Running RISCs

John K. Foderaro, Korbin S. Van Dyke, and David A. Patterson
Computer Science Division, University of California, Berkeley

Last year, we described the design of RISC I (Fitzpatrick et
al. 1981), a 44,500-transistor 32-bit microprocessor. At that
time, we had not yet received our first chips. Now we can tell a
complete story, including a moral and a happy ending, in which
prompitness is punished, Murphy's Law is proved, and per-
severance and patience are rewarded.

new class of simpler computers promising higher perfor-

mance using simpler hardware. Examples of RISCs are
the IBM 801 (Radin 1982), the Berkeley RISC I (Patterson and
Séquin 1981) and the Stanford MIPS (Hennessy er al. 1982).
RISC I was the first chip built as part of a new graduate
curriculum of the Electrical Engineering and Computer Scien-
ces Department at the University of California, in which stu-
dents propose and evaluate architectural concepts, learn
Mead-Conway design methods, form teams to build the sys-
tem, and then test their design.

RISC CAD

In our environment, design tools dictate design style. Be-
cause we had only five students, and had to complete a 32-bit
computer in 23 weeks, we had to rely on programs to increase
productivity. We used existing programs whenever possible,
building our own only when other solutions were not available.
We designed RISC I at two levels: a low-level mask description
and a high-level functional description. The masks were en-
tered via Caesar, a color graphics layout editor developed by
John Ousterhout (Ousterhout 1981). We used Clark Baker's
DRC program to check for layout errors. We counted on visual
inspection to discover the few layout errors that DRC over-
looked (implant-to-gate spacing, gate overhang, and implant
overlay around gates).

The functional description was written in Slang, a LISP-
based simulation language created by John Foderaro during the
development of RISC I (Van Dyke 1982). The most difficult
parts of our logical design were the timing and the miscel-
laneous gates to drive the control lines. Because we expected to
have more errors in this area than in the data path, a program
that would simulate a description of the control circuitry to
discover timing and control errors was more important. The
RISC I Slang description, including all control lines, the PLA’s,
and miscellaneous control logic, explicitly corresponds to
about 2000 transistors in RISC I; Slang simulates the rest of the
chip—42,500 transistors corresponding to the registers, ALU,
and shifter—at a high level. We debugged the description by
running about a dozen small RISC I programs, called diagnos-
tics, on the Slang description of RISC 1. Limited time kept us

R ISC stands for Reduced Instruction Set Computer, a

from using formal fault-coverage models to decide whether
these diagnostics adequately exercised the chip.

Two more programs linked these two descriptions. Mextra, a
circuit extraction program created by Dan Fitzpatrick, takes
mask descriptions and derives a transistor-level description.
Esim, a switch-level simulator created by Chris Terman,
simulates the derived description. Slang “*swallowed™ Esim to
monitor the values of several dozen interesting nodes in both
the functional- and switch-level simulations. This multi-level
simulation found dozens of disagreements between the two
levels of simulation—errors that would have kept RISC I from
working.

RISC Fabrication

On June 22, 1981, the RISC I design, using single poly and
single metal layers with no buried contacts, was complete: it
passed all software checks. RISC I then became part of the
experiment to see whether commercial silicon foundries would
provide fabrication for small-volume custom designs.

When inexperience is combined with ambition, you get a
very large chip. The standard fabrication services were giving
fast turnaround to small chips using 5-micron minimum
features. Even using 4-micron features, RISC I measures 10.3 x
7.75 mm (406 x 305 mil). Fortunately, the MOSIS Implementa-
tion Service at USC/ISI agreed to use RISC I to explore the
problems of fabricating large chips at 4 microns. Alan Bell and
Lynn Conway of Xerox PARC also offered to fabricate our
design, and we replied with a copy of the CIF file on July 17,
1981.

Although Xerox and MOSIS selected different mask-
makers, both selected the same vendor for fabrication. The
Xerox masks arrived first, but promptness was not rewarded. A
new vendor employee ran the wafers through the line using the
wrong process. The MOSIS masks arrived later and were sent
through the right process steps, but the poly lines were too wide
because of problems with one of the polysilicon processing
steps. As predicted by Murphy’s Law, two more events at the
vendor's site kept us from receiving the chips until November:
a management reorganization and a fire in the ventilation
system.

