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1. INTRODUCTION

A general trend in computers today is to increase the complexity of archi-
tectures commensurate with the increasing potential of implementation techno-
logies. Consequences of this complexity are increased design time, more design
errors, inconsistent implementations, and the delay of single chip implementa-
tion[7?]. The Reduced Instruction Set Computer (RISC) Project investigates a
VLSI alternative to this trend. Our initial design is called RISC L

A judicious choice of a small set of the most often used instructions com-
bined with an architecture tailored to efficient execution of this set can yield a
machine of surprisingly high throughput. In addition, a single-chip implementa-
tion of a simpler machine makes more effective use of limited resources such as
the number of transistors, area, and power consumption of present-day VLSI
chips[8]. Simplicity of the instruction set leads to a small control section, a
comparatively short machine cycle, and a reduced design cycle time.

Students taking part in a multi-term course sequence designed two
different NMOS versions of RISC 1. The "Gold" group (Fitzpatrick, Federaro,
Peek, Peshkess, and Van Dyke) designed a complete 32-bit microprocessor,
currently being fabricated. The *“Blue” group (Katevenis and Sherburne)
started from the same basic organization but introduced a more sophisticated
timing scheme in order to shorten the machine cycle and also reduce chip area.
At present, only the data path of this more ambitious design has been com-

leted. The chips were designed using only horizontal and vertical lines
"Manhattan" design), with the simple and scalable Mead-Conway design rules
(fabrication: A = 2 microns, no buried contacts).

At the onset of the design of RISC | we defined the following goals and con-
straints: (a) find a reasonable compromise between high performance for high-
level language programs and a simple, single chip implementation; (b) make the
size of all instructions equal to one word and execute all instructions in one
machine eycle; (¢} emphasize register oriented instructions and restrict
memery access to the LOAD and STORE instructions. The resulting architecture
has 31 instructions in two formats, uses 32-bit addresses, and supports B-, 18-,
and 32-bit data.

The chip area saved by simplicity of the control circuitry was devoted to a
very large sel of 32-bit registers. This permits the processor to allocate a new
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sot of registers for each procedure call and thus avoids the overhead of saving
registers in memory. By overlapping these windows of registers, parameters
may be passed to a procedure by simply changing a pointer.

This so called overlapped register window scheme[8] is largely responsible
for the surprisingly good performance obtained in simulation of high-level
language programs. Simulations of benchmark programs written in 'C' indicate
that RISC | can run faster than many commercial minicomputers. Table 1 shows
the size and execution time of six C programs on RISC | assuming a machine
eycle of 400 nanoseconds, and 250 nsec instruction-fetches. Also in the table is
the VAX 11/780, a 32-bit Schottky-TTL minicomputer with a 200 ns mierocyele
time; and the ZB002, a 18-bit NMOS microprocessor with a microcycle time of
250 ns. Even though the ZBOOZ2 is using only 18-bit addresses and data while
RISC is using 32-bit addresses and data, RISC programs are typically 10% larger
while running about four times faster. The byte-variable length of VAX instruec-
tions reduces program size by aboul a third; en the other hand, every C pro-
gram thalt we have run on the RISC simulator has been faster than the on VAX.

In addition to good performance, in this paper we show that the design of
RISC I also was several times faster and required only one-fifth the manpower of
comparable machines. The most visible impact of the reduced instruction set is
that the area dedicated to control logic has dropped from 50 % in typical com
mercial microprocessors to only 8 % in RISC 1.

Table 1.
RISC Program Size and Ereculion Times
Relative to a VAX 117780 and a Z8000
Program Size (byies) Ergcution Time (zscs)
VAX ZB000 VAX ZBOOD
Name RISC  VAX RIsr 28000 pre~ | RISC VAX pro- 28000 e
acker 208 120 0.58 B3A 1.15 iz 5.1 1.8 8.8 EA
geort 844 438 0.88 848 1.01 [1X-) 18 23 4.7 6.8
puzzle(sub) | 2488 1888 0B8  1B1Z 0.7 47T 85 20 19.2 a2
]lu::lu{_ptr] E480 1700 0.88 1866 0.7 az 4.0 1.3 T.6 23
wed 17388 14338 0.83 17500 1.01 6.1 5.7 1.1 2.2 i
towers 132 100 0.78 242 1.82 a8 122 1.8 28.7 4.2
Average 3883 3080 0.7 +£.1 3848 1.1 .4 4.0 B4 1724 15.2 4.0 £1.2

