IB! CONFIDENTIAL ‘ : ADVANCED COMPUTING SYSTEMS
' SAN JOSE '
March 15, 1966

MEMORANDUM TO: File
SUBJECT: ' ACS Simulation Technique

D. P. Rozenberg

L. Conway

R. H. Riekert

LC./DP/RR:kp

¢cc: Architectural Distribution List

o 22

- [L Conway
Archives

- INTRODUCTION

A brief description of computer simulation of physical systems in gen-
eral and the features of current simulation languages is given.

A technique is then described for simulation using FORTRAN IV, which
maintains the essential features of current simulation languages with
a great improvement in run times and core requirements.

This technique may be useful in the production of very large simula-
tion programs where run times and core requirements are such that
programming in existing simulation. languages may not be feasible.

wn . -

- , . : o S ._ TolD
L. Conway
. Archives

if

SYSTEM SIMULATION

Assume that it is of interest to study the behavior of complex systems
or automata. If the level of complexity is such that the number of
states of the system and the p0551b1e sequences of states is very large,
then a logical approach to such a 'study is to simulate the system
using a digital computer.

Physical systems are usually described in terms of laws or logical
rules relating causes and effects; i.e., a given state together with
inputs to the system causes or determines the state (or the proba-
bility of selecting the state) at some future time. The "behavior"
of the system is thus the sequence of states of the system during
the passage of time, in response to a specific input sequence.

A computer simulation thus consists of identifying variables which
determine the states of a system and the rules for future state
selection (the cause and effect relation) and implementing this
model with a computer program. Thus it is possible to artificially
experiment with the system, and to study the sequence of states for
chosen sequences of inputs, with time as an independent variable of
the simulation.

In simulating a system it is necessary to perform a computation only
at those times when a state or an input has changed since
it is only at such times that a future change of state. can be
caused. It is therefore not necessary to examine the system at
regular clocked intervals. Indeed, this may be vastly more efficient,
than examining a system at clocked intervals of simulated time

if the time interval between changes of state varies over a wide
range of values. :

Thus it is found that digital simulation languages may provide the
programmer with utility routines for (1) providing a means of causing

- at future times those effects determined by past and present system

states and inputs, and (ll) advancing time, as an independent variable
of the simulation, to the next scheduled effect (change of state)

or to the next change of the input sequence, and (111l) passing control
to that subroutine which simulates the effect and which itself may
cause future effects. Perhaps the best known simulation languages.

of this type are SIMSCRIPT and GPSS . These languages have

in addition to the above features a number of utilities which (1)
ease the specification of variables and events,(2) ease the writing
of the simulation model description,and (3) simplify the production

- qf output routines.

-) - T o224

L. Conway

o T _ Archives

-2

-

e) For many burposes:these additional utilities are not essential.
B * Indeed, they may cost a high overhead in terms of core space and
' .running time. , S

GPSS has eased the writing of the simulation to the point where
one often cannot specify sufficiently complex tests for branching.
Thus, it does not document well a complex description. SIMSCRIPT
is sufficiently general but a high cost is extracted in storage
and running time because it attempts to simplify the handling

of variables. .

So, to have a powerful simulation language or technique without all
the unnecessary utility features of existing languages, it was
decided to write utility routines to perform the basic simulation
requirements. A decision had to be made on the language in which
to write the simulator utilities routines and also the simulated
system description.

If it is important to use the program listings as documentation of
the model, a high level language may be necessary. Otherwise,

an assembly language might give slight time and storage advantages.
In either case, it is desirable to use a common language which runs
under a reasonably powerful operating system.

Since in most detailed simulations, the exact model description and
documentation can only reside in the simulation program listings,
E) a high’ level language was chosen as the basic language.

Thus, the utility routines described in the following sections and

- the model descriptions are all written in FORTRAN IV which is a
common high level language running under IBSYS. IBSYS is an
operating system which is sufficiently powerful so as to be a
valuable aid in running and debugging programs.

L. Conway
Archives

- THE FORTRAN IV SIMULATION ROUTINES

1

" A general deééription of the simulation utility routine written in
FORTRAN IV follows.

The central idea in the operation of the simulation program is the
ordered placement of -event notices into a calender of future events
as the related cause statements are encountered. The calender -is
ordered according to increasing time of occurrence. When an event
terminates (i.e., the event subroutine terminates), the ordering
of the calender ‘indicates the most imminent event and its scheduled
time of occurrence. Thus time can be advanced to that scheduled
time and the appropriate event subroutine can be called.

