DESIGN PRINCIPLES FOR A
HIGH-PERFORMANCE SYSTEM

H. Schorr
I1BM Thomas J. Watson Research Center, Yorktown Heights, NY

An exploration was made of the essential principles of a system design for executing
large scientific programs. The design included a powerful highly-concurrent CPU, new
channels, a storage hierarchy with relocation and overlay hardware, a new maintenance
architecture and new software. The software included a global-optimizing compiler
designed to produce code which realized the full potential of the machine. The operating
system was split into two parts: the nucleus which contains all of the privileged code;
and the peripheral service part. The objective of the nucleus was to provide primitive
multiprogramming capability for an on-line data-base environment with performance
comparable to ad-hoc user coding.

INTRODUCTION

This paper describes the results of an exploratory design effort which was
carried out in order to develop new methods of radically improving system per-
formance especially on large scientific calculations. Heavy emphasis was
placed on simultaneously addressing software and hardware problems both at the
system and logic-design levels.

In addition to high performance on scientific problems, it was assumed that
good performance was also required in batch, time-sharing, and on-line data-base
environments. Moreover this level of performance must be directly realizable
through the use of higher-level languages. The ability to modify the operating
system and, in particular, to add varied and different I/0 devices was felt to be
important. Accordingly, the group set out to discover the design principles of a
total system centered around a powerful CPU which was to be programmed mainly
in higher-level languages. The system design turned out to include:

o A CPU with a high degtee of parallelism

® An advanced memory system

® Auxiliary storage devices integrated into the system

® A maintenance architecture and availability strategy

® An extensible multiprogramming control program

® A language processing system featuring an optimizing compiler.

Presented at the Symposium on Computers and Automata
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Fig. 1. Performance vs time of delivery.

Il. THE CPU

If the average CPU performance is plotted as a function of time of first
delivery, Fig. 1 results. For the mid 70s, then, it appeared appropriate to seek
design principles that could achieve a CPU performance of 1,000 x IBM 7090
performance. CPU performance can be characterized as a function of circuit
speed x number of citcuits x architecture factor (Table I). It was assumed that

TABLE I. Architectural factor.

RELATIVE NUMBER OF CIRCUIT ARCHITECTURAL

PERFORMANCE CIRCUITS SPEED FACTOR
IBM 7090 1 1 1 1
IBM 7030 3.5 3 1 1.2
IBM 360/91 60 13 4.2 1.1
IBM 360/195 96 13 4.2 1.7

circuit speed would improve by an order to magnitude over the 7090 so that the
problem faced was to increase the number of circuits x architecture factor by
two orders of magnitude over the 7090. This can only be obtained by employing
some form of parallel execution——either: (1) extensions of the look-ahead prin-
ciples of the IBM 7030 (Stretch) 360/91, 360/195; (2) vector or array processors;
or (3) multiple instruction counters of some type. Use of the last type of
parallelism on a single problem involved the solution of very difficult software
problems. Vector and array processors were thought to be too specialized for
effective use in general purpose areas. Therefore, attention quickly focused
upon a single instruction counter machine with hardware controlled parallelism
and an unconventional memory organization.

CPU Concurrency

The CPU was designed to achieve performance via concurrency in the opera-
tion of the following functions: instruction fetch, instruction decode, data fetch
and index operations, arithmetic operators, as illustrated by Figure 2.
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Each of the above operations themselves involved a high degree of con-
currency: fetch multiple instructions—up to eight per cycle, decode multiple
instructions—up to 16 per cycle, multiple load-store, index operations—up to
three started per cycle, arithmetic operations—up to three started per cycle,
process one branch instruction per cycle.

In the exploratory design, up to 50 different instructions could be decoded
and in process concurrently (not counting storage). Multiple decoding was a new
function examined by this project. By multiple decoding it is possible to initiate
the execution of three index-type operations and three of the next eight arithmetic
or logical-type instructions in every cycle. Eight arithmetic-type instructions
are examined in each cycle to determine three executable instructions so that an
instruction held up due to logical dependencies, register conflicts, memory
interference, etc., does not impede the execution of any logically-independent
instructions that follow it. This is especially useful in loops where the last
instructions of the loop are usually dependent upon previous instructions, but
where the instructions at the beginning of the loop are usually independent of
those at the end.

High levels of arithmetic performance were obtained by having seven in-
dependent functional units which permitted different operations to be performed
in parallel. Similarily, pipelining within the adders and multiplier [1] permitted
three operations of the same kind to be in process concurrently by each one of
these functional units; the arithmetic performance is summarized in Table II and
the bussing given in Figure 3. For scientific calculations, double precision, in
particular double precision inner product, was designed to be executed as fast as
possible. Thus the bussing permits a single-precision multiply with double-
precision product and a double-precision addition to be started on every cycle.

TABLE II. Summary of arithmetic performance.

10° operations per second.

FUNCTION IBM 7090 IBM 360/91 EXPLORATORY
DESIGN
Floating-Point Add 0.07 15 160
Floating-Point Multiply 0.04 6 80
Floating-Point Divide 0.03 2 12

Arithmetic Rate 0.046 11 240
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In addition, an attempt was made to design the bussing to minimize interference
between instructions.

To supply the arithmetic unit with operands and to do the address arithmetic,
a powerful index unit was designed. This unit consists of the functional units
shown in Fig. 4, all of which can be pipelined.

Since a total of three index arithmetic and three floating/fixed-point opera-
tions can be initiated per cycle, a peak rate of six per cycle results.

Registers

To maintain an adequate supply of operands to sustain parallelism, the
design included 31 arithmetic registers and 31 index registers. These arithmetic
registers:

(1) Permit overlap of memory access with execution

(2) Hold data for multiple use

(3) Hold temporary results, constants, etc.

(4) Permit the compiler to schedule for maximum concurrency.

