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1 Introduction

MIPS (Microprocessor without Interlocked Pipe Stages) is a gencral purpose processor
architecture designed to be implemented on a single VLSI chip. The main goal of the design is high
performance in the execution of compiled code. The architecture is experimental since it is a radical
break with the trend of modern computer architectures, The hasic philosophy of MIPS is to present
an instruction set that is a compiler-driven encoding of the microengine. Thus, little or no decoding is
needed and the instructions correspond closely w microcode instructions, The processar is pipelined
but provides no pipeline interlock hardware; this function must be provided by software.

The MIFS architecture presents the user with a fast machine with a simple instruction set. This
approach is currently in use within the RISC project at Berkeley [4]; it is dircctly opposed to the
approach taken by architectures such as the VAX., However, there are significant differences between
the RISC approach and the approach used in MIPS:

L. The RISC architecture is simple bath in the instruction set and the hardware needed to
implement that instruction set. Although the MIPS instruction set has a simple hardware
implementation (i.c. it requires a minimal amount of hardware control), the user level
instruction set is not as straightforward, and the simplicity of the user level instruclion set is
secondary,

2. The thrust of the RISC design is towards efficient implementation of a straightforward
instruction sct. In the MIPS design, high performance from the hardware engine is a primary
goal, and the microengine is presented (o the end user with a minimal amount of interpretation,
This makes most of the microenging’s parallelism available at the instruction set level,

. The RISC project relies on a straightforward instruction set and straightforward compiler
technelogy. MIPS will requirg-more sophisticated compiler technology and will gain significant
performance benefits from that echnology,

Tt

MIPS is designed for high pecformance, To allow the user to get maximum performance, the
complexily of individual instructions is minimized. This allows the execution of these instructions at
significantly higher speeds. To take advantage of simpler hardware and an instruction set that easily
maps t the microinstruction set, additional compiler-type translation is necded. This compiler
technology makes a compact and time-cfficient mapping between higher level constructs and the
simplified instruction set. The shifting of the complexity from the hardware to the sofiware has
several major advantages:

aar
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& The complexity is paid for only once during compilation. When a user runs his program on a
complex architecture, he pays the cost of the architectural overhead each time he runs his
Program.

e [t allows the concentration of cnergics on the software, rather than constructing a complex
hardware enginc, which is hard to design, debug, and efficiently utilize. Software is not
necessarily easier to construct, but the VLSI environment makes hardware simplicity important.

The design of a high performance VLSI processor is dramatically affected by the technology.
Among the most important design considerations are: the effect of pin limitations, available silicon
area, and size/speed tadeoffs. Pin limitations force the careful design of a scheme for multiplexing
the available pins, especially when data and instruction fetches are overlapped. Arca limitations and
the specd of off-chip intercommunication require choices between on- and off-chip functions as well
as limiting the complete on-chip design. With current state-of-the-art technology cither some vital
component of the processor (such as memory management) must be off-chip, or the size of the chip
will make both its performance and yields unacceptably low. Choosing what functions are migrated
off-chip must be done carefully so that the performance effects of the partitioning are minimized. In
some cases, through careful design, the effects may be eliminated at some extra cost for high speed
off-chip functions.

Specd/complexity/arca tradeofTs are perhaps the most important and difficult phenomena to
deal with. Additional on-chip functionality requires more area, which also slows down the
performance of every other function, This occurs for two equally important reasons; additional
control and decoding logic increases the length of the critical path (by increasing the number of active
clements in the path) and each additional function increases the length of internal wire delays. In the
processor's data path these wire delays can be substantial, since thy accumulate both from bus delays,
which occur when the data path i lengthed, and control delays, which occur when the decoding and
control is expanded or when the data path i widened. In the MIPS architecture we have attempted to
control these delays; however, they remain a dominant factor in determining the specd of the
processor.

