131

A Bit—-Serial YLSI Architectural Methodology
for Signal Processing

Richard F. Lyon

VLS! Svstem Design Area, Xerox Palo Alio Research Center,
3333 Covote Hill Road, Palo Alto, CA 94304 L5 A

INTRODUCTION

Applications of signal processing abound in the modern world of electronics.
Telephones, stercos, radios, and televisions are the most common examples. In
the gencral clectronic communication and control market, there is a widespread
demand for higher quality and lower cost signal processing components of all
sorts. For many years, digital signal processing (DSP) techniques have been
touted as "the way of the future,” but have consistently failed to make a big
impact on the market. We discuss here an architectural methodology designed to
make digital signal processing "the way of the present.”

An architectural methodology is a style, or school of design, that provides a
basis for a wide range of architectures for different functions. The architectural
methodology presented here is built on top of the logic, circuit, timing, and
layout levels of VLSI system design methodology presented by Mead and
Conway (1980). It includes a large component that is independent of the
underlying technology.

Rescarchers working on DSP theory and applications have had a hard time
implementing their ideas in cost-effective hardware, because the IC industry has
not figured out how to support their needs. We hope o change that, based on
the family of components described, in conjunction with the ability for designers
to easily create their own more specialized system components from the silicon
fayout macros and composition rules that characterize our methodology. The
standard-chip way of life has caused many inappropriate architectures to be
proposed and tried in the past; the new freedom for non-specialists to easily
design custom integrated systems will enable a wave of new applications and new
architectures.

SIGNALS and SIGNAL PROCESSING

Signals are time-varving measurements or simulations of real-world
phenomena; for example, an audio signal represents minute changes in air
pressure as a function of tdme. In most familiar signal processing equipment, a
signal is represented by an electrical analog, such as a continuously changing
voltage; such analog signal representations can be directly processed through
continuous-time components such as resistors, capacitors, inductors, diodes,
amplifiers, etc. The modern alternative is to sample the signal at equally spaced

132

instants of time, and to represent those sampled values cither as discrete-time
electrical analogs (e.g. amount of charge held on a capacitor) or as numbers (in
some kind of a digital computing machine).

Analog T i . P
Continuous-Time S e e
Analog il u -
Discrete-Time - L -
Digital

Bisrete: Tirss 1,0,2,1,-1,-,1,-1,-2-1,1, 0,-2,-2, 1
The theory of sampling and discrete-time signal processing is quite well
developed, and applics to either analog or digital representations of signals,
Switches, capacitors, and amplifiers are typical building blocks for analog
discrete-time signal processing. For digital signal representations, the basic
building blocks are memories, adders, and multipliers. Analog noise, analog
driff, and digital roundoff effects of these components are also well understood.

Digital representations other than sequences of sample values are sometimes
used: for example, delta-modulation and its variants use a fast sequence of one-
bit values indicating whether the signal is above or below its predicted value at
cach time instant. These representations will not be considered here.

Using modern MOS VLSI technologies, large amounts of signal processing
can be done with a small amount of silicon, compared to the more mature
continuous-time analog technologies. Yet, signal processing devices remain
relatively expensive and in various wavs limited. We believe that difficulties in
both design and usage of these devices is the reason. Therefore, we base our
architectural decisions on our desire to jointly minimize design difficulty and
usage (programming) difficulty, subject to maintaining the high performance
promised by the technology. We also believe that it is not possible, for the range
of applications we are considering, o get good enough performance from analog
VLSl technologies; nor is it easy to design the required analog circuits.
Accordingly, we have arrived at thesc basic decisions;

Question: Answer:
Continuous-time or discrete-time? Discrete

{so that MOS VLSI techniques, particularly digital techniques, can be used)
Analog or digital sample representation? Digital

{to achieve highest quality and tractable design)
Bit-parallel or bit-serial number representation? Bit-serial

(for high clock rate, and maximum flexibility and extensibility)
Bus-oriented or dedicated signal paths? Dedicated

(for maximum extensibility, and efficiency)

General-purpose programmability or specialized? Specialized
(for efficiency and ease of application)

Fixed or variable filter parameters? Variable
(to cover the widest range of applications, including time-varying filters)
What number system? Fixed point 2's comp. LSB first