A set of arrays, located in blank common, comprise the calender.

An event notice consists of one element from each array with

the same index. Each notice contains linking information, the
scheduled time of occurrence, an indication of the event routine

to be called, and three parameters, to be used by the event routine.
An event notice will be said to occupy a row of the calender.

During the execution of an event routine, conditions may call for
the causing of an event. This is implemented by calling utility
subroutine CAUSE with the parameter set: Name of event routine
being caused, the time at which the event is to occur, and zero to

%9 three parameters to be passed to the event routine. The utility
subroutine CAUSE will place in the calender the appropriate event
notice. An event may cause any number of events including itself
to occur at a future time. .

After completion of an event routine,,control is returned to
routine MAIN. MAIN then calls the utility TSTEP which extracts

the next most imminent event from the calender, sets simulated time
to the scheduled time of that event, and transfers control tce the
appropriate event routine. Upon completion of one event routine,
control is passed to next most eminent event routine which will
then have the capacity for causing additional events.

In some instances it is desirable to cancel an event which may have
been scheduled for the future. To accomplish this a utility sub-
routine REMOVE is included. It is called with the name of the
event to be canceled as a parameter and its function is to search
' the calender for the first instance of an event notice having
the name of the event to be ¢ nceled. That event notice is then
" removed. : o - :

The rbutine package for any given simulation would contain MAIN,

CAUSE, REMOVE, and TSTEP plus all of the event subroutines necessary
for specifying the model being simulated. CAUSE, REMOVE, and TSTEP
are all utility subroutines which are invariant from one simulation
to arother. MAIN varies from one simulation to another only in that

wilke

L. Conway
Archives

o720

¥

it is desirable to have MAIN contain common statements'which include

"all the systems variables and initializations of system variables.

Included in COMMON are the special variables and the system
variables. The special variables include the calender arrays; TIME-
the current value of simulated time; IPAR 1, IPAR 2, and IPAR 3 -
the parameters associated with the current event; _)

o ‘ : . and ISL and ITL - pointers utilized
in the calender manipulation. The system variables are those vari-
ables in terms of which the programmer describes his simulation
model. ')

The calender consists of six single indexed arrays which are indexed
by the same pointer. Thus the calender will be referred to as
though it were a two dimensional array with six columns. Column 1
contains linkage for the ordering of event notices. Column 2
contains the time of occurrence while Column 3 contains the
reference to the event routine. The remaining columns contain
parameters to be passed to the event routine; associated with the
event are two pointers - ITL which specifies the next most _
imminent event and ISL which specifies the row to be filled by the
next call of subroutine CAUSE. : .

As part of the initialization in MAIN, the linkage in the calender

is set up. The first row is linked to the second, the second to the
third, and so forth. The link in the last row is set to zero to
indicate the end of the chain. 'The first row of the calender is

set to indicate an event with a very large value of scheduled time.
(This simplifies the calender searching in CAUSE. Finally, ITL

is set to 1 and 1ISL is set to 2. - .

To schedule an event (i.e., place an event notice in the calender)

the time of occurrence, the event routine reference, and the three
input parameters are stored in positions 2 through 6 of the row
indexed by ISL. Following this, ISL is set equal to the value

of the link in the same row. Next, column 2, the time of occurrences,
i1s searched beginning with the row designated by ITL in the order
given-in column 1, the linkage column. The object of that search

is to find an event row k with a time of occurrence which is greater
than the occurrence time of the event being scheduled. When such

- & row is found, the lirks are adjusted to schedule the new event

ahead of the event in row k. The initial event in row 1 guarantees
that we find a row k. :

Whenever TSTEP is called, position 2 is stored in the COMMON variable

§ TIME, and positions 4, 5, and 6 are stored variables IPAR 1, IPAR 2,

and IPAR 3. In addition, the o0ld value of position 1 goes into
ITL, the old value of ITL goes into ISL, and the o0ld value of ISL
goes into position 1. Finally, the event routine reference is
used to call the appropriate event, :

An example will now be given to illustrate calender manipulation.

