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INTRODUCTION

The study of mathematical models of logic circuits in recent
times has been limited primarily to the Boolean logic gate
model, in which a system consists of a set of unidirectional
logic elements (gates) connected by one-way, memoryless
wires. In contrast to this restricted model, designers of MOS
L5 systems have a rich variety of circuit design techniques
at their disposal. Combinatiomal logic can be implemented with
logic gates, steering logic and PLA's., Data can be stored in
static and dynamic memory, communicated along wires and busses,
and directed through pass transistors. Each of these techniques
has numercus variations, and hence the designer can tailer
a system design according to speed, density and architectur-
al needs. The Boolean gate model lacks this richness, because
it fails to reflect the basic structure of MOS systems in
which the logic elements (i.e. the field-effect transistors)
are bidirectional, and the wires (including the attached
transistor gates) have sufficient capacitance to store infor-
mation. As a consequence, computerized tools and analytic
techniques based on the Boolean gate model provide limited
assistance for the MOS designer. Many programs such as logic
simulators extend the Boolean gate model with special logic
elements and additional logic states, but these programs lack
generality and accuracy as well as any formal mathematical
basis.

In this paper a new logic model will be presented which
more closely matches MOS circuit technology and hence can
describe the logical behavior of a wide variety of MOS logic
circuits in a very direct way. In this switeh-Ilsvel model
a network consists of a set of nodes connected by transistor
"switches", where each node has a state 0, 1 or X (for unknown
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or undefined), and each transistor has a state open, closed, or
unknown. Transistors have no assigned direction of information
flow and can be assigned different strengths to model their
behavior in ratioed cirecuits. Nodes retain their states
indefinitely in the abgsence of applied inputs, giving an
idealized model of dynamic memory. Nodes can be assigned
different sizes to model the effects of charge sharing in
ratioless circuits. The switch-level model differs greatly
from both Boolean logic gate and relay models in the way logic
states are formed, In keeping with the concept of a logic
model, however, both the transistor strengths and the node
sizes may take on only discrete values, and the electrical
operation of a circuit is modeled in a highly idealized way.
This model provides a Formal bases for switch-lewel
gimulation programs such as the author's MOSSIM (Bryant,
1980, 1981b). These simulators have demonstrated the
advantage of a switch-level logic model. They can accurately
simulate a wide variety of MOS designs at speeds approaching
those of logic gate simulators. Furthermore, since the
simulation network corresponds closely to the electrical
network, it can be derived from a specification of the mask
patterns by a relatively straightforward computer program
such as the one described by Baker and Terman (1980). The
development of a mathematical model of switch-lewvel net-
works has led to a simulation alogrithm which improves on
the previous ones in its generality, accuracy and simplicity.
This paper describes material presented in greater detail
and with more rigor in Bryant (1981b).

NETWORE MODEL

A switch-level network consists of a set of nodes connected
by transistor switches. The nodes are of two types: imput
nodes, labeled €1,...,%y, and normal nodes, labeled #jp,...,Hq.
Input nodes provide strong signals to the system and are not
affected by the actions of the network, much like voltage
sources in electrical networks. Examples include the power
and ground nodes Vdd and Gnd, as well as all connections to
the chip through input pads. Wormal nodes have states
determined by the operation of the network, and these states
are stored dynamically much as the storage of charge in
capacitors. Each normal node is assigned a zize from the
set K = {xy,...,%5} to indicate its approximate capacitance
relative to other nodes with which it may share charge. The
elements of K are totally ordered from ¥y to kKg. These node
sizes allow a simplified model of charge sharing in raticless
circuits inm which the states of the largest node(s) dominate
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when a set of nodes is connected by turned-on transistors.
Figure | shows a switch-level model of a three transistor
dynamic RAM circuit in which the bus node has size ky to
indicate that it can supply its state to the storage node of
the selected bit position during a write operation and to the
drain node of the storage transistor during a read operation.
Most MOS designs can be modeled with just two different node
gizegs (g=2).

