Caesar: An Interactive
Editor for VLSI Layouts

John K. Ousterhout, University of Calilornia at Berkeley

ing hierarchical VLSI layouts. Although its overall

functions are like those of several previous systems,
Caesar provides a novel user interface based on a structure-
less mechanism similar to painting. The painting paradigm
permits powerful circuit manipulations to be performed with
a simple mode-less command set. Caesar is evaluated based
on its use in two large processor designs.

The EECS Department of the University of California at
Berkeley has a long-standing program to develop computer
aids for designers of electrical circuits (Newton, ef al. 1981).
Caesar is an interactive VLSI layout system thal was
developed as one piece of the program. It is written in C, runs
on a YAX-11/780 under the Berkeley version of Bell Labs’
UNIX operating system {(Joy and Fabry 1981), and uses an
AED 512 color display with an attached tablet.

Caesar is a layout geometry editor. As such, it provides
overall functionality similar to that of earlier systems like
ICARUS { Fairbairn and Rowson 1980). Each design consists
of a hierarchical collection of cells. Each cell contains a
description of patterns on several mask layers, as well as
“child cells™ that contain more information of the same sort.
Like most YLSI lavoul systems, Caesar does not maintain
information about design rules, electrical rules, or
schematics. It produces CIF (Caltech Intermediate Form)
files that can be processed by other design aids such as design
rule checkers, plotters, and circuit extractors.

What distinguishes Caesar from other VLS layout systems
is its user interface. Caesar's interface has two novel facets.
First, all commands are invoked using a cursor that selects a
rectangular area, rather than a traditional cursor that selects a
single point. Second, geometry is specified with a mechanism
like painting . The rectangular cursor and painting paradigm
results in a simple command interface that lets complex
manipulations be performed easily and naturally,

Caesar was used in the development of two VLSI
implementations of the Reduced Instruction Set Computer
(RISC)(see article by Fitzpatrick et al_ inthis issue; Patterson
and Séquin 1981). The RISC implementation provided the
motivation to develop Caesar from an experimental system
into a usable product. The RISC designers were a constant
source of ideas for enhancements. The RISC chips demon-
strate that Caesar 1s a viable tool for large designs.

The Basic Command Interface

c aesar is an interactive color graphics system for edit-

A Caesar workstation consists of a standard video termi-
nal, an AED 512 color display, and a tablet. The video terminal

3 VLS| DESIGN Fourth Quarrer 1951

FIGURE 1. Using the painting commands to
stretch an nMOS cell:

a) before ERASE; b) after ERASE; ¢) before PUT;

d) after PUT; @) belore FILL RIGHT; ) after FILL RIGHT.

i5 used for command input and also to display command
menus, statistics about the circuit, and error messages.
Almost all graphics systems excepl Caesar are point-based.
A pointing device is used to select a point on the screen, and
then a command is invoked to process that point. Because 1C
mask features consist of areas rather than points or lines,
Caesar’s command interface is area-based. Using a tablet, the
user positions a rectangular cursor over a portion of the



circuit, and then issues a command to process the area
enclosed by the cursor. The rectangular cursor leads to a
natural implementation of commands. A single point provides
less information than an area; in point-based systems it is
necessary to enter special modes during some commands so
that the user can select more points. A rectangle provides just
the right amount of information for virtually all Caesar com-
mands and avoids the need for modes. (See Tesler 1981 for a
discussion of the advantages of modeless user interfaces. )

For example, a rectangular cursor can be used to zoom in
on a piece of the circuit. The area selected by the cursor is
then expanded to fill the entire screen. Another use is to
specify a grid pattern; the dimensions and location of the
cursor determine the grid spacing and alignment, Other uses
for a rectangular cursor are described below.

The use of a rectangular cursor for all command
invocations means that Caesar is a Manhattan system: all
feature edges are vertical or horizontal, This restriction, and
its impact on the design environment, are discussed below,

The Painting Paradigm

This section compares Caesar’s interface for specifying
mask geometries to the interface of other layout systems. The
following section discusses the facilities for building hierar-
chical cell structures.

The user interfaces provided by most VLS layout systems
for editing mask geometries are direct reflections of the
underlyving circuit-specification languages (CIF, in many
cases). Because the languages provide primitives for specify-
ing rectangles, wires, and polygons, the layout systems allow
users to do the same sorts of things. These interfaces are
object-based: that is the user views a circuit in terms of the
objects (e.g., polygons) that can be created, modified (in
some systems), and deleted.