In addition 31 arithmetic backup registers provide further nonprogtammable
operand buffers.
The number of indexed registers was chosen to permit:

(1) Permanent assignment to be made over an entire (sub) program

(2) Parameters to be left in registers to provide efficient subroutine and
operating-system linkage

(3) Liberal use for basing purposes.
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Branch Problem

In a highly-parallel machine, a branch instruction can cause a major loss of
performance if the instruction-sequencing mechanism does not know which
stream of instructions to prepare. This design proposed to overlap most branches
via a combination of hardware and compiler by:

(1) Branch anticipation in which a conventional branch is replaced by a
prepare-to-branch instruction and an exit instruction as in Figure 5
(2) Reduction of branches and exits
(a) Branch instructions which test any function of any two condition
registers
(b) A skip instruction which causes programmer-marked instructions to
be skipped at the arithmetic and index units rather than at the
instruction-sequencing unit (which usually results in not delaying
instruction fetching and processing)
(3) Reduction of the average branch delay via
(a) Instruction-buffer registers which hold up to 96 instructions and
which are associatively searched for a branch target
(b) Instruction look-ahead on branches (prefetching of instructions on
branch paths controlled by the history of previously-taken branches)
(c) Index-unit instruction of a program being executed ahead of the
arithmetic instructions (so that index-conditional branches can be
executed in advance)
(4) Multiple-condition registers (24) which allow many tests to be made
out of order with results prestored. Condition registers can be manip-
ulated and combined by instructions.
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Fig. 5. Software-branch anticipation. (a) Conventional branching structure. (b) New
branching structure.

Item (3) above discusses purely-hardware aids to solving the branching prob-
lem: utilization of the other three features required adroit programming or a
compiler which could properly analyze higher-level-language programs. Indeed,
the proposed compiler moved branches backwards in the code as far as possible,
combined logical parts of IF-type statements into as few branches as possible,
pushed tests forward in the code for early execution, etc.

INSTRUCTION SET (225 INSTRUCTIONS)

[Ollcsnd! I(ZI :» [ :2 [ ::aj

{a)  Tymical short instruction format

8 1 5 5 5 2
Opcade ] A [ %2 | %3 | fiterat ]

ib}  Typicat long instruction format

Registers Format Vornation
sourees | sink
LOAD STORE AXS AXS s MULTIPLE; TRUE INDEXING,
LOAD AND COUNT

HALF WORD

MOVE axcst | axcst | oo

it
FLOATING POINT ARITH. A A LS | UNNORMALIZED, NORMALIZED OR
NORMALIZED & ROUNDED; SINGLE
DOUBLE OR MIXED

INTEGER ARITH A A s | CONTINUED; SINGLE, DOUBLE
OR MIXED

INDEX ARITH X X [%

COMPARE AX lir c Ls | MAGNITUDE, INTEGER, FLOATPT.,

OR FLOAT PT. DOUBLE, BYTE OR

MULTIPLE BYTE

SHIFT AX it AX 1S | ARITHMETIC, LOGICAL Swap,

INSERT
LOGICAL {oll hinary) AXC | AXC s
COUNT AX AX 5 TOTAL, LEADING ALKE, LEADING
DIFFERENT
CONVERT A A H PACK +— UNPACK (FLOAT #1.)
FLOAT PT. «— INTEGER
CO0E FORMAT
A - Arithmetic L - 48 bit instruction
S - Special S - 24 bit instruchon

T - 10 Tronsmission

Jir - 24 bit address pact of imstruction
fe)  Instruction types

Fig. 6. Instruction set.
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Instruction Set

The word size was set at 48 bits. Two interaction formats were used: half-
word and fullword. The proposed instruction set featured a 24-bit address literal,
double indexing, index-literal loads, three-address register-to-register instruc-
tions and a skip bit. Both the index and arithmetic operations include a complete
set of logical and shift operations along with operations for direct communica-
tion between the units. Double and extended-precision (via hardware and pro-
g;amming) integer operations were included as well as halfword floating-point
loads and stores. Execute, RX, VFL and decimal instructions were not included
due to the implementation difficulties; the instruction set is summarized in
Figure 6.

Performance

CPU performance was simulated on two problem kernels, one a straight
arithmetic-limited problem, and the second a problem which was previously
branch limited are shown in Figures 7 and 8. An average performance of two
instructions per cycle achieves the goal of 1,000 x 7090 average. This was
usually the minimum achieved on all kernels. Note that higher peak capabilities
are needed to achieve this average.

Problem Specifies

27 variable names
47 - - x

1 decition point

Arithmetic Critical Poth
4
3 x's
1z

Relative Performonce

7090 i

30 91 1o
Exploratory 2500
Design

Fig. 7. Arithmetic kernel.

lnterrupt

An interrupt can be considered as an asychronous branch, and thus it cannot
be anticipated. It requires the current program to be stopped such that it can be
restarted and the new program initiated. The system described above has as
many as 50 instructions in process; an immediate stop requires a large amount of
status to be saved. Rather than do this it was proposed that the hardware con-
vert an interrupt to a branch, thus allowing instructions in process to be com-
pleted while the first instructions of the interrupt program are fetched. The cost
in lost CPU processing was only on the average ten instructions while response
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Fig. 8. Branch-limited kernel.

time could be of the order of % usec. In addition to this soft-interrupt facility a
hard interrupt was included to cause an immediate halt to all instructions. This
was necessary primarily to permit software action on address exceptions, etc.,
so that, for example, paging to large bulk memories or drums could be
implemented.

Special Registers

To further aid the handling of interrupts and also for supervisor calls, the set
of status and control bits that define the state of the machine were to be held in
twenty 24-bit registers called special registers. Their function is given in
Table III. Most of these could only be accessed while in privileged mode. The
special registers permit fast switching between a problem program and the super~
visor, By means of the alternate keys, programs could share storage-protected
files.

