators for
VLAL systems, and data-llow COMpLer
architecture,

L,

LAMBDA Fourth Quarter 1980 53