2. MICRO-ARCHITECTURE

The simplicity and regularity of RISC permits most instruction executions
to follow the same basic pattern: (1) read two registers, (2) perform an opera-
tion on them, and (3) store the result back into a register. Jump, call, and
return instructions add a register (possibly PC} and an offset and store the
result into the appropriate PC latch. The load and store instructions violate the
original constraint: in order to allow enough time for sccess of the main
memory, they add the index register and immediate offset during the first cycle,
and perform the memory access during an additional cycle. In all cases, while
the processor is executing the first cycle of an instruction, the next instruction
is fetched from memory.
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The micro-architectures of the two implementations are tailored according
to the above characteristice. The CPU can be subdivided naturally into the fol-
lowing functional blocks: the register-flle, the ALU, the shifter, a set of Program
Counter (PC) registers, the Data 1/0 latches, the Program Status Word (PSW)
register, and control (which econtains the instruction register, instruction
decoder, and internal clock circuits). Since two operands are required simul-
taneously, the register flle needs at least two independent busses and a two-port
cell design. For speed, the registers are read with dynamically precharged bit
lines. This requires the following basic timing sequence: (1) register read, (2)
arithmetic/logic/shift operations, (3) register write, and (4) bus precharge for
next read. The cycle time is determined by this sequence of operations. For the
price of a third bus, phase {4) can be eliminated: as the result is written back
into the register flle by this extra bus, the two read busses are precharged for
the following read phase. This simple but robust 3-phase scheme has been
adopted in the Gold processor. The basic organization with busses AB (read
only) and C (write only) is shown in Figure 1. It permits simple instruction fetch
and execution.

During progress of the Gold RISC 1 design, it became apparent that a three-
bus register cell incurred a significant area penalty. Since a large fraction of
the chip area is devoted to the register file, more attention was focused on the
design of a compact bit cell. The classic six-transistor static RAM cell was
chosen for its compactness in the second, more ambitious Blue chip. Reading is
accomplished by selectively discharging the precharged bit line busses. Con-
trary to commercially available static RAMs, no sense amplifiers are used, yield-
ing a speed penalty. However, a two-port reading capability is obtained. Writing
is accomplished by putting both the data and its complement onto the two
busses, as in a typical static RAM. Before reading., the busses must be
precharged for proper operation.

The Blue RISC | design (Figure 2) was based on this two-bus, two-port regis-
ter cell. The reduced cell size allowed significant performance improvemnent due
to the shorter RC delay in the polysilicon control lines running across the data
path. The overall chip size was also considerably reduced.

Further improvemnents were made by overlapping the register-write with
the execution of the following instruction. The result of an operation is kept in a
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Jigure 1 : The Gold Data-Path.
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figure 2: The Blue Dafo-Path

temporary latch (DST), and is only written into the register-file during the
operation-phase of the next eycle. Special "internal forwarding” circuitry takes
care of the instructions that use the result of their immediately previous one.
In eflect, each instruction now requires three cycles: (1) Instruction feteh and
decode; (2) Register read, operate, and temporary latching of result; (3) Write
result into register file. However, in the Blue design, these three operations are
pipelined so that & new instruction begins each cycle {except load /stores).

Both designs muiltiplexed the address and data pins, as we could not afford
to use B4 separate lines with current packaging technology. Power consumption
for the Gold chip is estimated to be between 1.2 and 1.9 Watts.

3. CHIF ANALYSIS

We have analyzed the completed Gold chip and the data path of the Blue
chip. Table 2 shows how the chip resources are allocated for the various funec-
tional blocks in the Blue and Gold designs (figures for Blue control and 1/0 are
estimates). These resources are measured in million square lambda, thousands
of transistors, and thousands of rectangles. We can make several observations
based on this table:

(1) “Control" is only 6 ta 8 % of the fotal chip. Even if there were no registers,
it would still be only 12 %, Section 5 compares this important result to
commercial microprocessors, and discusses its significance.