[/0 Module

The system was designed to work with standard System/360 I/0 devices. A
channel response to an initiation/termination sequence can take up to 32 usec
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TABLE IiI. Special registers.

LENGTH
NUMBER NAME IN BITS PRIVILEGED
0 Condition 24 no
1 Problem Exception 21 no
2 Problem Mask 21 no
3 Supervisory Exception 11 yes
4 Supervisory Mask 11 yes
5 Problem Normal Key 12 yes
6 Problem Alternate Key 12 yes
7 Supervisory Normal Key 12 yes
8 Supervisory Alternate Key 12 ves
9 Interruption Return Address 24 yes
10 Effective Branch Address 24 yes
11 Machine State 16 ves
12 Cycle Count 24 yes
13 Instruction Count 24 yes
14 Timer 24 yes
15 External Signal 24 yes
16 General Purpose 24 yes
17 General Purpose 24 yes
18 General Purpose 24 yes
19 General Purpose 24 yes

Bus and

Lining Module
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170
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Fig. 9. I/O module.
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and it was decided not to have the CPU idle during such a sequence. The pro-
posed solution was to add an I/O module which buffers initiation/termination
sequences and thereby execute them concurrently with CPU computation as
shown in Figure 9. This required the operating system to keep track of the fact
that, for example, a Start I/O has been issued to a channel, but that it has not
yet been accepted by the channel. Data was communicated to or from storage
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without either CPU or I/O-transmitter (I0T) action so that both were free. On
termination, the channel signalled the 10T which collects channel status before
interrupting the CPU,

Ill. COMPILER

The CPU was a highly~concurrent CPU and its proper programming was en-
sured only if all of its features—multiple registers, arithmetic-functional units,
condition registers, etc., were used properly. While this can be done by the
assembly-language programmer, it was felt that the major amount of both the
systems and application programming would be done in higher-level languages.
At the start of the project, an effort was mounted to provide an optimizing com-
piler that would realize the full potential of the machine design. Such a compiler
should also reduce global-execution redundancies and produce code comparable
in size and execution time with hand-written code while producing correct an-
swers of the same accuracy with no new side effects. It was also realized that a
quick compiler was needed for debug runs, one-shot problems, etc.

Compiler Structure

It was readily apparent that an optimizing compiler for this machine was a
major undertaking and that it should not be duplicated in full for every high-
level language. It was therefore decided that the optimizer should work from a
common internal language (IL) and that a front-end translator be added to the
system for each language as required (see Figure 10). The proposed internal
language was very machine dependent—its operators and operands were equiva-
lent to machine operations, but there were no restrictions as to the number of
registers that may be used. In addition, the IL was convenient for processing
and contained: (1) information to make it traceable; (2) Relative data locations
and extents; and (3) Any optimization directives that were included by the pro-
grammer. By having an IL it was felt that good code for many languages could be
obtained by the relatively-easy process of adding a translator; this made the
overall system more efficient. Moreover, it might be possible to combine programs
(perhaps originating from different source languages) at the IL level. It also
provided a standard base for other tools such as debugging statements, flow
diagramming, etc.

It soon became apparent that for efficiency reasons, instructions should be
rearranged to avoid bottlenecks and not presented in the unaltered order given by
the output of, for example, a right-to-left scan. It was also observed that many of
the optimizations in compilers, e.g., common-expression elimination, are basi-
cally independent of the target machine. Thus the optimizer was divided into two
parts: one machine independent, and one machine dependent, as depicted in
Figure 10. To minimize the interaction between parts, it was soon found that an
adequate supply of registers was needed.
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Fig. 10. Compiler. Fig. 11. Machine-dependent optimizer.

Machine-Independent Optimization

The major goal of the machine-independent part was to apply all optimizations
to an entire program and not only to an inner loop [2,3]. The first part of the
machine-independent optimization was to determine the basic topology of a
program in terms of basic blocks of code (one input point and one exit point).
Optimization then proceeds from the innermost block outwards. Optimization
utilized include global common-subexpression elimination, code motion, strength
reduction (e.g., changing subscript-expression calculations to index-register
increments in loops), constant propagation (index variables replaced by constants
wherever possible), and dead-variable elimination (the deletion of unused defini-
tions and instructions). The sequence of machine-independent optimize opera-
tions was as follows:

(1) Basic block finder

(2) Eliminate common subexpressions in basic blocks

(3) Propagate constants of singly-defined variables

(4) Control flow analysis

(5) Global common-subexpression elimination and code motion
(6) Chain uses and definitions globally

(7) Reduction in strength process

(8) Global-constant propagation

(9) Dead-variable and expression elimination.

Machine-Dependent Optimizations
Machine-dependent optimizations included:

(1) Skip and branch analysis
(2) Scheduling
(3) Register allocation.
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In skip and branch analysis, basic blocks are merged to improve the schedule
and eliminate transfers, and blocks are reordered to reduce transfer frequency.

In scheduling, code sequences are ordered to minimize execution time. Finally,
register limitations are considered and the necessary loads and stores introduced.
A flowchart is given in Fig. 11 and the result of scheduling a problem shown in

Figure 12. Other optimizations, especially those to smooth subroutine linkages,
will be included.

FORTRAN Language Extensions for Systems Programming

Early in the study the question of a possible implementation langage for
programs was considered. At the time this decision was made, code produced by
PL/I compilers was not suitable. The decision was made to use an ASA
FORTRAN which: gave access to most machine facilities; permitted more-compleX
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data structures and part-word variables to be handled; and, interfaced with many
primitive operation-system services. Specific features included: machine opera-
tions using symbolic variables (not registers), partial-word variables, storage
allocation and hierarchy-level control, memory-mapping control, (e.g., interleav-
ing, overlay, boundary alignment, partial-word packing), macros, new I/0, based
variables, optimization directives, subroutine-interface control, recursive sub-
routines, debugging statements, and expanded definitions of expressions (if,
then, else, =+ ).