Assume that the calender is in the state given in figure 1. ocl
o . ' L. Conway
Archives

- Calender
- . J‘_‘
o ™
Index Link Time Event Reference Par 1 Par 2 Par 3
[} .
1 0 1039
2 4 1.0 Event 1
3 6 2.0 Event 17
4 3 1.5 Event 3
5 1 4,0 Event 9
6 5 3.0 Event 5
7 8
d s |
9 10
IsL=17, ITL=2
: FIGURE 1
3 - ~ o T 0%

o .. . _— L. Conway
-) - ‘ o o T Archives

sl Assume that the next encountered utility call is

o CALL CAUSE (EVENT 12, 3.25, 0, 0, 0).
The resuylt is shown is figure 2.
Index Link Time Event Reference Par 1 Par 2 Par 3

1 0 1030

2 4 1.0 Event 1

3 6 2.0 Event 17

4 3 1.5 Event 3

5 1 4.0 Event 9
~,
;; 6 7 3.0 Event 5 .
' 7 5 3.25 Event 12

8 9

[]
9 10
| ITL=2, _ISL=8
FIGURE 2

%: - 029

- L. Conway
:] Archives -

B
FE

CALL TSTEP

The result is given in figure 3.

-

- Index Link Time Event Reference

- If the next encountered utility call is:

.

Par 1 Par 2 Par 3
1 0 1039
2 8
: 3 6 2.0 Event 17
4 3 1.5 Event 3
5) 1 4.0 Event 9
6 7 3.0 Event 5
%? 7 5 3.25 Event 12 .
8 9
9 10
ITL=4, ISL=2
) FIGURE 3
%': : - To630
- L. Conway

. Archives

F*

) The final subject of this section is the transfer of control to
i the intended event subroutine when the statement CALL TSTEP is
encountered in MAIN. Two satisfactory methods have been used. The
first method utilizes FORTRAN IV in a perfectly straight forward
* manner and is the method to be described in this report. The
other_method (Method 2) has the advantage of being simpler and
easier-to use than Method 1, but has the disadvantage of depending
on specific characteristics of the IBM 7090/94 IBSYS compiler.

In using Method 1 a variable in a 'block of named common

is defined for each event routine. This variable is the event
reference mentioned earlier and is thought of as the event name
while the event subroutine name consists of the same FORTRAN N
symbol prefixed with an X. For example, a particular simulation
model might consist of the following five events. The correspond-
ing subroutine names are also given below.

. Event Names Subroutine Names
MOVE X MOVE .
GENER X GENER (A)
. DELAY : X DELAY
S PROC ‘ X PROC (X,Y,Z)
FINIS - X.FINIS

Further, it is required that the event names be assigned unique
integer values from 1 thru N where N is the number of events.
The initialization of event names may be done in routine MAIN.
The organization of MAIN could be as follows:

COMMON 11 e e .

.COMMON /NAMES/ MOVE, GENER, DELAY, PROC, FINIS

INTEGER, GENER, DELAY, PROC, FINIS

.© € SYSTEM INITIATION STATEMENTS

C CALENDER INITIALIZATION STATEMENTS

MOVE = 1
GENER = 2 . -

2 DELAY = 3 : S O3\

7 PROC = 4 o -
FINIS = 5 - L. Conway

Archives

C PLACE INITIAL EVENT NOTICE
. CALL CAUSE (MOVE, 1.0, 0, 0, 0)

1000 CALL TSTEP (NEVENT)
. GO TO (1, 2, 3, 4, 5). NEVENT

1 CALL X MOVE
GO TO 1000

2 CALL X GENER (IPAR 1)
GO TO 1000

3 CALL X DELAY
GO TO 1000

4 CALL X PROC (IPAR 1, IPAR 2, IPAR 3)
GO TO 1000

5.CALL X FINIS -
GO TO 1000

END

Thus TSTEP returns as the event reference the event number defined

29 in the initialization of event names. The event number is then
used to branch to the statement which calls the intended event
subroutine. ‘

Method 2 requires less bookkeeping on the part of the programmer.
The event subroutine names are the same as the event name and are
not included in COMMON. Further, the statements for entering the
event subroutines are unchanged from one simulation to another as
contrasted to Deck MAIN of Method 1 which must be modified whenever
an event is added or deleted. However, one special variable
MYSELF is located in COMMON. Its use will be developed later.