Unfortunately, object-oriented interfaces force the desig-
ner to deal with structure that is irrelevant and often invisible.
It makes no difference how a particular mask pattern is com-
posed of boxes, polvgons, and wires: when viewed on a color
display, the pattern will probably appear as a solid mass with
no evident siructure. When fabricated, the circuit's behavior
depends only on the pattern, not on how it is formed,

In object-based systems, modifications of patterns are
object-specific; that is, commands to modify rectangles are
different from commands to modify polygons. Because of
these differences, it is difficult to provide commands to
manipulate large collections of objects, for example, to
stretch a cell. Object-based command interfaces tend to be
either complicated, not very powerful, or hoth.

Caesar provides a structure-less paradigm for editing mask
geometries. The system maintains internally a structure
based on rectangles, but the user manipulates a mask pattern
as an amorphous blob of paint with no apparent structure.

There are five basic commands: PAINT, ERASE. YANK, PUT,
and FILL. The PAINT command paints the area enclosed by the
cursor with one or more mask lavers, and ERASE removes one
or more mask layers from the cursor aren. Caesar automati-
cally splits rectangles when necessary, and merges them again
whenever possible. The user is not allowed to see the rectan-
gle structure. The yaNk command treats the cursor like a
cookie cutter, and presses it into the “*dough” of the underly-
ing paint. All information lying underneath the cursor is

FIGURE 2. A partially expanded view of the RISC Gold chip.

copied into an area called the “vank buffer,” without affect-
ing the existing paint. The PUT commund copies the informa-
tion from the yank buffer back to the current cursor location.
The FILL command takes an imprint of all paint lyving under-
neath one edge of the cursor, then uses that imprint as a “paint
brush.” sweeping the brush across the cursor to the opposite
edge (see Figure 1),

Although conceptually simple, the painting commands per-
mit powerful operations on large arcas of design. Figure 1
shows how the commands can be combined to stretch a cell.
Stretching is accomplished with three commands. ERASE is
used to delete one side of the cell (as part of ERASE, the
deleted information is automatically saved in the yank buf-
feri; PUT is used to restore the information at its stretched
location: and FILL RIGHT is used to cover the gap. The various
rectangles are automatically split, clipped, and merged with-
out the assistance, or even the knowledge, of the user,

Cell Manipulation

Although Caesar eliminates object structure within the
mask patterns of individual cells, it permits cells to he
arranged hierarchically into larger designs. Cells are objects
that can be selected, moved, rotated, mirrored, copied,
arrayed, and deleted. Each cell may be displaved either in
expanded form {where its paint, and subcells are visible), orin
unexpanded form (where only a bounding box and name are
displayed). The default case is for subcells to be unexpanded,
to speed up redisplay and highlight the logical structure of the
circuit. Most of Caesar's cell facilities are similar 1o those of
other layout systems, Figure 2 shows a partially expanded
view of a portion of the RISC Gold chip.

One unusual feature of Caesar’s cell commands is the
ability toedit a cell in context. Modifications of a subcell often
depend on the way the cell is used in its parent. For example,
when a subcell fails to connect properly to other features in its
parent, it must be modified to do so, In Caesar, the subeell can

VLS| DESIGN Fourth (uarter 1981 35



Although conceptually simple,
the painting commands permit
powerful operations on large
areas of design.

be modified in context: itis displaved with the orientation and
location of its use in the parent, and information from the
parent cell is displayed around it. Caesar translates com-
mands into the coordinate system of the subcell, so asto carry
out the changes. Without this feature, the subcell must be
edited in its native coordinate system. This means that the
designer must remember the context of usapge and mentally
transform the desired changes into the coordinate syvstem of
the subcell.

Another convenient use of the rectangular cursor is to
convert a single instance of a cell to an array, The cursor’s
dimensions determine the spacing of the array elements inx
and v, In other systems, the spacing is either set antomatically
to the size of the cell (thereby making overlaps impossible), or
specified numerically.

Implementation

A cell definition is represented internally as a list of rec-
tangles for each layer, and a list of subcell uses, Each subcell
use contains a transformation and a pointer to the definition
for the subcell, This implementation is similar to the im-
plementations of several other systems, and will not be
described in more detail here. The following paragraphs dis-
cuss a few aspects of the implementation that are less ob-
viows, or that worked out especially well,

Bounding Boxes

Any single command has bearing on only & small area in the
design, usually the area displayed on the screen or the area
selected by the cursor. When scanning the data-base for ele-
ments in this area, Caesar uses cell bounding boxes to limit its
search: if a cell’s bounding box doesn’t overlap the area of
interest, then that cell’s paint and children are not examined,
When a cell is stored on disk, the bounding boxes for all of its
children are stored with it. This allows Caesar to load its
main-store data-base incrementally. At the beginning of an
editing session only the root cell is loaded into main memaory,
Subcells are not expanded and need not be loaded until they
are expanded. If only a small piece of a large circuit is edited,
maost of the circuit is never loaded from the disk. For the RISC
chips. where the data-bases each contain megabytes of infor-
mation, this is an important optimization.

