MEMOREX 7100

CPU ARCHITECTURE AND MICRO-PROGRAMMING

L. CONWAY
7/19/72

MEMOREX CONFIDENTIAL

-
o

l-

CONTENTS

INTRODUCTION
7100 CPU ARCHITECTURE

7100 CPU CONTROLS

7100 CPU DISCRETE REGISTERS
7100 CPU ROMS

7100 CPU RAM REGISTERS
MICRO-INSTRUCTION SET

SOURCE AND DEST FIELD CODES

"ALU OPERATIONS

PORT OPERATIONS
BRANCH CONDITION CODES
MICRO-ASSEMBLY LANGUAGE

T S S -~ S S S RS ORI U R SN FICRN O CORY O KT

O N B WM IO D WMNER[OR W8N O

;o
N

(SRS,
= ow

COMMENT CARDS
GENERAL CARD FORMAT

- LABELS

VALUES

ASSEMBLY CONTROL STATEMENTS
DEFINE CONSTANT STATEMENTS
MICRO-INSTRUCTION STATEMENTS

MICRO-PROGRAMMING TECHNIQUES

SOURCE-DESTINATION RESTRICTIONS

SCB BRANCH TIMING

MEMORY PORT OPERATION TIMING

DECIMAL ALU OP TIMING

-
o——
m

0 ~ O O N-N—'l-—-'—ﬁl

oW oW W W W W W W oW W W W N
OC O~ O B W W W N NN = P NN

TABLES PAGE

TABLE 1. .7100 MICRO-INST SET FORMATS 8
TABLE 2. SOURCE AND DEST FIELD CODES 10

- “TABLE 3. ALU OP CODES ' 25
TABLE 4. PORT OPERATIONS 28

-~ TABLE 5. BRANCH CONDITION CODES 29
TABLE 6. SUMMARY OF MICRO-INSTRUCTION FIELD CODES 30
FIGURES PAGE
‘FIGURE 1. 7100 CPU ARCHITECTURE - ' 3
FIGURE 2. CONDITION REGISTER SETTING 26

FIGURE 3. CPU - MEMORY PORT TIMING - a1

1.0

INTRODUCTION

This manual documents and describes the Memorex 7100 CPU architecture,
and the 7100 micro-instruction set. Alsc included is a description
of an assembly language for the symbolic encoding of 7100 micro-
programs, and some examples of techniques for micro-programming the
7100,

The Memorex 7100 is a micro-programmed special purpose processor.
It executes Micro-instructions fetched from a "read-only" memory.

“The 7100 may be micro-programmed to function as a general purpose

processor (MRX/30), in which case it would emulate the execution
of (MRX/30) instructions fetched from a "read-write" memory. The
7100 may also be micro-programmed to serve other special purposes.
For example, it could be micro-programmed to function as a
communications adapter.

The 7100 CPU is designed to rapidly execute (by micro-code emulation)

"16-bit instructions from a main memory, using simply-structured,

minimum-cost hardware.

The purpose of this manual is to document the 7100 CPU design at
the architectural Tlevel, and to serve as a reference manual for
those who design and implement the various micro-programs for the
7100.

2.0 7100 CPU ARCHITECTURE '
This section describes the 7100 CPU architecture diagrammed in
Figure 1.

The 7100 CPU is organized primarily as a set of 16-bit registers
on a 16-bit bus. Many micro-program functions are implemented
simply by gating data from one register (SOURCE) to another

-~ {DEST), via the bus.

~Additionally, a simple ALU which has two input feeder registers
(A and B) may be used to perform logical or arithmetic operations
on data (in A and B} prior to gating the resuiting data to a
register (DEST) via the bus.

Some of the registers are discrete and serve specific functions.
Of these, some may only function as SOURCES or DESTINATIONS of
gating operations but not as both. Figure 1 indicates symbol-
jcally which function{s) each specific register may serve.

Other registers are contained in a RAM. These are used as either
SOURCES or DESTS and serve as registers for MRX/30 register
emulation and MRX/30 Input-Qutput emulation.

The 7100 is controlled by fetching and executing micro-instructions
from a "read-only" memory (UROM).

2.1 7100 _CPU CONTROLS

Each micro-cycle (400 ns), the 7100 fetches a micro-instruction from
an address in UROM determined by the preceding instruction. The
micro-jnstruction is fetched into the micro-instruction register
(UIR). The UIR feeds the control logic which decodes and executes
the micro-instruction. :

SISYNOS WOUS sng
" A
21 H{ on 9 9| g 2 gl e al| 2g| 9
ElI X252 24X 9SZ
+ ol
©1TEha2L36VEDARS %. au_lﬂ Weud WD
4
| I i
o _
] L 12 |
ﬁ =1
[S SAS
21 B
o L - ANl/dd
| | 12 :
o/ &
[o/I | e SMSTIN
| enawia L — 2 ; n.;;\.*M_
1 (R -1
_!||. - Lo 9| 2 | 5 | Z&MD »..2,&
$93y | Wwd 9 X = e AT ap) ‘217 INd
! = oyl 91 8 w; uid 1 9l 9
- { _ﬂ P]
S1saq o4 SOg wp_m _ | o
A - T
A | wow | [0
2] o o\ LPud
T
: gL-6T-L
2% ADMNOD "
X)) HhO
LX) FYN 103 LIHouy NdD 00TL
W3INW .
T 3HNDLS
)))

2.2

Encoded in the 16 bit micro-instruction are its FORMAT, and the
desired SOURCE and DEST registers for gating operations or the

OP and DEST for ALU operations. For gating and ALU type operations,
the address of the next instruction to be fetched into UIR is

formed by incrementing the current address at the time of access

and holding the incremented value in the micro~instruction

pointer register (UPNT). This incremented value is then used

to address the next instruction fetched for execution the

following micro-cycle.

Certain FORMATS, however, indicate a BRANCH instruction. These
instructions may alter the sequence of instruction execution by
specifying a SOURCE for the next instruction address other than
the incremented value stored inm UPNT.

The details of micro-instruction encoding are fully described in
a later section of this manual.

7100 CPU DISCRETE REGISTERS

The 7100 CPU contains a number of discrete registers with specific,
unique functions. These may be functionally separated into 3 groups:
control registers, memory interface registers, and data feeders.

The following registers are control registers: UIR, UPNT, PIR,
UCR, X, P, and PROT.

UIR, the micro-instruction register and UPNT, the micro-instruction
pointer register have already been described (Section 2.1).