IV. STORAGE HIERARCHY

As the proposed CPU was to operate in a general-purpose environment, it
required support by a large auxiliary storage with an adequate data-transfer rate.
Based on a study of time-sharing installations, 7090 job shops, and 7030 scien-
tific usage, an average of one bit of I/0 is required for each CPU instruction
executed. Assuming that the goal of 1,000 times the 7090 was achieved, and
assuming that the 7090 executed up to 160,000 instructions per second [4], then
the system would require 160 x 10° bit/sec on the average. This represents the
total average 1/0 required by the system, and consists of: (1) System programs;
(2) Temporary storage (intermediate results); and (3) The jobs themselves
(procedures and data).

In modern systems the first two components of the I/0 can be supplied from
drums or local core storage (LCS) in which the systems programs and intermediate
results are stored, It remains, therefore, to introduce the job 1/0 from lower-~
level storage. How large is this component? This is unclear at this time, but it
was estimated that about ¥, of the total average 1/0, 40 x 10° bit/sec, should be
an upper bound in scientific installations. If tapes alone are used to supply the
job 1I/0, then a total of 80 units in continuous usage (mount, read, demount at top
speed) would be required. The operators’ problems in an installation such as
the above would be immense. More importantly, conversational and real-time jobs
tequire a response time better than that provided by an operator-serviced library.
Reduction of operator intervention requires an increase in the size of on-line
auxiliary storage. The required capacity of this on-line storage was estimated
to be 10° words.

Staging

Storages capable of economically providing this capacity are characterized
by low data rates (400K byte/sec) and slow access time (%, to 5 sec). If the
CPU is directly multiprogrammed from such storage devices, a large number of
jobs and care are involved. For example, consider a simple model involving
identical jobs each of which executes 250,000 instructions between I/O requests
for 25K bytes of data. As the CPU was assumed to perform 160 x 10° instruc-
tion/sec, it would have required the multiprogramming of at least

(1 25,000 ( 250,000 ) s
20 200,000/ \160,000,000/
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jobs to keep the CPU fully utilized even if no allowance is made for I/O inter-
ference. Assuming each job to require 200K bytes of electronic storage for pro-
gram and data, this implies a core storage requirement in excess of

72 x 200,000 = 14.4 x 10° [bytes] .

Appreciable reductions in this excessive core-storage requirement could be
achieved only by significant improvements in I/O-access times and transfer rates.
Devices with these improved characteristics such as fixed-head files (FHF) were
far too expensive to use for the entire on-line storage of 10° words, however.
This led to a multilevel on-line storage design in which jobs were staged from
lower-cost devices to fixed~head files such as the IBM 2305 before moving to
core.

Note that it is necessary to use much-larger blocking factors when moving
data from lower levels to the FHF then when moving from the FHF to core. This
is easily seen if we again use the simple model of 25,000 bytes per 1/0 request
after the execution of each 250,000 instructions. If data are moved to the FHF
in blocks of 25,000 bytes and used only once, then the number of accesses to
lower~cost online storage is required to be at least

160,000,000

= 640 per second .
250,000

This access rate could not be economically satisfied by devices with access
time in excess of %, second and larger blocking factors were thus required.

Core storage is required to buffer transfers from lower levels of on-line
storage to the FHFs, The costs of staging, therefore, include:

(1) Core storage capacity for buffering
(2) Increased data flowing to and from core storage.

In general, the design of a multilevel-storage hierarchy is a complex multi-
parameter-optimization problem involving the following: number of levels,
capacity (and therefore cost) of each level, data transfer rates between levels,
blocking factors, access rates, organization of hardware and software to control
transfers between levels.

The storage hierarchy which was settled upon as a design goal is given in
Figure 13. Note that two levels of electronic storage were specified: a small
high speed storage (HSS); and a larger, slower, main storage (MS). This decision
was made for reasons analogous to those which led to the use of multiple levels
of on-line storage. The following comments all apply to the hypothetical
hierarchy of Figure 13,

(1) Use of FHFs reduces the level of multiprogramming (and hence the
electronic storage required for job buffering) by a factor of three ap-
proximately

(2) System programs ate specified to be core resident

(3) The FHF should be used in a sector-queuing mode with fixed-length
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sector sizes. That is, accesses must be sorted by rotational position
as in Figure 14 and multisector requests made. If this is done, a
queuing delay (including rotational delay) of

1 A 1
27200 20-n

revolutions ,

is introduced where A is the request rate specified as a fraction of the
maximum data rate of a FHF reading continuously.

AEATvE DATA RATES
ACCESS TIME
OasECTIVES P
1 62 REGISTERS
& wordurcyele
HIGH SPEED STORAGE
s 32 - 64 K WORDS
16 words/cycle
MAIN STORAGE
» S12 - 20 WORDS
+025 words/ cycle/channel
FIXED HEAD FILES
a1t T12M WORBS/UNIT
)i 012 words/eycle/channal
MOVEABLE HEAD FILES
a1 100 M WORDS UNIT
{ 0025 wards, cycle /channe! REQUESTING ORDER
ARCHIVE STORAGE A8,C.0
INSTALLATION SERVICING ORDER
DEPENDENT
COMPLETE (N | REVOLUTION IF SORTED
) COMPLETE [N 3 REVOLUTIONS IF UNSORTED
Storage Hierarchy
Fig. 13. Storage hierarchy. Fig. 14. Queue sorting.