2 The microarchitecture
2.1 Design philosophy

The fastest cxecution of a task on a microengine would be one in which all resources of the
microengine were usced at a 100% duty cycle performing a nonredundant and algorithmically efficient
encoding of the task. The MIPS microengine attempts to achieve this goal. The user instruction set is
an encading of the microenging that makes a maximum amount of the micreengine available, This
goal motivated many of the design decisions found in the architecture,

MIPS is a load/store architecture, i.e. data may be operated on only when it is in a register and
only load/store instructions access memory. 1f data operands are used repeatedly in a basic block of
code, having them in registers will prevent redundant load/stores and redundant  addressing
calculations; this allows higher throughput since more operations directly related to the computation
can be performed. The only addressing modes supported are immediate, based with offset, indexed,
or base shifted. These addressing modes may require: fields from the instruction itself, gencral
registers, and one AlLLD or shifter operation.  Another ALU operation available in the last stage of
every instruction can be used for a (possibly unrelated) computation. Another major benefit derived
from the load/store architecture is simplicity of the pipeline strueture. The simplified structure has a
fixed number of pipestages, cach of the same length. Because, the stages can be used in varying (but
related) ways, the result is that pipline utilization improves. Also, the absence of synchronization
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between stages of the pipe, increases the performance of the pipeling and simplifics the hardware.
The simplified pipeline eases the handling of both interrupts and page faults (sce Section 4.2).

Although MIPS is a pipelined processor it docs not have hardware pipeline interlocks. The six
stage pipeline contains three active instructions at any time; either the odd or even pipestages are
active. The major pipestages and their tasks are shown in Table L,

Table 1; Major pipestages and their functions

Stage Mnemaonic Task

Instruction Fetch IF Send out the PC, increment it
Instruction Decode D Decode instruction

Operand Decode oD Compute effective address and send to

memory if load or store, use ALY

Operand Store s Send out operand if store
Operand Fetch OF Receive operand if load
Exccution EX Execution cycle, use ALL

Interlocks that are required because of dependencies brought out by pipelining are not
provided by the hardware, Instead, these interlocks must be statically provided where they are
needed by a pipeiine reorganizer, This has two bencfits:

L. A more regular and faster hardware implementation is possible since it does not have the usual
complexity associated with a pipelined machine. Hardware interlocks cause small delays for all
instructions, regardless of their relationship on other instructions. Also, interlock hardware
tends to be very complex and nonregular[3, 5] The lack of such hardware is especially
important for VLS implementations, where regularity and simplicity is important.

2. Rearranging operations at compile time is better than delaying them at run time. With a good
pipeline reorganizer, most cases where interlocks are avoidable should be found and taken
advantage of. This results in performance better than a comparable machine with hardware
interlocks, since usage of resources will not be delayed. In cases where this is not detected or is
not possible, no-ops must be inserted into the code. This docs not slow down cxecution
compared e a siinilar machine with hardware interlocks, but does increase code size. The
shifting of work w a reorganizer would be a disadvantage if it wok excessive amounts of
computation, [t appears this is not a problem for pur first reorganizer,

In the MIFS pipeline resource usage is permanently allocated to various pipe stages. Rather
than having pipeline stages compete for the use of resources through queacs or priority schemes, the
machine's resources are dedicated to specific stages so that they are 100% utilized (sce Figurel), To
achieve 100% utilization primitive operations in the microengine (e.g., load/store, ALU operations)
must be completely packed into macroinstructions. This is not possible for three reasons:

1. Dependencies can prevent full usage of the microengine, for example when a sequence of
register loads must be done before an ALL operation or when no-ops must be inserted.

2. An encoding that preserved all the parallelism (ie., the microcontrol word iself) would be o
large. This is net serious problem since many of the possible microinstructions are not useful.
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Figure 1: Resource Allocation by Pipestage
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1. The encoding of the microengine presented in the instruction set sacrifices some functional
specification for immediate data.  In the worst case, space in the instruction word used for
loading large immediate values takes up the space normally used for a base register,
displacement, and ALU operation specification. In this case the memory interface and ALU
can not be used during the pipe stage for which they are dedicated.