PIR, the Program Instruction Register, is used to hold MRX/30
instructions during MRX/30 emulation. An instruction decode read-
only memory (DROM) is used to decode the 8-bit OP field (left 8 bits)
of PIR and provide a 13-bit jump address for emulation micro-code

OP decode jumps. Additionally, Togic decodes the Iy, Ry, Ip, Ro,
fields of the PIR so that conditional micro-code branches may be

/

made on these fields being zero/non-zero. I, = PIR(8), Ry = PIR (9-11),
Ip = PIR (12), R, = PIR (13-15). |

1
The UCR is a 10-bit register, whose bits are set/reset as the result

of ALU logical or arithmetic operations. Conditional micro-code
braches may be made on each specific bit of the UCR (micro-condition
register) being zero/one.

_Registers X and P are used in RAM register addressing which is described
in Section 2.4. PROT is used for memory write protection, described
below.

The Memory Address Register (MAR) and the Memory Data Register (MDR) are
used as interface registers for memory operations. Encoded in certain
micro-instructions are "PORT" operations which initiate/control CPU -
memory data transfers. '

The MAR holds the memory address for these data transfers. The 16-bit
MAR can address up to 64K bytes in main memory. The MDR holds the data
for writes and receives the data for reads. The PROT (protect) register
participates in the control of protected writes. It holds 8-bit fields,
U and L, which are the upper and lower bounds of the high order 8-bits
—of the write address in MAR. If a protected write is attempted out

of bounds; it is not executed and an error condition is set,

The data feeder registers A and B are used to hold the input data
for ALU operations. ’

~--Fhe ‘registers' PNL.LTS. and PNL.SWS. in Figure 1 represents the system
control panel display lights and data-entry switches. During single-
cycle operation of the CPU (under system control panel control) various
CPU registers (UIR, UPNT, MAR, MDR) may be displayed in the lights or
altered via the switches. These functions are described in detail in
the reference manual "MEMOREX 7100 SYSTEM CONTROL PANEL", by A. Hemel.
The panel switches may also be read.as sources by micro-instructions.

2.3 7100 _CPU ROMS

The‘7100 CPU data flow contains three read-only memories (ROMS), the
UROM, CROM, and DROM.

The UROM is 8192 (max) 16-bit words. This is the memory which
holds the micro-instructions which control the 7100. Note that 13
bit addresses are required to address the span of the memory (8K).

The CROM is a smaller read-only memory used to hold 16-bit constants.
Certain micro-instructions may specifiy an 8-bit CROM {constant ROM)
address and thus select one of CROM's 256 constants for gating onto
the bus to a destination.

The DROM (decode ROM) is a small 256 by 13-bit read only memory used

to decode the 8-bit OP field of the PIR to obtain a 13-bit jump
address.

2.4 7100 RAM REGISTERS

The 7100 CPU bontains 80 registers (16-bit) in a small Random Access
Memory (RAM), as indicated in Figure 1.

Micro-instructions may address these RAM registers and use them as

sources or destinations of data to/from the bus. Such micro-instructions

encode the 'row' of the RAM directly into their SOURCE or DEST field
code. This selects one of the 16 rows of the RAM for addressing.

" “The 'column' (one of 16) is selected by the data (4-bits) in the P or X

register at the time the RAM is accessed by a micro-instruction.

If the high order bit in the (5-bit) X register is 0, then P is used for

~RAM column selection. If the high order X bit is 1, then X is used. .

Of the 256 possible RAM addresses (16 rows by 16 columns), only 80
actually contain CPU registers. Certain of the remaining addresses

correspond to registers or command codes for devices external to the
CPU (1/0).

3.0

This organization of the RAM register file enabies the CPU to
communicate with I/0 devices in the same simple manner in which it
uses its own internal registers. It also enables the “state" of the
CPU (corresponding to the value in P) to be switched under control
of a Priority-Interrupt System. These functions are described in
detail in the reference manual "MEMOREX 7100 I/0 SYSTEM".

7100 MICRO-INSTRUCTION SET

The 7100 CPU executes 16-bit micro~instructions. The first 3-bits
of each micro-inst encode its FORMAT. Table 1 lists the various
FORMATS of the micro-instruction set. Seven of the eight possible
are currently defined.

The micro-instruction set logically groups into 3-basic types of
instructions:
(i) ALU operations. FORMATS: ALU
(ii) GATING operations. FORMATS: GSD, GCD, GID
(iii1) BRANCH operations. FORMATS: SCB, ACB, UCB

The ALU type of micro-instruction specifies that the ALU operation
encoded into its OP field be performed on the data in feeder registers
A and B with the result bused to a specified DEST register.

The GATING type of micro-instruction specifies a SOURCE for data and

a DEST to which that data is to be bused. In the GSD FORMAT, the
source is an addressed CPU register. In the GCD FORMAT, the source

is an addressed CROM constant. In the GID FORMAT, the source is

8-bits of immediate data in the micro-instruction itself (R.J. on bus).

The BRANCH type of micro-instruction may alter the sequence of micro-
instruction execution by specifying some address for the next instruction
other than the incremented current address. In the case of the UCB
FORMAT, the BRANCH is “Unconditioné1“ and is always taken.

MNEM

ALU

GSD

GCD

GID

SCB

ACB

ucae

7100 MICRO-INST SET FORMATS

TABLE 1

|

FORMAT
3 5 3 5
000 | DEST | PORTl oOP
3 5 3 5
001 | DEST | PORT| SOURCE
3 5 8
010 | DEST | CROM ADDR
3 5 8
011 | DEST | IMM DATA
3
100
3 1 4 3 5
101 | R | COND| PORT| SOURCE
3 1 4 8
110 | R tcono| ADDR ON PG
3 1 12
111 |'s! ADDR

DESCRIPTION

|
|

ALU 'OP' performed on feeder REGS
‘A’ and 'B', result gated to
destination.

Gate source contents to destination.

Gate the 16-bit constant at 'CROM
ADDR' to destination.

Gate IMM data to destination
(Right justified, zero fill).

Unused.

Conditional branch to ADDR contained
in 'SOURCE' if 'COND' true, and R = 0.
BR on 'COND' false if R = 1.

Conditional branch to ADDR on current
page if 'COND' true, and R = 0. BR
on 'COND' false if R = 1.

Unconditional branch to ADDR in current 4K.
If S =0, then 'BRA'.
If S =1, then 'BSR' (UPNT + 1 gated

to specific implied 'USRT' REG).