In November, Michael Arnold finished Lyra, a new layout-
rule checker (Arnold and Ousterhout 1982). Lyra discovered
four layout errors—gate overhang and implant-to-gate spacing-
—overlooked by DRC. These probably would not have kept
the chip from working, but they might have reduced the yield.
The folly of visual inspection was illustrated while verifying the
errors. This early version of Lyra gave the location and layer of
the error; nevertheless, three people, using Caesar to explore
the design, needed more than two hours to find the errors. The

VLSI DESIGN September/October 1982 27



current version of Lyra pinpoints the error and gives complete
€rror messages.

MOSIS offered a new run in December 1981; therefore, we
submitted the corrected CIF to be fabricated by a second
vendor. This was an experimental run on a research line to try
4-micron Mead-Conway designs. Thus, the need for a second
run in April 1982 did not surprise us. Wafers with good process-
ing arrived at Berkeley in May 1982. MOSIS started another
run with the original vendor in late January, and we also
received their wafers in May.

In the meantime, because of the processing problems, the
original vendor refabricated chips from the original masks
(M17A) for Xerox. We received chips from this run in January.
Table 1 shows the chronology of RISC I fabrication.

RISC Testing

Although the fabrication delays were longer than we had
expected, building the hardware and software to test the chips
kept us busy. The tester receives bit patterns for a test from a
host computer, applies these bit patterns to the inputs of the
chip under test, and sends the resulting output bit patterns back
to the host computer for analysis.

The tester was simply a buffer that could drive and record
any pattern of 64 bits every 250 ns. Figure 1 shows a photo-
graph of the tester hardware. This tester provided variable-
speed clocks and power supplies, and could repeat a test
indefinitely (although it could record only the last 1024 entries).
We needed programs on the VAX to prepare the test patterns
and massage the test results.

Once again Slang came to the rescue, as shown symbolically
in Figure 2. Slang uses the test programs and computes the
correct patterns for the tester and the correct results for those
patterns. Slang then checks the results from the real system.

RISC Results

Out test plan was founded on pessimism. We planned to drive
Scan-In-Scan-Out (SISO) hardware to test each block. There
are 5 SISO loops in RISC I, one each for the shifter, ALU input,
ALU output, the program counters, and control. We tested the
first chips from MOSIS (M17M), but no chip emerged with all
SISO loops working. We depended on a functioning control
loop to test some other modules in the chip, but this loop rarely
functioned. The SISO loops were routed after the main area
was laid out, resulting in very long poly lines which were
potentially more susceptible to yield errors.

Following the same plan, we tested the second batch from
Xerox during the winter. Testing proceeded slowly, owing to
both the debugging of the RISC I testing software and hard-
ware, and to the other educational requirements of Foderaro
and Van Dyke (the only RISC I designers still at Berkeley). We
never found working SISO loops on this batch of chips, but two
chips displayed “‘signs of life’" when programs were fed to
them. Further testing showed that in spite of yield flaws or
design errors, these chips performed most of the intended
functions. A few bits of the data path were stuck at 0 or 1;
nevertheless these chips could still execute some instructions.

Van Dyke designed and built a board for RISC I including the
miscellaneous ““glue’” around the CPU, the memory, the /O,
and the memory management elements. A Xerox refab chip,
even with some of the upper bits stuck high, successfully ran
the first RISC I program on June 11, 1982. Figure 3 shows a

28 VLSI DESIGN September/October 1982

Date Event Name
April 1980 Experimental Architecture Class  CS292R
September 1980 Mead/Conway Class CS248
January 1981 VLSI Systems Class CS292X
April 1981 VLSI ‘Testing’ Class CS292Y
June 22, 1981 CIF sent to MOSIS M17M
July 17, 1981 CIF sent to Xerox PARC M1TA
October 22, 1981 Chips from Xerox PARC M17A
October 25, 1981  Chips from MOSIS M17TM
November 1981 Lyra finds layout errors
December 4, 1981 Submit new CIF to MOSIS M1DT
January 7, 1982 Chips from Xerox PARC via refab M17A
January 29, 1982 MOSIS sends new CIF M21Z
February 9, 1982 MOSIS M1DT failed fab M1DT
April 1982 MOSIS refab M1DT
May 1982 Wafers from MOSIS M21Z M1DT
June 11, 1982 RISC | runs first program M17A/CS251
on board
June 15, 1982 Design error discovered M1DT
July 2, 1982 Find 4 RISC | die without M21Z
yield errors

TABLE 1. History of RISC 1.