Referring to the above example, assume that it is desirable to
have event MOVE cause event DELAY T units of time in the future.
Subroutine MOVE will contain the two following statements:

Subroutine MOVE

EXTERNAL DELAY

CALL CAUSE (DELAY, TIME + T, 0, 0, 0)

. ‘ - e ’ 7'_‘f. 27,
? | RETURN o o5
- | L. Conway
Archives

END

=} When subroutine CAUSE is entered the address associated with the

Y - parameter DELAY is the address of the entry point in subroutine

. --DELAY.. Therefore, what gets stored in column 3 of the calender

’ is the first executable instruction in subroutine DELAY. Thus,
the event references mentioned above are the first instructions
of the event subroutines. As will be apparent below, this Method
2 mechapism works because the first instruction of a subroutine
is always a transfer to the prolog of the subroutine.

1
In deck MAIN, the subroutine selection statements are:

1000 MYSELF = NEVENT (ITL)
CALL TSTEP (MYSELF)
GO TO 1000

when statement 1000 has. been executed MYSELF contains the first
instruction of the event routine to be entered. Following that,
subroutine TSTEP is called with the address of MYSELF as the para-
meter address. . ' '

The form of TSTEP is:

:; SUBROUTINE TSTEP (DUMMY)

IPAR 1
IPAR 2
IPAR 3

nan
]

CALL DUMMY (IPAR 1, IPAR 2, IPAR 3)
RETURN
END

The address of DUMMY is, remember, the address of'MYSELF. The
CALL DUMMY is translated into the following instructions:

TSX MYSELF, 4
TXI 3

- . "PZE
PZE IPAR 1
PZE IPAR 2

g - ' PZE IPAR 3 - o3

- L. Conway
' 1 Archives

i a!’{ H
T

The TSX MYSELF, 4 instruction causes the control to transfer to

"a location-in COMMON with linkage established in index register
‘4. -As mentioned above the first instruction of a FORTRAN IV

subroutine compiled by IBSYS is always of the form:

TRA Prolog
Therefore, after the TSX transfers control to the location of
MYSELF, the value of MYSELF transfers contol to the prologs of -

the desired event without modifying the return or parameter

linkage. This is precisely the desired transfer.
The variable MYSELF serves one other important function.
Because FORTRAN does not allow a routine to contain an EXTERNAL
statement which contains the name of that routine, event routine
MOVE cannot contain a statement of the form:

CALL CAUSE (MOVE,}.
However, the desired effect will be obtained using:

CALL CAUSE (MYSELF, . . .).

The complete listings of the utilities routines required for
both Method 1 and Method 2 are given in the appendices.

- S ' ' | . oay

- L. Conway

" Archives

EXAMPLE

An example will now be described which illustrates the details of
implementation of a system simulation in FORTRAN IV.

The system under study will be a simple computer memory gueue,
Svppose a computer has several independent memory boxes. We
may thus queue up memory requests and each computer cycle
examjine the queue and the memory boxes to see if there is a
request on the queue for some non-busy box. A simulation will
enable us to experimentally determine such things as average
time on queue, average queue length, etc., as a function of re-
quest generation rate, number of memory boxes, and the memory
cycle time,

The system may be roughly described as consisting of three parts,

as the following diagram:
in the g g —@ MEMORY
) ') BOXES
™ l
Generator of Memory L72~1
Memory —{> -{) .
- Requests Queue ,

Mn

The generation of memory requests will be artificially modeled
by forming either no request or one request per computer cycle,
according to some probability, with the box number of the re-
quest chosen at random. A generated request will be placed on
the queue, if thereis space for it. Every cycle, the queue will
be scanned for the first request for a free memory box. If
one is found it will then cause the memory box to be set busy
for the cycle time.

A detailed description of the simulation now follows, with

. the FORTRAN IV event subroutines separately listed and described.

GENER

The simulation of the generation of requests is performed by
GENER, -a routine which first causes itself one cycle later and
thus runs every cycle. GENER causes a request to be generated
if a random number, uniformly distributed between O and 1, is
found to be less than the specified probability of generating -
one request in a cycle. If the request is to be generated, a

 random number is then used to select a memory box for the request.

