A RISCy Approach to VLSI

Daniel T. Fitzpatrick, John K. Foderaro, Manolis G H. Eatevenis,
Howard A. Landman, David A. Patterson, James B. Peek, Zvi Peshkess,
Carlo H. Sequin, Robert W. Sherburne, Korbin 5. Van Dyke,
Computer Science Division, University of California at Berkeley

general trend in computers today is to increase the
A complexity of architectures along with the increas-

ing potential of implementation technologies. The
consequences of this complexity are increased design time,
more design errors, inconsistent implementations, and the
delay of single chip implementation {Patterson and Ditzel,
1980). The Reduced Instruction Set Computer (RISC) Proj-
ect investigates a VLSI alternative to this trend. Our initial
design s called RISC 1.

The judicious choice of a small set of the most often used
instructions, combined with an architecture tailored to effi-
cient execution of this set, can yvield a machine of surpris-
ingly high throughput. In addition, a single-chip
implementation of a simpler machine makes more effective
use of limited resources such as the number of transistors,
arca, and power consumption of present-day VLSI chips
(Patterson and Seéquin, 1980). Simplicity of the instruction
sel leads to a small control section, a comparatively short
machine cyele, and reduced design cycle time.

Students taking part in a multi-term course sequence de-
signed two different nMOS versions of RISC I, The “Gold™
group (Fitzpatrick, Foderaro, Peek, Peshkess, and Van
Dvke) designed a complete 32-hit microprocessor, currently
being fabricated. The “Blue” group (Katevenis and Sher-
burne) started from the same basic organization, but intro-
duced a more sophisticated timing scheme so as to shorten
the machine cycle and also reduce chip area. (At present,
only the data path of this more ambitious design has been
completed.) The chips were designed uwsing only
“Manhattan’ features with the simple and scalahle Mead-
Conway design rules (fabrication lambda=2 microns),

When we began to design RISC I, we defined the follow-
ing goals and constraints: (a) find a reasonable compromise
between high performance for high-level language programs
and a simple single-chip implementation; (b) make the size
of all instructions equal to one word, and execute all in-
structions in one machine cycle: (c) emphasize register ori-
ented instructions, and (d) restrict memory access to the
Loal and STORE instructions. The resulting architecture has
31 instructions in two formats, uses 32-bit addresses, and
supports 8-, 16-, and 32-bit data. The most visible impact of
the reduced instruction set is that the area dedicated to con-
trol dropped from 3509 {as in typical commercial

An earlier version of this article, entitled VL5 Implementations
of & Reduced Instruction Set Computer,”” was presented at the
CMU Conference on VLSI Systems and Computations, October
19-21. 1981, Pittsburgh, PA.

14 VLS| DESIGN Fourth Quarter 1981

microprocessors) to only 6% in RISC [.

The chip area saved by simplified control circuitry was
devoted to an extra large set of 32-hit registers, Thus, the
processor could allocate a new set of registers for cach pro-
cedure call, and avoid the overhead of saving registers in
memory. By overlapping these “windows" of registers,
parameters may be passed by simply changing a pointer.

This so-called “overlapped register window™ scheme
{Patterson and Séequin, 1981) is largely responsible for the
surprisingly good simulation of high-level language pro-
grams. Simulations of benchmark programs written in *C™
indicate that RISC 1 can run faster than many commercial
minicomputers. Table 1 shows the size and execution of six
C programs on RISC 1 with an assumed machine cycle of
400 nanoscconds. Also in the table are the VAX 11/780
{a 32-bit Schottky-TTL minicomputer with a 200 ns micro-
cycle time) and the ZB002 {a 16-bit nMOS microprocessor
with a microcycle time of 250 ns). Even though the ZR002
uses only I6-bit addresses and data while RISC uses 32-bit
addresses and data, RISC programs are typically only 10
larger and run about four times faster, The byte-variable
length of ¥YAX instructions reduces program size by about a
third; on the other hand, every C program that we have run
on the RISC simulator has run faster than on the VAX.