FIGURE 1. Rucker and Kolls 250 probe station
with tester (white box on the right).

Test
Patterns

Simulate

:) Chip

Compare

FIGURE 2. Use of Slang in testing.

photograph of that board. The first RISC I program read
characters from the terminal, changed the text, and wrote the
characters back out.

Because we considered the logical design to be largely cor-
rect, we ignored the SISO loops and began running diagnostic
programs on the chips. Before this, we were testing diced and



FIGURE 3. Photo of RISC I board.

Machine Speed Language Time (milliseconds)
wait

MHz states search sieve puzzle acker
8086 5 0 Pascal 7.3 764 44000 11100
iAPX-432 8 4 Ada 44 978 45700 47800
MC68000 8 2 Cc 47 740 37100 7800
Average 5.5 827 42300 22200
RISC | 1.5 0 C 25 698 23500 16000

TABLE 2. Execution time of four microprocessors
on four programs.

bonded chips. As the students’ “'lifetimes’” were running short,
we skipped the dicing and bonding stages and tested whole
wafers from the second round of MOSIS fabrication. Figure 1
also shows the probe station we connected to our VLSI tester.
These new chips ran the diagnostic programs used to verify our
original design. We (foolishly) created new diagnostics and
uncovered a design error associated with the optional setting of
condition codes on the load and shift instructions. In defiance
of historical precedent for solving a design problem by turning
it around and calling the problem a new architectural
“feature,” we decided to fix this error by modifying the RISC |
assembler. (This was possible because ALU operations prop-
erly set all condition codes, whereas load and shift instructions
do not set the negative condition bit. The patch consists of
inserting an arithmetic test instruction when a conditional jump
needs the N condition from a load or shift operation.) At this
writing, we have tested about 40 chips from the second MOSIS
wafers. We have found four fully functional chips, (although the
SISO circuitry has not been verified yet), giving a 10% yield.
This is a better yield than we had expected from such a large
chip.

The fastest of these chips runs all diagnostics at 1.5 MHz at
room temperature, using the probe card with a floating sub-
strate bias, or 2 usec per RISC I instruction. This rate was
calculated by running the tester at 4-usec per instruction, with
the gap between the three non-overlapped clock phases being
as large as the clock. We had based our original performance
projections for RISC I on a .4-usec register-register instruction,

30 VLSI DESIGN September/October 1982

derived from the .4-usec register-register operation of the 10-
MHz Motorola MC68000 and the .3-usec register-register oper-
ation of the 10-MHz National NS16032.

Several factors caused this difference. To understand the
speed of this fabrication process, we measured the speed of the
ring oscillator on the test strip (which is routinely inserted by
MOSIS). It ran at 11 MHz. Previous chips processed with the
same design-rule features have run the same oscillator at 20
MHz. The later stages of design involved connecting cells, and
we concentrated on logical correctness rather than circuit
speed. Although we followed the rule of avoiding long unbuf-
fered lines, we had no tool to check for such mistakes. We
recently re-examined the design, and found four long clocked
control lines that SPICE predicts will limit the maximum clock
speed to 4 MHz. Furthermore, many of our diagnostics can be
run with a 3-MHz clock, suggesting that only a few RISC I
instructions (caLL and LoAD) are limiting the performance.
Finally, because we still have 200 more chips to test, we may
well find faster RISC I's.

Table 2 compares commercial microprocessorstoa 1.5-MHz
RISC I (including the assembler changes to fix the error).
Hansenet al. (1982) ran programs on a 5-MHz 8086 with no wait
states on an Intellec MDS III development system, an 8-MHz
MC68000 with two wait states on a Dual Systems Corporation
Dual 8312, and a simulator of the newest version (release 3) of
the Intel 432/800, (an 8-MHz, 4-wait state system). As the table
shows, a 1.5-MHz RISC I runs these programs a bit faster than
do current commercial microprocessors.