/
In that case the micro-instruction contains a 12 bit branch addreés for
the next instruction (within the current half of the UROM as specified
by the high order bit of UPNT)}. A special subroutine bit is also encoded
in the UCB FORMAT. If it is one, then the processor saves the UPNT
register in a specific register in the RAM for use later as a sub-
routine return.

The ACB and SCB FORMATS are “conditional branches". For these instructions
to alter micro-instruction sequencing to their specified addresses,
the indicated condition must be true (if R = 0) or false (if R = 1).
ACB, if taken, causes the next instruction to be fetched at the address
on the current 256 word "page" in the UROM given by the 8-bit "ADDR ON
PG" encoded in the ACB micro-instruction. An SCB type BRANCH, if
taken, specifies as the branch address the contents of the encoded
SOURCE register.

Certain of these basic ALU, GATING, and BRANCH type micro-instructions
have an additional "PORT" field. This 3-bit field in these instructions
encodes memory initiation and control functions. The specific functions
are described in Section 3.3.

3.1 SOURCE AND DEST FIELD CODES

This section describes the encoding of the SOURCE and DEST fields of
the 7100 micro-instruction set. The locations of the fields in the
—micro-instructions are shown in Table 1, while the CODES and MNEMONICS

are listed in Table 2.

. .A11 .the SOURCE and DEST field codes are encoded into 5-bits. If the
‘high order bit is zero, then the SOURCE or DEST is in the RAM registers
“and the low-order four bits form the "row" address for the RAM register.

RAM registers may be either SOURCE's or DEST's, although timing
restrictions preclude gating from one RAM register to another RAM
register in the same micro-cycle.

If the high order bit of the code is one, then one of the CPU discrete
registers or some variation is indicated (See Table 2).

TABLE 2

SOURCE AND-DEST FIELD CODES

CODE SOURCE DESTINATION

00 REGO REGO
‘ ¥ |

I ! .

} - g
} 1 |
OF REGF REGF
10 X X

11 PIR PIR
12 MDR MDR
13 SMDR SMDR'
14 UPNT PROT
15 R11 R11
16 R2I R21
17 SHS A

18 PIRD B

19 . P UIR
1A MAR MAR
1B ST AMAR
1C UCR UCR
1D — —
1E —— e
1F RO NOP

11

Certain of the CPU discrete registers may be either micro-code SOURCES
or DESTS. These are:X,PIR, MAR, MDR, and UCR. Note that UCR, while
it holds 10 bits, has only its left 8 bits gatea to/from the bus when
used as a SOURCE or DEST. In both cases the 8 bits are left justified
(L. J.) on the bus. Also, when UCR is used as a SOURCE, the right-
most 8 bits of the bus are zero. :

‘;
Some CPU registers may only be used as a source. These are UPNT and P.
UPNT is used as an implied destination for the branch address during
the execution of a SCB type branch. Thus, the Figure 1 shows a data
path from the bus into UPNT. However, UPNT may not be directly encoded

as a DEST.

The 'SWS' source code is used to read the system control panel data
entry switches. '

The 'ZRO' source code places all zero's on the bus.

The mnemonic 'PIRD', indicating PIR decode, appears as a SOURCE only.
This code is used to gate the DROM decode of the OP field (8 high
order bits) of the PIR as a SOURCE.

The mnemonic 'CST' appears as a SOURCE only. This is used as a special
function in an otherwise NOP instruction (PORT may be used) to indicate
that the P register may be updated to the new value specified by the
priority-interrupt system (changes CPU ‘state').

Some CPU registers may only be used as destinations. These are PROT, -UIR,
A, B, and AMAR, AMAR is a special DEST only code which enables the

bus data to be simultaneously gated to two destination registers, A and
MAR. A UIR DEST OR's the bus with the next fetched micro-instruction.

‘Note that there is a NOP DEST code. This code disables any gating

to destinations.

'SMDR' is a special use of MDR. The right-justified byte on the bus
is gated to/from the MDR half indicated by MARig (0 = left, 1 = right).

R1I, R2I cause the indirect use of the Rl or R2 fields (3 bits) of the
PIR as SOURCE/DEST codes. This enables indirect use of REGO - REG7 in
the RAM according to value of Rl or R2 field in the PIR.

3.2

12

: |
ALU OPERATIONS (R. Stallman) !

- \
The ALU operations consist of three basic types: arithmetic

functions; logic functions; and word, byte, nybl manipulations.
A1l of these ops are performed on operands in the A and B

registers. The ALU op codes are Tisted in table 3.

Bits 0-7 of the condition register {UCR) are dedicated to
storing the status of the applicable ALU ops. The assignment
of each bit location in the UCR (condition register) is

diagrammed in table 2.

Arithmetic Functions

Arithmetic operations performed by the ALU are either binary or
decimal. These two general categories differ from each other
substantially. Binary ops: require one microcycle for their

execution; involve two-16 bit operands and require binary numbers

" to be represented in 2's complement notation.

- Decimal ops: require two micro-cycles for their execution;

involve 8 bit (two decimal digits) operands and outputs; and

require digits to be represented in packed BCD (8421) format.

Binary Arithmetic Ops

Signed binary values are represented by 15 bits of magnitude

inforﬁation with the 16th bit (MSB) representing the sign.

Negative numbers have a 1 in the sign position, and positive

-numbers, a 0. Numbers are also in 2's complement notation. Negative

numbers are formed by deriving the 1's complement of the positive
representation and adding a 1 to the least significant bit:

+ 17 = 010001

n

- 17 = 101111

In 2's complement addition, the 16 bit numbers (including sigﬁ)
are added and the carry from the most significant (sign bit) is
always ignored. Subtraction is performed by adding the 1's
complement of B to A, and adding a 1 to the least significant bit
position. In either addition or subtraction, the resultant answer
is in 2's complement form, and no correction need be made. The
overflow bit in the UCR is set according to the following:

ADDITION:
(BAD+BADX) [(A =0+B4=0+ALUG=1)+(Ay=1+B =1+ALUy=0)]

SUBTRACTION
-~ (BSB+BSBX) [(Ag=1"B,=0-ALU=0)+(Ag=0-Bo=1-ALUy=1)]

A, = Bit zero of the A Register (Sign Bit)
B, = Bit zero of the B Register (Sign Bit)
ALUy = Bit zero of the ALU Register (Sign Bit)

ADD, SUB
ADD and SUB are ops intended for use with address arithmetic. When

executed, they do not change the condition register. Carries or
borrows from the condition register into the ALU are inhibited
during these ops. SUB is a 16-Bit binary subtraction of B from

A, producing no borrow or overflow in the condition register. ADD
is a 16 bit binary addition of A and B, also producing no carry

or overflow in the condition register.