Each normal node n; has a state y; £{0,1,X}. The states O
and 1 correspond to the normal BoolBan logic states, while
the state X indicates that the node has not been properly
initialized or that its voltage may lie between the logic
thresholds due to either a short circuit or improper charge
sharing. Each input node 7; has a state Xj with the same
interpretation. The state of a network is given by two
vectors % and y indicating the states of the input nodes and
normal nodes, respectively.
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"ig. 1. Switeh-Level Model of 3-Transistor Dynamic RAM

A transistor is a three terminal device with terminals
labeled "gate", "source”" and "drain". It acts as a switch
with state determined by the transistor type and the state
of the gate node as shown in the following table. The d-type
(for "depletion") transistor is used to model both pullup
load transistors in depletion mode nMOS circuits and the
polysilicon-diffusion layer crossovers seen in some designs.
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n-type p-type d-type
gate effect gate effect Eate effect
0 apen 0 closed 0 closed
1 closed ] apen 1 closed
X unknown X unknown X closed

Each transistor is assigned a gtrength from the set
I'={¥y5+:-5%,} to indicate its approximate conductance when
turned-on relative to other transistors which may form part
of a ratioed path. The elements of I' are totally ordered
from y; to . These transistor strengths allow a simplified
model of raticed circuits in which a path te an input node
containing only conducting tramsistors of strength greater
than or equal to some value overrides any path containing
a transistor of strength less than this wvalue. Figure 2 shows
a awitch-level model of an nMOS Mand gate with a pass
transistor on its output. Most MOS designs can be modeled
with just two transistor strengths (p=2), with the Ioad
transistors having strength y; and all other transistors
having strength Y2, although some circuits involve multiple
levels of ratiocing and hence require more transistor strengths

{(p= 3.

¥,
: clock
) [;1 fy
2
int —{[ 72
"z

ine—][ 7.

Fig. 2. Switeh-level model of nMOS Nend gate.
THE TARGET STATE FUNCTION

The logical behavior of a switch-level network is character-
ized by its target atate fumetion, For a given set of unput
node states x and normal node states y, the target state y'
is defined as the node states which the normal nodes would
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eventually reach if all transistors were held fixed in states
determined by the initial node states, This function describes
how the normal nodes attain new logic states due to connect-
ions to input nodes or other normal nodes through paths of
conducting transistors. This definition ignores the fact

that the transistors will change state in response to the
changing states of their gate nodes. Thus the target state
Function only gives an indication of the instantaneous be-
havior of the network.

The target state function of a switch-level network close-
ly resembles the exeitation function of a logic gate or relay
network, which is defined to give the set of states which
would form at the outputs of the logic elements (logic gates
of relay coils) in response to the network state given as
argument, Huffman (1954) first recognized the importance of
the excitation function for characterizing the logical
behavior of a network, although he expressed it in terms of
a flow table containing the excitation state for each possible
network state. Thus, although the switeh-level model differs
greatly from both relay and logic gate models in the way
logic states are formed, these models describe the logical
behavior of systems in similar ways.

Given a means of computing the target state function, one
can implement a form of "unit-delay" logic simulator which
simulates the operation of a network by repeatedly applying
the target state function. That is, with input nodes set to
some state x and normal nodes set initially to state v, the
network is simulated until it stabilizes in a state
v Lim oo k

o By

¥
where the function ' denotes the target state functien for
input state %, and the superscript k denotes k applications
of the function. For most networks of interest, a stable
state will be reached after a bounded numher of {terations.
Such a method is used by MOSSIM to simulate the effect of
each change in clock or data input states. This simulation
technique presents the user with a timing model in which the
transistors switch one time unit (i.e. one application of
Tx} after their gate nodes change state. Such a timing model
has proved adequate for testing many LSI designs. Thus a
method for computing the target state function provides the
key to applying the switch-level model.

LOGIC STGNALS

For a network containing no transistors in the unknown state,
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the formation of logic states on the nodes can be described
in terms of an abstraction we call logie signals. A logic
signal has both state and strength, describing the dominating
effect of a network (or subnetwork) at some node, and the
relative capacitance or conductance of this effect,

Three types of signals describe the different effects a
subnetwork may have on a node. A charging signal has state
in the set {0,1,X} and strength in the set K. It indicates
a connection to a set of normal nodes with maximum size
equal to the signal stremgth. A driving signal has state
in the set {0,!,X} and strength in the set T'. It indicates
a set of paths through conducting transistors to input nodes
with path strengths equal to the signal strength, where the
strength of a path equals the minimum transistor strength in
the path. Charging and driving signals of strength s and
states 0,1 and X are denoted -s, +s and xs, respectively.
Finally, a null signal, denoted A, has a null state N and
strength 0. It indicates an open circuit. The set of signal
strength values is totally ordered