Micro-Architecture

The simplicity and regularity of RISC let most instruction
executions to follow the same patiern: (1) read (wo regis-
ters, {2) perform an operation on their contents, and (3)
store the result in a register. JUMP CALL. and RETURN in-
structions add a register (which may be a program counter
(PC) register) and an offset, and store the result in the ap-
propriate PC latch, The Loap and STORE instructions vio-
late the one-cycle execution constraint: to allow enough
time for main-memory access, they add the index register
and immediate offset during the first cycle, and perform the
memory access during the next cyele, In all cases, while the
processor executes the first cyele of an instruction, the next
instruction is fetched from memaory,

The micro-architectures of the two implementations are
tailored according to the above characteristics. The CPU
cun be subdivided naturally into the following functional
blocks: the register-file, the ALLU, the shifter, a set of Pro-
gram Counter (PC) registers, the Data 'O latches, the Pro-
gram Status Word (PSW) register, and control {which
contains the instruction register, instruction decoder, and
internal clock circuits). Because two operands are required

Program Size (bytes) Execution Times (secs)
VAX ZB000 VAKX ZB000
Mama RISC WAX RISC ZB000 RISC RISC WA RISC LZEO00 RISC
acker 208 120 0.58 238 1.15 3.2 5.1 1.6 8.8 28
qaort Bdd A36 0.68 (1] 1.01 0.8 1.8 23 4.7 548
puzzlejsub) 2468 1668 0,68 1612 0,70 4.7 9.5 2.0 19.2 4.2
puzzle(ptr) 2480 1700 0,68 1656 0.7 32 4.0 13 75 23
Sird 17368 14336 0.83 17500 1.01 5.1 57 11 222 4.4
towars 132 100 076 242 1.82 6.8 122 1.8 28.7 4.2
ANETAQE 3BE3 3060 0.7+ A 3649 11+ .4 4.0 6.4 17+ .4 152 4.0+x1.2
TABLE 1. RISC program size and execution times relative to a VAX 11,780 and a ZB00D,
simultaneously, the register file needs at least two indepen-
dent buses and a two-port ;ell design. For sp-e?d,_the regis- "
ters are read from dynamically precharged bit lines, This
characteristic requires the following basic liming sequence: Data 1O
(1) register READ, (2) arithmetic/logic/shift operations, (3) = l Toa
register WRITE, and (4) bus precharge for next READ. The L 7 ,':E:
cycle time is determined by this sequence of operations. = — - -
For the price of a third bus, phase (4) can be eliminated: as A = = | ADDR
the result is written back into the register file by this extra Ragister file L 2 ALU L4
bus, the two READ buses are precharged for the followi S To
us, the twi AD buses are precharg r the wl.ng e rm— —LFC |_L-r"‘ Watis
READ phase. This simple but robust 3-phase scheme was -

adopted for the Gold processor, Figure 1 shows the basic
organization with buses A,B (READ only) and C (WRITE
only). This organization permits simple instruction fetch
and execution.

During the Gold RISC 1 design period, it became clear
that a three-bus register cell incurred a significant area
penalty. Because a large fraction of the chip area is devoted

FIGURE 1. The Gold Data-Path.

Fram MEM.

to the register file, more altention was given Lo the design

of a compact bit cell. Because of its compactness, the clas- & 5

sic six-transistor static RAM cell was chosen for the Register file | aooR
second, more ambitious Blue chip. Reading s done by Bl ¢ D:ta
selectively discharging the precharged bit line buses. Con- —
trary to commerically available static RAMs, no sense MT:m

amplifiers are used. This imposes a speed penalty, because
the hit cell must discharge a high-capacitance bus.
However, a two-port reading capability is gained. Writing is
done by putting both the data and its complement onto the
two buses, as for a typical static RAM. Before reading, the
buses must be precharged for proper operation.

The Blue RISC I design { Figure 2) was based on this two-
bus, two-port register cell. The reduced cell size allowed
significant performance improvement due to the shorter RC
delay in the polysilicon control lines running across the data
path. The overall chip size was also considerably reduced.

Further improvements were made by allowing register
wriling o occur in parallel with execution of the next in-
struction., In effect, each instruction now requires three
cycles: (1) instruction fetching and decoding: (2) register
read, operate, and temporary latching of resuolt; (3) Wwriting
of result into register file. However, in the Blue design,
these three operations are pipelined so that a new instruc-
tion begins each cycle (except LOADVSTORES),

Both designs multiplexed the address and data pins, be-
cause, with current packaging technology we could not
afford to use 64 separate lines. Power consumption for the
Gold chip is estimated at between 1.2 and 1.9 walts,

Chip Analysis
We have analyzed the completed Gold chip and the data

FIGURE 2. The Blue Data-Path.

path of the Blue chip to determine whether our design pro-
cedure resulted in noticeably different structure or statis-
tics. Table 2 shows the chip-resource allocation for the
various functional blocks in the Blue and Gold designs.
(Because the Blue design is not completed, we have esti-
mated the figures for the control and /O portions.) These
resources are measured in million square lambda,
thousands of transistors, and thousands of rectangles. We
can make the following observations based on Table 2:

1) Coniteerd is only 6 to 8% of the total chip. The next sec-
tion of this article compares this important figure to
those for commercial microprocessors.