If there is room on the queue, the request is caused to arrive

_ at the queue.8 units of time later, at the "end" of the machine

cycle., The listing of GENER follows. .
- _ ' - 035

- L. Conway
T Archives

-10-

™ $IBFTC GENER
—. — . SUBROUTINE XGENER - . — . o o . _ .
coMMOoN |
‘C GENERATE MEMORY REQUEST
- CALL CAUSE (GENER, TIME + 1.0)
CALL RANDOM (R)
IF (R.GT. PROB1) RETURN ' -
CALL RANDOM (R)
BOXNO = (R % FLOAT (NBOX)) + 1.0
IF (QMPNT.EQ.NQM) RETURN
INUMB = INUMB + 1
CALL CAUSE (QBUSY, TIME + .8, BOXNO, INUMB)
RETURN
END

QBUSY

The event routine QBUSY simulates the arrival of a request

on the queue. This is done by incrementing the queue input
pointer OMPNT, and placing the instruction number and memory
box number into the queue array QM. :

" $IBFTC QBUSY
SUBROUTINE XQBUSY (BOXNO, INSTR)
. COMMON _
" C PLACE REQUEST ON QUEUE
QMPNT = QMPNT + 1
QM (QMPNT, 1) = INSTR
oM {QMPNT, 2) = BOXNO
RETURN
END

-~ QMCON

The simulation of the control of the queue is performed

by QMCON. This event first causes itself to run again one

cycle later. Then a scan pointer OMSCAN is initialized to

one. The queue entry indicated by QMSCAN is then examined to see
= : ' - ' T 036

: . 3 - - [t Conway
e e T e |

-11-

Lt

if the indicated memory box is busy. If it is, the scan

" pointer is advanced and the next entry similarly examined.
- If the box is not busy, the memory request is issued by

causing the events MBUSY.and QUEMP at .8 units of time later
(at the "end” of the cycle), and by causing the event MCYCC
at a time .8 + CYCT later.

-

SIBFTC QMCON
SUBROUTINE XQMCON
COMMON _

C QUEUE CONTROL, SCAN QUEUE AND

C SEND OUT MEMORY REQUEST, IF POSSIBLE

CALL CAUSE (QMCON, TIME + 1.0)
QMSCAN = 1

10 _ IF(QMSCAN, GT, QMPNT) RETURN

HH

BOXNO = QM (QMSCAN, 2)
INSTR = QM{QMSCAN, 1) ;
IF (MEMBSY (BOXNO).EQ. 1) GO TO 20
CALL EAUSE (MBUSY, TIME + .8, BOXNO, INSTR)
CALL CAUSE (QUEMP, TIME + .8, QMSCAN)
CALL CAUSE (MCYCC, TIME + .8 + CYCT, BOXNO)
RETURN

20 QMSCAN = QMSCAN +1
IF (QMSCAN.GT.NQM) RETURN

'_Go TO 10 |

END

MBUSY

~ This event sets the indicated memory box busy by placing INSTR

into position BOXNO the array MEMBSY.

$IBFTC MBUSY o 037
: R . . : - - 1 L. Conway
~~SUBROUTINE XMBUSY (BOXNO, INSTR) T ' Archives

COMMON _

-12-

C PLACE'REQUEST INSTR IN MEMORY BOXNO

QUEMP

- MEMBSY (BOXNC) = INSTR

RETURN

END

" This event removes the indicated entry from theé queue,

up® any following entries, and decrementsthe input pointer,.

$IBFTC QUEMP

MCYCC

SUBROUTINE XQUEMP (QMSCAN)
COMMON _

REMOVE REQUEST AT QMSCAN FROY QUEUE

J = NOM - L

“"DO9 L =1, 10

DO 7 K = QMSCAN, J

oM(K,L) = oM{K + l, L) .
QM (NQM,L) = 0 .
QupNT = QMPNT - 1

RETURN

END

This event simulates the completion of the memory cyclé by
resetting the memory busy indicator of the specified memory

box.

$ IBFTC MCYCC

- COMMON _
AT MEMORY CYCLE COMPLETION, FREE BOX T
MEMBSY (BOXNO) = 0 o 033
_ | . . . e L. Conway
— —RETURN—— . . — T e ey

SUBROUTINE XMCYCC (BOXNO)

" END

"moves

-13-

#™ STATS

" 77" -Included 'in the list of events is one called STATS which is - -
an output routine. STATS causes itself one cycle later, and
+ outputsthe current system status. The run stops if a
specified value of simulated time MAXT is exceeded.