A Retrospective Look

Hindsight lets us see our mistakes and offer warnings for
future designers. First, don’t rely on visual inspection to catch
any layout errors. (A second layout-rule checker would have
found our mistakes in the first masks.) Our second mistake was
incomplete diagnostics. A few more diagnostics would likely
have found our only design error. SISO proved difficult to use;
if we had written SISO diagnostics, we would have noticed the
difficulty and changed the chip.

Although we were concerned with performance, the lack of a
simulator between analog-level SPICE and switch-level Esim
precluded performance-tuning of the complete design. Existing
higher-level timing analyzers, such as MOTIS-C and LOGIS,
were not integrated into the UNIX environment; perhaps more
importantly, they required a new description of the design
which could not easily be extracted from the other descrip-
tions. Manufacturers apparently have budgets for hours of
SPICE runs on CRAY-1's—a luxury not likely to be found soon
in academe. We believe higher-level timing analyzers have a
promising future.

We hope this article has made it clear that the work required
to build hardware and software to test a chip of this size app-
roached the amount of effort required to design it. If we had
started over, we would have used more resources on this
tedious but important chore. Many people were working on
methods to improve chip design, but very few are working on
testing. This research area is ripe for new ideas.

The short student “‘lifetime’ requires fast-turnaround
silicon. If we have chips with good processing within 3 months
after design, we can rely on students to test and perhaps even to
improve the chips. If it takes a year, students can rarely enjoy
that important advantage. Therefore, one must balance ambi-



tion with die size. MOSIS can provide a 6-week turnaround for
standard-size chips that use the standard process (Cohen and
Tyree 1982). Furthermore, even special runs have problems
with designs larger than 8 mm on a side, because the makers of
vendor software (to compensate the masks for the process)
never dreamed of a chip that big.

Fortunately, hindsight has also shown successes. For first
silicon, the chip had acceptable yield. (One terrible possibility
was that the chip might be too large ever to result in a working
die.) The working chips testify to the quality of the design tools.
(For more information about these tools, see University Scene
in this issue.) Perhaps the most unusual aspect of this approach

Perhaps the most unusual aspect of this
approach to design was that we kept all
knowledge of the chip on-line in "program-
understandable” form. Furthermore, the on-
line description superseded any written
documentation.

to design was that we kept all knowledge of the chip on-line in
“program-understandable” form. Furthermore, the on-line
description superseded any written documentation. Because
the description was finished before the layout was done, we
could write a few programs to ask Slang what was connected to
a given line, or what nodes should be connected. Designers
usually keep a set of official logic diagrams for the chip in a
project notebook, and derive all other descriptions of the chip
from those logic diagrams. We believe that if we had done this,
the chip would have taken longer to build and contained more
errors, because you can’t compare a sheet of paper with an
extracted circuit using a program. Unlike the procedure used
by most systems, control circuitry was drawn ““on-line’’ using
specifications from our Slang simulator description.

The bottom line of the RISC I effort is that as part of the
graduate curriculum, students designed and evaluated an archi-
tecture, learned VLSI design methods, built new CAD tools,
and tested their design. The end product, a 44,000-transistor
integrated circuit, had one minor design error, worked on the
first good silicon, and ran diagnostic programs faster than com-
mercial microprocessors.

Acknowledgements

Carlo Séquin supervised the master’s-degree projects by Wing-Cho
Feng and Bob Cmelik, who built the initial VLSI tester hardware and
software. The tester built by Jim Beck, which we used to test RISC L, is
a revision of this design. John Foderaro and Korbin Van Dyke spent
several months testing RISC I, and John wrote many programs to
automate testing. Jim Peek did the recent SPICE studies of RISC [
performance.

We thank Danny Cohen, Lee Richardson, Vance Tyree, and the rest
of the MOSIS crew at USC/ISI; and Alan Bell, Alan Paeth, Gaetano
Borriello, and Lynn Conway of Xerox PARC for their cooperation and
hard work exploring this new field. Their commitment made RISC I
possible.

We also thank Alan Bell, Barbara Borske, Danny Cohen, Lynn
Conway, Dan Fitzpatrick, Paul Losleben, John Ousterhout, Jim Peek,
Lee Richardson, Carlo Séquin, and Jerry Werner for their suggestions
on this article.