Mevertheless, first results on microengine utilization are encouraging, Many instructions fully utilize
the major resources of the machine. Other instruetions, such as load immediate which use few of the
resources of the machine, would mandate greatly increased control complexity if overlap with
surrounding instructions was attempted in an irregular fashion,

MIPS has one instruction size, and all instructions execute in the same amount of time (one
data memory cycle). This choice simplifics the construction of code generators for the architecture
{by climinating many nonebvious code sequences for different functions) and makes the construction
of a synchronous regular pipeline much easier. Additionally, the fact that each macroinstruction is a
single microinstruction of fixed length and execution time means that a minimum amount of internal
state i needed in the processor. The absence of this internal state leads to a faster processor and
minimizes the difficulty of supporting interrupts and page faults.

2.2 Resources of the microengine
The major functional components of the microengine include:

« ALL resources: A high speed, 32-bit carry lookahead ALU with hardware support for multiply
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and divide; and a barrel shifter with byte insert and extract capabilitics. Only one of the ALU
resources is usable at a time. Thus within the class of ALU resources, functional units can not
be fully used even when the class itself is used 100%.

& Internal bus resources: Two 32-bit bidirectional busses, each connecting almost all functional
components.

# On chip storage: Sixteen 32-bit general purpose registers.

+ Memory resources: Two memory interfaces, one for instructions and one for data. Each of the
parts of the memory resource can be 100% utilized (subject to packing and instruction space
usage) because either one store or load form data memory and one instruction fetch can occur
simultancously.

» A multistage PC unit: An incrementable current PC with storage of up to two branch largets as
well as six previous PC values. These are required by the pipelining of instructions and
interupt and exception handling.

3 The instruction set

All MIPS instructions are 32-bits. The user instruction set is a compiler-based encoding (i.e.
code generation efficiency is used to choose alternative instructions) of the micromachine. Multiple
simple (and possibly unrclated) instruction picces are packed together into an instruction word. The
basic instruction pieces are;

1. ALU pieces - these instructions are all register/register (2 and 3 operand formats), They all use
less than 1/2 of an instruction word, Included in this category are byte insert/extract, two bit
Booths multiply step, and one hit nonrestoring divide step.,

2. Load/store picces - these instructions load and store memory operands, They use between 16
and 32 bits of an instruction word, When a load instruction is less than 32 bits, it may be
packaged with an ALU instruction, which 5 executed during the Exccution stage of the
pipeline,

. Control flow picces - these include straight jumps and compare instructions with relative jumps,
MIPS docs not have condition codes, but includes a rich collection of set conditionally and
compare and jump instructions. The set conditional instructions provide a powerful
implementation for conditional expressions. They sct a register to all 1s or s based on one of
16 possible comparisons done during the operand decode stage. During the Execution stage an
ALU operation is available for logical operations with other booleans. The compare and jump
instructions are dircet encodings of the micromachine: the effective operand decode stage
compultes the address of the branch target and the Execution cycle does the comparison, All
branch instructions have a delay in their effect of two instructions; i.e., the next two sequential
instructions are executed.

4, Other instructions - include procedure and intermupt linkage. The procedure linkage

instructions also fit casily into the micromaching format of effective address caleulation and
register-register coamputation instructions.

Tt

MIPS is a word-addressed machine, This provides several major performance advantages over a
byte addressed architecture. First, the use of word addressing simplifics the memory interface since
extraction and insertion hardware is not needed. This is particularly important, since instruction and
data fetch/store are in a critical path, Second, when byte data (characters) can be handled in word
blocks, the computation is much more efficient.  Last, the effectivencss of short offsets from base
register is multiplicd by a factor of four,
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MIPS does not directly support floating point arithmetic.  For applications where such
computations are infrequent, floating point operations implemented with integer operations and field
insertion/extraction sequences should be sufficient. For more intensive applications a numeric co-
processor similar to the Intel 8087 would be appropriate.