(8) The Flue data path is considerably more compact than the Gold data path.
The register file pitch (42 A in Blue, 77 A in Gold) determined the height of
the data path in both versions; the rest of the modules were designed
accordingly. The compactness of the cross coupled static RAM cell allowed
the 138 32-bit registers of the Blue design to occupy about half the area of
the 8 32-bit registers of the Gold design.

(3) SCAN IN/SCAN OUT (SIS0) is less than 5 % of the chip. SIS0 is a technigue
which improves chip testability by allowing access to each state bit in a
meodule, The flip-flops are connected together as a long shift register, allow-
ing =serial reading and writing. The Gold chip has complete SIS0 on the
shifter, ALU, control, and some of the PC registers. As we had spare pins we
used 11 pins for SIS0 (4 % of chip area); we could have used fewer,




Table 2,
Arsa, transistors. and rectangles per Blos and GoM functisnal bleck.

o R W R
AREA (M 22 FUNCTION (K transstors) I COMPLEXITY (K rectangles)
fanctional
gﬂl-ﬂ ml.'ll‘ e @
e
Registars 7.2 mx 412 930X (0005 eBX | 200 e 322 ME 000 69X
ragister decoder 1.88 X 0.8 ax L. TE 380 L B moa ax 40.0 X
Shifter 1.88 1mnx o.e9 ax 2.82 ax 292 TK 2|3 e B "x
ALY 1.41 ax 0.44 ax a.08 T 2.0 ax 323 akx 233 ax
PC'w 0.88 % 0.38 % 1.98 ax 1.64 4% || 208 4x 18.8 4%
Data 1/0 Logie 0.23 1% 0.10 1% 087 2% o.ar 1% L.1.] 1% 3.8 1%
Zean In Sean Out 014 1% o.o8 ox 0.38 1% 014 [+ 1.8 ox 12 ox
total DATA PATH 13.84 g9 % B84 SO% | 4200 GOX | 3744 O4x||S02B BIX| 4240 G2%
FLA's 0.23 1% 0,84 2% 55 1%
Latches 0,42 2% 0.83 2E a5 2%
Reuting D.47 a% - . 11 1%
Scan In Scan Out 0.04 ox 0.10 oz oa o=
total CONTROL 1.18 % | =118 ~8% 1.77 4% | ~168 ~a4% 208 4% ~200 ~4%
Routing 206 0% | =275 =~g0% - - - - a8 1% ~50 =1%
Pads 1.13 6% | ~110 =~8%|( O0.84 2x| ~0B84 ~2% LR 2% | ~100 =~gX
Scan In Scan Out 0.73 4% | ~083 ~ok| o.08 0% | ~008 ~0% 1.2 0% =10 =~O0R
total 170 e 2% =450 ~33% 0.92 2R ~0.90 ~2 % 14.9 = | ~180 =~4%
Urused area 1.09 ax% ~1.20 ~8 % = - = = B = =
TOTAL CPU 20.00 100% | ~1370 100% || 4442 100K | ~4000 100X || 5983 100% | ~4800 100
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(4) The number of transistors relative to that of recfangles, in each functional
block, is strongly correlated; there exist about ten rectangles for each
transistor.

(5) Area utilization varies strongly. The highly regular data path, consisting
mainly of carefully optimized cells, contains more than B0 % of the transis-
tors and rectangles but only half to two-thirds of the area. On the other
hand, the 1/0 area, which is dominated by random interconnections, con-
tains 20 to 30 % of the area but less than 4 % of the transistors or rectan-
gles.

4. TOOLE

There is no doubt in our minds that the key to successful VLS] design lies in
appropriate software. While we have plans for a sophisticated design environ-
ment[5], for the moment we have to work with a rather small subset. We used
more than a dozen programs to design our chips. Among those, we felt that the
following six tools were invaluable - we cannot imagine how we would have been
able to get this far without them:

CAESAR  color graphics editor John Qusterhout  U.C. Berkeley
CIFPLOT plot of mask layers Dan Fitzpatrick U.C. Berkeley
MEXTRA  Manhattan circuit extractor Dan Fitzpatrick U.C. Berkeley
SLANG multi-level simulator John Foderaro U.C. Berkeley
MOSSIM  switch level simulator Bryant/Terman M.LT.

