. IBM CONFIDEN T]'.AL

Date: August 25, 1967 . | ACS AP #67-115 :]
From (location Advanced Computmg Systems |

vs.mstesgrmssi: Menlo Park ' | .
o ~ BV
Tﬁﬂmom Ext: . C . .

set MPM Timing Simulation
mwwcs: 1. ACS AP #66-022, ACS Simulation Technique

2. ACS-1 MPM Instruction Manual
3. ACS AP #B87-068, MPM-Instruction Sequencing

To: File

){ gﬂua?,,_

L. Conway

LC:slb

ce: SADL

L. Conway
Archives

IBM CONFIDENTIAL

CONTENTS

Introduction
- The Unroller
The Timing Simulator

Current Job Running Procedures

Table of Implemented Instructions

Planned Modifications

(- -
e

o
o

66O

L. Conway

Archives | -

IBM CONFIDENTIAL . 0-1

INTRODUCTION

. This memo describes the programs which perform MPM timing simula-
tion. It is primarily a "users manual" for these programs.

Two programs, the Unroller and the Timing Simulator, are run consecu~
tively in order to time the MPM's execution of a user's input program.

The Unroller program accepts an ACS assembly language program
and control information concerning branch and skip execution, and
"unrolls" the program to produce a trace of the instructions executed
by the MPM when running the program. The trace is the sequence

of instructions along with their addresses register fields, and certain
other information.

The Timing Simulator then operates on the trace of instructions executed
by the MPM and produces timing charts indicating the timing of the
activities initiated by these mstructmns in the various hardware components
of the MPM.

The following diagram illustrates the functions and relationships of

- these two programs.

ﬂs " T wnPoT .
PROCR A o JUNROLLER

ConTROL WFO,

TRALCE oF
N STRYCTIONS

wier | TIMING | eorfe e O\ -
EXECUTED ISIMULATOR] 7\ CHARTS

In the following sections of the memo, these programs are separately
described with examples given illustrating preparation of input and
interpretation of ocutput. .

The .job running procedures for using the programs is described, and
the MPM ops currently implemented in the Timing Simulator are listed.

Since the prograins are currently undergoing changes, the current and
planned changes are described to assist users in their planning.

Criticisms and suggestlons from potential users are welcome and w1l1
be helpful in making the Tnnmg Simulator useful to ACS.

O G\

L. Conway
Aichives

- IBM CONFIDENTIAT, . : 1-1

THE UNROLLER PROGRAM (Prog. by J. Novicki, CSC)

. The Unroller program produces the input trace to the Timing Simulator
-from an ACS assembly code program plus control information.

In the past an Execution Simulator, which performed a detailed simula-
tion of the execution of an input program, was used to generate the :
instruction trace. It was found to be inconvenient to use an execution
simulator for this purpose because that requires the accurate program-
ming of all the tests and computations which determine the desired

path of execution through the program. It often proved to be difficult

and time consuming to write a correctly executing program even though
the path to be followed was easily described.

The Unroller program was written to solve this problem. Given an

ACS assembly language program, explicit indicators are placed on the
branch and skip instructions of the program to determine the path

of instruction execution. For example a branch op might be followed

by (3 BEGIN, *) to indicate that the first three times the branch is
executed it is successful with the branch being to the instruction labelled
BEGIN, and the fourth time the branch is executed it is unsuccessful.

This program and control information is processed by the Unroller

to yield the trace of instructions executed, which may then be used
as input to the Timing Simulator.

Input Lanquaqe, Card Input Format

Input cards may contain a label, an op code and operands. The Branch
and Skip instructions may contain additional control information.

A free form format is used with no fixed starting columns for each -

of these fields but with certain delimiter restrictions. .An asterisk

in column 1 indicates a comment card,

Label: A label can be up to 8 characters maximum and must start
with one of the characters A through Z or . A label can contain no
imbeded blanks and must be terminated by a delimiting colon.

Op Code: An op code can be up to 6 characters long with no embedded

blanks. It may be immediately followed by an asterisk to indicate the

skip flag, At least one blank column must be between the op code and
- its operand fields. :

OC6%

L. Conwcy
Archives |

IBM CONFIDENTIAL | : .12

Operands: The operand fields can contain information for the i, j, k,
and h fields of the instruction. Two fields must be separated by a comma
and a missing field will be indicated by two consecutive commas.

. The first blank column terminates the operand fields. The i, j, and

*k fields may be one of the following formats:

() Lad | .-
(i) ad -

where "L" is the letter A for Arithmetic Register or the letter X for
Index Register or the letter C for Condition Register or the letter S
for Special Register. "dd" is a decimal number from 00 to 31 (leading
0 may be omitted). The h field may contain a symbolic label or a
decimal number (up to 5 digits).

Branch Parameters: A string of control parameters may be listed

after a branch instruction to determine the path of instruction sequencing.
The parameters indicate if the branch is successful or unsuccessiul

for each time it is executed. The branch parameter information must
begin with a left parenthesis and end with a right parenthesis and contains
no imbedded blanks, Two parameters in the list must be separated

by a comma. The parameter format is: '

(i) dL for a successful branch
(ii) d* for an unsuccessful branch

where d is an optional digit indicating the number of times the branch
is successful or unsuccessful, L is the symbolic label of the instruc-
tion branched to, and * is an indicator for an unsuccessful branch.
For example, if we have the instruction -

BEQ C1, C2, X4 (3ABC, *, XY)

the program would be expanded to reflect the branch execution as

follows: ‘

(i) first three executions of branch are successful and
branch is to instruction labelled ABC