Transparent and Opague Layers

The simplest and most time-efficient way to use the raster
memory of the color display is (o allocate one of the bits of
cuch pixel for each mask layer. The AED 512 display contains
& bits per pixel, of which two are used for bounding boxes,
labels, the grid, and the cursor. If the simple approach is
taken, the remaining 6 bits per pixel are barely enough for the
simplest nMOS process, and are insufficient for more com-
plex processes, such as CMOS, To support processes with
more than six layers, Caesar divides the mask layers into two
groups, fransparent and epagoee. There may be up (o 5 trans-

36 VLS| DESIGN Fourth Quarter 198]

parent and 32 opague layers in any given technology. Each
opaque layer obscures all other lavers underneath it but trans-
parent layers do not blot oul underlying details. Thus, at
points where only transparent lavers are present, it is possible
to see all overlaps. The densest lavers, and those whose
overlaps are important, are typically made transparent. A
display with more bits per pixel would, of course, reduce this
problem greatly,

Display Resolution

Although there has been much hullabaloo of late about the
“need” for high-resolution color displays with 1000 or more
lings (Rosenberg and Fuchs 1981), we have heen satisfied
with the 512x512 resolution of the AED display. In typical
usage, the features are 5 to 20 pixels across. Therefore, a
higher-resolution display would not improve picture guality
very much. With more pixels to modify, 1024-line displays are
liable to be substantially slower than 512-line ones. unless
special attention is given to their implementations. Further-
more, to keep memory costs down, 1024-line designs occa-
sionally reduce the number of hits per pixel as they increase
the number of pixels, Our experience suggests that this is
exactly the wrong trade-off to make, Our satisfaction with
512-line resolution is partly a result of our restriction to Man-
hattan geometries, The aliasing problem makes 512-line dis-
plays less attractive for non-Manhattan shapes,

Interface to the Color Display

Communication between the VA X-based software and the
color display is over a %600-baud link. Although we feared that
this would be too slow to provide good interactive response, it
turned out to be guite adequate, The AED display contains a
microprocessor that accepts commands of the form “draw a
filled rectangle”™ or ““draw a line.” Thus, only small amounts
of data need be shipped over the link to specify complex
operations, For typical usage. the system is well-balanced
with respect to VAX processing time, characler lransmission
time, and command processing time in the AED micro-
ProCessor.

Development and Performance Statistics

Caesar was implemented by one person working about half
time over about a vear. The program is wrillen in C, and
contains about 12,000 lines of code and commenis. [t has
been distributed to about a dozen sites outside Berkeley.

Running on a VAX-11/780 with the 4.1 release of Berkeley
UNIX, Caesar requires a tolal of about 100 kbytes of virtual
storage 1o edit small cells. For the RISC Gold design (a
microprocessor containing 44,500 transistors), about 1
megabyie of storage is required if all of the cell definitions are
loaded. (In practice, the incremental loading feature discribed
in the Bounding Boxes paragraph above, reduces this figure
substantiallv).

Cuesar is instrumented to record its usage on a session-hy-
session basis. Table 1 summarizes the data Tor two groups of
sessions. The first column summarizes data from sessions in
the last month of development of the RISC Gold chip, when
Caesar was being used intensively. The second column
represents sessions during which the svstem was being used
for development and small-cell layout; this information indi-
cates its performance during the early stages of a project,



Hixavy Usage Light Usage

Number of Sessions T84 585

Average CPU Usage 6.9% 2.8%

execution time divided by elapsed time)
raged elapsed time

to process each command

1.0 sec. 9 sec,

TABLE 1. Usage Statistics.

Even under intensive use, Caesar requires only about 7% of
the CPU. For small cells, Caessar’s CPU needs are about 3%,
or about the same as a screen-based text editor. On the
average, commands were completed in about one second of
elapsed time, and the system spent about three-fourths of its
time wuaiting for wser input. It should also be noted that
statistics in the " Light Usage” column were gathered on a
loaded machine (typically 15 to 30 users logged in), whereas
the machine used for the “Heavy Usage’ statistics had only a
few users.

Evaluation

I was fortunate to have a group of ambitious and adven-
turesome users: the RISC designers. In addition to uncover-
ing bugs and suggesting enhancements, their usage of Caesar
for two large designs brought out some of the advantages and
disadvantages of the system. This section evaluates Caesar
based on the RISC experience.

Things That Worked Well

The general user interface worked out very well, especially
for low-level cell design, This is due to the combination of the
rectangular cursor and the painting paradigm. Together they
eliminate the sub-modes and irrelevant structure present in
other interfaces, and provide powerful facilities with a simple
command set.