4 Systems issues

The key systems issues are the memory system, and internal traps and external interrupt
support,

4.1 The memory system

The use of memory mapping hardware (off chip in the current design) 5 needed to support
virtual memory. Modern microprocessors {(Motorola 68000) are already faced with the problem that
the sum of the memaory access time and the memory mapping time is too long to allow e processor
ter run at full speed. This problem is compounded in MIPS; the effect of pipelining is that a single
instruction/data memory must provide access at approximately twice the normal rate (for 64k
RAMS).

The solution we have chosen to this problem is to separate the data and instruction memory
systems, Separation of program and data is a regular practice on many machines; in the MIPS system
it allows us o significantly increase performance. Another benefit of the separation is that it allows
the use of a cache only for instructions.  Because the instruction memory can be treated as read-only
memory (except when a program is being loaded), the cache control is simple. The use of an
instruction cache allows increased performance by providing more time during the critical instruction
decode pipe stage,

4.2 Faults and interrupts

The MIPS architecture will support page faults, externally generated interrupts, and internally
generated traps (arithmetic overflow). The necessary hardware to handle such things in a pipelined
architecture usually large and complex [3, 5. Furthermore, this is an area where the lack of sufficient
hardware support makes the construction of systems software impossible. However, because the
MIPS instruction set is not interpreted by a microengine (with its own state), hardware support for
page faults and interrupts is significantly simplified,

To handle interrupts and page faults correctly, two important propertics are required. First, the
architecture must ensure correet shutdown of the pipe, without exccuting any faulted instructions
{such as the instruction which page faulted). Most present microprocessors can not perform this
function correctly (e.g. Mowrola 68000, Zilog 28000, and the Intel 8060). Second, the processor must
be able to correctly restore the pipe and continue execution as if the interrupt or Fault had not
occurred.

These problems are significantly cased in MIFPS because of the location of writes within the
pipe stages. In MIPS all instructions which can page fault do not write to any storage, either registers
or memary, before the fault is detected. The occurrence of a page fault need only turn ofF writes
generated by this and any instructions following it which are already in the pipe. These following
instructions also have not written to any storage before the fault occurs, The instruction preceding
the faulting instruction is guarantced o be executable or to fault in a restartable manner even after
the instruction following it Faults, The pipeline is drained and control is transferred Lo a gencral
purpuse exception handler, To correctly restart execution three instructions need to be reexecuted,
A multistage PC tracks these instructions and aids in correctly exceuting them,
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5 Software issues

The two major components of the MIPS software system are compilers and pipeline
reorganizers, The input to a pipeline reorganizer is a sequence of simple MIPS instructions or
instruction pieces generated without taking the pipeline interlocks and instruction packing features
into account, This relieves the compiler from the task of dealing with the restrictions that are imposed
by the pipeline constraints on legal code seguences. The reorganizer reorders the instructions to make
maximum use of the pipeline while enforcing the pipeline interlocks in the code, It also packs the
instruction picces to maximize use of each instruction word. Lastly, the pipeline reorganizer handles
the effect of branch delays.

Since all instructions execute in the same time, and most instructions generated by a code
generator will not be full MIPS instruction se, the instruction packing can be very effective in
reducing execution time. In fully packed instructions, e.g. a load combined with an ALU instruction,
all the major processor resources (both memory interfaces, the alu, busses and control logic) are used
100% of the time.