(ii) fourth execution of branch is unsuccessful

(iii) fifth execution of branch is successful - to XY

Skip Parameters: A string of control parameters may be listed after
a skip instruction to determine the effect of that instruction on the _
sequence of skip states. The parameters indicate whether the skip
is taken or not taken each time it is executed. The parameter string
, : : o663

Archives

L. Conway

IBM CONFIDENTTAL : . ‘ 1-3

has the same format as the branch parameter string with any dummy
label serving to indicate that the skip is taken, an * indicating the
skip is not taken. For example, if we have)

~ . SK@¢R Cl, C2 (2%, LABEL, *)

the Unroller would set the skip state in the trace to reflect the execu-
tion of the skip as follows:

(i) first two times skip is executed it is not taken

(i1} third time skip is executed it is taken
(iii) fourth time skip is executed it is.not taken

Qutput of Unroller

Corresponding to the sequence of execution of the instructions of the
input program the Unroller produces the standard input trace for the
Timing Simulator: a card deck which is described in detajl in Section
2. One card is produced for each instruction executed. The card
contains the op, i, j, k, h fields, branch and skip states, instruction
and data reference addresses and certain other fields.

The Unroller also lists the input program and output trace. Certain
diagnostic messages may be listed:

(i} Too many input cards (300 maximum)

(ii) Operand Field error

(iii) Error on following card (i. e. label information error}
(iv) Op code on next card not implemented

Example: On the following page are the listings of a simple input
program deck and the trace deck produced by the Unroller from that

input deck. Note that the branch parameter list specifies branch
successful two times then branch wnsuccessful. Thus we make 3 passes
through the loop. The branch and skip states in the trace (see trace
format Section 2) reflect the branch and skip execution. Note: the

OP "STOP" terminates unrolling, and the pseudo op "END" marks

the end of the unroller input deck.

Ok

L. Conway
Archives

EXAMPLE: UNROLLER INPUT DECK

LOOP: CGEX 24,3

BAND 2329050 {(2LO0OP 4 %)
CGEN 151,2
AXK. -333s0s1

- AN 11148
LA Bs050,1000
AN 242199
LA 930402000
SKOR 1,1 (*42DUMMY)
MN* 1s1a2
EXIT
STA 1s0+0+1000
STOP

. END

CORRESPONDING UNROLLER OUTPUT DECK

- Am me e et e e gm wm me

0 CGEX 02 04 03 00000 000 00000 1 87 1
1 BAND 02 02 00 00000 100 00000 3 139 2
3 CGEN 0l 01 02 00000 100 00000 4 79 1
& AXK 03 03 00 00000 100 00000 6 16 2
. & AN 01 01 08 00000 100 00000 7 166 1 _
7 LA 08 00 00 01000 100 01000 9 7 2
“ 9 AN 02 02 09 00000 100 00000 10 166 1
10 LA 09 00 00 02000 100 02000 12 7 2
12 SKOR 0l 01 00 00000 100 00000 13 150 1
13 MN* 01 01 02 00000 101 00000 14 178 1
14 EXIT 00 00 00 00000 100 00000 0 199 1
0 CGEX 02 04 03 00000 000 00000 1 87 1
1 BAND 02 02 00 00000 100 00000 3 139 2
3 CGEN 01 01 02 00000 100 00000 4 79 1
4 AXK 03 03 00 00000 100 00090 6 16 2
6 AN 01 01 08 00000 100 00000 7 166 1
7 LA 08 00 00 01000 100 01000 9 y
9 AN 02 02 09 00000 100 00000 10 166 1 -
10 LA 09 00 00 02000 100" 02000, 12 7 2
12 SKOR 01 01 00 00000 100 00000 13 150 1
13 MN* 0l 0l 02 00000 111 00000 14 178 1
14 EXIT 00 00 00 00000 110 00000 0 199 1
0 CGEX 02 04 03 00000 010 00000 1 87 1
1 BAND 02 02 00 00000 010 00000 3 139 2
3 CGEN 01 01 02 00000 010 00000 4 719 1 _
& AXK 03 03 00 00000 010 00000 6 16 2
6 AN 0l 01 08 00000 010 00000 7 166 1
7 LA 08 00 00 01000 010 01000 9 7 2
9 AN 02 02 09 00000 010 00000 10 166 1
- 10 LA 09 00 00 02000 - 010 02000 12z T 1 2
__j%% 12 SKOR 01 01 00 00000 010 _ 00000 13 150 1
13 MN* 01 01 02 00000 011 00000 14 178 1
14 EXIT 00 00 _00 00000 010 00000 15199 1 __
15 STA 01 00 00 01000 010 01000 17 9 2
= ' - 999 oy Ty
S = L.Conway |
&

Archives

@

IBM CONFIDENTIAL ’ - 2-1

THE TIMING SIMULATOR (Prog. by L. Conway, J. F. Parsons)

‘For the purpose of MPM hardware or program evaluation we may need

detailed timing of the execution of"a program by the MPM. The MPM
is sufficiently complex that hand-timing of all but trivial programs

is a very tedious process. The Timing Simulator is a program written
to perform this timing by simulating in complete detail the hardware
controls of the MPM, :

The Timing Simulator is written in FORTRAN IV (H) and runs on a

S/360 under OS, requiring an H level machine, The simulation technique
is similar to SIMSCRIPT but uses simpler utility routines which are
written in FORTRAN. Reference 1 provides a complete description

of the simulation technique. o

The level of hardware modelling performed by the Timer is best described
as being an "architectural® level. Individual hardware triggers are
included when they serve an individual control function, but buses,
registers, etc., are modelled as logical entities rather than simulated

to the bit level. Thus the timer does not model the detajled engineering
implementation of the MPM. It does model all control algorithms

in all sections of the MPM, to accurately simulate the timing of instruc-
tion execution by the MPM.