S$IBFTC STATS
SUBROUTINE XSTATS '
coMMON _
C STATS IS THE OUTPUT ROUTINE
CALL CAUSE (STATS, TIME + 1.0)

P00

COLLECT AND OUTPUT SYSTEM STATUS
/ : oSS
£ L
" IF (TIME .GE.MAXT) STOP
39 RETURN
END
RANDOM) -
Random is a random number generator. The statement CALL
RANDOM (R) returns R to the calling routine a value
between 0 and 1 withuniform distribution.
CAUSE
CAUSE is one of the simulation utility subroutines previously
specified in this report. It is called to place an event into
the calender. '
TSTEP
TSTEP is one of the simulation utility subroutines previously
specified in this report. It is called from MAIN to advance

~ simulated time to that of the next event in time, and get the
parameters and number of that event, '

MAIN

MAIN is the first enfered and "main" routine of the simulation o3 9
program and performs a number of functions. First it initializes

the common variables to zero. Then the run.parameters_ are read - L. Conway
into the--appropriate common variables. The calender is then Archives

initialized with the proper linkage and starting events are
placed into the calender with CAUSE statements. Following and

- ~-14-

+

including the statement number 1000 in MAIN are the instruction
"necessary to cycle thru the events in the calender.

%9

;
§

Assume that the following COMMON and specification statements.
+ are included in every routine described, and indicated by
‘the statement: COMMON _

—— —

COMMON TIME, -IPAR 1, IPAR 2, IPAR 3, ID, ISL, ITL,

1 LINK (200),CTIME (200), NEVENT (200), KOLI (200),
KOL2 (200), KOL3(200), NBOX, NQM, CYCT, MAXT,

3 PROB1l, OM (32,2), MEMBSY(64), QMPNT, INUMB
INTEGER OM,(QMPNT
REAL MAXT
COMMON / NAMES / GENER, QBUSY, QMCON, MBUSY

{ 1 QUEMP, MCYCC, STATS

INTEGER GENER, QBUSY, QMCON, QUEMP, STATS

The listing of MAIN follows.

$IBFTC MAIN
COMMON _ .

EQUIVALENCE (COM(I), TIME)}, (X, CTIMEC(1))
Cc MAIN INITIALIZES COMMON TO ZEROES, READS IN

C SYSTEM PARAMETERS, SETS UP THE CALENDER, INITIALIZES

C THE EVENT VALUES, PLACES STARTING EVENTS INTO THE
'C CALENDER AND THEN CONTROLS THE SEQUENCING OF EVENTS
DO 101 I = 1,3000
101 CoM (I) = 0
| - READ PROB1, CYCT, NQM, NBOX, MAXT
TIME = 0,0
. DO 92 ITL = 2,199

92 LINK (ITL) = ITL + 1

ISL = 2
_— L. Conway
= 1.0E30
X 1 : Archives

" GENER = 1

1000

- 7

QBUSY

~ _QMCON

MBUSY
QUEMP
McYCC

STATS

6

7

-15-

CALL CAUSE (STATS, TIME + 1.0)

CALL CAUSE (QMCON, TIME + 1.1}

CALL CAUSE (GENER, TIME + 1.1)

CALL TSTEP (EVENT)

Go TO (1, 2, 3, 4, 5, 6, 7), EVENT

GO TO 1000

CALL GENER

CALL XQBUSY (IPAR 1, IPAR 2)

GO TO 1000
CALL XQMCON
GO TO 1000
CALL XMBUSY
GO TO 1000
CALL XQUEMP
GO TO 1000
CALL XMCYCC
GO TO 1000
CALL xéTATS

GO TO 1000

END

(IPAR 1, IPAR 2)

(IPAR 1)

(IPAR 1)

fLD%W

L. Conway
' Archives

-

REFERENCES

K. Blake and G. Gordon, "Systems Simulation with

Digital Computers,"” IBM Systems Journal, Vol. 3,
No. 1, 14 (1964).

R. Efron and G. Gordon, "A General Purpose Digital
Simulator and Examples of its Application: Part I
Description of the Simulator, " IBM Systems Journal,
Vol. 3, No. 1, 22 (1964).

"General Purpose Systems Simulator II," Form B20-
6346-1, International Business Machines Corporation.

B. Dimsdale and H. M. Markowitz, "A Description of
the SIMSCRIPT Language,” IBM Systems Journal, Vol. 3,
No. 1, 57 (1964).