DRC layout rules checker Clark Baker M.1LT.

MEPLA PLA generator Howard Landman U.C. Berkeley

Other tools used to some degree and which were particularly helpful for our pro-
ject include:

FRESTO  PLA minimizer Fang /Newton U.C. Berkeley
EQNTOTT PLA equation translator Robert Cmelik U.C. Berkeley
SPICE circuit simulator Pederson/Newton U.C. Berkeley
STAT electrical rules checker Forest Baskett Stanford/Xerox PARC
POWEST  power estimator Robert Cmelik U.C. Berkeley

A key factor was the glue that held all these various tools together and pro-
duced a cchesive design environment; this function was provided by the UNIX
operating system (4th Berkeley Software Distribution) [2] running on a DEC VAX
11,/780.

We started the designs with an ISPS description! of RISC | and a block
diagram similar to Figure 1. The logic, circuits, and initial layouts were
designed on paper, and then entered into Caesar. As the designers became
more comfortable with Caesar, they used it to do all layout. Caesar converts the
graphical descripticn into CIF (the format needed for fabrication submission, as
well as for some of our tools, like CIFPLOT and DRC). The information necessary
to run STAT, MOSSIM, and POWEST was extracted from this same CIF by MEXTRA.
After the bottom level modules were designed, we used SLANG to completely
describe the chip at a mixture of functional and logical levels. We then ran RISC
diagnostic programs on this description to uncover errors. The SLANG descrip-
tion was also used to specify many of the remaining connections in the chip and
to drive the PLA tools to automatically produce the PLA's for RISC. Howard
Landman acted as a “roving eritic", scanning for errors that were overlooked by
the design tools.

T The ISPS description was not very useful, because the [SPS simulator does not run on the VAX
(the machine we use to do cur design); also, while useful for architecture descriptions, it is awkward
for describing implementations,
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The final step was to use SLANG and MOSSIM to compare the original
description with the final masks. SLANG was used to interactively compare,
every half clock phase, the values of hundreds of nodes in both the SLANG
description simulation and the MOSSIM simulation. We ran about a dozen diag-
nostic programs and uncovered several errors.

The submitted Gold design successfully passed the checks provided by all of
the tools.

6. CONTROL AREA, DESIGN TIME, AND REGULARITY

Table 3 compares several design metrics for RISC to those of some commer-
cial microprocessors. The information for the ZBOOD and MCBB0O00 comes
from[1] ; the information on the 432 comes from [3,4], and [10]. The data pro-
vides gquantitative support to some of the points made earlier.

The Gold chip is larger than most University {Mead-Conway) projects, but
still comparable to the latest microprocessors. It is about 8 % larger than the
43203; on the other hand, the Blue chip may be 25 % smaller than the 43203,
The most significant difference is that the simple instruction set of RISC | leads
to a much smaller control section than that of the comparison processors; con-
trol occupies less than 10 % as compared te a mure typical value of around 50 %
for the other chips. When comparing absolute areas one finds that the smallest
control section is still a factor of 5 larger than RISC's.

The smaller control section leaves correspondingly more area for the strue-
tured data path and, in particular, for the very regular and compact register
file. Besides making eflective use of the silicon area, this also increases the
overall regularity of the chip. Lattin[4] defined a “‘regularity factor" as the total
number of devices on the chip (excluding ROM's), divided by the number of
draum transistors. The table entries for the number of devices in the ZB000 and
MCBB000 are estimates, but the entries for the 432 and RISC are actual measure-
ments. By this measure, RISC is 2 to 5 times more “regular".

The increased chip regularity was a key factor leading to a short design
cycle. The elapsed time was considerably shorter for RISC; also, the effort spent
{man months) was about a factor of five less. Control was by far the most time
consuming part of the design and layout. Since the control section was reduced
from half the chip to less than 10%, a significant reduction in design effort
resulted.