The Timer currently operates on a MOD 75 at 2 rate of approximately
10 simulated machine cycles per second. Typical programs are thus
simulated at a rate of 20 inst. /sec.

A detailed description of either the Timing Simulator program or the
MPM model simulated is beyond the scope of this memo. Users may
assume that the program reflects the latest specification of the MPM.
This model is documented at an architectural level in Reference 3

and other similar references soon to be issued. Those who are familiar
with the hardware design of the MPM and have specific questions about
the details of the simulation model should contact the author.

The remainder of this section on the ‘Timer is concerned with the
practical problems of preparing input and interpreting the output timing

The input to the timer is a "trace" of the instructions actually executed
by the program to be timed. The trace consists of the sequence of
instructions executed along with certain control information. This
input is prepared by running an ACS assembly code program through
the Unroller program (see Section 1). 66

L. Conway -

e et T Archives

B
¢

s

\

- IBM CONFIDENTIAL

Certain job controlling cards including a specification of the hardware

deck.

" parameters for the run are added to the trace deck to form the input

-The output of the Timer is a series of timing charts which illustrate

the activities initiated by the instructions of the input program trace
in the various hardware components of the MPM as a function of time,

A detailed description of the input and output formats and output inter-
pretation is given on the following pages. Examples are given which
follow the paths of individual instructions through the various sections

of the MPM as a function of time.

Timing Simulator Input Preparation’

Input Trace Cards: The Unroller program is used to produce the input
trace card decks for the Timing Simulator. An ACS assembly code
program is run on the Unroller and a trace deck is produced as output.
Refer to Section 1 for information on this program. The trace deck
produced by the Unroller is an instruction by instruction record of
those instructions actually executed by the program to be timed.
Each instruction of the trace is present on a separate card. The format

of these cards is specified in Fig. 2-1.

Timer Input Deck Format: Each program to be timed is formed into
one deck beginning with a machine parameter card, followed by the
trace cards for the program, and ending with a card containing 999
in cols 55, 56, 57 (& "ST@P" card). A number of such input decks

may be stacked and timed during one execution of the Timer.

- An

example of this stacked job deck structure is illustrated in Fig. 2-2.

Parameter Card: The first card of each input program deck is a para-
meter card which specifies certain MPM hardware parameter values
and certain parameters for the running of the job (maximum simulated

time, etc.). These parameters are the following:

JOBNAME: Up to six characters identifying program

NABUF, NATEST, NAG@: The number of A Buffers, the number tested
each cycle for OP issuance, the maximwm number of OP
‘which may be issued for execution each cycle from the A

Buffers (A Contending Stack).

NXBUF, NXTEST, NXG@: Similarly for X unit Contendmg Stack.

L VN
.'».‘n

oG

L. Conway

Archives | - A

IBM CONFIDENTIAL ' ' 2-3

(f;:‘) NQBUF, NQTEST, NQG@: Similarly for Data Memory Queue.
NB@X: Number of memory boms.

. NBBUF, NSBUF: Number of Exit History Table positions, number
- - of Skip Table positions.

N@DPT: Number of D Table positions.
N@PSC: Number of PSC registers.
NDBUS: Number of Dispatcher Buses.

NADSP:; Maximum number of OPS which may be dlspatched to the A
: Buffer per cycle. &

NXDSP: Similarly for X dispatching.

MXTIME: Run control parametér., Maximum simulated time allowed
for run (in machine cycles). Run terminated if this time
is exceeded.

MEMDLY: Memory Delay Time. See example of arithmetic load G7
on page 2-13 for exact definition.

@UTLVI: One of four output levels may be chosen., Level 0 is most
- detailed, Level 3 is least detailed (and fastest cunning).
Level 1 is normally used and is level shown in the examples
at the end of this section.

FSTADD: Starting address of the input program.

Fig. 2-3 specifies the format of the parameter card. Minimum, typical,
and maximum values of the parameters are given. The TYP values
represent the "most likely" values of the hardware parameters.

There are other machine parameters not controlled by the parameter
card which may be easily varied by changing certain initialization
tables in the Timer. An example of this is the busing and facility
characteristics in the A and X execution units: These structures

are listed in the output for each run (see output portion of this section).
If changes in these machine parameters are desired for a particular
timing study, contact the author.

063

't Conway
~ Archives

IBM CONFIDENTIAL

- L]

9,
10.
11,
12,
13.

" Example: Two PROGRAMS PRCa’Gl and TEST to be timed:

R /(:?ﬁcz Deck, 7€ s-r)

Figure 2-1. Timer Input Track Card Format

Instruction Address

Op Code Mnemonic (1eft justified)
I (Dec)

T (Dec)

K (Dec)

-H (Dec)

Branch Successful bit. Indicates result of
branch op, Applies from and including branch
op to and including EXIT op.

Skip Flagged ops bit, Indicates skip state,
Applies to op after skip to and including
next skip

Skip Flag

Effective address accessed (LLOAD/STORE)
Address of next instruction to be executed
Numeric Op Code

Long Op= 2, Short Op=1

Figqure 2-2. Timer Input Deck Format

‘ [TEST (PERAMETERS)
n__F 999

--/Kfmcs PECH, PREG L)