BAD, BSB

BAD and BSB are ops intended for use in single precision 16-bit
‘binary addition or subtraction. Carries or borrows into the ALU,

from the condition register, are not enabled. Carries or borrows
and overfiow resulting from these ops are, however, stored in the

condition register.

13

14

BADX, BSBX)
BADX and BSBX are ops jntended for use in multiple precision 16-bit
binary additions or subtractions. Carries or borrows initially

in the condition register are included in the addition or subtraction

being performed and carries, borrows, or overflows resulting during

the execution are stored in the condition register.

The following examples use 6 bits rather than 16 for simplicity:

Single-Precision ADDITION (ADD,BAD)

-10 +110110 +10 +001010
- 3 111101 = 3 111101
-13 1 110011 +7 1 000111
1A-Ca\rry—store arry-store
in UCR if BAD in UCR if BAD

Single-Precision SUBTRACTION (SUB,BSB)

+10 4001010
-(-3) 000010 ¢——1"'s complement of {-3) [Done by
+13 + 14——Forced carry-in ALU

1;001101
No borrow - O in UCR if BSB

¥10 001010
-(+3) 111100€—1's complement of {+3) | Done by
+7 + l¢—7Forced carry-in ALU
1 000111

'_L-—Borrow-store in UCR if BSB

Multiple-precision additions or subtractions involve binary numbers
larger than the capacity of the 16-bit A and B registers. If a 32
'bit number is to be added to, or subtracted from, another 32 bit
number, two passes through the ALU must be made. The first pass
would be a BAD or BSB as illustrated, the second pass must include

the carry or borrow produced in the first pass (BADX or BSBX). The

15

/
first pass (least significant word) would not include a sign bit.
The following example uses 12 bits instead of 32 for simplicity.

MULTIPLE-PRECISION ADDITION‘(BAB & BADX)

2nd pass!lst pass

1200 4010010110000 q-——A Reg.
+ 301 000100 101101{—43 Reg.
1501

I
1st pass through ALU (BAD)

, 110000

101101
1 011101

1l-——----C.snrry-s1:ored in UCR

2nd pass through ALU {BADX}

4010010

000100

+ 1 «#—carry from UCR from previous pass.
010111 '

No carry -~ 0 to UCR
Resultant answer: 010111011101 (1501)

MULTIPLE PRECISION SUBTRACT (BSB,BSBX)
2nd pass! 1st pass

+301 - 000100! 101101 4—A Reg.
- (+1200) 0100101110000 —8. Reg.
-899 {

1st pass through ALU (BSB)

+101101

0011114—-c0mp]ement of B
+ 1e—forced carry-in } Done by ALU

0 111101
1‘——No carry - 0 stored in UCR

2nd pass through ALU

+000100

101101 ¢—complement of B:}
+ - () g—carry from UCR Done by ALU

110001

t—-——No carry, 0 stored in UCR

DECHN TANT ANSWER- 110001111101 (2'c ramnlament af -R0Q)

16
/

DECIMAL ARITHMETIC OPS /

Decimal ops are performed on a right-justified byte iﬁ the A and
B register. The data is in packed decimal form. }

|

In the zoned decimal format, a byte is required to hoid each digit,
0-9. The zoné portion of each byte is unused (except for the sign

in the right-moét byte). These zoned decimal fields can be packed
into a fewer number of bytes if the zones are removed; thus a packed
or unzoned decimal format. A1l numeric fields must have a sign, and
in the zoned decimal format the first four bits (0-3) of the right-
most byte are used te hold a sign. A hexadecimal C is a plus sign;

and a hexadecimal D is a minus sign. In the packed format, the 4-bit

sign is moved to the last four bits of the rightmost byte.

The following illustration shows the number 18,634 in a zoned format
and a packed (unzoned) format. Note the difference in placement of
the sign. For easier interpretation, the actual bit patterns are
~not shown. |

ZONED

F 1 F 8 F 6 F 3 + 4

- Zone Digit Zone Digit Zone Digit Zone Digit Sign Digit

PACKED

1] 8 6 3 4 +

Digit Digit Digit Digit Digit Sign

" The decimal digits are represented by 4-bit BCD (8421) code, therefore
each pass through the ALU adds two decimal digits to two decimal
digits and a possible carry from the UCR. A carry from the high-order

digit is stored in the UCR.

/ 17

Subtraction of decimal representations are performed using 10's
complement addition. This method of subtraction by addition is
somewhat analogous to using 2's complement addition when performing
binary subtraction. When using 2's complement notatioh, binary
numbers are left in 2°'s complement form in memory. When decimal
data is processed, however, it is stored in true form. When
_.Subtracting one ﬁumber from another number, by adding the 10's
complement of one to the other, the addition may or may not have
produced a carry. The carry, if it occurs, {s dropped and the
difference is in true form. If no carry occurs, the difference
is in 10's complement form and must be corrected to place it in
true form. No carry indicates that a larger number was
subtracted from a smaller number, and thus a negative difference
has resulted. To put a BCD number in 10's complement form, the
9's complement is first derived by subtracting each digit from 9
and adding 1 to the LSB. In a similar fashion, taking the 10's
complement of a number in 10's complement form, places it back in

.true form. Where reference to BCD is made, 8421 code 1is implied.

DAD,DSB _

DAD and DSB are ops intended for use in 8 bit BCD addition (DAD) or
~sobtraction (DSB). Specifically, these ops are to be used for the

first pass, of a series, through the ALU. Thét is, when the two

Jeast significant decimal digits of a number are added. Carries

or borrows from the condition register are ignored during these

bps, however, if a carry or borrow is produced during the execution

of the op it is stored in thé UCR.

18
DADX, DSBX /
DADX and DSBX are ops used in 8 bit BCD addition (DADﬁ) or subtraction
(DSBX). These ops are used after the first pass through the ALU, and
‘include a carry or borrow from the UCR that the first§pass may have
produced. If a carry or borrow is produced during the execution of

these ops, it is stored in the UCR.

