1

Accelerator-Rich Architectures — From Single-chip to Datacenters

Jason Cong

Chancellor's Professor, UCLA Director, Center for Domain-Specific Computing

> cong@cs.ucla.edu http://cadlab.cs.ucla.edu/~cong

ES 128bit key 28bit data	Throughput	Power	Figure of Merit (Gb/s/W)
).18mm CMOS	3.84 Gbits/sec	350 mW	11 (1/1)
FPGA [1]	1.32 Gbit/sec	490 mW	2.7 (1/4)
ASM StrongARM [2]	31 Mbit/sec	240 mW	0.13 (1/85)
ASM Pentium III [3]	648 Mbits/sec	41.4 W	0.015 (1/800)
C Emb. Sparc [4]	133 Kbits/sec	120 mW	0.0011 (1/10,000)
Java [5] Emb. Sparc	450 bits/sec	120 mW	0.0000037 (1/3,000,000)

[2] Dag Arne Osvik: 544 cycles AES – ECB on StrongArm SA-1110
 [3] Helger Lipmaa Pill assembly handcoded + Intel Pentium III (1.13 GHz) Datasheet
 [4] gcc, 1 mWMHz @ 120 Mhz Sparc – assumes 0.25 u CMOS
 [5] Java on KVM (Sun J2ME, non-JIT) on 1 mW/MHz @ 120 MHz Sparc – assumes 0.25 u CMOS

Source: P Schaumont and I Verbauwhede, "Domain specific codesign for embedded security," IEEE Computer 36(4), 2003

Operation	Processor ALU	45 nm TSMC library	Why are processor units
32-bit add	0.122 nJ@2	0.002 nJ @ 1	so expensive?
32-bit multiply	0.120 nJ@2 GHz	0.007 nJ @ 1 GHz	 ALU can perform multiple operations
Single precision	0.150 nJ @ 2GHz	0.008 nJ @ 500 MHz	 Add/sub/bitwise XOR/OR AND
FP operation			64-bit ALU
			 Dynamic/domino logic used to run at high frequency
			 Higher power dissipation

So, What Shall We Do with Processors? Our Proposal – Accelerator-Rich Architectures

- A customizable heterogeneous platform (CHP)
 - With a sea of dedicated and composable accelerators
 - Most computations are carried on accelerators not on processors!
- A fundamental departure from von Neumann architecture
- Why now?
 - Previous architectures are device/transistor limited
 - Von Neumann architecture allows maximum device reuse
 - One pipeline serves all functions, fully utilized
- Future architectures
 - Plenty of transistors, but power/energy limited (dark silicon)
 - Customization and specialization for maximum energy efficiency
- A story of specialization

- Different region responsible for different functions
- Remarkable advancement of civilization also from specialization
 - More advanced societies have higher degree of specialization

N	ledical Image Processi	ng Pipeline	
reconstruction		$\begin{split} \text{Medical images exhibit sparsity, and can be sampled at} \\ \text{a rate } << \text{classical Shannon - Nyquist theory :} \\ \min_{u} \sum_{\text{sampled points}} & \left\ ARu \cdot S \right\ ^2 + \lambda \sum_{\text{Vvicxels}} & \left\ grad(u) \right\ \end{split}$	compressive sensing
denoising	$\forall voxel: u(i) = \sqrt{1 + 1}$	$\left(\sum_{\text{vore} j \in \text{solume}} \mathbf{w}_{i,j} f(j)^2 \right) - 2\sigma^2, \mathbf{w}_{i,j} = \frac{1}{Z(i)} e^{-\frac{\sqrt{\frac{1}{5}}\sum_{j=1}^{5} \left \mathbf{y}_i - \mathbf{z}_i\right ^2}{\hbar}}$	total variational algorithm
registration		$\begin{split} v &= \frac{\partial u}{\partial t} + v \cdot \nabla u \\ \mu \Delta v + (\mu + \eta) \nabla (\nabla \cdot v) &= - \left[T(x - u) - R(x) \right] \nabla T(x - u) \end{split}$	fluid registration
segmentation		$\begin{split} & \frac{\partial \varphi}{\partial t} = \nabla \varphi \bigg[F(data, \varphi) + \lambda div\bigg(\frac{\nabla \varphi}{ \nabla \varphi } \bigg) \bigg] \\ & surface(t) = \big\{ voxels \ x : \varphi(x, t) = 0 \big\} \end{split}$	level set methods
analysis		$ \begin{split} & \frac{\partial v}{\partial t} + (v \cdot \nabla) v = -\nabla p + v \Delta v + f(x,t) \\ & \frac{\partial v_i}{\partial t} + \sum_{j=1}^3 v_j \frac{\partial v_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + v \sum_{j=1}^3 v_j \frac{\partial^2 v_i}{\partial x_j^2} + f_i(x,t) \end{split} $	Navier-Stokes equations

		GPU * (NVIDIA Tesla M2075)	FPGA (Xilinx V6)	Monolithic Accelerators
Deblur	Performance	2.4X	3.4X	7.8X
	Energy	0.3X	3.2X	32X
Denoise	Performance	16.6X	1.6X	3.5X
	Energy	1.4X	1.2X	13X
Segmentation	Performance	73X	16X	16X
	Energy	6.1X	3.6X	53X
Registration	Performance	3.9X	6.7X	15X
	Energy	0.4X	3.2X	60X
Average	Performance	24X	6.9X	10X
	Energy	2X	2.8X	39.8X
OTE: GPU power value It device, making them	es were full-system measure relatively inflated compared	ements obtained using the Kill- I to other McPAT-generated va	A- Resu lues	Its relative to Quad Co Accelerators are s

Possibility of Accelerator Composition – Use of Accelerator Building Blocks (ABBs)

