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Appendix A
HOW BIG MUST AN INTEGRATED CIRCUIT CHIFP BE?

Complex component Interconnectlons are of two types: regular wir-
ing patterns and irregular wiring patterns. Regular wiring patterns
are those in which the wires are arrayed In rows or columns between
the cells of an array of similar logical elements. Such regular pat-
terns are used to implement memories, read-only memory cells, adders,
array multipliers, bit maps, and a host of other useful logical func-
tions.

Irregular wiring patterns are used when Insufficient regularity
is available in the function being implemented. Collectlons of loglc
gates to implement control functions for computing machinery, for ex-
ample, are often Implemented as irregular wiring patterns. At a higher
level, irregular wiring patterns are found as the interconnections be-
tween subunits composed of regular wiring. Irregular patterns of wir-
ing are difficult to design, difficult to inspect, difficult to certify
as correct, and, as we shall see, wasteful of chip space.

In order to model the statisties of irregular wiring patterns,
let us examine a random wiring model. We will assume that there are
N points on a two—dimensional surface that are to be Interconnected
by a known, but random, pattern of wires. We shall try to estimate,
given a center-to—center wire spacing, w, how much area will be oc-
cupied by the wires. We will assume for the moment that the wiring
pattern involves at least two layers of wiring so that wires may cross
each other, and that most wiring runs are arranged either vertically
or horizontally in the available space. The statistics for a random
wiring pattern will serve as an upper bound on the amount of space re-
quired for better organized wiring, since any effort devoted to the
random pattern will surely pack it more closely together.

Experience with the layout of printed circult boards, integrated
circuit chips, and highway networks tells us that the critical conges-
tion problem will occur at the center of the layout. We will therefore

estimate the number of wires that cross the midline of the layout,
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realizing that there must be enough space along the midline to accom-
modate these wires. Any wire that crosses the midline will be connect-
ing a point or points on one side of the midline with a point or points
on its other side. We will assume that the wiring layout has been

done with at least enough common sense to permit a wire to cross the
midline only once regardless of how many points on each side of the
midline it interconnects. ‘

We will be interested in how the expected number of midline cross-
ings depends on the number of points connected together into a single
"net" by each wire. Let us first consider nets involving only two
points. Given N points to interconnect, there are N/2 sueh wires. Of
these, one-half will eross the midline, since only in half of the cases
will the two points to be interconnected lie on opposite sides of the
midline. We can therefore expect N/4 wires to cross the midline. Now
let us consider nets involving three points. There are N/3 such nets.
Of these, one-eighth will involve exclusively points on one side of the
midline and one-eighth will involve exclusively points on the other
side, leaving three-fourths of the wires to cross the midline. Since
(3/4) = (N/3) = N/4, we can again expect N/4 wires to cross the mid-
1ine! For nets of four points, the expected number of crossings is
(1 - (1/16) - (1/16)) x (N/4) = 7N/32, again very close to N/4. 1In
fact, as Table 4 shows, the expected number of midline crossings is a
very slowly varying function of the number of points in the net. For
nets of most Interesting sizes, we can therefore conclude that given
N pointe to intereomnect, about N/4 wires can be expected to cross the
midline of the layout. This result was published, with embellishments,
by Sutherland and Oestreicher (1973) in a paper entitled: '"How Big
Should a Printed Circuit Board Be?" It is a remarkably simple and power-
ful result.

Knowing how many wires will cross the midline of a random wiring
layout enables us to determine how much space to provide for them.
Naturally, any layout more asystematic than random will require less
space, and so we have an upper bound. Sutherland and Oestrelicher suc-
cessfully used their result to choose the size and component count of

a family of printed circuit boards in such a way as to make the layout
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Table 4

EXPECTED NUMBER OF ESSENTIAL MIDSECTION CROSSINGS
AS A FUNCTION OF NET SIZE
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problem easy. More important, however, is that this result provides
us with an understanding of the growth laws for wiring complexity.

To consider how the area occupled by wiring changes with com-
plexity, let us determine the area per point interconnected on a two-
dimensional surface that is occupiled by wiring. If there are N points
to intercomnect, there will be N/4 wires crossing the midline of the
layout, and the layout must therefore be (wﬂfﬁ}z in area if the wire
center-to-center spacing is w, TFor each point Iinterconnected, then,
an area of [wfﬂ}EN will be required for wiring. As long as the size
of the points interconnected is larger than fwfﬁ}zm, the points inter-
connected will occupy an area larger than the wiring. As the number
of points to be interconnected is increased, the area per point occupied
by wiring increases; through no fault of the individual interconnection
points, the cost of interconnecting each of them increases linearly
with their numbers. When enough points are involved (a remarkably
small number) so that [wfﬁ}zN exceeds the size of an individual point,
the area required for the layout will be dominated by the area occupled
by wiring. This is the regime in which all integrated circuits are



designed, in which many printed circuits lie, in which the back panels
(Semore Cray's "mat") of the largest computers are buillt, and which
causes most of downtown Los Angeles to be paved with overcongested free-
ways.

Relief from the congestion of two-dimensional wiring can be ob-
tained by resorting to three dimensions. Obviously, providing more
levels of wirding serves the same purpose as reducing wire spacing, w,
1f the points to be interconnected are still arrayed in a plane array.
If, however, we had a mechanism for building truly three-dimensional
circuits similar to the blological circuits found In the human nervous
system, the growth law would be more favorable.

For a three-dimensional arrangement of N points, again N/4 wires
can be expected to cross the midplane. Each such wire and the space
around it, let us say, has a cross-sectlional area of wz, and so a cube
whose side 1is H(Nfﬁ}lfz on a side will suffice to hold the wiring.

332, of which (wf2)3wlf2

to each point interconnected. In three dimensions, then, the volume

Such a cube has volume wa(Nfﬁ} must be assigned
needed for random wiring attributable to each point interconnected in-
creases only as the square root of the number of points interconnected;
whereas in the plane, the area for random wiring attributable to each

point increases linearly with the number of points Interconnected.