The following are examples of the decimal Add ops:
(It should be noted that these are BCD additions, not Binary)

2nd pass| 1st pass

- ¥, f)

, 0056 0000 0000 | 0101 0110

1234 0001 6010, 0011 0100
T1290 ' l

|
1st pass through ALU: (DAD)

0«4—Carry inhibited by ALU

10 .
+§2 +gégig%00 }- ALU performs BCD addition
90 0 10010000

T——No carry, 0 stored in UCR

2nd pass through ALU (DADX)
0Oe«—<Carry from UCR resulting

00 00000000 from previous pass
+12 00010010
12 00010010

T——No carry, 0 stored in UCR

Resulting Answer: 0001 0010 1001 0000 (1290)

Z2nd pass : 1st pass

hl-—-—\\{—._ﬁ.———-ﬁ

~9999 ,1001 1001' "1001 1001

3999 1001_1001! 10011001
|

1
1st pass through ALU (DAD) -

99 0 @—Carry from UCR inhibited
+99 10011001
1 98 10011001}» BCD add done by ALU

t 1 10011000

Carry to 4 carry, 1 stored in UCR
next decade

19

//
2nd pass through ALU (DADX)
leCarry from le—Carry from UCR resulting
99 previous 10011001 from previous pass
+99 decade 10011001
1 99 1 10011001
tCarry L—Car‘ry, 1 stored in UCR
Resulting answer: 1 1001 1001 1001 1000 © 19998
The following are examples of the decimal subtract ops:
2nd pass | 1st pass
— NI A
1234 0001 0010' 0011 0100
-0056 0000 0000] 0101 0110
1178
|
1st pass through ALU (DSB)
34 ,00110100
-56 010000114——9's complement of 56
1 78 + ~ l4——orced carry-in to get Done by
4 sorrow from 0 01111000 10's complement ALU
' next'decade t——-—Borrow, (no carry) - 0 stored in UCR
2nd pass through ALU (DSBX)
12 +00010010
00 orrow from 16011001 «-9's complement of 00 Done by
- lg-previous decade + 0 4—borrow from previous ALU
1 1 ~ 00010001 decade (no carry)
No borrow, {carry) - 1 stored in UCR
Resultant answer: 1 0001 0001 0111 1000 1178

Since there was a carry (no borrow} in this answer, it is to be

ignored, and the answer considered to be in true BCD form.

20

l /
b 2nd pass | 1st pass 1 /
0056 0000 0000 lOlOl 0110 ’ |
-1234 -0001 0010 ' 00110100
1 8822 T }
1ifborrqw j
[
1
1st pass through ALU (DSB)
56 401010110
-34 0110010L4—————-9 s comp]ement of 34 Done by
22 1 g—rForced carry-in to ALU
1 00100010 get 10's complement

No borrow {carry), 1 stored in UCR

2nd pass through ALU (DSBX)

b
00 ;00000000
-12= 10000111€—9's complement of 12
1 88 + 14——Carry (no borrow) from
I 0 10001000 from previous decade
borrow LBor‘row (no carry) 0 stored in UCR

Resultant answer: O 1000 1000 001C 0010

Since there was a borrow (no carry) in this answer, the answer is
negative and is 10's complement form. It must be corrected (recomplemented).
This is accomplished by taking its 10's complement, equivalent to
subtracting the answer from all zeros with an implied high order

borrow available.

21

!
/
Correction {Recomplementing)
b 2nd pass l 1st pass
0000 0000 0000 | 0000 0000
-8822 1000~ 1000 10010 0010
-1178 ' LR ‘
|
1st pass through ALU (DSB)
00 00000000
-22 01110111 4————9's complement of 22
1 78 1 4——Forced carry-in to get Done by
I 0 0111 1000 10's complement ALU
Borrow T
Borrow (no carry), O stored in UCR
2nd pass through ALU'(DSBX)
b
00 : +00000000
-88 000100014——————-9'5 comp]ement of 88
-1 O4————2Borrow (no carry) from
T =11 00010001 previous carry

Resultant recomplemented answer: (0001 0001 0111 1000

It should also be remembered that this answer is negative.

22

Logic¢ Functions .

The logical ops include compare, right and left shifts, inclusive

OR, exclusive OR, AND, and invert.

CMP

The execution of an ALU instruction with a CMP op results in a

logical and an arithmetic comparison of A to B. The results of
_this comparison are stored in the condition register. The DEST
field of the instructions is not used during.this op. Bits 1-3
of the UCR reflect the results for Arithmetic compare ({includes
sign) of A and B. Bits 5-7 of the UCR indicate the results of

.a logical (maginitude of 16 bits) compare of A and B. UCR bits

0 and 4 are reset during the execution of this op.

SLO, SRO

The shift ops define 1-bit linked, end-off shifts. SLO is a 1-bit
serial left shift through the 32 bits of A and B. The resulting
contents of the A register are gated onto the bus. SRO is a 1-bit
serial right shift through the 32 bits of A and B. The resulting
contents of the B register are gated onto the bus. Bits 0-7 of

the UCR are not changed during the execution of this op.

I10R |
10R is the inclusive GR (logical summation) of A and B. The
results of the OR are gated onto the bus. Bits 0-7 of the UCR

“are not changed during the execution of this op.

23

XOR
XOR is the exclusive OR (modulo - 2 sum) of A and B. The results
of XOR are gated onto the bus. Bits 0-7 of the UCR are not

changed during the execution of this op.

AND.
-AND is a Togical AND (logical product) of A and B. The results of
-AND are gated onto the bus. Bits 0-7 of the UCR are not changed

during the execution of this op.

NV
INV, performs a logical complementation. This op, inverts the
state of each of the-16 bits of A, onto the bus. The contents of
A remain undisturbed. Bits 0-7 of the UCR do not change during the

-execution of this op.

WORD, BYTE, and NYBL Manipulations:

BCB:

Gates onto the bus the combination of the right byte of A and the
left byte of B. UCR bits 0-7 are not changed.

IN1:

Gates onto the bus the insertion of NYBL 1 of A into B. UCR bits

0-7 are not changed.
' " NYBL 1

.

NON-DESTRUCTIVE

Bus

24
| /
INZ; Y
Gates onto the bus the insertion of NYBL 6 of A into B. UCR

bit 0-7 are not changed. 1

|

NON-DESTRUCTIVE .

Bus

DBT

Bit test DBT is an op in which any one of the 16 bits in the A
register may be tested. The location of the bit to be tested

is encoded in the low-order 4 bits of the DEST field of the
micro-instruction. The state of the bit tested is placed in UCR
bit zero. Bits 1-7 of the UCR are reset. No data is gated on

to the bus during the execution of this op.

BT
Bit test BBT is an op identical to DBT in with the exception of the
location of the address of the bit to be tested. The low-order 4
bits of the B register are encoded to hold this address. As with
DBT, the results of the test are stored in Bit 0 of the UCR. Bits
1-7 of the UCR are reset. No data is gated onto the bus during

the execution of this op.