PRHGIL (PARAMETERS) : P

2-4

2-6
8-14
16-17
19-20
22-23
26~ 30
35

36

37
41-45
48-52
05-0'7

60

o9

L. Conway
Archives

IBM CONFIDENTIAL - | S | 2~5

Fiqure 2-3. The Parameter Card Format

-

PARAMETER MIN - TYP MAX COLS

J@BNAME 1-6
NABUF 1 8 12 9-10
NATEST 1 8 NABUF | 11-12

. NAGQ 1 3 3 | 13-14
NXBUF 1 3 12 15-16
NXTEST 1 3 NXBUF 17-18
NXG@ 1 3 3 19-20
NQBUF 1 8 16 91-22
NQTEST 1 8 16 93-94
NQGY 1 9 NB@X 25-26
NB@X 1 8 16 27-28
NBBUF 1 3 99-30
NSBUF 1 4 8 31-32
N@D@T 1 6 16 - 33-34
N@PSC 0 8 8 35-36
NDBUS 1 2 2 37-38
NADSP 1 4 NABUF 39-40
NXDSP 1 3 NXBUF 41-42
MXTIME 300, 0 60-66 (F7. 1)
MEMDLY 2.0 5. 0 68-71 (F4. 1)
GUTLVL 0 1 .3 73-74
FSTADD 0 0 76~80

o700

L. Conway
Archlves

IBM CONFIDENTIAL o 2-6

Timing Simulator Cutput Interpretation

For each input job, a deck headed by a parameter card and terminated
by a 999 card, an output listing is produced of the following form:

-

(i) The first page lists the job name and all parameters of the
run including the busing and facility structure.

(i1) This is followed by a listing of those input trace instructions
operated upon by the MPM during the first 100 simulated cycles
of time.

[iii) This is followed by a listing of timing charts indicating the
activities initiated by those instructions of (ii) during the first
100 simulated cycles.

(iv) Items (ii) and (iii) are repeated for successive 100 cycle periods
till the run stops or is terminated by MXTIME.

Fiqure 2-4. Overall Form of Qutput Listings

- Page (erample) S

} PARAMETERS OF RUN
2 'W?UT PRQGRAM TR.AQ: msmocnous
. OPEM’EB oN 3‘)‘ HPM IN Flﬂ.h Ioo CYC_ES '
. 1. . N ,
_ li . R
. TIMING CHARTS POR FIRSIT 100 CYCLES
- - .
6 - e ST
o ___'.7_ TROCE ipST@ac-'wNS Nc:x-r 100 Cyc\-"! T
I ' ,_071.' -

L.Conway' | -
Archtves b

O

i)

IBM CONFIDENTIAL L 2-7

We will now examine the general characteristics of these three components
of the output. A sample output listing is included at the end of the
section for reference while studying these general descriptions.

Some specific examples will then be developed which Illustrate the
progression of instruction activity through the different sections of
the MPM. These examples are referenced by markers on the sample
output listings. '

Parameters of Run: This page lists the job name, date and time of
rn, and the MPM hardware parameters for the run. Many of these
parameters are those specified on the input parameter card, described
earlier in this section. The A and X unit busing and facility structures
are printed for reference in a table with the following entries:

1. The abbreviated name of the facility (FA1 = floating adder 1).

2. The Rep Time of the facility - the number of cycles an opera-
tion keeps the facility busy.

3. The Delay Time of the facility - the number of cycles the
facility requires to perform operation.

4, INBUS - the rumbers assigned indicate which facilities share
a common intus,

5. BOX - the numbers assigned show which facilities share
circuitry and cannot be simultaneously busy.

6. OUTBUS - the numbers indicate which facilities share a common
outbus.

Input Program Trace: For each block of 100 cycles of simulated time
the Timer prints the instructions of the input trace which have been
operated upon by the MPM during that time, This is used to reference
the timing charts for that period of time, The input program trace
printed is a copy of the input cards with five fields added:

(i) Time markers are placed indicating the time (approx.)
that the-instruction entered an IB.

(i) A letter is assigned to each instruction by decoding the
instruction address MOD 26. This letter is then used
as the marker for that instruction in the timing charts.

O7 2.

L. Conway
Archives

IBM CONFIDENTIAL . | : o 2-8

(iii), (iv) -Bits are set indicating whether the op is to be diépatched
to the A unit, X unit orr.both.

(v) ~ The number of the IB into which the instruction was
fetched. This along with (i) will locate the instruction
marker's first appearance on the timing charis (in a
“dispatch register).

The Timing Charts: A set of timing charts are produced for each
100 cycle period of simulated time. The general form of these charis
is as follows:

Markers indicating
MACHINE machine facility
FACILITIES occupancy by inst.
of input trace

TIME >

The time axis has markers every cycle and number indicating 10,
20,...,90 cycle points in the 100 cycle period. The time of the period
is listed at the top of the page (ex.: SIMULATED TIME = 300 TO 399).

The machine facilities included in the timing charts are identified
as follows:

DSPX1, DSPX2, DSPA1l, DSPA2: These are the dispatch registers
X1, X2, Al, A2. The IB number and DO table entry are listed
which correspond to the contents of the dispatch register.

The eight 24-bit instruction fields are shown for each register
with markers indicating which instructions of the input trace
are currently present.’

BRANCH CONTROIS: These are hardware triggers controlling
. the branching process. ER1, ER2, ER3, BEI, BEZ, BE3,
ET1, ET2, ET3 are the exit resolved, branch executed, and
exit taken entries in the Exit History Table (EHT). BRXP,
BRAP are the X and A pointers to the EHT. The description
of the other listed controls is beyond the scope of this introductory
memo.

SKIP CONTROLS: Skip state triggers with SKXP, SKAP; the X .
and A unit pointers to the triggers. |

73

L. Conway
Archives

IBM CONFIDENTIAL . 29

A BUFFER, X BUFFER: These are the A and X unit contender
stacks where ops are tested for interlocks before issuance
to the functional units. This is the point where ops may be
issued out of order if the appropriate interlocks are satisfied.
The instruction occupancy of the buffer positions is indicated
by markers.