(for efficiency and ease of logic design)

133

DIGITAL FILTERS

Probably the most commonly needed signal processing component is a filter.
It is simply a lincar (usually time-invariant) system with memory (i.e. the output
is a lincar function of some history of the input). Most commaonly, the input and
output are single scalar signals, though this is not required; complex- and vector-
valued signals will not be discussed. but are casily accommodated in this
architecture. In a digital discrete-time architecture, a filter is a compulation that
operates on a seguence of numbers as input, and produces another sequence of
numbers as output. The usuwal purpose of such computations is w pass some
frequencies of signals, while attenuating others. See Moore (15973) for an
introduction to the mathematics of digital filters and related signal processing
components; for more detailed information, including four chapters on hardware
implementations, see Rabiner and Gold (1975).

COMPOMNENTS AND HIERARCHY

The remainder of this paper explains how to implement signal processing
components (operators and systems) in a style evolved from that presented by
Jackson, Kaiser, and McDonald (JK&M) in their 1968 paper "An Approach to
the Implementation of Digital Filters.” JK&M’s notion of an approach is similar
in some respects to our more developed notion of an architectural methedology,
but lacks the notions of standardized interfaces and hicerarchical composition of
Operators.

Our system-building strategy is to design top-down. decomposing blocks
functionally into more detailed block diagrams, until we get down to low-level
operators, such as adders and multipliers; then, to construct the system from the
bottom up, by assembling operators

into higher-level operators. To do In-1

this, we need conventions for the ® Qut.,
hierarchical definition and

construction of operators. This -

methodology does not severely n“ﬁ}i’jﬂc 1":{[{
constrain the range of possible {abs)

architectures, but unifies many In-2 + [—
architecturcs, allowing them to iy

share components at many levels.
The general Ffeatures of the An automatic gain control operator,
methodology and conventions are composed of other aperators,
described in following sections.

The architectural methodology involves the use of heavily pipelined bit-serial
arithmetic processors, all operating at a fixed throughput rate (words per second),
and multipfexed over several channels or functions w match processing hardware
rate to the signal sample rates. In this approach, it is important that the
throughput of an adder be the same as that of a multiplier, which is in turn the
same as that of a second-order filter section, or a delay element, or any other
component {and the same as a wire, the ¢lementary data path).

13h

MULTIPLEXING

Digital time-division multiplexing is a technigue developed by the Bell System
to send scveral digital sampled data signals on a single wire pair (one-bit data
path), by dividing time into periodically recurring time-slots, each of which could
carry one signal sample. The number of signals that can be carried on one data
path is then the word rate divided by the signal sample rate (the word rate is the
bit rate divided by the number of bits per word, since a data path carries one bit
at a time at a fixed rate). Bell's T1 carrier system is a good introductory
example; it carries 24 voice-hand signals, sampled at 8000 samples per second (8
ksps), with & bits per sample, on a wire pair with 1.544 Mhbps total data rate
(that's 24*8000*8 plus a few extra bits). These multiplexing concepts are easily
extended from transmission of signals to processing of signals,

) y Bit Word
Bit-serial multiplexed _‘1«‘ e Time
signal represeniation : . p—
<=—Frame (Signal Sample Time) ——

For many operators, multiplexing is as simple as time-intericaving the
samples of several input signals, resulting in interleaved answers. But when the
definition of an operator requires some stafe associated with a signal,
multiplexing that operator requires that more state be saved, separately for each
of the interleaved input signals. In digital signal processing, all state information
is conventionally saved inside the unit-delay operator (called Z ™1, the inverse of
the unit advance opcrator of Z-transform notation), which simply produces an
outpul value equal to what the input value was one sample time carlier. The
problem of saving state reduces to the problem of multiplexing the Z~! operator.
This operator must store one word for each multiplexed signal, so it is logically
just a long shift register (if the signals being multiplexed do not all have the same
sampling rate, things are more complicated, but still tractable),

CONVENTIONS

System-wide clocking, signalling, timing, and format conventions are needed
in order to hierarchically design a system of potentially very high complexity.
The basic approach we have adopted is to have system-wide synchronous clocks
at the bit rate, and both centralized and distributed timing and control signal
generation, as described below.