A0B, BOB
The contents of the A register (AOB) or B register (BOB) are gated
onto the bus. UCR bits 0-7 are not changed.

25
TABLE 3 /

ALU-OP_CODES

CODE - MNEM OPERATION

00 SLO Shift B to A, left open, 1 bit, A onto bus.
01 DAD BCD add, right half A to right half B, no CI, CO.
02 BADX Add A to B, CI, CO.

03 DADX BCD add, right half A to right half B, CI, CO.
04 CMP Compare.

05 DSB BCD sub, right half B from right half A, no BI, BO.
06 BSB Subtract B from A, no BI, BO.

07 BSBX Subtract B from A, BI, BO.

08 ADD Add A to B, no change to UCR.

09 BAD Add A to B, no CI, CO.

0A

0B

0c

0D DSBX BCD sub, right half B from right haif A, BI, BO.
4]3 ~ SUB Subtract B from A, no change to UCR.

OF BCB Combine right byte A, left B, onto bus.

10 INV Invert A (1's complement), onto bus,

11 SRO Shift A to B, right open, 1 bit, B onto bus.
12)

13

14

15 IN1 Insert 'NYBL1' of A into B onto bus.
16 INZ Insert 'NYBL 0' of A into B onto bus.

17

18

19 XOR Exclusive OR (A, B)

1A BOB Gate B onto bus.

1B I0R ~ Inclusive OR (A, B)

1c . DBT Bit test. (address in DEST field)

1D BBT Bit test. (address in B}.

1E AND AND (A, B)

1F ACB Gate A onto bus.

NOTE: CI = carry-in, CO = carry-out, BI = borrow-in, BO = borrow-out.

26

=1 N

/
/
FIGURE 2
CONDITION REGISTER SETTING
6171819
{
4 1 t—Bus< Zero Result of all non-branch
micro~instructions.
—— Bus =Al11 Zero (those with FORMAT OXX)

Carry from MSB —=> Result of BAD,BADX,BSB,
BSBX,DAD,DADX ,DSB ,DSBX.
(binary and decimal add
and subtract)

Overflow ———— Result of BAD,BADX,BSB,
and BSBX.
(binary add and subtract)

Result of Bit Tests DBT and BBT.

‘\

A=18 -
Logical
- A < B »Compare CMP op RESETS bits 0,4,
Result and SETS/RESETS bits
A>B) ~ 1-3,5-7 according to
- the logical and arith
A=B compare results.
Arith.
A < B >Compare
Result
A>B -

3.3 PORT OPERATIONS

The 3-bit PORT field contained in certain types of micro-instructions is
used to encode the initiation and control of CPU-memory data transfers.
Table 4 lists the PORT operation codes and mnemonics.

Those PORT ops which initiate memory requests all use the MAR to hold
“the memory address to be read/written. The MDR ho]dg the data for
writes and receives the data during reads. During FULLWORD ops, the
high-order 15 bits of MAR select the word address. During byte ops,
all 16 bits of MAR are used {see below).

It should be noted that the CPU must compete for memory accesses with
other devices of higher prid?ity on the Direct Memory Access bus. Thus,
a PORT memory initiation may not result in completion within a fixed
number of micro-cycles. The actual completion delay time is a function
of the interference on the DMA. Interlocking in the micro-code is
accomplished by the use of the HDM port operation. This 'HOLD-ON-MEMORY'
op is used following a memory operation to hold up micre-code execution
until the -memory operation is completed. Refer to section 5.0 for
memory operation micro-programming techniques.

FMR, FMW are the port ops for READ and WRITE of a full 16-bit memory
word. BMW is the op for a byte memory write with the left/right byte
written depending on the low-order bit of MAR (0 = left, 1 = right).
FPW and BPW are the same as FMW, BMW except that the protect Tlogic

is enabled, and upper(U) and lower(L) bounds are placed -on MAR(0-7).

"TSR (test read) is a special PORT op which performs the same function
as FMR, but additionally raises a control line to the memory system
which causes the CPU to have top priority during the following memory
cycle. This enables the CPU to perform a READ followed immediately
(locking out any interference) by a WRITE, and thus perform a

"TEST and SET" programming function.

27

CODE

000
001
010

011
100
101
110
111

MNEM

NOP
FMR
BMW

FMUW
HDM
TSR
BPW
FPW

TABLE 4

PORT OPERATIONS E

DESCRIPTION

No operation
Full memory word read

Byte memory write. If MAR,z = 0,

left byte. If MARy5 = 1, r?ght byte.

Full memory word write.
Hold on memory.

Test read.

Protected BMW.
Protected FMW.

28

CODE

o

m MmO O W@ B W 00~ O D AW N =

TABLE 5 l

BRANCH CONDITION CODES

MNEMONICS

TRU
117
122
R1Z
R2Z
Z0B
NOB
ERR
ucz
Uc1
ucz
UC3
INT

29

[0
(o]
o
m

e b D et ek e e e el fed fd e b i e
Mm M S Om > W 00NN W N - O

ﬂmCJF)WJ?LDCD‘HJU\m-hWNHﬁl

SUMMARY OF MICRO-INSTRUCTION FIELD CODES

TABLE 6

SOURCE

REGO
REG1
REGZ
REG3

. REG4

REGS
REGE
REG7
REGS
REGI
REGA
REGB
REGC
REGD
REGE
REGF
X
PIR
MDR
SMDR
UPNT
R1I
R21
SWS
PIRD
P
MAR

CST

UCR

—

ZRO

DEST
REGO
REG1
REG2
REG3
REG4
REG5
REG6

REG7

REG8
REGY
REGA
REGB
REGC
REGD
REGE
REGF
X
PIR
MDR
SMOR
PROT
R1I
R21
A

B
UIR
MAR
AMAR
UCR

- NOP

opP
SLO
DAD
BADX
DADX
CMP
DSB
BSB

BSBX

ADD
BAD

DSBX
SUB
BCB
INV
SRO

IN1
INZ

XOR
BOB
IOR
DBT
BBT
AND
AOB

_PORT
NOP
FMR
BiMW
FMW
HDM

TSR

BPW
FPW

COND COND
TRU NTRU
112 NIlZ
127 NI2Z
R1Z NR1Z
R2Z NR2Z
Z0B NZOB
NGB NNOB
ERR NERR
ucz NUCZ
ucl NUC1
ucz NUC2
uc3 NUC3
INT NINT

30

31

/

3.4 BRANCH CONDITION CODES |

4.0

Table 5 Tists the condition codes and mnemonics for the BRANCH CONDITIONS
encoded in and tested by the SCB and ACB conditional-branch micro-instructions.
Mnemonics are listed for both R=0 and R=1 for each condition code. If R=1
(mnem. prefix N), the inverse condition is tested. |

11Z, 12Z, R1Z, R2Z conditions are true if the corresponding field in the
PIR=0.