The example in Figure 2 illustrates the technigues: where possible, short instructions are
moved together into one word, As this is a very short segment, not too many compactions are
possible, Once a basic block has been treated for compaction, the effects of the delaved branch are
processed. In this case it is possible to remove the no-ops, required because of pipeline dependencies
and branch delays, completely,

Figure 2: Source code, original machine code, and reorganized machine code

Source code Correct Code Reorganized ALU wse Data Me-
with Mo-Dps Coda On__EX  mory use
[* AB.C: global 14 ¥A, rl
M,R.5: local =) Id #8, rd
1d #C, rb
For i:= 0 To N Do my #3, ri Td M{sp)}.r2:;mv #0,rl x k3 x
1d M{sp),r2 ld #C, rb& =
bgt rl, r2, L3O bgt ri, r&, L3O i X
na-ap 1d #8, rd4 X
na=ap 1d #4, r3 x
Begin
AL1):=B[9]+C[1]: L20:1d {rd,r1),rB L100:1d (rd,rl}.ré X x
1d {(r&.r1), r? 1d {ra, 1), r7:add ré,r8 2 ] i
na=ap
add r?, rG, r@ add r7,.r6,r9:add r¥7,r10 x %
3t r3, (rd,rl} st r9,(r3, rl);add #1,r1 i X x
R:= R + B[i]: add ré, r@
5:= 5 + C[1); add r7, rl0
add #1, ril
bBle rl, r2, L20 ble rl, r2, L10Q ] X
no=ap st rB, R{zp) ® x
na-ap storld, S(sp) A 3
End 5L rB. Risp)
st rl0, ${sp)
Lan:.... L3d:....
Size 21 Words 12 Wards
Time 120 Units 76 Units

MNote that the code with no-ops was also of reasonable quality: the lToading of the array base
addresses is hoisted up, and the store of § is moved out of the loop. (Initialization of § is done outside
the segment considered,} The no-op following "Id {r5,r1), r7" is necessary w take care of the missing
pipeling interlock,
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The optimal packing of instructions is obviously a hard problem (at least NP-complete);
however, we are investigating heuristics that we believe will have acceptable running times, yet will
produce nearly optimal code in most cases.

6 Present status and conclusions

The present status of the MIPS project is:

e Data path components: completely designed at the transistor level; approximately 50% laid out.
The ALU has been fabricated and performs as simulated, with less than 100ns required for
addition.

« Control: a SLIM [2] program for designing the control PLA's has been written and the PLAs
have been generated.

e Software; code generators have been written for both C and Pascal. These code generators
produce simple instructions, relying on a pipeline reorganizer. A first version of the pipeline
reorganizer is running and an instruction level simulator are also in use.

Figure 3 shows the floorplan of the chip. The dimensions of the chip are approximately 6.9 by
7.2 nm with a minimum feature size of 4 p (.. A = 2 p). The chip area is heavily dedicated to the
data path as opposed to control structure, but not as radically as in RISC implementation. Early
estimates of performance seem to indicate that we should achieve approximately 2 MIPS (using the
Puzzle program [1] as a benchmark) compared to other architectures executing compiler generated
code. We expect o have more accurate and complete benchmarks availahle in the near future,

The following chart compares the MIPS processor to the Motorola 63000 running the Puzzle
benchmark written in Pascal, The same code gencrator (with different target machine schema)
generated code for the program. The MIPS numbers are approximate,

Motorola 62000 MIPS
Transistor Count 65,000 25,000
Clock speed 8 Mz 8 MHz'
Data path width 16 hits 32 bits?
Puzzle Instruction Count 650 477
Instruction Bytes 2630 1508
Execution Time (sec) 213 3.6

lThe 65000 1C-technology is much better, and the 68000 performs across a wide range of environmental situations. We do
nod expect to achieve this clock speed across the mme range of environmental factors,

l'l'his advantage is mof uscd in the benchmark, ie. the 63000 version deals with 16 bil objects while MIPS uses 32 bit objects

3.-1. highly optimized (by hand) C version ul‘pﬁnh& runs on the YAX 117780 in 3.5 sce.
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Figure 3; MIPS Floorplan
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