Clocking

The synchronous clocking scheme will include several versions of the bit
clock, provided to accommodate the different types of technology from which the
system will be constructed. These technologics and clock types are (1) LSTTL
with positive edge-triggered clocking, and (2) high-performance NMOS with
nonoverlapping two phase clocking. The relative clock phasing and data timing
aecross technology boundaries will be fixed system-wide. In the NMOS part, the
first clock gate encountered by a signal entering a subsystem will be designated
Phi-2 {Phase-In), which will be high during the latter (low) part of the TTL clock
cycle, when data bits are stable. Phi-1 (Phase-Out) will be the last clock gate
encountered by a signal leaving an NMOS subsystem, and it will be timed such

135

that output data, stable during Phi-2, meets the TTL sctup and hold requirements
isee chapter 7 of Mead and Conway 1980).

Signalling

Signalling refers to the electrical representation of bits on wires. We adopted
the electrical convention that a low voltage level would represent numerical digit
I, and a high level would represent numerical digit 0 (so that unconnected
pulled-up inputs default to a zero signal), This is true within and between
operators of any scale (subsystems, chips, or whatever). Bits are transmitted with
a nonereturn-lo-zere (NRE) representation, which just means that the voltage
changes to the voltage representing the new bit value afier the appropriate clock
edge, and remains throughout the clock period.

Timing signals arc all active-high; the higher voltage state means logically
true, asserting the named time state (eg. the L3Brme signal discussed below is
high during the least significant bit time of a word).

More electrical conventions for between-chip signalling are embodied in the
1/0 pad designs uwsed in the NMOS paris. An informal statement of the
conventions is that the NMOS parts be "compatible™ with LSTTL (fanout of 10}
in levels, noise tolerance, and transition times. The signalling conventions are
about the only conventions that would need o be changed to accommodate new
and different VLSI technologies as they become available, Some changes in
clocking conventions may also be desirable at some point.

Timin

T‘Ife centralized control signal generator is a time counter that keeps track of
bits, words, etc. on a cycle equal to the slowest period of interest in the system.
This control section may be thought of as a microprogram store with no
conditional branching, a very wide horizontal control word output, and a long
lingar program (but the actual PLA encoding will be much more efficient).

The distributed control scheme is more widely used, and is more suitable for
actually addressing the large-system issues, where design of a single controller for
the many functions would be a task beyond the capabilities of a human designer,
and would add too many interrelated constraints between parts of the system.

The basic distributed control stratezy 15 that each data path be associated
with a timing signal {which i5 used and generated locally) that represents time
within a word; optionally, data paths may be associated also with other timing
signals that represent time within a larger frame, as appropriate for a particular
operator. ‘The standard representation of time is simply for the signal to be true
during the first time-slot of its frame, and false at all other times. The signal
called L5 Brime is true during the first {least significant) bit of each word, and the
signal Wordhime is true during the first word of each frame, for example.

Phi-l oo o i

Phi-2___ i i

L5Btime | n n n n n n n n__

Wordltime F—

Frameltime | 1
Typical timing signals

136

Most arithmetic processing units need only clock, data, and one control input
to identify the first bit of a new word. Thus, we adopt a convention to use an
L5 Btime signal in association with every operator input and output: operators
accept LSBtime as a control input, and produce a delayed version as the
L& Btime of their output(s). Thus data paths from one unit to another carry their
own timing information, and units can be arbitrarily interconnected without
concern aboul connection to a central controller, Sull, the designer must take
care to assure that merging signal paths

(c.g. at an adder) and loops (e.g. in a In-1 - Cut-1
recursive filter) have the correct total In-2 g;g:i::gr Out-2
delay (instead, a special stretchable queue , s | :
could be designed to automatically adjust LSBtme Timing LSBtime
delays, but this would greatly decrease Wordtime | Delay | WordOtime

the efficiency of the methodology at the

chip level), An operator with timing signals.