A FACILITIES, X FACILITIES: These are the various functional
units such as adders, multipliers, shifters, logic units, etc,

The instruction markers are placed in a facility position for
that period of time during which the instruction actually has
the facility busy for interlocking purposes. Note that an op
keeps a facility busy for a number of cycles equal to the REP
TIME of that facility.

MEMORY QUEUE (D): The data memory queue. This is the queue
which holds data loads and stores after issuance from the
contender stacks and before issuance to memory. This queue
roughly approximates the timing effects of the BLCU with no
paging activity. If appropriate interlocks are satisfied the
requests may go out of order, An instruction is indicated
by its marker.

MEMORY QUEUE (I): Instruction fetch memory queue. This queue
holds the instruction fetch requests prior to issuance to memory.
The markers are the IB destination number of the fetch. Four
markers are rlaced corresponding to the four pieces of one
request. When all have been issued a new set may enter,

MEMORY: Here we can observe the relative timing of loads, stores
and instruction fetches as their markers indicate busy memory
BOMS. The marker for an instruction is placed on the second
of the two cycles that the op is activating the BOM--noting
that the memory BOM REP TIME is one cycle,

A REGS BUSY: When an OP is issued from the A contender stack

to a functional unit, the A destination register of the OP is
marked busy with the OP marker. This is used to interlock
the issuance of other OPS in the contender stack (which use
that destination register) until the result arrives at the register
(or is available for bypassing to the input of another facility).

oYy

L. Conway

Archlves |

IBM CONFIDENTIAL . 210

ABU REGS BUSY: The A Back-Up Registers are the destination
registers for A loads and X to A moves (instructions issued
from the X unit contender stack). At the time of issuance the
op marker is placed in the ABU REGS BUSY position corres-
ponding to the op destination and remains till the load or move
is completed. _

X REGS BUSY: The busy bits for the X Registers, similar to the
A REGS BUSY described above.

Example of Timing Simulator QOutput

At the end of this section is a copy of the output listing for a typical
run of the Timing Simulator. The parameter page is followed by 3
pages listing the input trace for the first 100 cycle period of time.
Then 4 pages are listed containing the timing charts for the first 100
cycles., . :

The program being timed is a version of Crout Reduction. In this case
the MPM is active for only 58 simulated machine cycles--a starting
transient is followed by three passes through the inner loop of the

progra.

The interpretation of the timing charts can be somewhat complex.

In this memo only a few simple illustrative examples are given which
follow the paths of certain instructions of the sample program through
the various sections of the machine.

A thorough knowledge of the MPM hardware controls and consider-
able practice are necessary for a complete interpretation of the timing
charts., However, certain subsets of the charts may be studied with

a detailed knowledge of only that section of the MPM. For example,
someone interested in compiler scheduling of instructions could focus
his attention on the performance of his input programs in the A and X
BUFFERS and A and X FACILITIES, observing the effects of various
schedulings on the timing through these units. A knowledge of the
interlocking rules of the contender stacks and of the busing and facility
structure would be sufficient to get a start at this,

Certain simple observations may yield useful measures of MPM perfor-
mance on the input program. The overall time of the run is easily
determined, It is given as the upper time limit on the last set of pages
listing timing charts for the run. In our example this overall run

% time is 58 cycles. Another meagure which is often useful is the time

taken to execute a program loop. I the input program is of the type c
o7

L. Conway
Archives

IBM CONFIDENTIAL | : 2-11

which repetitively executes a loop, the loop pattern will be obvious

in the A and X FACILITY busy markers on the timing charts. This

is because a given op has the same marker symbol each time the loop
. is executed (the marker is determined by the instruction address).

- Thus the loop time is found by measuring from marker to similar
marker in the A FACILITIES for example., In our sample output we
find that the MPM executes the program loop 3 times in the FLOATING
MULTIPLIER between cycle 33 and cycle 52, The pattern has not yet
settled down to a repetitive one in the example, but the loop time is
seen to be approximately 8 cycles.

Some detajled examples follow. Refer to the sample listings at the
end of this section.

Instruction Fetching: At time = 1 an instruction fetch request to fill
IB(1) has been placed on the MEMORY QUEUE (I). It is issued to
MEMORY in the next cycle and (after some busing time) we observe
at time = 4 that MEMORY BOMS 1, 2, 3, 4 are busy servicing this
request. The fetched instruction is then bused to IB(1) (not indicated
in output). At time = 8 we observe that DSPX1 and DSPA1 have been
loaded from IB(1l). The instructions which were fetched are seen to
. be A, C, E, G, which are X OPS and in DSPX1, and G which is an A
OP and in DSPAL.

Notice that instruction fetching occurs up to time = 33. After this time
the loop has been contained in the IB's and no further instruction fetching
is required to run the problem.

Multiply Instruction F37: At time = 37 we find the instruction MN 13,
5, 6, which is marked by an "E", in the instruction trace section of
the output.

Let us follow the activity of this instruction through the MPM. We

observe from the trace that E was fetched into IB(8).. At time = 38

we notice that IB{(8) *DSPA2 and we find E in DSPAZ(1). At time = 38

only two positions are free in the A BUFFER so the OPS X and Y in

DSPA1 move to the A BUFFER at time = 39 but E remains in the dispaichers,
moving up to DSPA1(1).

At time = 39, the A BUFFER has two free positions so at time = 40
instruction E along with F are bused to the A BUFFER. We find E
in A BUFFER {4) at a time = 40,

076

L. Conway
Archives

IBM CONFIDENTIATL, ' . 2-12

Now at time = 40 another multiply instruction, P, is present in the
A BUFFER and ahead of E. "This multiply, interlocking E, is issued
the next cycle while E remains present at time = 41 in A BUFFER (3).