0« K L Kq < Y] Ce-et Yp

indicating that a path to an input node can override a path
to a normal node, while either of these can override an open
circuit,

Using the set of signal values as domain, we can develop
an algebra describing the effects of performing some
elementary network transformations. First, when subnetworks
described by signals @ and b are connected together at a
node, the net effect is described by a signal a V b equal
to the least upper bound of @ and b for the partial ordering
shown in Fig. 3. That is, a stronger signal will override a
weaker, while signals of the same strength will form a signal
of this strength and with the same state if they are equal
and state X if they conflict. Observe that the set of signal
values along with this partial ordering forms a lattice.

Second, when a subnetwork described by a signal a is
connected to a node through a transistor in the closed state
and having strength s, the net effect is described by a
signal seq with state equal to the state of @ and stremgth
equal to the minimum of s and the strength of a. That is,

a charging signal will connect through unchanged, while the
strength of a driving signal may be decreased by the
connection., We will adopt a convention that Osa = X i.e. a
connection through a 0 conductance gives an open cirecuit.
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Fig. 3. The Lattice of Logic Signala
EQUATTIONS FOR THE TARGET STATE
We wish to develop an equation specifying the target state

of a network for a particular input node state x and initial
node state v. For the special case in which the network
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contains no transistors in the unknown state, the effect of
the network on the normal nodes is described by their steady
state signale, denoted with the vector v, each having state
equal to the target state of the node., The values of these
signals can be expressed with a matrix equation as follows.
The signal formed by input node ij, denoted x3, has state
x; and strength ¥,, the maximum possible strength. The signal
formed by normal node ®:, denoted y:, has state y: and strength
equal to the size of the node. Thest sets of signals are
denoted by the vectors & and y, respectively. The transistors
in the closed state are described by two matrices G and E,
with g;: equal to the maximum strength transistor in the
closed State comnecting normal nedes nj and n; (or 0 if no
such transistor exists), and with e;: describing the analogous

1

connection between normal node n; and input node 7. The set
of steady state signals ¢ must be the set of minimim values

satisfying the equation

v =ExxVyViGasrv (1)

In this equation # denctes a matrix product with © as the
analog of multiplication and ¥V as the analog of additionm.
Furthermore, any time a scalar function such as % is showm
applied to vector arguments, we mean its pointwise extension
to a function which yields a vector with elements equal to
the result of applying the scalar function to the correspond-
ing elements of the argument(s). This equation expresses the
fact that the effect of the network on node n; equals the
combined effect {(i.e. least upper bound} of the imitial
charge on the node as described by the signal y.: the direct
connections to each input node 7. as described ﬁy the signal
ejjox:; and the connections to the rest of the network through
each bther normal node #: as described by the signal 81j°V5-
Moreover the set of stea&y signals equals the set of

minimum values satisfying all of these constraints. Obserwve
that this equation has the form v = f (¢) with v equal to

the least fized point of the functiom f.

Equation | only applies to networks containing ne transistors
in the unknown state, In general, however, a network may
contaln n-type or p-type transistors with gate nodes in the
X state. Since this state represents an unknown node voltage
anywhere between 0.0 and Vg4, the transistor will have an
unknown conductance anywhere between 0 and the conductance
when fully turned-on. The target state of a node is defined
to equal 0 or 1 if and only if it will have this unique
state regardless of the conductances formed by the transistors
in the unknown state, and otherwise the target state equals
¥. This definition seems to require trying a possibly
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exponential number of cases with the transistors in the
unknown state set to all possible combinations of open and
closed. Fortunately, the target state of an arhitrary
switeh-level network can be expressed by a set of matrix
equations in an algebra of signal strengths as follows

r g0 L ey s Nyl + ghin | o (2a)
u = blosk(E™ « Tz1+ [yl + 6™ . u,r) (2b)
= block(E™™ « Lzl t Lyl + ™ . a,1) (2e)

In these equations, for a signal a, @ edquals the strength
of @, a equals the strength of a if « has state | or X and
equals O otherwise; and a equals the strength of a if a has
state 0 or X and eqguals O otherwise. The operation %+ gives
the maximum of its arguments and + denotes a matrix product
with the minimum function as the analog of multiplication and
t+ as the analog of addition. For two strength values a and b,
bloek (a,b) equals a if a * b and equals O if a < b, The
matrics G gnd EMO deseribe the minimum possible connections
between the nodes in which transistors in the unknown have O
conductance. The matrices G™®* and EMaX degeribe the maximum
possible connections between the nodes in which transistors
in the unknown state are fully conducting.