Format and numerical value resirictions

Some operators, such as multipliers, may take two input operands of different
lengths. In such cases, the convention is that both operands are aligned to the
same L.5Btime signal (e, words of different lengths are right-adjusted). For
short words, the bit slots between the sign bit of one word and the LSB of the
next should be filled with sign extensions. Then values of words of any length
can be described by the two's-complement binary integer interpretation of the
entire 24-bit word {and can be written in binary, octal, or decimal as convenient),

Operators usually require that input values be limited to a range which is less
than the total number of bits would allow. For example, the multiplier design
for 24-bit words requires that the X input be in the range [—2%!, 221), while the
Y input must be in the range [—2%-1 2%~1) where k is the number of actual
hardware stages in the multiplier (not over 12): hoth X and Y conform to the
same format (24 bits per word, LSB first, two's complement), but have different
value restrictions. Value restrictions can be enforced by either scalers or limiters,
if necessary.

On consisient formats for signals and coefficients

We have deliberately chosen to have signals and coefficients conform to the
same format, with their distinction being only in possibly different value
restrictions. Many signal processing architectures do not have this property,
thereby making it ddTicult o muliply (mix) two signals together, or o use a
filter's output as another filter’s coeflficient input. These uses of multipliers are
not the common time-invariant linear system uses, but are nevertheless widely
needed for nonlinear and time-varying processing such as modulation,
demodulation, automatic gain control, adaptive filtering, correlation detection, etc,
Of particular importance to us is the application of a time-varying filter for
speech synthesis; the coefficients of the synthesis filter are themselves the outputs
of lowpass (interpolation) filters,

On interpretation of coefficients as fractional values

We have spoken of signal samples with integer values, but we often need to
consider the representation of fractional values, especially for coefficients. The
interpretation of operands as fractional values derives from the definition of the

131

function performed by the multiplier. For example, the “5-level recoded™ or
“modified Booth's algorithm” pipelined multiplier design of Lyon (1976)
computes XY /222 for a k-section layout, with Y restricted to [—22~1, 22k-1),
So if we simply regard Y as a value in [—2, 2), we can say that the multiplier
computes XY (as long as we interpret X and XY consistently, ecither both as
integers or both as fractions). Another way of saying this is that a multiplier
which accepts n-hit coefficients regards the radix point as being n—2 places from
the right. Multipliers can casily be designed with other scale factors, o give
other range interpretations w the operands. ‘The scaling described here is
popular for signal processing.

Pipelining delay and composition of operalors

Anather mmportant convention is that all operators bave some constant
positive integer number of clock cycles of delay (pipeline delay or transport
delay) between the LSB of an input word and the LSB of the corresponding
output word. For some operators, such as adders, each output bit depends only
on the corresponding and lower-order input bits, so the delay can be very
small—-but not zero. We reguire that no output bit be combinationally related to
any input bit, so at least one cycle of delay is required. This allows the system
clock rate to be fast, independent of how many adders and other operators are
cascaded (long ripple propagation delays are excluded, unlike typical bit-parallel
Systems)h

The delay of an operator is required to be a constant, known at design time,
rather than being dependent on control parameters. The designer must satisfy
delay constraints, such as equal L5Behne for signals that merge in an adder, by
inserting null operators with carefully chosen delay wherever needed (ie. shift
registers are added o make signals line up in time). Loop delay constraints are
sometimes difficult or impossible to satisfy if operators in the loop have too
much delay. Fortunately, all delay information 15 known at design time, and is
casy o represent and design with, by using simple notations.

FUNCTIONAL PARALLELISM and MULTIPLEXING ALTERNATIVES

We have briefly discussed the wse of multiplexing to accommodate many
separate operations on relatively slow signals by using a small amount of fast
hardware. In the other direction, finctional parallelism can be used to perform
operations on very fast signals, by using a larger number of hardware operators
running in parallel, with appropriate techniques for combining their partial
computations. Thus, it is possible to apply the serial-arithmetic architectural
methodology to very wideband applications, such as radar and video processing.

There is really no limit on the bandwidth obtainable, as illustrated by the
VFFT series of Fourier transform processors described by Powell and Irwin
(1978), which use slow 3 Mbps (custom PMOS) serial chips to compute
transforms of up to 10 Msps radio telescope data (i.e. the sample rate is actually
faster than the bit rate!).

