Caesar: An Interactive
Editor for VLSI Layouts

John K. Ousterhout, University of Calilornia at Berkeley

ing hierarchical VLSI layouts. Although its overall

functions are like those of several previous systems,
Caesar provides a novel user interface based on a structure-
less mechanism similar to painting. The painting paradigm
permits powerful circuit manipulations to be performed with
a simple mode-less command set. Caesar is evaluated based
on its use in two large processor designs.

The EECS Department of the University of California at
Berkeley has a long-standing program to develop computer
aids for designers of electrical circuits (Newton, ef al. 1981).
Caesar is an interactive VLSI layout system thal was
developed as one piece of the program. It is written in C, runs
on a YAX-11/780 under the Berkeley version of Bell Labs’
UNIX operating system {(Joy and Fabry 1981), and uses an
AED 512 color display with an attached tablet.

Caesar is a layout geometry editor. As such, it provides
overall functionality similar to that of earlier systems like
ICARUS { Fairbairn and Rowson 1980). Each design consists
of a hierarchical collection of cells. Each cell contains a
description of patterns on several mask layers, as well as
“child cells™ that contain more information of the same sort.
Like most YLSI lavoul systems, Caesar does not maintain
information about design rules, electrical rules, or
schematics. It produces CIF (Caltech Intermediate Form)
files that can be processed by other design aids such as design
rule checkers, plotters, and circuit extractors.

What distinguishes Caesar from other VLS layout systems
is its user interface. Caesar's interface has two novel facets.
First, all commands are invoked using a cursor that selects a
rectangular area, rather than a traditional cursor that selects a
single point. Second, geometry is specified with a mechanism
like painting . The rectangular cursor and painting paradigm
results in a simple command interface that lets complex
manipulations be performed easily and naturally,

Caesar was used in the development of two VLSI
implementations of the Reduced Instruction Set Computer
(RISC)(see article by Fitzpatrick et al_ inthis issue; Patterson
and Séquin 1981). The RISC implementation provided the
motivation to develop Caesar from an experimental system
into a usable product. The RISC designers were a constant
source of ideas for enhancements. The RISC chips demon-
strate that Caesar 1s a viable tool for large designs.

The Basic Command Interface

c aesar is an interactive color graphics system for edit-

A Caesar workstation consists of a standard video termi-
nal, an AED 512 color display, and a tablet. The video terminal

3 VLS| DESIGN Fourth Quarrer 1951

FIGURE 1. Using the painting commands to
stretch an nMOS cell:

a) before ERASE; b) after ERASE; ¢) before PUT;

d) after PUT; @) belore FILL RIGHT; ) after FILL RIGHT.

i5 used for command input and also to display command
menus, statistics about the circuit, and error messages.
Almost all graphics systems excepl Caesar are point-based.
A pointing device is used to select a point on the screen, and
then a command is invoked to process that point. Because 1C
mask features consist of areas rather than points or lines,
Caesar’s command interface is area-based. Using a tablet, the
user positions a rectangular cursor over a portion of the



circuit, and then issues a command to process the area
enclosed by the cursor. The rectangular cursor leads to a
natural implementation of commands. A single point provides
less information than an area; in point-based systems it is
necessary to enter special modes during some commands so
that the user can select more points. A rectangle provides just
the right amount of information for virtually all Caesar com-
mands and avoids the need for modes. (See Tesler 1981 for a
discussion of the advantages of modeless user interfaces. )

For example, a rectangular cursor can be used to zoom in
on a piece of the circuit. The area selected by the cursor is
then expanded to fill the entire screen. Another use is to
specify a grid pattern; the dimensions and location of the
cursor determine the grid spacing and alignment, Other uses
for a rectangular cursor are described below.

The use of a rectangular cursor for all command
invocations means that Caesar is a Manhattan system: all
feature edges are vertical or horizontal, This restriction, and
its impact on the design environment, are discussed below,

The Painting Paradigm

This section compares Caesar’s interface for specifying
mask geometries to the interface of other layout systems. The
following section discusses the facilities for building hierar-
chical cell structures.

The user interfaces provided by most VLS layout systems
for editing mask geometries are direct reflections of the
underlyving circuit-specification languages (CIF, in many
cases). Because the languages provide primitives for specify-
ing rectangles, wires, and polygons, the layout systems allow
users to do the same sorts of things. These interfaces are
object-based: that is the user views a circuit in terms of the
objects (e.g., polygons) that can be created, modified (in
some systems), and deleted.

Unfortunately, object-oriented interfaces force the desig-
ner to deal with structure that is irrelevant and often invisible.
It makes no difference how a particular mask pattern is com-
posed of boxes, polvgons, and wires: when viewed on a color
display, the pattern will probably appear as a solid mass with
no evident siructure. When fabricated, the circuit's behavior
depends only on the pattern, not on how it is formed,

In object-based systems, modifications of patterns are
object-specific; that is, commands to modify rectangles are
different from commands to modify polygons. Because of
these differences, it is difficult to provide commands to
manipulate large collections of objects, for example, to
stretch a cell. Object-based command interfaces tend to be
either complicated, not very powerful, or hoth.

Caesar provides a structure-less paradigm for editing mask
geometries. The system maintains internally a structure
based on rectangles, but the user manipulates a mask pattern
as an amorphous blob of paint with no apparent structure.

There are five basic commands: PAINT, ERASE. YANK, PUT,
and FILL. The PAINT command paints the area enclosed by the
cursor with one or more mask lavers, and ERASE removes one
or more mask layers from the cursor aren. Caesar automati-
cally splits rectangles when necessary, and merges them again
whenever possible. The user is not allowed to see the rectan-
gle structure. The yaNk command treats the cursor like a
cookie cutter, and presses it into the “*dough” of the underly-
ing paint. All information lying underneath the cursor is

FIGURE 2. A partially expanded view of the RISC Gold chip.

copied into an area called the “vank buffer,” without affect-
ing the existing paint. The PUT commund copies the informa-
tion from the yank buffer back to the current cursor location.
The FILL command takes an imprint of all paint lyving under-
neath one edge of the cursor, then uses that imprint as a “paint
brush.” sweeping the brush across the cursor to the opposite
edge (see Figure 1),

Although conceptually simple, the painting commands per-
mit powerful operations on large arcas of design. Figure 1
shows how the commands can be combined to stretch a cell.
Stretching is accomplished with three commands. ERASE is
used to delete one side of the cell (as part of ERASE, the
deleted information is automatically saved in the yank buf-
feri; PUT is used to restore the information at its stretched
location: and FILL RIGHT is used to cover the gap. The various
rectangles are automatically split, clipped, and merged with-
out the assistance, or even the knowledge, of the user,

Cell Manipulation

Although Caesar eliminates object structure within the
mask patterns of individual cells, it permits cells to he
arranged hierarchically into larger designs. Cells are objects
that can be selected, moved, rotated, mirrored, copied,
arrayed, and deleted. Each cell may be displaved either in
expanded form {where its paint, and subcells are visible), orin
unexpanded form (where only a bounding box and name are
displayed). The default case is for subcells to be unexpanded,
to speed up redisplay and highlight the logical structure of the
circuit. Most of Caesar's cell facilities are similar 1o those of
other layout systems, Figure 2 shows a partially expanded
view of a portion of the RISC Gold chip.

One unusual feature of Caesar’s cell commands is the
ability toedit a cell in context. Modifications of a subcell often
depend on the way the cell is used in its parent. For example,
when a subcell fails to connect properly to other features in its
parent, it must be modified to do so, In Caesar, the subeell can

VLS| DESIGN Fourth (uarter 1981 35