Thus for A = 0.5, to obtain a page, a delay of one revolution results. A plot
of delay vs data rate is given in Figure 15. The same curve for FIFO-access
method is also plotted and shows the much-greater data rates obtained by sorting
tequests. To benefit from such a strategy requires the operating system and
problem programs to issue multiple-sector requests, Three fixed-length sector
sizes were to be accommodated by the proposed operating system: they ate 256,
1024, and 4096 words.

DELAY (REVOLUTIONS)

f L L

% 50 78
DATA RATE (% OF MAXIMUM}

Fig. 15, Fixed-head file (FHF) queuing.
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HSS-MS Storage Allocation and Addressing

The HSS was to have been relatively small but would have had the best
access time of any storage; for efficiency the CPU must execute problems
primarily out of HSS. The number of programs that have to be multiprogrammed
requires a large amount of storage that can be economically supplied by using
MS. The use of a two-level storage introduces several problems:

(1) Two addressing structures

(2) Two memories to allocate

(3) Transfer between HSS and MS must be done efficiently

(4) The overlay problem for programs greater than the size of HSS.

The system proposed to avoid these problems by using hardware that makes the
two-level system look like a one-level system [5]. Storage is connected together
by a buss and lining module (BLM) as shown in Figure 16. The BLM provides
virtual addressing of HSS-MS: the address used to identify data is independent of
the location of that data in the storage system; it also provides storage protection.

MAIN 510K 10 2M
STORAGE words

16 words ¢ cle

16 words cycle

BLm automatic Mox

Speed

words

R T e O

\
\] High 32K 10 64K
!

Storage

Y

twora cycle

4instr. wdrcycle
2 data wd cycle

CPU (e

Fig. 16. Bus and lining module (BLLM),

The addressing structure is shown in Fig. 17 and it should be noted to both
CPU and channels.

Virtual Addressing

The set of virtual addresses is logically divided into 64~-word pages. Any
page may occupy any 64-word segment of MS. Pages are allocated in MS under
the control of the operating system. Another storage, located in the BLM and
called the directory, associates virtual to physical addresses. The directory
works in units of 1, 4, 16, or 64 pages (64, 256, 1024, or 4096 words).



HIGH-PERFORMANCE SYSTEM 181

Extended Virtual Address

File Name Half - word Address
48 24
Assigned by OS
) From Address
2 Adden
From Key Register
12 2

This 36-bit Virtual Address is
Supplied by CPU/IOM to BLM

Fig. 17. Addressing structure.

Lining

The unit of transfer between HSS and MS is not a whole page but part of a
page called a line. Since only part of a program is required at a given execution
of a task, transferring only this required part of a program cuts down on the
amount that must be transferred between HSS and MS. If the line size is one word
then only what is needed is transferred and the effective program size is at a
minimum. Unfortunately, hardware and programming constraints tend to require a
larger line size. To reduce interference and utilize bandwidth the line size
should be a multiple of the physical word size of MS. Similarly, it seems desir-
able to be able to utilize sequential data from MS. If the data is being processed
at one word per cycle and the net access time to MS is ¢ CPU cycles, then ¢
words should be fetched from MS at a time. To minimize hardware, the line size
should be large, i.e., the amount of control, and the size of the table which
identifies the line in HSS is inversely proportional to line size. A line size of
16 or 32 words seemed to achieve the right balance; 32 words was chosen.

Assignment of Lines to HSS

The two extreme ways of assigning lines to HSS are: (1) Restricting a line to
one fixed 32-word slot; or (2) Allowing it to occupy any available 32-word slot.
The former results in too many conflicts due to lines competing for the same slot
while the latter requires either an associative memory or the search of a large
association table before accessing data. These solutions are too slow and ex-
pensive., The proposed choice was to allow a line to reside in either of two fixed
32-word slots; the storage utilization closely approaches that of an associative
memory. This permits simultaneous access of both the data and the association
table without excessive conflicts; raw HSS and bussing performance is degraded
by no more than 20%. However, the HSS bandwidth required is doubled. The
lining and MS to HSS transfer (swap) mechanisms are illustrated in Figures 18
and 19. The choice of which line to be swapped is based on a hot/cold replace-
ment algorithm.
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DATA
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Fig. 18. Lining mechanism. Four accessing mechanisms operate concurrently: 2 for
data fetch or store; 1 for I/O fetch or store; and 1 for instruction fetch,

VIRTUAL ADDRESS

yss TRANSFORMATION
0ATA DIRECTORY
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2 SWAP MECHANISMS OPERATE CONCURRENTLY

Fig. 19. Swap mechanism.

Size and Characteristics of HSS

The HSS would have had some unique physical characteristics; among them
were that the cycle time is the same as the CPU cycle time. This permits a
storage request to be made to a module on every CPU cycle and thus a 16~
module system permits 16 requests per cycle to be serviced if there are no con-
flicts. The proposed system could make 14 requests per cycle (7 logical re-
quests). At this rate, a queuing delay of less than % cycle resuits.

The size of the HSS was larger than the buffer stores provided in other
systems. This is due primarily to two factors:

(1) Almost all the time (better than 99%) accesses must be made to lines
already present in HSS or else performance falls off drastically. The
attempt of the system is to have memory look like it has the capacity
of MS with the access time of HSS

(2) 1/0 and its control resides in HSS and requires considerable space,
approximately 10K. Thus HSS should be available in 32K and 64K
word sizes.
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V. 1/0 CONTROL AND CHANNELS

The efficient processing of I/0 requires handling periodic arrivals of partial
words, buffering them to some multiple of MS word size and then transferring
them into MS. Rather than provide separate assembly registers for a large
aumber of channels, it was better to add HSS capacity and let it be shared be-
tween I/0 and programs; a line was selected as the I/O-buffer size. The transfer
of data from buffers would then be carried out automatically by the BLM hardware
via the line-replacement algorithm. The strategy of always accessing I/0 through
HSS also eliminates any copying back from HSS to MS before carrying out an I/0
operation. 1/0 and its control is a very important operation in any system; the
lines in HSS allocated to 1/O are accessed with greater frequency by I/0 than
those accessed by other programs. This results in low probability of being
swapped out and consequently 1/0 overruns were held to acceptable levels.

