PAGE
1

Reminiscences of my work in early VLSI EDA
By Clark Marshall Baker

April 5, 2011

I attended MIT as an undergraduate from 1972 to 1976 and received a S.B. in Course 6-3 (the Computer Science half of the Electrical Engineering Department). By then I was working in Steve Ward's research group, continued on into graduate school, started taking courses, was a teaching assistant, and searched for a thesis topic. My goal was to get a Masters Degree. Others were getting PhDs, but I had never thought I was smart enough to get one. In much the same way, I never thought I was smart enough to do real electrical engineering design – say design projects in TTL or later to design actual chips. My view of my place was to work in a real company and write programs that others used and did useful work instead of going into teaching in a university.

I struggled finding a suitable thesis. I remember trying out two different topics and not getting very far with either. All of us were good hackers and there was always lots of programming going on. I remember programming up some games.

Our computing environment was a time-shared PDP-11/70 running Unix. We had an early version of Unix because Jon Seiber, an office mate, had worked with the developers at Bell Labs and was able to bring a copy to MIT. For displays we had glass TTY's (perhaps VT-52's). Black & white with 25 lines of 80 characters each. On the 4th floor of 545 Tech Square we programmed in C. Other parts of Project MAC used LISP on PDP-10's and later Lisp Machines. At some point in the future (1980?) we would get a VAX 11/780 that would become our main UNIX system once we ridded it of VMS (probably in 1981).
My office mate, Chris Terman, was aware that a visitor from Xerox PARC was teaching a course on VLSI design (Fall 1978). However, he wasn’t part of that course. Chris and others from my lab took the next iteration of the course, perhaps in Spring 1979. While the course was creating a buzz, it was completely off my radar.
Like many leading edge graduate courses, this course was too new to have a textbook. Instead there were course notes that would eventually become a book. One day I was looking at these notes for reasons I don't remember, and I was struck by the color plates that described the lambda-based design rules. The people taking the course were expected to actually create a complete design that would be manufactured. At some point, plots of these designs began appearing on walls throughout the lab.

I don't remember when I wrote my first CAD tools. I remember thinking that these guys were creating very complex designs using very primitive graphics editors. Some in the lisp world were even writing programs to write designs. The Jon Allen side of the world provided some CAD tools, but these didn’t seem to offer much, and we on the 4th floor started creating our own. We modified our own graphics editor that we already used for creating line drawing illustrations for talks and problem sets into one that could edit and display a hierarchical design of rectangles on various layers. Chris wrote a faster switch-level simulator, and we wrote some plotting software.
In the end, your design had to be output as a CIF file -- a hierarchical description of rectangles on layers. CIF stood for Caltech Intermediate Form and was a well documented ASCII file format. I wondered if anyone had tools to actually check that the various design rules were met. It seemed like an obvious job for a computer, and it seemed like something that, if it wasn’t checked, people would get wrong.

In a computer science course I had taken, I remembered really liking the Ponds and Islands programming problem. The input was a file of spaces and "X"'s where the X's represented land and the spaces represented water. The program was to count the number of distinct landmasses. You were not to get confused if a large land mass had a large pond, and that pond contained an island.

My solution involved moving a small window in raster scan order over the entire problem. For each character space, I would look at it, the space to its left, and the space above. Based on those results I would take action:

Left Me Above

 . . . nothing

 . . X create a new island

 . X . nothing

 . X X mark me as the same island as above me

 X . . create a new island

 X . X create a new island for the one on the left

 X X . mark me as the same island to my left

 X X X MERGE the island to my left with the one above

The storage required to move the L-shaped window over the input was simply one line of the file. The program could read through its input, one character at a time, buffer one line's worth of data, and perform a simple calculation at each step. I learned that the complicated part was the merge function. In algorithms courses, this is the union-find algorithm.

The lambda-based design rule specified that for certain layers the minimum feature size was 2 lambda wide, and that parallel lines in that layer had to be 2 lambda apart. Others layers were 3 lambda wide with 3 lambda spacing. Finally, certain structures were made when certain layers intersected and that had minimum size and overlap constraints. For example, a transistor was created when the pink layer crossed the green layer at right angles.

My observation was that, assuming the design was drawn on a lambda grid, I could check the design rules by moving a 3x3 (or perhaps 4x4) box over the design, in raster order, just like the Ponds & Islands problem.

I needed a program that would read, parse, and store the CIF file, and spit out the contents in raster scan order. This would be piped (in the Unix sense) to the design rule checker which would apply the design rules by having a pre-computed set of "if it looks like this, it is an error" windows. We were running on 16-bit mini-computers back then, and the raster-based approach worked great since memory was at a premium.
There were more than a few who didn't like my approach. Rasterizing the entire design seemed very compute intensive. Especially consider a design rule checker that was rectangle based. If the entire design was one large rectangle, the rectangle-based checker has one element to check, while mine would rasterize it and move that window over the entire design.

I like simple, and I was able to get a DRC up and running quickly. There was no shortage of designs, and I actively looked for designs to run through the checker and took delight in finding bugs in designs that had been carefully checked by people. As I remember, these designs were already being fabricated and already the designers were learning that they had a problem.