. At this time there are no ops ahead of it in the buffer which interlock

- it so it is issued for execution and is not present in A BUFFER at time =
42. Notice that A REG BUSY (13) goes on with the marker E at time =
42 to interlock any OPS following E which use A REG (13) as a source
~or destination. '

The multiplier FM under A FACILITIES is found busy with E at cycle
time = 43 (one cycle of busing required from A BUFFER to A FACILITIES).
Then at time = 44 the A REG BUSY (13) is no longer marked by E

- indicating that the result of E will be available {for bypassing) at the
output of the multiplier at cycle time = 46. Note that the delay time
of the FM is 3 cycles, the multiply E taking cycles 43, 44, 45, with
the result actually back at register 13 at cycle 47, But the multiplier
is only "busy" with E for one cycle (the REP TIME of FM) so the
multiplier could handle a new op every cycle. The timing of the busing
and multiplication are illustrated in Fig. 2-5, for the specific example
instruction E37.

Figqure 2-5. Timing of Example Instruction E37

Sut GO e 4s 4o - K7 e
. o
J dpwarsiel
Vl
&
S A - ’
BUS T0 . A ') 7 ; >
EM _ ‘ . y3
SET A REGE : ' FM DELRY TIME] BUS RESULT
. “Busy™ _ RESULT
l3evsy) im wY LIHILE Comp RES AvAIL TO PREGA3
. TH E b . _ N
TTEST anrues C . of € AT ouwrisy
. lAnD PR ine’ e ; oF &
Ccanv BF iysD

o777

L. Conway
Archives

IBM CONFIDENTIAL - | 2-13

Arithmetic Load Instruction G7: At time = 7 we find the instruction
LAT 9, 0, 31, 136 which is marked by a "G", in the instruction trace
section of the output. We observe from the trace that G was fetched
into IB(1). It is both an AOP and an XOP and will be dispatched to
both units. ' .

At time = 8, we observe from the timing charts that IB(1) +DSPX1,
IB(1) * DSPAL. At that time G is present in DSPX1(7), DSPX1(8),
and in DSPA1(7), DSPA1(8). G is a long OP and takes two of the 24-
bit positions in the dispatchers.

Let us follow the A unit activity of G first. We note that at time = 8

- G is the first AOP to enter the dispatchers and thus it is bused to

the A BUFFER the next cycle. At time = 9 we find G in A BUFFER (1).
This part of G is a "replace" operation and is issued the next cycle,
causing A REG BUSY (9) (the destination of the load) to be marked
busy with a G at time = 10, This sets the "front" register busy waiting
for the “back-up" register to be loaded by the X-unit.

Now let us follow the X unit activity of G. ~Since three other X OPS

precede G in DSPX1 at time = 8, and at most 3 ops may be dispatched

to the X BUFFER per cycle, G remains in DSPX1 at time=9. At

time = 10 it is bused to X BUFFER (2), for it is the next op to be dispatched
to the X BUFFER and both A and C leave the X BUFFER at time = 10
allowing G to enter.

We now find that G remains in the X BUFFER through time = 16,
This is because it uses X REG (31) as an index and X REG (31} is busy
through time = 15 waiting for a load to arrive.

‘At time = 16 G finally satisfies the contender stack interlocks and at

time = 17 its execution is injtiated by (i) starting effective address
computation in X FACILITY EA1, (ii) placing an entry in the MEMORY
QUEUE (D}, (iii) marking the ABU REG BUSY (9) with G. The queue
entry waits on the queue another cycle for the effective address to
arrive, and then is issued to memory. We note that at time = 21,
MEMORY (1) is marked busy with G, and at time = 23 the busy bits

on ABU (9) and A(9) are turned off indicating that the load has arrived
at ABU (9) and then moved immediately to the waiting A(9).

The detailed timing of this memory activity is illustrated in Fig. 2-6.

OTB

L. Conway
Archives

v ‘
IBM CONFIDENTIATL, 2-14
Fiqure 2-6. Timing of Memory Activity of Examvple G7
[T 2R BLE R 22 3 .
7 3 19 4 21 . - 2 TIME
}\ (\ -——‘_-u- - . - —
. A Ay
_ _ A [
G RRRIWVES - - 1 |- ! ll\
pT QuEut 1e57 Goeut = A A
— . Bus TO ' EvaoRy -
-{cFF AYD ;:z::; Eusmh Merery| HARUED . -K
RROWES ¢AN B3 TO _' T Busy wim , T
wTaucsd] | ey e G Fos 7O | | MrrwE AT Re6
‘ : . - | qves wATIVG
S U ReeuiR QITS-OFF
e MEMDLY=50 ———— >l
| | o779
L. Conway
" Archives

- L - - - - - - S T - T - < — === ACS-1 HMPM SIMULATION PROGRAM - - - -

INPUT PRCGRAM FUR THIS RUN = CR-F$

FIME/DATE BF RUN = 4DT2C8FE_CU67194F

MACHINE PARAMETERS FCR THIS RUN - - -

NUMBER CGF A BUFFERS = 8 NUMBER OF X BUFFERS = 3 NUMBER OF Q BUFFERS = 8
NUMBER A UOPS TESTED = 8 NUMBER X EPS TESTER = 3 NUMBER Q OPS TESTED = 8
MAX A GPS ISS/CYCLE = 3 MAX X OPS ISS/CYCLE = 3 MAX Q OPS [ISS/CYCLE = 2
MINIMUM G-MEM DELAY = 5.0
NUMBER COF BOMS = 8
NUMEER BRANCH REGS = 3 NUMBER GF SKIP REGS = 4 SIZE CF [CG TABLc = &

_ :“.BER OF PSC REGS = 8
NUMBER DISP BUSES = 2
MAX A OPS DSP/CYCLE = 4 MAX X OPS CSP/CYLLE = 4
A EACILITIES — — FAl FA2 M FOD- IA 1M 10 C L S
REP TINE = i 1 1 1 1 2 1¢ 1 1 1