The restriction to Manhattan designs was also successful. 1
expected designers to chafe at this restriction, and there was
some initial discomfort, In retrospect, however, the designers
are happy with a Manhattan design style. By tailoring the
design tools to Manhattan stroctures, we have achieved much
greater efficiency: the circuit extractor, for example, sped up
by a factor of 10 when recoded for Manhattan designs
(Fitzpatrick 1981). This speedup made possible a degree of
thoroughness in circuil simulation that would have been out
of the question if arbitrary orientations had been present.
Furthermore, designers at Berkeley and elsewhere agree that
non-Manhattan designs are more error-prone than Manhattan
ones. The RISC designers estimate that less than 10% in
circuit density was lost due to the Manhattan restriction.

The incremental loading features and the use of bounding
boxes (o reduce search time proved important for large
designs, such as the RISC chip. The ability to edit cells in
context has only recently been added to Caesar, but initial
reaction is extremely positive. This feature increases Caegsar’s
efficiency, encourages a greater degree of modularity in
designs, and makes it easier for different designers to work on
different pieces of a circuit at the same time,

Inadequacies

Although Caesar's painting paradigm works well for creat-
ing cells, its mechanisms (like those of most other layout
systems) are inadequate for connecting cells. The problem

I8 VLSl DESIGN Fourth Quarier 1981

stems from the fact that cells are placed in absolute space, not
comnected o each other. Thus, if a wire is drawn between two
points, the layout system does not record the fact that the wire
is intended to connect them. If one of the points moves, the
designer must be carelul 1o modily the wire so that the con-
nection is maintained. The layout system should incorporate
the notion of “connection,” with tools to help the designers
create and maintain connections, The solution is not a return
to the old style of designing with CIF wires. Rather, we must
develop a new higher-level kind of object, the connection.
Work is already underway at Berkeley and elsewhere to ex-
plore connection-based (or constraint-based) systems.

Acknowledgments

Good design tools cannot be developed in isolation: they require
constant usage and evaluation. For Caesar, Dave Patlerson and the
RISC designers filled this role. They were ambiticus enough to stress
the system to {and occasionally past)its limits, and patient enough to
wail for bug fixes and enhancements, The current system bears only
slight resemblance to the system they began using in January 1981,

The transparent/opaque laver division and technology indepen-
dence of Caesar developed from discussions with Ken Keller, and
from comparisons between carly versions of Cacsar and Keller’s KIC
syslem (Keller 1981},

The work described here was supported in part by the Miller
Institute of the University of California, and in part by the Defense
Advanced Kesearch Projects Agency (DOD), ARPA Order Mo, 3803,
monitored by the Naval Electronic System Command under Contract
Mo, NODO39-TE-G-0013-0004, The views and conclusions contained
in this article are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the
Defense Advance Research Projects Agency or the U5,
Government.

Relerences

Fairbairn, D.G. and J.A. Rowson. 1980, ICARUS2 User's Manual.
Xerox Palo Alto Research Center internal document.

Fitzpatrick, Daniel T. 1981, Private communication.

Joy, W.N_ and RS, Fabry, 1981, * Berkeley Software for UNIX on the
VAX". Computer Science Division Internal Memo, University
of California, Berkeley,

Keller, Ken. 1981, “KIC: A Graphic’s Editor for Inmegrated Cir-
cuits,”” Master’s thesis, EECS Department, University of
California, Berkeley.

Mewton, A.R., D0, Pederson, A.L. Sangiovanni-Vincentelli, and
C.H. Séquin. July 1981. * Design Aids for VLSI: The Berkeley
Perspective,” IEEE Transactions on Circwits and Svstemy, Vol,
CAS-28, No. 7, pp. 6h6-681,

Patterson, VA, and C.H. Sequin. May 1981, “RISC I: A Reduced
Instruction Set VLSI Computer.” Proceedings of the Eighth
Trrernationa Symposinm on Compier Architeciure,

Rosenberg, LB and H, Fuchs, Yecond Cuarter TO8F, ©Suevey and
Evaluation of Color-Display Terminals for VESL LAMBDA
Val. I1, No. 2, pp. 58-60.

Tesler, Larry. August 1981, “The Smalltalk Environment,”” Byre, Vol.
fi, Mo, B, pp. 90-147.

About the Author

Juhn K. Ousterhout received the B.S,
degree in physics from Yale College in 1975
and the Ph.D. in computer science from
Carncgic-Mellon University in 1980, He is.
currently an assistant professor of electri-
cal engineering and computer sciences at
the Berkeley campus of the University of
California. His research interests mclude
computer aided design, VLS architecture,
and operating systems,