Channels

The proposed channels were to be more-directly controlled by program than in
‘most IBM systems. That is, there is no hardware realization of software~
implementable features such as chaining, queuing, or searching. Implementation
of these features via program is facilitated by the availability of HSS and a very-
powerful CPU. This means was chosen in order to reduce the channel cost. For
example, if a large average data rate of between ¥ to 2 bits (depending upon the
job mix) of 1/0 per instruction executed is to be accommodated, then for 1,000 x
7090 and the higher 1/0 average-data rate, 1,000 x 160,000 x 2 = 320 x 10° bit/
sec must be concurrently handled by the channels. The instantaneous rates
would be higher. A factor of two in excess channel capacity is needed for stag-
ing and another factor of two is needed to limit queuing delay. Thus a total
channel rate of 1280 x 10° bit/sec would be needed. Typical channels were
limited to 10 x 10° bit/sec so that 128 channels would be needed. A high speed
channel was designed which by transmitting a 48-bit word could achieve a maxi-
mum data rate of 400 x 10° bit/sec. Up to 64 standard and up to 32 of the above
high-speed channels were allowed.

Greater use of program control permits a channel design utilizing minimal
hardware; every four channels would share adders and control citcuitry, In oper-
ation, each channel executes only a single command and then interrupts the
CPU; chaining and queuing were to be provided in software. It should be men-
tioned that the study examined several alternate paths, including an I/0 proces-
sor and high-speed channels which automatically handled queuing. These were
tejected because of cost considerations and because they would have resulted in
several other problems such as highet 1/0 overruns, storage allocation, coopera-
tion in the use of commonly-accessed queues, the need for a separate 1/O proces-
sor having its own HSS and operating system, etc. Analysis also showed that
neither of these two approaches saved a great deal of CPU time, and in any case
CPU time did not appear to be a limiting factor.
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VI. OPERATING SYSTEM

Control over the I/0 and the storage hierarchy in a multiprogramming environ-
ment were the key problems to be faced by the operating system. Also, the
operating system would support terminal job entry, remote entry, real-time ap-
plications, new installation specified I/0 devices and the ability for an installa-
tion to replace IBM-supplied systems programs by their own. It was felt that the
best way to provide these features was to divide the operating system into two
parts: a nucleus and peripheral services. The nucleus would consist of those
services essential to the entire community of users, that is, the intersection of
all their needs. This nucleus interfaced directly with the hardware and converted
it into an extended machine in which users were isolated from one another but
still retained sufficient control over the hardware so that they could maximize its
use for the solution of their particular problems. The user, for example, was
allowed to control the type of storage he would like to have pages of his file in
and also control their transfer up and down the storage hierarchy with predictable
response time.

The peripheral service routines were a user of nucleus services (and are no
different from any other user) usually oriented towards providing maximum user
convenience. For example, compilers, job-control-language interpreters, periph-
eral 1/0, sequential and partitioned-access methods, etc., are peripheral service
routines. These routines can be added to, replaced, etc., but any such changes
are written in nonprivileged code and must obey the nucleus-interface conventions
(as well as any peripheral-service conventions).

This rigid division of the operating system, as characterized in Fig. 20, pro-
vides for the separation of the users into two classes: those who are principally
concerned with response and efficiency; and those concerned with convenience,
adaptability, and versatility. The nucleus thus incorporated a strict set of rules
and provided a set of services each of which had a predictable response time.
Automatic-allocation schemes such as demand paging or data look-ahead buffer-
ing (as provided in sequential-access methods) would not be provided.

Peripheral Services
Language Processors

Y
PR v

Nucleus

Hordware

Services

Extended Machine

Fig. 20. Conceptual view of operating system.
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Nucleus Services

The nucleus can be characterized as consisting of interrupt handling, task
management, basic data management of the storage hierarchy and an I/0 inter-
face, and can be depicted pictorially as in Figure 21. The nucleus is entered
only via SVCs and interrupts. The SVCs and interrupts are routed by the process
dispatcher to the appropriate nucleus component (or to a task). The basic part
of the operating system is the process dispatcher which has to operate disabled
and was designed to operate with a minimum number of instruction executions.
The logical consistency of the rest of nucleus is maintained by means of a set of
locks on important facilities and nonreentrant pieces of code. An important part
of the nucleus is the basic data management which catalogs, creates, destroys,
and moves files within the storage hierarchy. A file was identified by a 48-bit
file name. This file name was permanently associated with the file and was the
only means by which a nucleus user could address it. The file name identified
the file but did not refer at any time to the physical locations occupied by the
file. The physical locations were specified in a file index which was maintained
by the nucleus. Thus the name by which the programmer addressed a file did
not have to be changed when movement between levels of storage hierarchy oc-
curred and when a physical assignment was made within a level; this was also
true for both MS and HSS. The use throughout the system of virtual addresses
resuited in a simplification of the addressing structure since it did not reflect
the levels of the hierarchy and it also provided for relocation throughout the
system.

1O INTERFAC
SVC SVC

INTERPRETER SVR

il o

INTERRUPT PROCESS

OISPATCHER SYR
o

svC

TASK

Fig. 21, Conceptual view of nucleus.

A file had as attributes:

(1) Its storage level within the hierarchy
(2) Its accessibility—whether it is read only or read/write.

These attributes could be assigned to pages or blocks of pages within a file.