~ DELAY JTIME = 3 4 3 9 2 5 19 1 1 1
IKBLS = 2 1 3 1 1 2 -2 1 2 3
BOX = 1 2 3 4 2 4 4 5 & 1
QUTBLS = 2 1 4 3 2 4 4 6 1 3
X FACILITIES — - EAl EAZ2 L S M D XA C
REP TINE = 1 1 1 i 2 8 1 1 -
DELAY JIME = 1 i 1 1 4 8 1 1
BOX = 1 2 3 4 5 5 L) T

;QUJBUS = 5 6 1 3 2 2 7 10
‘ :
. _ : O30

- - _ L. Conway. _T;

Archlves

e mn mmn i ere s - feimdae e et m—n

TIMEF 0.0 : , CoPY OF TRACE -
TIME= 1.00 ‘
TIME= 2.00

4..
<
s
°
el
%)
r #

_ AIME= 3.00 N
LAME= 4.00 ¢§§ \\'ﬂoP \\
TINKE= 5.C0 V. . \

TIME= 6.00 ‘ ‘ \\\ \
TIME= 1.0&,{
AT . 0 LX 1 0 © 135 0CO 135 2 2 210 1
C 2 LX 31 0 © 130 0G0 130 4 2 210 1
E 4 LX 3C "G 0 128 __ 0CO 128 6 2 210 1
G 6_LAT 90 31 136 _J 000 136 6 15 211 1
TIME= 8.00 - -
: H 8 LAT 7 0 30 136 0co 136 10 15 211 2
K 10 LAT 5 0 31 1So 000 196 12 I5 2tl 2
M 12 LAT 1 6 0 132 0G0 132 14 15 211 2
s} 14 LAT Z 0 0 i26 CCO 126 16 15 211 2
TIME= 9.0C0
T Q lo LAT 3 0 30 166 GCO 166 18 i5 211 3
S 18 MXK i 1 0 30° 0060 58 20 17 210 3
v .20 MXK 4 31 O 30 0G0 30 22 77 210 3
W 22 MXK 3 30 O 30 000 30 24 771 210 3
TIME= 10.00 -
Y 24 AXK 531 O 30 000 20 26 76 210 4
A 26 LAT 8 0 4 78 000 78 28 15 211 4
C 28 LAT 4 0 4 80 000 80 30 15 211 4
E 30 AXK 2 30 0 30 00G 30 32 76 210 4
TIME= 11.00
e~ G 32 LAT 1¢ 0 32 78 0CaQ 78 34 15 211 5
_ I 34 LAT 6 0 3 80 0CC 80 36 15 211 5
K 36 AXK 37370 1 000 1 35 76 210 5
M 38 AXK 4 4 0 1 000 1 40 76 210 5
TIME= 12.00 '
g 40 AX 1 1 31 0 0G0 840 41 71 110 &
P 41 MN 11 9 10 0 0G0 0 42 178 101 6
Q 42 LAT 9 0 5 156 060 256 44 15 211 6
[44 LAT 16 0 3 80 000 82 45 15 211 &
U 46 AXK 5 5 0 60 000 30 48 76 210 6
TIME= 13,00 - -
TIME= 14.00
Vi 48 MN 12 7 8 0 000 0 49 178 101 7
X 49 LAT 7 0 2 196 000 256 51 15 211 7
F 51 LAT 8 U 4 80 000 82 53 I5 211 7
8 53 CGEX 1 1 5 0 000 930 54 87 110 7
C 54 BAND i 1 O &1 100 881 56 133 210 7
TIME= 15.00 ' _
3 56 MN 13 5 6 0 100 90 57 178 101 3
F 57 LAT 5 0 5 136 1C0 3116 59 15 211 8
H - 59 LAT & 0 3 82 IT0 g4 31 I 211 3
K 61 AN 212 2 o 160 30 62 166 101 8
K 62 AN 1 11T 1. D IGO0 840 53 166 101 3
L 63 MN 14 3 4 0 100 2 - 64 178 101 8
TINE= 16.00] :
M 64 LAT 3 0 2 256 100 316 66 15 21i 9
a 66 LAT T 0 & 82 100 84 68 15 211 3
Q- 68 AN 2 14 2 0 100 30 69 166 101 9
R 59 AN T1I3 1 0 100 840 79 166 101 g
: [70 AXK 4 4 0 2 100 3 T2 76 210 9
TIME= 17.00 _ mer—yewr-ve R
TIME: 18.00 L ‘ : ¢;932:§V '
TI¥E= 19.00 : o

“TINME= 20.00 : ' : _ o OB .