‘H. M. Markowitz, B. Hausner, and H. W. Karr,

"SIMSCRIPT, A Simulation Programming Language,"
The RAND Corporation, 1963, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey. .

ok 2

_ L. Conway
o ' " Archives

Appendix A

. Listings of utility routines for Method 1

oH3

L. Conway

| -Archives

- - - - .
. i _ - -

: , 03/18/6¢
CAUSE - EFN SOURCE STATEMENT - [IFN{S) - T '
Q§ . . :SUBROUTINE CAUSEU(IEV,T,IP1,IP2,IP3)
e COMMON TIME,IPARL,IPAR2,TPAR3, ID,ISL.ITL,
. XL INK (200} ,CTIME{200) ,NEVENT(200),KOL1{200),K0L2(200)+K0L3(200)
C " CAUSE CNTERS EVENTS ONTO CALENDAR
¢ " - _LTL_ IS LOCAYION OF FIRST EVENT IN CALENDAR
c ' ' T1SL 1S LOCATION OF FIRST AVAIL ROW IN CALENCAR
i NEXT=TTL
G0 TO 20) ’ '
c 10 LOOP UNTIL GIVEN TIME IS LESS THAN NEXT ENTRY IN CALENDAR
10 LAST=NEXT ' :
NEXT=EINK{NEXT). o
20 IF (T .GT. CTIME(NEXT)Y GO Tp 10
ID=1SL
ISL=LINK{ISL) . -
LINK(ID)=NEXT
" C SEE IF THIS EVENT WILL BE THE FIRST ON THE LIST
CIF (NEXT.EN. ITLIGO TO 40 i _
- LINK(LAST)=ID i T
- 30 CTIVME (ID)=T
' NEVENT(ID)=IEV
KOLL{ID)=IP1
KOL2{ID)=1P2 .
L KOL3C(ID)=IP3 i
RETURN '
N 40 ITL=ID
z) G 1O 30
s END .
} : Sle ne
: - TTConWaOY

Archives

-,

N .

PR

L]

REHQVE - EFN SOURCE STATEMCONT =~

IFN(S)

__03/18/66

P

SURROUTINE REMOVF{EVENT oSTINE,1+J0K)

COMMON TIME.IPARL,IPAR2,IPAR3,ID,ISL,ITL,
XLI\K(ZOO),CTIMF(ZOO).NEVENT(ZOO)gKOLl(ZOOl-KOLZ(ZOOI.KOL3!200)

INTEGER EVENT
NEXT=ITL
IF(NEVENT(ITL) .EQ.EVENT) GO TO 20

10 LAST=NEXT

————t .

_RETURN _

NEXT=LINK{NEXT)

IF(NEXT.EQ.C) GO TO 30

IF(NEVENTINEXT).NE.EVENT) GO TO 10
WE FOUND EVENT

T STIME=CTIME(NEXT)
I=KOL1{KEXT)

J=KOLZ (NEXT)
K=K0OL 3 (MEXT)
LINK(LAST)=LINK{NEXT)
CLINK{NEXT)=ISL _

, ISL=NEXT

RETURN

EVENT IS FIRST IN LIST

20 COMNTINUE

STIME=CTIME (NEXT)
I=KIL1INEXT)

J=KOL2 (NEXT)
K=XOL3(NEXT)
ITL=LINK{ITL)
LINK{NEXT)=1ISL
[SL=NEXT

EVENT NOT PRESENT ~ 7

30 COMTINUE

STIME=TIME
I=0
J=0
K=0

RETURN
END

i

L C -
Archives h

 03/18/66

TSTEP ~ EFN SOURCE STATEMENT - [FN(S) -
= T SURROUTINE TSTEP(IEVENT)
. COMMON TIME,IPAR1,IPAR2,IPAR3,1D,ISL,ITL, . L
" XLINK(200),CTIME(200) NEVENT (2001 4KOLL{200),K0L2(200), ,KOL3 (2001
c . ‘ SUBRIUTINE TO STYEP EVENTS IN CALENDAR
C " LTL_IS_LOCATION OF FIRST EVENT IN CALENDAR
c . ISL IS LOCATION OF FIRST AVAIL ROW IN CALENDAR
In=1TL
ITL=LINK(ID)
LINK{ID)=ISL _ . , :
IsL=1D .)