The next step was a circuit extractor. I wanted something that would follow the connectivity, figure out where transistors were being created, and spit out a simple file of nodes and transistors.

Again, the detractors said that this tool was too low-level, too late in the game, and they had lost all meaningful node names and hierarchy. However, the advantage is that it ran off of a CIF file, which everyone had to produce no matter what their design tool. The other advantage is that I already had the program which rasterized chips so I wrote a circuit extractor and invented a simple ASCII file format for nodes and transistors.

Guess what the most common result of running the circuit extractor was? We take their design, run it through the DRC, perhaps get some errors they will fix next time, but they don't care too much. They we circuit extract it. More times than not, the power node and the ground node were identical! That’s right, the chip was one massive power-ground short.

Unfortunately, these types of shorts are difficult to find. I had some ideas on how to do it but C was such a pain to program in (he says having later become a Lisp Machine convert) I never implemented them. Every designer had to find the short out for himself. Also, a chip could pass the DRC (have proper width and spacing in all layers) and still have a power-ground short.
Once a chip was extracted, and didn't have a power-ground short, I had a set of consistency checks I would perform -- a design rule check at the transistor level. If they passed all that, they were ready to simulate.

The idea of switch-level simulation was new. Existing simulators were either at a lower level (e.g., SPICE) or a higher level (e.g., gate or TTL simulators). Chris Terman worked on a simulator that modeled each transistor as an open or closed switch. I was busy writing the extraction tools. I don't believe either was a huge task, though there were lots of lessons to learn as we went along. For example, how to handle X's in the simulator was a topic of much debate.

Both Chris and I were always looking for larger and larger designs to process. The largest design at MIT in Spring 1979 was a prototype Lisp-based processor chip by Guy Steele. That summer Jack Holloway, Guy Steele, Gerry Sussman, and Allan Bell undertook to design a complete SCHEME (a dialect of Lisp) microprocessor. Its final construction was done at Xerox PARC used the Icarus graphics editor. This chip was a big deal and there was a 7 foot plot of it taped to the wall on the 8th floor. We got a copy of the CIF and discovered a power/ground short. On top of a signal pad. there was accidently an instance of a ground pad. This error was undetectable on the plot unless you knew it was there. After that was fixed, the static checker was able to find a few more problems. Simulation found 8 more problems. The chip was manufactured in December 1979, and worked (though two more non-fatal bugs were discovered).
Word of the tool suite (DRC, Circuit Extractor, Wall Plot with node numbers, Static Checker, Switch-Level Simulator) spread quickly. Partly I was going around soliciting designs to run through the tools. By Spring 1980 over 30 designs had been run through our tool suite. At some point employees of BBN were taking the course and they would come into the lab at night and I would check their chips and get them started simulating. It was fascinating working with people who knew their design from top to bottom.

For example, when you first start simulating, they are thinking at the level of a two-phase clock running, and wiggling certain control signals and data signals. I often start by saying "OK, we raise Phi-1, and simulate until everything settles, now we lower Phi-1 and simulate until everything settles, now we raise Phi-2, etc." When do you want me to raise RESET and for how many clocks? When do we change data signals with respect to the clocks, etc.

Our next big chip was the RSA encryption chip (basically a 512-bit bignum chip) and I was able to work with each of the designers on the verification and simulation parts of that chip.

At some point, perhaps because of conferences about this design style (MIT hosted one in January 1980), and articles in magazines (LAMBDA, Fourth Quarter, 1980), we were sending distributions of our tools to other universities and companies involved in Mead/Conway-style VLSI design. If you sent us a magtape, we would send you out tools distribution. A total of 46 were sent out, starting in 1980 with SMU, Stanford, University of Rochester, BBN, Boeing Aerospace, Xerox PARC, and Lincoln Labs, and continued until 1983.
In the end, I was able to write up my tools as my S.M. and E.E. theses:

Artwork Analysis Tools for VLSI Circuits

Clark Marshall Baker

1980, MIT/LCS/TR-239
http://ai.eecs.umich.edu/people/conway/VLSI/EDA/EarlyTools/DesVerification/CMB_Thesis_5-80.pdf
Chris used his simulator for his PhD thesis:

Simulation Tools for Digital LSI Design

Christopher Jay Terman

1983, MIT/LCS/TR-304
http://dspace.mit.edu/handle/1721.1/15673
I graduated from MIT in 1980 and stayed on the research staff for another year working on the tools, giving talks, and send out distributions. A comment on one of the talks said “Only one 1 chip out of >50 tested would have worked without removing bugs found by simulation.”

In August 1981 I left MIT and to work at Symbolics where I wrote a lot of CAD design tools in Lisp. In 1990 I went to Kendall Square Research and worked in the CAD Tool group, mostly gluing commercial tools together with shell scripts and PERL. I also worked with million gate Zycad simulation boxes. In 1995 I went to Ascom Timeplex (later Fujitsu Nexion) and worked in the CAD Tool group, specifying design methodologies and gluing commercial tools together with shell scripts and PERL. I also worked with million gate emulation hardware.

Ponds & Islands and the Lambda-based design rule plates led me into a 20 year career with chips, chip design, verification, simulation, tools, and tool flows.
© Clark Marshall Baker, 2011