The conditions UCZ, UC1l, ---, UC3 are true jif the corresponding bit in
the UCR=1. ’

Z0B condition is true if the previous non-branch micro-instruction bused ZERO
to a DEST. NOB conditicon is true if the previous non-branch micro-instruction

bused negative data to a DEST.

The INT condition is true if the output of the PRIORITY/INTERRUPT SYSTEM
is not equal to the current value of the P register.

The TRU condition always results in a branch.
The ERR condition branches if any error has been detected. For now, only

a PROTECT error is detected.

MICRO-ASSEMBLY LANGUAGE

The 7100 MICRO-ASSEMBLY LANGUAGE is used to write symbolic micro~programs
for the MEMOREX 7100 processor. Programs written in this language are
processed by the 7100 Micro-Program Assembler to produce listing and
object files.

"The following sections describe the structure of the language. Many of

the mnemonics and symbols used to actually construct symbolic micro-
instructions are not listed in these sections. Those mnemonics which
referenced actual 7100 CPU registers and operations are listed in the
earlier chapters of this manual.

4.1

32
The input file for the Micro-Program Assembler consists of 80 f
character records, usually punched cards. There are four (4)
types of input cards: (1) comment card, (2) assembly contro]

statement card, (3) define constant card, and (4) micro-
instruction card.

COMMENT CARDS

4.2

Comment cards have an * in column 1. These cards are listed on the
output Tisting but have no effect on the object code produced. None
of the restrictions on the remaining card types apply to comment cards.
Columns 2-80 may contain any alphanumeric or special characters.

GENERAL CARD FORMAT

4.3

The following specifications apply to all card types except comment
cards.

Blanks are in general ignored, unless some explicit rule is mentioned
for blanks for a specific statement type. The scan and processing of

a card will stop with the last card column, or with the first semicolon.
Any characters on the card past the semicolon will not be processed,
but will appear on the output listing. Thus comments may be inserted
on any card.

The general card format is:

Columns 1-5; Label Field
- ~Lolumn 6: Blank
Columns 7-80: Dependant on card type.

.3 LABELS

A 1abe]‘consists of 1 to 5 alphanumeric characters in the label field
of a card.

/ 33

4.4 VALUES
A 'value' is one or more 'value elements' separated by the delimiters
+ or -, A value element is any of the following:
1) Label
2) X 'xxxx! a hex constant
3) D 'dddd® a decimal constant
4) * the present location counter

4.5 ASSEMBLY CONTROL STATEMENTS

There are three assembly control statement ops: (1) ORG, (2) EQU,
and (3) END. For these statements card columns 7-9 must contain
the op, and columns 10-80 may contain a value field.

The ORG statement controls the setting of the program counter. A
label may be used. The program counter is set to the 'value' of
the value field. Any labels in the value field must be pre-defined
(appear before the ORG statement). A label on the ORG card will be
assigned the value of the value field.

The EQU §tatement is used to define a symbol. A label must be used
or the EQU statement will be ignored. The EQU card causes the
~assignment of the ‘value' of its value field to its label. Any labels
appearing in the value field must be pre-defined.

~-—The- END card signals the end of the input deck. The label and value
fields are qignored.

4.6 DEFINE.CONSTANT STATEMENTS

In addition to the UROM memory which holds micro-instructions, the
7100 CPU has a CROM memory which holds up to 256 16-bit constants
which may be referred to by the GCD type micro-instructions.

!
The output of the assembler, in addition to micro-instruction
object code, must therefore contain an object file to initialize the

CROM. |

This file will be constructed during the assembly process byiadding a
new constant on each use of a GCD type micro-instruction with a
previously not encountered CROM literal value field, and on each use
of a DEFINE CONSTANT (DC) statement which specifies a previously not
encountered CROM value field (if previously encountermgthen an equate
of CROM labels is established).

The DEFINE CONSTANT statement contains the DC op in columns 7-8 and a

value field in columns 10-80. The DC statement may have a label. The
label field symbol, if present, causes the assignment of the assembled
CROM address and DC statement value to the label field symbol.

4.7 MICRO-INSTRUCTION STATEMENTS

If the assembler finds that a card is not a comment card, assembly
control card, or define constant card, it assumes that it is a micro-
instruction statement card.

Each micro-instruction statement results in the generation of one
.micro-instruction in the output object file. The micro-instruction

statement may have a label in columns 1-5, while.columns 7-80 are a

free form field area into which the micro-instruction is symbolically
_._encoded.

A1l micro-instruction statements have the same basic free form field
structure. The FORMAT type of the instruction is impiied by the specific
7100 MNEMONIC symbols used by the instruction. The basic symbolic
micro-instruction structure is:

X =Y, modifier;
where X = primitive
or X = primitive.modifier

/

Following are simple examples of the encoding of micro-instructions
of each format type, which will serve to approximately define the
language at this time. At a later date when the 7100 architecture
is more fixed, a more formal description will be constructed.

The following examples should be sufficient to provide guidelines
for the construction of sample emulation programs, etc., and to
indicate the level of logic required in the micro-program assembler
itself.

FORMAT EXAMPLES FUNCTION ENCOﬁED

ALU: MAR = ADD; A+ B— MAR
14 = SUB, FMR; A - B — REGE, also FMR
6SD: PIR = MDR; " MDR —>_ PIR
15 = MDR, XRA; MDR —— REGF, with X rather than P
used for col. addr.
GCD: MAR = C (X'40'}); The constant X'40' from the CROM —s MAR.
' MAR = C (LABEL); The constant value {assgnd to LABEL)
from the CROM -—= MAR.
GID: A=1(X'F1'); X'F1' —> A -
MDR = I (CHAR); YALUE (CHAR) —= MDR
SCB: BRA.UCZ = 15, FMW; Branch if UCRO = 1 to UROM ADDR in
REGF. Alsoc FMW.
ACB: BRA.I1Z = *+D'3'; Branch if Il = 0 to current location
plus 310
UCB: BRA = TEST; Branch to location given by value of
label 'TEST'
BSR = TEST; Same, but store UPNT return into

assigned register in RAM.