The technigues for use of functional parallelism in nonrecursive (finite
impulse response) filters are straightforward. Similar technigues for recursive
filters have been demonstrated by Mover (1976}, The point is that the bit-serial
architectural technigues do not overconstrain the system-level architecture, and do
not limit the applications to low-bandwidth areas.

138

Six performance regimes

We are familiar with signal processing system designs that span six distinct
regimes, in terms of the amount of multiplexing and/or functional parallelism
that they incorporate. Several chips mentioned below have been designed by
members of the author’s team at Xerox, and will be described in forthcoming
papers.

The low-performance regime (level 0} is characterized by a lack of multiplier
hardware or other special signal processing features, and is exemplified by
software systems running on simple general-purpose processors.

Bit-serial architectures begin o look interesting at level 1, characterized by
the use of a single multiplier for different functions, This level is exemplified by
Jim Cherry’s "Synth" chip. a tenth-order lattice filter for speech synthesis; its
block diagram has two multipliers per lattice stage and one overall gain control
multiplier, while its implementation consists of one multiplier, one adder, one
delay shift register. a little control logic, and a handful of data path switches,

When more total performance is required, level 2 is appropriate. This is
basically the simple multiplexed filter approach described by JK&M, which uses
one hardware multiplier for each multiplier in the block diagram of a section, but
shares them over several sections by multiplexing, Lyon's 32-channel sccond-
order "Filters” chip exemplifies this regime; it has almost no data path switching
or control logic. Rich Pasco’s "FOS" (first-order section) is another example,
which uses scalars and switches instead of multipliers, for a range of specialized
applications.

For signals of higher bandwidth, the multiplexing factor may be reduced to
unity, We call this level 3, meaning one hardware filter per signal, with no
sharing. Rich Pasco’s "NCO" chip is a rather simplified example: it is a first-
order integrator with no multiplexing, so the signal sample rate can be very high
(500 ksps).

When the application reguires sample rates higher than the word rate
obtainable with the target technology, more parallelism is needed, At level 4,
systems take several hits per clock cycle into a distributor, which de-interleaves
and sends simple serial data to several operators in parallel; their results can later
be combined into the net answer, in a partial-result combiner. Jim Cherry's
"FIR" chip is intended to be used this way in the implementation of two-
dimensional video filters for image understanding. The chip is one of the
operators o be run in parallel; the associated distributor, control, combiner, and
line memories are quite simple.

Finally, when the sample rate is higher than the achicvable bit rate (level 5),
another level of parallelism is needed, as in GE's "VFFT-10" system mentioned
above. In this "very fast Fourier transform” system, blocks of signals are
transmitted along many serial paths in parallel; signal samples are delivered on a
collection of data paths by some faster signal source that can deal with the high
bandwidths.

THE BUILDING BLOCKS — LOGIC DESCRIPTION

When designing the logic of many of the low-level and system-level
operators, it is not important to know what technology will be used to implement
those operators. Thus, this level of the design is relatively long-lived and
independent of scale of integration, eftc.

132

For most operators, such as adders, multipliers, and filters, we design logic in
the style popularized by synchronous edge-triggered TTL MSI families; that is,
the exact nature of the clocking is suppressed, and all memory is in D-type flip-
flops, sometimes connected as parallel registers or shift registers. Some of the
operators, however, such as the larger memories, cannot be adequately
represented by a logic-level design; most of the design work for those parts is in
the technology-dependent circuit and layout level.

Given logic designs of this form, it is straightforward to apply a collection of
techniques to translate them into circuits for the target technology. The
techniques we use for NMOS are those described by Mead and Conway (1980),
making heavy use of pass-transistors and dynamic storage to produce designs that
are much more efficient than gate-based circuits. The logic designs thercfore do
not imply any particular gate structure or circuit design. Examples of CMOS
implementations of multipliers and serial memories for digital filtering can be
found in Ohwada, et al {1979).