In addition to a file with its physical addresses, the file index also specified
other attributes of the file. The file index could be physically separate from the
file itself. In general when active it should be on a faster device than the file
itself so that a file access appears to be only slightly longer than the access
time of the slower device. The collection of all file indexes constitutes the
internal catalog which can be accessed only by nucleus routines. The basic
nucleus data management services were: create file, move file index to storage
level X, move data block to storage level X, copy data block X into data block Y.
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Tasks

A task was considered to be an independent entity for the purposes of ac-
counting and servicing requests. Tasks were created by other tasks only with
no mother-daughter relationship as in 0S/360. However, it was possible to have
SVCs routed to another task rather than the nucleus. A task could communicate
with another task via explicit commands and this same mechanism was used by
the nucleus to communicate with a task. Each task is assigned to a partition
which was assigned a certain percentage of the systems resources. This per-
centage was usually guaranteed to a partition and was not a static assignment,
i.e., at any given instant a partition may have no resources assigned to it. A
partition which at a given time has received less than its allotted amount of
resources has priority over other partitions that have full allotments. Tasks
were assigned priorities within partitions and were assigned resources on the
basis of their previous utilization of those resources (a variation of exponential
scheduling).

1/0 Interface

The 1/0 interface includes the I/0 drivers for members of the storage hier-
archy, i.e., FHF, MHF, and archives. These devices are completely under the
control of the nucleus, have fixed formats, and constitute the on-line data base.
Other devices such as tapes, unit-record equipment, removable MHF disk packs,
terminals, etc., cannot be completely under the nucleus’ control because of the
nature of the devices, data formats and their use which are usually unpredict-
able. These external 1/0 devices are controlled and protected by using the
nucleus to interpret channel programs generated by the user. The nucleus re-
placed logical channels by physical channel numbers, translated data identifiers
into MS virtual addresses, implemented System/360-like chaining and collected
channel, control unit, and device status for return to the user. The nucleus did
not take responsibility for correct use of the channel or error recovery.

TABLE IV.
MACHINE EXTENDED MACHINE
Data Identification X-Data Identification
12-Bit Keys 48-Bit File Name
24-Bit Logical Address 24-Bit Logical Address
Operations X-Operations (SVCs)
Branch (a) Direct X-Branch

(b) Indirect X-Branch for
Protection of
®Entry Points

®Reading
®Modification
Load ) MS Move Y MS to
E |
Store ) Reg. Copy J Aux. Storage

1/0 OPS (Priviteged) Symbolic Channel Programs
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Extended Machine

The user of the nucleus would see an extended machine (Table IV) consist-
ing oft files, tasks, unprivileged machine operations, extended machine opera-
tions (nucleus service requests) implemented through SVC instruction, and
symbolic 1/0 channels. This gave the user effective access to all system re-
sources without using privileged code. All other systems programs and all user
programs operated in this environment.

Peripheral Services

These programs were designed to support large production jobs concurrently
with small foregtound jobs. Jobs could be entered into the job stream via
spooled 1/0 with multiple entry (card readers, terminals, tape). Peripheral
service routines were categorized as extended-data management, extended-task
management, and external-device support. The main emphasis of extended-data
management was the support of higher-level languages; it contained routines to
provide basic and queued sequential-access methods. It was planned that each
user would have his libraries whose main purpose would be to identify his files
and to perform translation of alphanumeric file-editing facilities. Extendedtask
management included routines for user command-language interpretation, standard-
error recovery and debugging procedures, and operating-environment supervision,
The latter included gross-scheduling, accounting, operator, and job-stream
supervision routines. External-device support routines included spooling, tape-
handling, and terminal-support routines.

Additions to the peripheral service routines to support conversational term-
inals and remote job entry, would have consisted of additional language facili-
ties, interactive-terminal control, peripheral-processor support, and telecommuni-
cation support.

Vil. MAINTENANCE ARCHITECTURE

There are several areas of maintenance that were addressed as part of the
architectural design of the system. These were:

(1) Error control—the determination that an error has occurred, how it has
propagated, and prescription for its repair

(2) Protection of the operating system—protect essential parts of the
opetating system against error and, attempt to insure the integrity of
the files; facilitate fast re-IPL

(3) Checkpoint/restart—provide user function so that the user can use
additional measures for maintaining the integrity of his data beyond
those that the system provided

(4) Availability—reconfiguration of the system when a hardware failure
occurs to provide a lesser amount of computing capacity

(5) Repair—discovery and location of a faulty, replaceable part.

It was felt that because these areas strongly interacted with other system-
architecture areas they must be included in the initial overall design.
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Error Control

Hardware error control for 1/0 consisted of specifying burst-error correction
for FHF and standard byte parity for System/360 I/O devices. For HSS and MS,
byte parity was also specified rather than the single-error correction possible
with extra memory bits. The latter was eliminated because it did not appreciably
increase availability, it did increase cost, and it affected the design and perfor-
mance of the CPU; furthermore it causes some errors to be miscorrected.

For the CPU it was felt that parity did not provide a complete solution to
error control; parity could provide detection on the data paths but not elsewhere
and at great cost in both circuits and performance. Other hardware devices were
similarily rejected. It was decided instead to propose running periodic diag-
nostic tests under the operating system. However, byte parity was maintained
from the I/0 devices through the channels, I/O module, and BLM since both
ends, storage and devices, maintained parity.

Some error control is obtained via the nucleus. When an error occurs the
nucleus can replace a file by a copy of it which has been maintained lower in
the storage hierarchy. In general such copies should be maintained until the
CPU has finished processing the MS copy. At this point the space occupied by
the lower-level copy is returned to the free list. Of course, if the file has been
changed in MS then there is nothing the nucleus could do but notify the user.
The user of course can increase the likelihood of correctability by explicit up-
date of lower-level copies. Work on providing user checkpointing did not proceed
past this point.