 TIME=CTIMECID) . L
IPAR1=KOL1({ 10)
IPAR2=KOL2 { 10) | , ‘
1PAR3=KOL3(ID) -
IEVENT=NEVENT(ID)

RETURN
END - o -
- \ . . .
i - : e
O &
/ o . ‘.7_ - —-iﬁ‘
_ ' e . L. Conway

Archives—
Aot

Appendix B

0 Listings of utility routines for Method 2

% _ ; : . ' Cown

. - | L. Conway
Archives

- . 03/18/6¢
CAUSE - FEFN SCURCE STATEMENT =~ CIFN(S) -

SURRDUTINE CAUSE{IFV T,1PL, 1P2,1P3)
- - COMMON. T.IME,IPAR], IPARZ,IPAQ3 [OsMYSCLF L ISL,ITL,. . __
XLINK(2CO)},CTIME{200) ,NEVENT(200),K0LL1{200),KOL2(200) KOL3(200)
c .) CAUSE ENTERS EVENTS ONTO CALENDAR
(o ITL IS LOCATION_OF FIRST EVENT IN CALENDAR
- ISLIS LOCAT!ON OF FIRST AVAIL ROW IN CALENCAR
NEXT=ITL
60 10 20 . '
¢ 10 LOAP UNTIL GIVEN TIME IS, LESS THAN NEXT ENTRY IN CALENDAR
10 LAST=NEXT . -
NEXT=LINKINEXT)

T 20 IF (T .GT. CTIME(NEXT)Y GO "To 10

[0D=1SL
ISL=LINK{ISL)} -
LINK{ID)=NEXT

c SEE IF THIS EVENT WILL BE THE FIRST ON THE LIST

__TF (NEXTV.EQ. ITL)GO TO 40
LINK{LASI)-ID Tt T
30 CTIME (ID)=
NEVENT(ID)=IEV
KOL1(ID)=IP1
KOL2{ID)=IP2
_KOLI(ID)=]P3
RETURN
- 40 ITL=ID
;D GO TD 30 -
END . .

- . | - f - T one3
') L. Conway

i

_ - _ . 03/18/6¢
REMOVE - EFN SOURCE STATEMENT - IFN(S) -

—— a - [e —

Lig + 'SUHKOUTINE REM PVE(FVFNT STIMF,I,4,K}
= _COMMON TIME,IPARL,IPARZ, IPAR3.ID MYSELF,ISL,ITL,
XLIV&IZOO).CTIMF(ZOOI.NEVENT(ZOO).KOLI(ZOO) KAQL2(200),K0L3(200)
- INTEGER TVENT
MEXT=1TL
[F(NEVENT(ITUY.£Q.EVENT) GO TO 207
10 LAST=REXT . .
NEXT=LINKINEXT)
IF(NEXTLEN.0) GO TO 30 '
[FINEVENT(NEXT).NELEVENT) GO TO 10O
c __._ WE FOUND _EVENT o -
T STIME=CTIME (NEXT)
I=KUL1{NEXT)
J=KUL2 (NEXT) .
K=KOL3 (NEXT)
LINK{LAST)I=LINK(NEXT)
_LINK{NEXT)=]SL L L
ISL=NEXT
RETURN
c ‘ EVENT IS FIRST IN LIST
20 CNNTINUE _
STIME=CTIME(NEXT) ’ :
_I2KOLL{NEXT)
J=KOL2{NEXT)
K=KOL 3{NEXT)
ga ITL=LINK(ITL)
- LIMKINEXT)=]SL .
ISL=NEXT
RETWN
EVENT NOT PRESENT
30 CONTINUE
STIME=TIME
1=0
J=0"
K=0

RETURN
END

————— e A —_——— -

¥ - _— | ‘ o L
" - L. Conway

_____- - — —- ‘ s) : — i Archives

‘ -
- ' - 03/718/6
TSTEP -~ FEFN. SCURCE STATEMENI - TIFN(S) -
o+ SUBIOUTINE TSTEP(DUMMY)

- e— COMMON TIME ,IPARL, IPAR2,IPARZ, IDMYSELF,ISL,ITL, e

' XLINK(2G0),CTIME(200) yNEVENT(200},KOL1{200),KOL2(200),KOL3(200)

c . SUBRJUTINE TO STEP EVENTS IN CALENDAR

C . .7 . ITL_ IS LOCATION_OF FIRST EVENT IN CALENCAR ‘

T . ISL IS LOCAYION OF FIRST AVAIL ROW IN CALENDAR

IN={T1¢L . :
ITL=LINK(ID)
LINK(ID)=1SL .
[SL=1D

L TIME=CTIME(ID) ~ o N e

T IPARL=KOLL (D) e
IPARZ=KOLZ(ID) :
IPAR3I=KQOL3(1D) -
CALL DUMMY({IPARL,IPAR2,[PAR3)
RETURN
END e L B
i
3 - OS50
) i - .L. Conway
—— -— S -Archives———