	Denoise	Deblur	Registration	Segmentation
ABBs			_	-
Float Reciprocal (FInv)	\checkmark	\checkmark		\checkmark
Float Square-Root (FSqrt)	\checkmark	\checkmark	\checkmark	\checkmark
Float Polynomial-16 (Poly16)	\checkmark	\checkmark	\checkmark	\checkmark
Float Divide (FDiv)	\checkmark	\checkmark	\checkmark	\checkmark
			sm ctri1 counter 2to4 Decoder Id[3:0]	ADD/SUB/MUL (ASM)

		GPU * (NVIDIA Tesla M2075)	FPGA (Xilinx V6)	Monolithic Accelerators	Composable Accelerators
Deblur	Performance	2.4X	3.4X	7.8X	21X
	Energy	0.3X	3.2X	32X	55X
Denoise	Performance	16.6X	1.6X	3.5X	11X
	Energy	1.4X	1.2X	13X	29X
Segmentation	Performance	73X	16X	16X	77X
0	Energy	6.1X	3.6X	53X	186X
Registration	Performance	3.9X	6.7X	15X	58X
v	Energy	0.4X	3.2X	60X	144X
Average	Performance	24X	6.9X	10X	42X
	Energy	2X	2.8X	39.8X	103X

New Research Opportunities for Architecture-Rich Architecture

- Memory support
- Communication support
- Prototyping and validation
- Software support

Use Xilinx AXI4 bus Memory sharing an Our customized cro performance impro	i IP nong accelerator ossbar vs conve vement	rs vs private mem ntional bus → bot	ories → huge are h area savings a	ea savings nd		
 Conventional bus performs arbitration at every memory access, and optimized for general- purpose access patterns → extra logics and delay spent on arbitrators 						
	Memory usage	Interconnect cost in # of LUTs	Accelerator subtask runtime			
Private memories	Memory usage 3328KB (177%)	Interconnect cost in # of LUTs 0	Accelerator subtask runtime 10.3us			
Private memories Shared memories via AXI buses	Memory usage 3328KB (177%) 768KB (41%)	Interconnect cost in # of LUTs 0 50043 (33%)	Accelerator subtask runtime 10.3us 117us			

Qualcomm Neural Processing Units (NPUs)

A new class of processors mimicking human perception and cognition (Oct. 2013)

 Press releases 	Xilinx Demonstrates Industry's First QPI 1.1 Interface with FPGAs at Intel Developer Forum
April 23, 2014 What <u>Power8</u> and OpenPOWER Might Mean for HP Timothy Prickett Morgan	 ⁷ath Interconnect enables 7 series All Programmable FPGAs; extends ⁶ lifes of Intel processor-based systems wwire
IBM is making a big play in hybrid com seeking to marry its POWER8 process seeking to marry its POWER8 process speed networking and opening up its and system software through the Downer Power Strate Strate Strate Strate Server Capabilities Demo Features Stratic V FPGA Configured Sandy Bridge KOM processors, the dison sond bridge KOM processors, the dison	puting, , 1012 iors , 2012 iors , 2012 <td< td=""></td<>
IBM is working with FPGA makers Xilin running over the CAPI interface, so this 1.1 intellectual property (IP) solution to sup the Impact2014 event, IBM and Xilinx, w Platform at the Intel Developers Forum (ID)	ssing and embedded applications, such as high-frequency trading and big data that watt than traditional CPU configurations can deliver. Altera is demonstrating its <mark>CPI</mark> port both the Caching Agent and Home Agent in a Pactron Vigor Development F) Beijing, April 10-11, in Altera's booth #E120.
being accelerated by FPGAs and show or is the only way to coherently connect to order of magnitude lower latency. A Mid to support the Intel OP lectrical specificat machines accelerated by Altera FPGAs the facible shared memory model that Inte adapter and switch maker Mellanox Te channels connecting to four 8 GR RDIMMs.	o an Intel server processor. The Altera StratixV FPGA transceiver has been qualified on at 8 Gbps. Developers of low-latency, high-bandwidth systems looking to extend I uses for x86 programming can now efficiently integrate a Stratix V FPGA into their 32 GB of memory on the motherboard connected to the socket with support for two
using Remote Direct Memory Access ("Our OPI 1.1 solution provides developers of boosted throughput and cut latencies I significantly increase their compute perform compute and storage product line at Altera.	of data centers and high-performance computing applications a platform to nance while reducing system cost and power," said David Gamba, director of the "FPGAs deliver a highly effective, efficient way to speed the processing of large data rated data transfers."

Initial Experimental Result

- Cluster setting
 - 4 CPU nodes (Xeon), each connected to one FPGA node (ML605)
- User application
 - Application I: Logistic Regression (LR) 2x FPGA speedup
 - Application II: Neural Network (NN) Training 9x FPGA speedup

	LR first	NN first	LR, NN simul.
Local AM	6.14s	0.62s	1.23s
Global AM	0.85s	0.62s	0.62s
Speedup	7.22x		2x
Energy saving	10.2x		1.45x

- With local AM, the first application will occupy all the accelerator resources
- With global AM (resource revision), more acc/FPGA resources will be allocated to applications with higher acceleration potential (NN)

	-	
• N	ew era of computing	
	Future computing platforms will have a sea-of-accelerators	
	With efficient support for customization and specialization	
• A	ccelerators at all levels	
	Chip-level	
•	Server node level	
	Data center level	
• Ci be	ustomizable and composable accelerators offer the right trade-or etween flexibility and efficiency	ff
• S	oftware is the key	
	Programming models	
	OpenMP 4.0, OpenCL, Hadoop/MapReduce + C/C++,	
	Compilation support	
	Runtime management	
		7