The Blue data path i much more compact than the Gold
data path. The register file pitch determined the height
of the data path. The shifter, ALL, and PC modules were
designed to meet the respective register file pitches in
both designs. The two-bus Blue register cell with its
smaller pitch resulted in a smaller shifter, ALU, and
PCs. The compactness of the cross-coupled static RAM
cell let the 138 32-bit registers of the Blue design occupy
about half the area of the 78 32:bit registers of the Gold
design.

et
—

VLS DESIGN Fourth Quarter 1980 15

ARE A[MLY) FUNCTION (K transistors) COMPLEXITY (K rectangles)
Functional Block Gold Blue Gold Blus Gold Blue
Registers T.T2 38% 4.12 0% | 30.05 B6% 26.50 BE% | 3722 BO% 300.0 65%
Register decodar 1.58 8% 087 B% 333 7% 380 B 308 6% 400 9%
Shifter 1.88 108 0.89 6% 263 % 2.93 T 303 T% 304 9
ALU 1.41 6% 0,44 3% .06 7% 2.26 6% 323 6% 233 5%
PCs 0.88 4% 0.36 I 1.58 6% 1.64 4% 20.2 4% 16.6 A%
Data VO logic 0.23 1% 0.0 1% 067 2% 0.7 1% 6.5 1% a8 1%
Scan In Scan Out - D4 1% 0.06 0% 0.3a 1% 014 055 1.6 0% 12 0%
Total DATA PATH 13.84 69%% 6.84 504 | 42.09 95% 3744 B4% | 502.8 03% 4240 92%
PLAs 0.23 1% 0.84 2% 55 1%
Latches 042 2% 0.83 2% 8.5 2%
Reuting 0.47 2% - - 6.0 1%
Sean In Scan Out .04 0 010 0% 0.6 e
Total CONTROL 1.16 &% 1,16 -8% 1.77 4% 168 - 4% 2.6 4% 200 i
Routing 205 109 ~2.75 - &G . - o i 38 195 —5.0 T
FPads 1.13 6% --1.10 ~8% 0.64 2% —0.84 -2 9.9 2% ~—10.0 — &%
Scan In Scan Out 073 4% ~0.65 ~ 5% o.os 0% -0.06 ~ 1.2 0% -1.0 -~ %%
Total VO 3.91 206 —4.50 - 3% 092 2% ~0.80 ~Z% 14.9 3% ~16.0 — 4%
Unused area 1.09 6% -1.20 ~ B0 - - = i
TOTAL CPU 20.00 100% —13.70 100%: 100% ~40,00 100% | 538.3 100% - 460.0 1005
TABLE 2. Area, transistors, and rectangles per Blue and Gold functional block.
™ [e I T orere H s J)

3) 3,rt-Ah-rrN .‘E‘t’fih (J‘U.‘. fé!-?ﬂj is !cf.v..-. I|j.hfu'r -.5%.1’.# II:T PROGRAM TYPE Fr— INSTITUTION
; ”‘”'. e SISCY Technighe]mpr.m:"h chip testability ; ¥ CAESAR color graphics editor John Ousterhout U.C. Berkeley
allowing access o each state bit in a module, The flip- CIFPLOT plot of mask layers Dan Fitzpatrick U.C. Berkelay
flops are connected together as a large shift register, MEXTHA :{T?ﬂ'};::‘" cirouit Dan Flizpatrick L.C. Berkelay
allowing serial reading and writing. The Gold chip has SLANG muhti-leval simulator John Foderare U.C. Berkelay
complete 5150 on the shifter, ALU, and control. It also MOSSIM awitch-level simulator Randy Bryant! M.LT.

2} J . ; & Chris Terman
has 5150+ ou a portion of the PCs, Because we had spare DRC layout-rules checker Clark Baker M.LT,
pins, we used 11 pins for S1S0. The 11 SIS0 pads are 3
responsible for 4% of the chip area. TABLE 3.