Another factor for the reduced design cvecle is our integrated design
environment, All of the various tools, which performed graphic editing, check-
plotting, design rule checking, layout rule checking, architectural simulation,
and switch-level simulation, were at the fingertips of the designers and ran on
the same machine. This reduced the overhead associated with the usage of such
tools. Special credit is deserved by Caesar, the Manhattan-based graphic layout
editer. Caesar was developed by Ousterhout[6] in close interaction with the chip
designers. Bugs were corrected and designer wishes implemented, sometimes
overnight. This responsiveness has produced a superb tool that is well-liked by
the users since it dramatically improves their layout productivity.

Other factors affecting layout time were the use of the simplified Mead-
Conway design rules, the restriction to Manhattan features, and (for the Gold
design) the concentration on correct function rather than highest performance
(SPICE simulations were used only in some of the most critical paths; however,
extensive switch-level simulation was performed). Certainly, another portion of
the reduced design time is due to the the fact that, as academics, we only had to
deal with a set of rather loose, self-imposed constraints. For example, our mas-
ter clock is generated off-chip, and the Gold chip has a rather poor external bus
interface. The selection of op-codes was kept flexible to the very end; they were
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Table 3.
Design metrios for TA000, MCSS000, IAPN-432, and RISC L.

Zlog Motarola Ints] IAFK-432 RISCT

Z8000 88000 43201 e 43203 Gald Blus
Total Davices 17 6k B8k 110k 48k B0k ke AThk+?
Tetal - ROM 17.5k a7k 44k ok Ak 4k ?
Drawn Devices 5.0k .0k 5.8k 0.5k 6.7k | B0k 1.8k" x4?
Regularization factor 8.0 12.1 7.9 [ 7] T | BLY. 2vat 1
Sins of chip
(Dirensien in mis) BBAxOc] | BeEmES] | J18x323 BMSxT15 BEExSM | 400G ~400x~E15
(res in oy mils) [ - 1985 1 1 1 184k Pt
Bwtal piteh 1] 11 1 11 11 12 12
{microns)
Stas of Contral®
{Area in »q. mils) 7k 2k o7k sk 47k 7k ~7k
Percent Contrel 58 % sEx A5 X M 40 % 6 %
Elapsed Time to
first. milicon 30 30 a3° gs° 21° 17 17498
{months)
Dusgn Time [ 100 170" 170" 180° e (30+7) r2*
{man months)
Layout Time T ™ 80 100 B0 12 547
(man mantha)

* There are two ways to count drawn transisters; the peagimistic approach counta every trangis
tor in & cell even if it derived from simple modifications to & basic cell. The optimistic approach only
eounts the transistors that were chenged. For the Gold chip the difference is the transistor count fer
the register decoders. The optimistic count saves 433 drawn transistors thereby increasing the regu-

larity factor.

¥ We estimated these sizes from the photomicrographs of the commereial chips.
“ Data provided by Rattner of Inte] [10]

? We counted elepsed time from the beginning of the first class to the end of the last class plus

three months which should be the time for fabrication (we hope).

® Since the designers also did layout this is & somewhat furzy distinetion., All work before

1/1#81 is considered design and we have included circuit design as part of layout.
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modifled the day before the design was submitted for mask generation!. An
industrial product can rarely afford such luxury,

8. FINAL COMMENTS

The RISC Project has had a synergistic effect on research at Berkeley in
architecture, VLSI, and CAD. Often, useful tools were created in response to
specific needs. For example, a special extractor for Manhattan geometry was
formulated since the older extractor, able to handle general geometry, would
have taken too long to find all 44000 transistors of the Gold chip. As a result of
this synergism our design environment has experienced a dramatic improve-
ment within the last six months.

The gains in performance of the design tools by their restriction to Manhat-
tan designs were well worth their inconveniences in layout; we can find only
small areas in each chip where non-Manhattan geometry could save space.

While we realize that more work is necessary to turn RISC into a full-fledged
microcomputer, we also believe that the most difficult and time consuming por-
tion of that task has been completed. These results can be duplicated by indus-
try; reduction in elapsed design time, reduction in manpower, and high perfor-
mance are available for those who are willing to take caleulated risks.
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