NOTE: If PORT modifier is used alone, then prefix with a comma.
For example, the following symbolic instruction assembles
into a GSD format with HDM Port field and NOP DEST field:

» HDM;

MICRO-PROGRAMMING TECHNIQUES

In_order to properily and efficiently micro-program the 7100, certain
basic techniques, restrictions, and timing information must be under-

5.0
stood. This chapter provides such information.
5.1 SOURCE-DESTINATION RESTRICTIONS

A number of restrictions exist on the use of sources and destinations
for ALU, Gating, and Branch type operations.

Animportant restriction is that any one micro-instruction may make
only one access (either SOURCE or DEST) to the RAM register file.

A large class of restrictions is implied by the data flow {Figure 1)
and table of source and destination codes (Table 2): a number of the
CPU registers may serve as only a SOURCE or DEST but not both. For
example UPNT may only be a SOURCE (see Table 2} even though Figure 1.
shows an input from the bus into UPNT {that path is used only by the
SCB type instructions which have UPNT as an implied DEST).

Caution must be used in gatings from SOURCE's to DEST's when dissimilar
width registers are involved. Justifications and unfilled bit positions

must be verified {some of these have not yet been specified in this

manual).

36

5.2 SCB BRANCH TIMING . l

The ACB and UCB format type branch instructions function completely
within one micro-instruction cycle. In other words, as expected we
find the next instruction (if the branch is taken) is fetched from
the specified branch address location in UROM:

EXAMPLE: ' e

BRA = LOCN;
To

Next
I Inst

LOCN /

A

However, due to the time required to obfain the branch address from
a source, the SCB format type branch actually functions one cycle
after the SCB itself. In other words, the instruction following the
SCB is always executed. The next instruction after that is at the

branch address obtained from the source if the branch is taken:

EXAMPLE : '
: REG 8

LOCN

1l
(0]

BRA.TRU

LOCN -

The SCB op enables branching across the entire 8K UROM span because a 13-bit
address is Toaded into UPNT from the bus to effect the branch. Note that an
SCB branch followed by an ACB (both testing the same condition) enables a
conditional branch to an 8-bit address specified by the ACB on the 'page’
specified by the SCB.

37

5.3 MEMORY PORT OPERATION TIMING i

Various memory port ops are described in Sectjon 3.3, where it was
noted that, due to possible interference on the DMA bus, a memory op
initiated by a CPU port op does not necessarily complete within a
predetermined time.

Thus the micro-code must interiock memory access initiation with "Hold-
on-Memory" port ops so that compietion of the access is insured before
using the result of a READ or overwriting MAR or MDR for a write.

A "HOLD-ON-MEMORY" (HDM) port op in a micro-instruction causes subsequent
micro-instruction execution to be inhibited if a CPU memory request is up
and not yet completed. The micro-instruction containing the HDM is always
-completely executed before the hold takes effect.

The 7100 micro-instruction cycle is 400 ns. The 7100 main memory cycle
is 1.2 pus. Thus there are three (3) micro-cycles per memory cycle.

' The concept of the Hold-on-Memory (HDM) interlocking micro-instruction,
and the timings which result if interference is present is displayed in
Figure 3, EXAMPLE 1.

In this example, the CPU requests a memory read at the same micro-cycle
as a higher priority device on the DMA. Thus, when the subsequent CPU
_HDM.micro-instruction is executed, the CPU enters a HOLD state and
micro-instruction execution is disabled while the memory request remains

up.

In memory cycle 2 of example 1, another higher priority (than CPU)
request is serviced and the CPU remains in HOLD.

38

Finally, jn memory cycle 3, the CPU memory read is serviced, and the CPU
leaves HOLD and its request line falls.

This example displays the ratio of three {3) micro-cycles per memory
cycle.

_Note, however, that the memory is not restricted to accesses which are
synchronous to 1.2 ps time boundaries.

The memory may be accessed on any micro-cycle in which it is not busy.
This feature is termed "zero-latency" accessing. This feature will be
described in more detail later in this section.

2

5.3.1 WRITE OPS (see FIG.3, EX.2)

A main memory WRITE operation is requested by the CPU when any of the
PORT codes FMW, BMW, FPW, FBW are decoded and executed by the CPU.

The MAR and MDR must be loaded with valid data before {or by) the
micro-instruction which initiates the write.

Following the write micro-instruction and prior to and including the
interlocking HDM, neither MAR nor MDR should be changed.

39

5.3.2

/ 40

1
!
|
|

Following the HDM micro-instruction, the write has comp1et§d and MAR

- and MDR may be changed.

Example: » FMW; initiates WRITE
— ’ any OP
, HDM; interlocks ti1l WRITE complete
—3 MAR, MDR may now be changed
READ 0PS (see FIG.3, EX.2)

A main memory READ operation is requested by the CPU when the port
codes FMR or TSR are decoded and executed by the CPU.

The MAR must be loaded with valid data before (or by) the FMR or
TSR micro-instruction. Both MAR and MDR must be held fixed prior to

and including the interlocking HDM micro~instruction,

The new MDR value is available in the instruction following the HDM.

- Example: -, FMR; initiates READ

5.4

5 any OP
, HDM; interlocks till READ complete
Y = MDR; new MDR value available for use

DECIMAL ALU OP TIMING

The decimal ALU operations DAD,DSB,DADX,DSBX, require two micro-
cycles for their execution (see section 3.2).

The preferred technique for micro-coding these operations to insure
two micro-cycle execution timings is to consecutively execute two
identical micro-instructions for each decimal ALU op to be encoded.
The first micro-instruction of the identical pair will initiate the
execution of the op, and the second will place valid data onto the
bus to the selected destination.

41

eL-SV-D

¥

ONTWI| 1¥0d AYWOWIW -NdD ‘E 3¥nsI14

_ A _Q_ 183003y AYyoway

_ [_ _ _ [ASOE ABOW3IW

_ [a-oH

| _) 3194 ABOWIW A D

I [ian] [avay] do L¥od ned

U U U U U uUu ououou : : 1] PIT1D
ol oL 24 1L oL 2L 1L ol 2L . 1n oL

—_u.m. ANOAD AdOW AW + o 3T10AD AMOWIW \T T 232AD Auowaw L u._.. MJ&E,QX.W

! v/ /7 _ V7777 1530031 ABow3wW

| [_ | ASOQ AYOWIW

) aroH

_] I B 31940 A¥OWaW NdD

_ * _ _ [NaH]| ENEL _EQI_ _ DmmW_ 40 A¥od Q4D

L L U U L U L L L] U i . X201
oL oLl TL TA oL oL 2L 'L oL

2 4k | ke S ERCIACNE

IMVAD AU s Vzu ANO I SUOQYy

)