Ap I each functional block, the awmber of transistors has o
figh correlation to the number of rectangles. There are PROGARAM TYPE AUTHOR INSTITUTION
about ten rectangles for each transistor. MEPLA FLA generator Hcv«aruFLanﬂman U.C. Berkeley

e ! i ! i p bt

5) Area utilization varies widelv. The highly regular data pEois. RLAmInimizer g:;::::d ?&:;:ltm U Barkaloy
path, consisting mainly of carefully optimized cells, con- EQNTOTT PLP equation Robert Cmaelik U.C. Berkeley
tains more than 0% of the transistors and rectangles but Iranslator

Iv half hizds 5F tha ne 0 h d SPICE circuit simulator Donald Pederson/ UG, Berkebey
only hall to two-thir Ia of t .E area. On the ot _::r hand, Richard Newtan
the IO area, which is dominated by random intercon- STAT alectrical-rules Forrest Basket! Stanford/
nections, contains 305 area but less than 45 checker Xarox PARC
ections l.li.:il'lltill'l‘r 20 to M¥E of the area than 4% POWEST power estimator Fibett Covalik U.C. Berkeley
of the transistors or rectangles.
Tools TABLE 4.

We are certain that appropriate software is the key to
successful VLSI design, Although we have ambitious plans
for a sophisticated design environment (Newton, of al.
1981}, at the moment we have to work with a rather small
subset, We used more than a dozen programs o design our
chips. Among those, we felt that the tools listed in Table 3
were inviluable. Table 4 lists other tools which were partic-
ularly helpful for our project.

The “glue” that held all these various tools together and
produced a cohesive design environment was provided by
the UNIX operating system (4th Berkeley Software Distri-
bution) (Joy and Fabry 1981) running on a DEC VAX
1 1780,

We started the designs with an ISPS description of RISC
I and a block diagram similar to Figure 1. (The IS5PS
description was not very useful, because it does not run on
the VAX.) The logic, circuits, and initial layvouts were de-
signed on paper and then entered into Caesar, As the desig-
ners became more comfortable with Caesar, they used it to

16 VLS| DESIGN Fourth Quarter (981

do the initial layout. Caesar converted the graphic descrip-
tion into CIF, the format in which the chip layout had to be
submitted for fabrication. Caesar also let us use CIF-based
tools such as CIFPLOT and DRC, The information necded
to run STAT, SPICE, and POWEST was extracted from this
same CIF by MEXTRA. After the bottom-level modules
were designed, we used SLANG to describe the chip com-
pletely at the™functional and logical levels, To reveal errors,
we then ran RISC diagnostic programs on this description,
The SLANG description was also used to specify many of
the remaining connections in the chip and to drive the PLA
toals to produce the PLAs for RISC automatically. Howard
Landman acted as a “roving critic,” scanning for errors
that were overlooked by the design tools,

The final step was to use SLANG to compare the original
description with the final masks. MEXTRA was first used
to extract from the masks the information needed to drive
MOSSIM. We then used SLANG lo compare interactively,
every half clock phase, the values of hundreds of nodes in

both the SLANG description simulation and the MOSSIM
simulation. We ran about a dozen diagnostic programs and
found several errors,

Design Time and Regularity

Table 5 compares several design metrics for RISC to
those of some commerical microprocessors. The informa-
tion for the ZBO00 and MCU68000 comes from Frank and
Sproull (1981), and the information on the 432 comes from
Lattinl, e af. (1981) and Lattin2, er af. (1981). The data
provides quantitative support for some of our conclusions
listed above.

The Gold chip is larger than most Mead-Conway designs,
but is still comparable to the latest microprocessors. It is
about 6% larger than the 43203. On the other hand, the
Blue chip may be 25% smaller than the 43203. The most
significant difference is that the instruction set of RISC I
leads to a much smaller control section than that of the
comparison processors; control occupies less than 10%,
compared to abuuLSﬂ% for the other chips.

The smaller control section leaves proportionally more
area for the structured data path and, in particular, for the
very regular and compact register file. Thus, the overall
regularity of the chip is increased. The “regularity factor™
(Lattin 1979) is defined as the total number of devices on
the chip, excluding ROMs, divided by the number of drawn
transistors. The table entries for the number of devices in
the Z&000 and MCHR000 are estimates, but the entries for
the 432 and RISC are actual measurements, RISC is shown
to be 2 to 5 times more “‘regular.”

Increased chip regularity was a key factor leading to a
short design cycle. The elapsed time was considerably

shorter for RISC; the effort in man months was about five
times less. Control was by far the most time-consuming
part of design and lavout, Because the control section was
reduced from half the chip to less than 109%, the design ef-
fort was greatly reduced.