The protection afforded to user data also aids in the preparation of the operat-
ing system since most operating-system tables are cataloged as part of the user
data. The nucleus was protected against catalog loss by keeping a transaction
log and by providing (redundant) identification of the file with the file. Re-IPL
is facilitated by keeping a copy of nucleus on FHF to ensure quick reinitializa~
tion. Most of the effects of system software bugs were isolated by the separa-
tion of the nucleus from the peripheral services.

Availability

Failure of the CPU, BLM, or I/0 transmitter would have caused the system to
go down. In a system with 64K of HSS and more than 256K of MS a storage fail-
ure would not have caused unavailability. The system operated with half of a
64K HSS disabled with no software adjustments required. Similarly a system can
function with all but one 256K block of MS disabled. System transition to these
states is facilitated by the use of virtual addressing. All FHF and other 1/0
devices should be accessible by alternate paths.

A duplex system in which CPU, IOM, BLM, and HSS were duplicated was
studied in a preliminary way. This augmented system would have been designed
to operate in a reconfigured mode less than 200 hours a year and would be un-
available about one hour a year based on typical hardware-failure projections.
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Repuir

High availability can be achieved partly through rapid and semiautomatic re-
pair. A failed, replaceable part could be automatically found by using a main-
tenance computer to compare all the triggers of the machine with simulated
values of these triggers. The maintenance computer would either run the simula-
tion or communicate with a remote computer running the simulator (which could
be an identical system). The isolation strategy is flowcharted in Figure 22. It
was our judgment that this technique will isolate 93% of the hardware failures
thereby reducing manual intervention and keeping the duration of unscheduled
interruption (DUI) to approximately two hours as shown in Figure 23. The hard-
core required to run diagnostics consists mainly of logout of all control triggers,
input to the instruction buffer and I/0-module register, and the maintenance
register as shown in Figure 24. It is the ability to keep this hardcore to a mini-
mum which allows the failure-detection program to proceed without manual inter-
vention and this, in turn, helps keep the DUI to two hours. The time to physi-
cally replace a failed component is in the order of % hr. The replaceable part
would generally be large and complex, e.g., a BSM of storage or a board of
logic.

ISCLATION STRATEGY

Detector Programs
Only Purpose is to Find
a Foiling Progrom

Average Time Between
Resets is 128 Cycles

Simulator Simulotes All
Triggers on Every Cycle

Run Test on
Simulator 1 Cycle
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To Mach.
Logout,

Retrieve Logic Tree
From IMT & Compute
States ot All

Board Crossing Pts.

4

Scope at Board
Crossings & Change

Only Effort Required
of Customer Engineer

Failing Brd.

Fig. 22. Isolation strategy.

VIII. SIMULATION AND CHECKOUT SYSTEM

To aid in the design of this new system and the checkout of the software,
various simulators were needed. Those used in the hardware design included an
instruction simulator (6], a cycle-by-cycle CPU simulator, and BLM and storage
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Fig. 24. Maintenance and data paths.

simulators, In addition, simulation of the FHF and of the storage hierarchy was
petformed at the system level. In the storage hierarchy simulation, a simple
language was developed to describe job profiles in terms of storage requirements,
I/0 requests, and CPU instructions to be executed. These jobs were then pro-
cessed by the system and various activities such as I/0 and CPU busyness and
storage requirements were plotted as a function of a time; in this manner both
steady-state and transient behavior were studied. One result was that the
scheduler should give I/O-limited jobs priority over CPU-limited jobs. That is,
whenever an 1/0 request for an 1/0-limited job is completed, the CPU should be
switched to that job. Otherwise, it was found that I/O-limited jobs bunched up
and eventually the system had no other jobs to work on. This resulted in the
CPU becoming idle for long periods of time.

As software and hardware were being designed simultaneously, the only way
to check out the software was to extensively debug and integrate it on a simu-
lator, in this case on the System/360 under OS. Since the software itself (except
for parts of the nucleus) was to be written entirely in Extended FORTRAN, the
simulator had to include a compiler for this language. This compiler, called
A360 FORTRAN, generated CPU code which served as input to a link editor,
loader, library, etc., and finally the simulator itself. These were written in
System/360 assembler and FORTRAN languages. The flowchart of the simulator
is shown in Figure 25. The simulator control could interpret an elementary Job
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Control Language (JCL) which allowed the initialization of a simulation in a
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specified state. The save, restore, etc., functions included permitted the results

of a simulation at a given point of simulated execution to be saved and reini-
tialized later at the same point.

The use of the simulator was to proceed in an orderly manner; first the
nucleus, the A360 FORTRAN compiler, and assembler were to be debugged.

The entite system was to operate as shown in Figure 26(a). Rather than employ
extensive scaffolding, it was decided to debug peripheral-service routines under

the actual nucleus itself as depicted in Figure 26(b). This, while perhaps
slower, would insure correctness of all interfaces and nucleus functions. The
debugging of an extensive software package under simulation was felt to be
feasible only when: (1) A higher-level language was used to write the software;

(2) The simulator used was quite extensive; (3) The simulator would run under a
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modern system such as 05/360; (4) Most scaffolding was eliminated; and
(5) There was more time to do the job than is usually the case.

CONCLUSION

The exploratory design of the system permitted all aspects of hardware and
software tradeoffs to be studied by one group of people. This flexibility did not
result in identifying as many functions in the hardware to aid the software as
one’s preconceived notions might have thought. For example, a machine to com-
pile, simulate, and emulate was designed and rejected because of cost/perfor-
mance and system-balance reasons. However, MS relocations, HSS lining, a large
bulk memory (MS) and FHF record-ready features were considered essential hard-
ware aids if a successful modern multiprogramming monitor was to be written, It
was also noted that improved I/0 (including an IBM 3330 with higher data rates)
microfilm printers, and better archive devices would be needed to balance the
system, particularly in noncomputation-bound environments.

The experiment was terminated after the major ideas had been fully explored
and the knowledge obtained transmitted to product-development groups.
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