This research was sponsored in part by Defense Advance Research

32 VLSI DESIGN September/October 1982

Projects Agency (DoD), ARPA Order No. 3803, and monitored by the
Naval Electronic System Command under Contract No. N0O0039-81-K-
0251. Our thanks also go to Duane Adams, Paul Losleben, Robert
Kahn, and DARPA for their foresight in providing resources that let
universities attempt projects involving high risk.

References

Arnold, M., and J. Ousterhout. 1982, “"Lyra: A New Approach to
Geometric Layout Rule Checking,” Proceedings of the 19th
Design Automation Conference, Las Vegas, NV.

Cohen, D. and V. Tyree. July/August 1982. **Quality Control from the
Silicon Brokers Perspective,” VLSI DESIGN.

Fitzpatrick, D.T., J.K. Foderaro, M.G.H. Katevenis, H.A. Landman,
D.A. Patterson, ].B. Peek, Z. Peshkess, C.H. Séquin, R.W. Sher-
burne, and K.S. Van Dyke. Fourth Quarter 1981. “*A RISCy
Approach to VLSI,” VLSI DESIGN.

Hansen, PM., M.A. Linton, R.N. Mayo, M. Murphy, and D.A. Patter-
son. June 1982. “"A Performance Evaluation of the Intel iAPX
432, Computer Architecture News.

Hennessy, J., N. Jouppi, E Baskett, A. Strong, T. Gross, C. Rowen,
and J. Gill. February 1982. **The MIPS Machine,”’ Proceedings of
COMPCON Spring, San Francisco, CA.

Ousterhout, J. Fourth Quarter 1981. **Caesar: An Interactive Editor for
VLSI Circuits,”” VLSI DESIGN.

Patterson, D.A., and C.H. Séquin. May 1981. “RISC I: A Reduced
Instruction Set VLSI Computer,” Proceedings of the Eighth In-
ternational Symposium on Computer Architecture.

Radin, G. March 1982, **The 801 Minicomputer,” Proceedings of the
Symposium on Architectural Support for Programming Lan-
guages and Operating Systems.

Van Dyke, K.S. June 1982. SLANG: A Logic Simulation Language,
M.S. Report, U.C. Berkeley, Berkeley, CA.

Afterword

We thought the readers of VLSI DESIGN might like to know what
happened to the Berkeley authors who appeared in the Fourth Quarter
1981 issue. Most graduates joined small start-up companies and, in one
way or another, are capitalizing on their IC design experience. First, the
students:

Dan Fitzpatrick is finishing his Ph.D. thesis, and working on CAD
tools at CADLINC in Palo Alto.

John Foderaro, the only RISC I designer still at Berkeley, plans to
finish his Ph.D. in symbolic computation next year. He won the 1982
Dimitri Angelakos award as the person who gave the most help to his
fellow students.

Manolis Katevenis is working on RISC II, and doing his Ph.D. disser-
tation on VLSI computer architecture.

Howard Landman finished his M.S. thesis, and is now building CAD
tools at Metheus in Portland, Oregon.

Jim Peek is finishing his M.S. thesis, and is now building a VL.SI
graphics chip at CADLINC.

Zvi Peshkess finished his M.S. thesis, and is designing analog chips
for a communications system at Silicon Systems in Tustin, California.

Bob Sherburne is doing his dissertation on VLSI computer con-
structs, and also working with Katevenis on RISC II.

Korbin Van Dyke finished his M.S. thesis and is now a VLSI systems
engineer at VLSI Technology in San Jose, California. Korbin is prob-
ably one of the few people in the world who has investigated architec-
ture, designed a microprocessor, tested the chip, built memory and I/O
boards for the chip, written programs for the chip, and seen it all work.

Now the faculty:

Carlo Sequin, chairman of the Computer Science Division, has been
teaching seminars on VLSI design across the U.S. He was named a
Fellow of the IEEE this year.

John Ousterhout is teaching the VLSI layout class at Berkeley. In
addition to supervising new tools such as Lyra, he is beginning to work
on his next CAD system. His first system, Caesar, has been distributed
to 70 universities and companies.

Dave Patterson is teaching the Experimental Architecture and VLSI
Systems classes that produced RISC 1. He is leading the design of an
instruction cache for RISC II, and is looking for a new vehicle to
investigate cost-effective, VLSI-based software systems. He was
awarded the 1982 Distinguished Teaching Award by the Academic
Senate of the University of California.