There is not room here o cover details of logic designs, so we just mention
some the more uscful operators that have been built. They are signal combiners
{adder, multiplicr, and variations and combinations), point operators (scaler,
overflow detector/corrector o limiter, full-wave and half-wave rectifiers, square,
and sine), serial memoties (Z~! block, random-access serial register file, and
serial ROM), and filters {configurable biguadratic sections, parallel FIR blocks,
lattice structurcs, and multipurpose first-order sections for zero-order hold,
interpolation, differentiation, sum-and-durnp. oscillators, etc.)

An interesting aspect of the memory-intensive operators is the serial-parallel-
serial (SPS) memory organization for both read-write and read-only memories,
random or sequential access, that simultancously minimizes area and power while
keeping a high input and output bandwidth. Since memory is always accessed
for full words, the parallel internals of the memory can operate on a cycle that is
much slower than the serial bit clock, allowing minimum-size dynamic memory
cells and slow, low power addressing and bus logic. Only the input and output
shift registers and a small control PLA need to run at the bit rate.

ON VLSI LAYOUT STYLES

When actually creating layouts for a system designed through our
architectural methodelogy, it is important to use a simple layout style that
facilitates placement and interconnection of components, at many levels of the
hierarchy. For NMOS, we have chosen a standard grid style with fixed width
(2000} and variable height
cells, A component may
occupy any number of 200- Vdd - 200 lambda
lambda wide cells, subject to
chip size constraints. The
grid may be thought of as a h I
distribution network for
VDD, Ground, and two g :
clock phases, into which Gnd Phitl Phi2
components and wires are - I e —t
dropped (possibly auto- =_clock | |drivers—>
matically).

W

,_
L
I

140

This style is comparable to the polycell lavout style, except that the cells
being placed and interconnected are considerably larger than gates and registers,
and arc already specialired to our architectural methodology. ‘This allows
considerably more cfficient layouts than are possible with polycells, by leaving
room for flexible optimizations of logic, circuits, and layout of low-level
operators. System designers need never deal with this intra-component level of
optimization, but there is always the opportunity for "wizards” to design efficient
new low-level components to add to the available library,

Some operators are not designed on the 200-lambda grid, for sake of their
layout efficiency. For example, the serial sequential-access memory used in the
"Filters” chip is designed with a custom cell array style, appropriate for the large
collection of memory cells and the controller PLA.

CONCLUDING REMARKS

As JK&M predicted in 1968, serial arithmetic is alive and well as a simple
and efficient way to implement digital filters and other signal processing systems
in silicon. Hy extending their approach into an architectural methodology, and
by combining this with a VLSI design and implementation methodology, we
suddenly enable designers everywhere to build their own novel low-cost signal
processing systems. The methodologies provide a sensible context for the
accumulation of a library of component and system designs, at logic and layout
levels. So start now, and design the future accordingly.

REFERENCES

Jackson, L. B., Kaiscr, J. F., and McDonald, H, 5. (1968), An Approach to the
Implementation of Digital Filters, [EEE Trans. on Audio and Eleciroacoustics
AU-16, 413-421 (reprinted in Rabiner and Rader, Digital Signal Processing,
IEEE Press).

Lyon, R. F. {1976), Two's Complement Pipeline Multiplicrs, [EEE Trans on
Communications COM-24, 418-425 (reprinted in Salazar, DNgital Signal
Compurers and Processors, IEEE Press).

Mead, C. A. and Conway, L. A, (1980), fneroduction to VLS! Systems. Addison-
Wesley, Reading, Massachusetis,

Moore, F. K. (1978), An Introduction to the Mathematics of Digital Signal
Processing, Computer Music Journal Vol. 2, No. 1 and 2.

Mover, A. L. (1976), An Efficient Parallel Algorithm for IIR Filters, [EEE
International Conference of Acoustics, Speech, and Sienal Processing,

Ohwada, N., Kimura, T, and Doken, M. (1979), LSI's for Digital Signal
Processing, JTEEE Journal of Sofid-state Circuits SC-14, 214-220,

Powell, N. K. and Erwin, J. M. (1978), Signal Processing with Bit-serial Word-
parallel Architectwures, RealTime Signal Processing, Proc. SPIE Vol 154, 95-
104,

Rabiner, L. R., and Gold, B. (1975), Theory and Application of Digital Signal
Processing. Prentice-Hall, Englewood Cliffs, New Jersey.