For a vector r equal to the minimum solution of equation
2a, each element r; equals the strength of the steady state
signal for node »; when all transistors in the unknown state
have 0 conductance, For vectors u and d equal to the minimum
solutions of equations 2b and 2e, each element u: equals the
strength of the strongest possible steady state signal on
node #; having state 1 or X for any combination of conduct-
ances formed by transistors in the unknown state, while each
element d; equals the corresponding value for signals with
states 0 or X. A node m: will have target state | if and enly
if no possible combination of transistor conductances could
give a signal on n; of state 0 or X, which implies that d; = O,
and similarly it will have target state O if and only if

u; = 0. Thus the target state can be computed as

1, d. = 0
1
y'i=40, u, =0
X, else.

Thus we have a specificarion of the target state for an
arbitrary network.
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COMPUTATION OQF THE TARGET STATE

Equation 2a has the form of a fixed point equation r = f_(r],
where the function f, is monotonic. The set of signal strengths
is finite and totally ordered, and hence it forms a continuous
lattice, and any monetonic function over it is continupus, as
defined by Scott (1972). Thus, Scott's theorem regarding the
least fixed point of a continuous function on a continuous
lattice can be applied to show that equation Za can be solved
by an iterative technique where 0 denotes a vector of all 0's.

Lt
—k,jf“m}

Furthermore, convergence will be reached in a bounded number
of steps. Using this vector in equation 2b and 2¢ then

gives fixed point equations for u and d which can be solved
by the same method.

As an example of the computaion of the target state, suppose
that the network of Fig. 2 has inputs inl = in2 = 1 and clock
= X, and that node ®3 has size k| and initial state 0. The
recurrence equation for r can be written as

Ty o= + (WE ¥ rz)

ry = g oboQysodEg)
o B
where the operation + gives the minimum of its arguments.

Applying the iterative method the following sequences of
values:

ri: 0 v1 v2 v
ras: 0 ¥z y2 Y2 ...
ra: 0 K] K] Kl ees

from which we get a solution r| = 15 = yp, and ry = k;. The
recurrence equation for u can be written as

u!=b30c3<(‘r'| + {"fz‘i'uzll t {‘fz"ruji, "rz}
u2==bﬂaek{w2 ¥ U, Tz}
uBNEEOGIC(‘fE toug, k)
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which has a minimum solution uj=u,=uy=0, indicating that
regardless of the conductance formed by the pass transistor,
no signal with state | or X can form on any nodes. Even
though the pullup transister provides a signal of stremgth
+¥; to node #;, our computation correctly recognizes that
this signal will be overridden by the signal ~Yp. The
recurrence equation for d is

5 = blﬂﬂk{yz + EYZ ¥ dlj, Tz}
block(rl + (Tz ¥ dz], KI}

=PI = PR = N
Eoonou

which has a minimum solution d!==d2==d3-'7 . Thus, sinece these
values are all nonzero, while the values u% u are all 0, all
three nodes have a target state 0.

If the same network has initial state 1 for n3, we would
find that uy= ¥, while all other elements of u and d have the
same values as before, This gives target states y’l -y“2==0,
and y“3 =X, indicating that the unknown conductance of the
pass transistor creates an ambiguity in the target state of
node n,.

4 logic simulator can be implemented which repeatedly
computes the target state using this method. By exploiting the
spareseness of the network and the fact that the activity in
2 network is highly localized, this simulator can operate at
speeds comparable to traditional legiec gate simulators.

CONCLUSION

The formal model of switch-level networks provides a mathe-
matical link from the physical structure of an MOS system to
its logical behavior. This has direct applications in the
area of logic simulation, giving logic simulators with
greater expressive power and accuracy than those based on the
Boolean gate model. Furthermore, other computerized tools and
analytic methods can benefit from this ability to move
between these two different views of a system.
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