Another factor of the reduced design cycle is our in-
tegrated design environment. Special credit goes to Caesar,
the Manhattan-based graphic layout editor. Caesar was
developed by Ousterhout (see the article in this issue),
working closely with the chip designers.

All the varions tools for graphic editing, checkplotting,
design-rule checking, layvout-rule checking, architectural
simulation, and switch-level simulation were at the desig-
ners” fingertips, and ran on the same machine. This reduced
the ““psychological overhead” associated with the use of
such tools.

Other factors affecting layout time were the use of the
simplified Mead-Conway design rules and the restriction to
Manhattan features. Design time was saved by concentra-
tion on correct function rather than on highest perfor-
mance. SPICE simulations were used only in some of the
most critical paths. Extensive switch-level simulation was
done for the entire chip from a file obtained by automated
extraction from the mask geometry data base. Certainly the
reduced design time is due partly to the fact that, as
academics, we only had to deal with a set of rather loose,
self-imposed constraints. For example, our master clock is
generated off-chip, and the Gold chip has a rather poor ex-
ternal bus interface. The opeode selection was kept flexible
to the very end. (These codes were modified the day before
the design was submitted for mask generation.) An indus-
trial product can rarely afford such luxury.

 Data provided by Justin Rattner of Intel.
fabrication (we hope).

included circuit design as part of layout.

Zilog Motorola Intel iAPX-432 RISC |
ZB000 68000 432 43202 43203 Gold Blue

Total devices 17.5k =11 110k 49k G0k 44k 3T+ T
Tatal ROM 17.5k ATk ddk gk 44k Adk ?
Drawn devices 3.5k 3k 5.6k 9.5k 57k 2k, 1.6k x4+ 7
Regularization factor 5.0 121 7.9 52 1.7 21.7, 275 ?
Size of chip
{Dimension in mils) 238x251 246x281 J8x323 J66x313 3582326 406Ex350 - 400215
(Area in square mils) GOk GOk 103k 115k 117k 124k —Bbk
Metal pitch

| [microns) 12 1 11 11 1 12 12

| Size of control?

| {Area in square mils) ATk 42k 6Tk 45k 4Tk Tk -Tk
Percent control 53% 2% B5% 39% 40% 6% -~ 8%
Elapsed time to
first silicon 30 30 332 339 217 17 17+
(manths)
Design time &0 100 177 1707 1307 30/2% {30+ 7y2s
{man months)
Layout time 70 0 90 100 50 12 547
(man months)

' There are two ways 1o count drewn transistors; the pessimistic approach counts every transistor in a cell even il it derived from simple
madifications to & basic cell, The optimistic approach only counts the transistors that were changed. For the Gold chip the difference is
the transistor count for the register decoders, The optimistic count saves 433 drawn transistors thereby increasing the regularity factor.

 We estimated these sizes from the photomicrographs of the commercial chips,

4 We counted elapsed time from the beginning of the first class to the end of the last class plus three months which should be the time for

5 Since the designers also did layout this is a somewhat fuzzy distinction. All work before 11/81 is considered design and we have

TABLE 5. Design metrics for Z8000, MC&8000, 1APX-432, gnd RISC L

18 VLSI DESIGN Fourth Quarter 1981

Photo of RISC chip checkplot,

Conclusions

The RISC Project has had a syvnergistic effect on research
at Berkeley in architecture, VLSI, and CAD. Useful tools
were often created in response to specific needs. For exam-
ple, a special extractor for Manhattan geometry was for-
mulated, because the older extractor, able to handle general
geometry, would have taken too long to find all 44,000
transistors on the Gold chip. As a result of this synergism,
in the last six months, our design environment has im-
proved dramatically.

The design-tool performance improvements due 1o the
restriction to Manhattan designs were well worth the incon-
veniences they caused in layout, We found only small areas
in each chip where non-Manhattan geometry could save
space. Figure 3 shows a mask of the Gold design.

Although we realize that more work is needed to turn
RISC into a full-fledged microcomputer, we also believe
that the most difficult and ume-consuming part of the task
is done. These results can be duplicated by industry. Reduc-
tion in elapsed design time, reduction in manpower, and
high performance are available for those who are willing to
take calculated risks.

Acknowledgements

The RISC project was aided by several people at Berkeley and in
the Bay Area. We would like 1o thank them all, but special thanks
to the following individuals, John Custerhout created Caesar, the
main interface of the designers. The reliability and quality of this
graphics editor and his responsivengss to our needs are major
reasons for our reduced design time, Richard Newton let us use his
graduate class to resolve RISC-related issues. In the Berkeley com-
munily, we also want 1o thank, Bob Cmelik, Sheng Fang, Richard
Mewton, and Donald Pederson for the use of their tools, We would
especially like (o thank the people in the ARPA-VLSI community
who shared their toels: Randy Bryant and Chris Terman for the
switch-level simulator MOSSIM, and Clark Baker for the lavout-
rule checker DRC. In addition to these tools from MIT, from Stan-
ford we received STAT, a static electrical-rule checker created by
Forrest Baskett. We gratefully acknowledge helpful discussions
with Osamu Tomisawa about MOS circuit design and processing.
Jim Beck, Bob Cmelik, and Robert Hyerle provided valuable chip-
testing information and ideas. We would also thank the visitors
from industry who gave wus valuable design suggestions: Les
Credele from Motorola, Dick Lyon from Xerox PARC, and Peter
Stoll from Intel. Thanks also to Bob Fabry, Richard Fateman, Bill

200 VLSl DESIGN Fourth Quarter 1981

Joy, and Bob Kridle for providing the computing environment we
needed to complete our designs. We thank Danny Cohen and Lee
Richardson of the MOSIS group, and Alan Bell and Al Paeth of
Xerox PARC, for fabricating our chips. Finally, we thank Duane
Adams and DARPA for providing the resources that let universities
attempt high-risk projects.

This research was sponsored by the Defense Advance Research
Projects Agency (Doln, ARPA Order No. 3803, and monitored by
Maval Electronic System Command under Contract No. NOO0G39-
TE-G-001 30004,

Relerences

Frank, E.H. and R.E Sproull. July 1981. “'‘An Approach to Debug-
ging Custom Integrated Circuils,” Carnegie-Mellon Computer
Neience Research Review [970-8i),

Joy, W.N. and R.5. Fabrv. May 1981. “Berkeley Software for
UNIX on the VAX,” U.C, Berkeley, Computer Science De-
partment internal memo.

Lattinl, W.W., L.A. Bayliss, D.L. Budde, 5.R. Colley, G.W, Cox,
AL, Goodman, J.R. Ratiner, W.5, Richardson and R.C.
Swanson, February 1981. A 32b VLSI Micromainframe
Computer System,” Proceedings of the IEEE International
Solid-Srate Circuits Conference,

Lattin?, W.W,, J.A. Bayliss, D.L. Budde, J.R. Ratiner, and W.5.
Richardson. Second Quarter 1981, A Methodology for VLSI
Chip Design,” LAMBDA Vol. 11, Na, 2.

Lattin, W.W. January 1979, “*VLSI Design Methodology: The Prob-
lems of the B0's for Microprocessor Designs,” First Caltech
Conference on VLA,

Newton, AR, D.O. Pederson, A L. Sangiovanni-Vincentelli, and
C.H. Séquin. July 1981, " Design Aids for VLSI: The Berkeley
Perspective,”” TEEE Transactions on Clrcwits and Svstems .

Fatterson, D.A, and C.H. Séquin. May 1981, “RISC I: A Reduced
Instruction Set ¥ILS1 Computer,” Proceedings of the Eighth
Internarional Svmposivm on Computer Architecture.

Patterson, D.A. and D.R. Ditzel. October 15, 1980, “The Case for
the Reduced Instruction Set Computer,” Computer Architec-
ture News, Vol. §, No, f,

Patterson, DA, and C.H. Séquin. February 1980, * Design Consid-
erations for Single-Chip Computers of the Future,” JEEE
Transactions on Computers, Vol, C-29, No. 2,

Authors

A project as large as that of the RISC chip entails the coopera-
tion of a large number of individuals. The folks al Berkeley were
kind enough to send us this informal group portrait of the RISC
design team, First row: Korbin Van Dyvke, Osamu Tomisawa,
James Peek, Prof. David Patterson, Prof. Carlo Séquin, Peter Kess-
ler; second row: Robert Sherburne, Manolis Katevenis, Prof, John
Ousterhout, Ralph Campbell, Richard Piepho, Daniel Fitzpatrick,
Daniel Halbert, John Foderaro; third row: Robert Cmelik, Robert
Hyerle, Paul Hansen, Helen Davis, Michael Shiloh, Scott Baden,
and Howard Landman.