AL LA R

. TIME= 22,00

JIMEz 23.060

CTIME= 24,00 | ' - o%Z
i{ﬁ?j'?b‘Oﬂ L. Conway
. £E= 26.00
TIME= 27.00 Archives |

(TME= 28.00
INE= 29.00
TIME= 30.00
TiIME= 31.00
TiME= 32.00 : _

U- - 72 AXK 3 3 0 2 100 3 74 76 210 A
W 74 AXK 2 2 0 60 100 50 76 76 210 A
Y 76 EXLT c 0 o 0 100 0 41 199 111 A
P 41 MN 11 9 10 0 000 0 42 178 101 A
TIME= 33.00
TIME= 34,00 , _
' Q 42 LAT 0 5 1Sé6 0GG 376 44 15 211 6
S 44 LAT 10 0 3 80 000 86 46 15 211 6
U 46 AXK 5 5 0 60 0G0 150 48 16 210 6
_ TIME= 35.00
W 48 MN 1z 7 8 0 0CO 0 %9 178 101]
X 49 LAT 7 0 2 166 000 376 51 15 211 7
F1 51 LAT 8 0 4 a0 000 86 53 15 211 7
B 53 CGEX 1 1 5 0 000 $90 54 87 110 7
C 54 BAND 1 1 0 41 1C0 881 56 139 210 7
TiME= 36.00
TINE= 37.00
£ 56 MN 13 5 6) 0O 100 150 57 178 101 8
T OF 571 LAT 5 0 5 136 1C0 436 69 15 211 3
H 59 LAT 6 0 3 82 100 88 61 15 211 8
J 61 AN 2 12 2 D) 100 90 62 166 101 8
i K 62 AN 111 1 0 100 840 63 166 101 38
L 63 MN 14 3 & 0 1C0 6 64 178 101)
TIME= 38.00
M 64 LAT 370 2 256 16C 436 66 15 211 9
0 66 LAT & 0 4 32 100 88 68 15 211 9
Q 68 AN 2 14 2 0 100 90 69 166 101 9
R 69 AN 113 1 0 100 840 70 166 101 9
$ 70 AXK 4 4 0 2 100 5 72 16 210 9
TIME= 39.00 ' .-
TINE= %0.06
v 72 AXK 3 3 0 2 100 5 74 16 210 A
W 74 AXK 2 2 0 60 100 150 76 16 210 A
Y 76 EXIT 0 0 O 0 100 0 41 199 111 A
P 41 MN i 9 10 0 000 0 42 178 101 A
TIME= %1.00
TINE= 42.08
TIMNE= 43.00
' Q 42 LAT S 0 5 196 0C0 496 4% 15 211 3
-5 44 LAT 10 0 3 80 0C0 90 46 15 211 6
U 46 AXK 5 5 0 60 000 210 48 16 Z10 5
W 48 MN ‘12 7 8 0 6Co 0 49 178 101 7
X 49 LAT 7 0 2 196 000 496 51 15 211 - 1
Z 51 LAT 8 0 4 80 0cQ - 90 53 i5 211 7
B 53 CGEX T 1 5 i) 0C0 1050 5% 87 110 7
L 54 BAND 1 1 O 4] 1CQ 881 56 139 210 Ki
e 44208
: £ 56 MN 13 5 6 0 100 210 57 178 101 8
F 57 LAT 5 0 5 136 iCO0 556 55 15 2711 8
. H 59 LAT 6 0 3 82 1G0 92 61 15 211 8
J 61 AN 2 12 2 0 100 150 62 166 101 8
K 62 AN 111 1 o 100 840 63 166 101 8
L 63 NN 14 3 4 0 100 10 64 178 101 8
TINE= 46 .N0 : - ' - i i

M 64 LAT 3 0 2 256 160 5% 66 15 2Il 9
0 66 LAT 4 0 4 82 100 92 .68 15 21} 9
Q 68 AN 2 14 2 0 100 150 69 166 101 9 T T
R 69 AN 113 1 0 106 40 . 70 166 101 9 e
S 70 AXK 4 40 2 100 7 72 16 210 3
46.00
47.00
48,00 :
U 72 AXK 3 3 0 2 100 1 74 16 210 A
W T4 AXK 2 2 O 60 100 210 76 16 210 A
Y. 76 EXIT 0 0 O 0 100 0 41 199 111 A
- - 0 00 © 0 000 0 0 999 GO0 A
TIME= 49.00
TIVE= 50.00
TirME= 51.00
TIME= 52.00
TIME= 63.00
TIME= 54.00
TIME= 55.00
TIME= 56.00
TIME= 57.00
_ TIME= 58,00
TIME= 59.00
=
%3

L. Conway

[T N P Y o woo

Archives |

SIMULATED YIME =

INPUT PRGGRAM = CR=FS_

B JEL C TG 58
Qb ——— = | mmm—pm mmm @ mm—m— p— m— = B — e e —— e m— G — e
16 1172222223364444555566TTT139AA66TTTIAAOGTTBIAA
,,,,, DG 11222222233444455556611123445566623344556122 i
i A Q G MU MU
i - 2 A g G X X MU X FMU L
3 - ¢ K S A Il & X 0Ok Q@ X Cw Q X FOW
4 C K S A Il Q 27 HOw Q 2Z OwW Q ZZHOW
5 T £ MRMMMMMUUCC KK SSZZ H YYSSZIZ YYSSLZZH YY
o 6 "E_MMMMMMMUUCC KK SSBB SSBB $S38
7 GOl OGOUUORWEEEEMMEMULCCC § UUCCLS UUCC S
8 CG)UCCOUORWEEEEMMNMUULCC S ULCLLCS UULCC S
Tt o-—+—+—~:r1—-——+———-2——~-+—~——3-—-—+———-4—-——+———-5——--+-——-5
DSPX2 1B - 333333344555566667718689A 677S88A 77889
Do 1233335344555566661122234 5661113 55661
1 L GuCUQRYYGEEG0G00 MU U M
o 2 NGLGEGUAYYTGGG XXFEFMU XXFFFU XXFFM)
3 KLESSSSSSAAI T IGUQAXXFRFOY WXXFFFRK XXFFO
4 KESSSSSSAAI T IQWQUZZKRAHON wZZHHHW ZZHRO
5 MXUUUUUUCCKKKKSSSSIZHHH Y SZZHHHY ZZHH
6 wauuuuuccxaxxsssssa SBB 86
7 Ok WWEEMMMMNGUUUCC S UCC ¢C S
8 OubnnkWWEEMMPERUULLCC S UCC cc S
0——-—*————l‘—-—+"———2~--—+~-——3~-—-+————4————+————5—--—+————6
DSPAl I8 173456 1068886580806 886086089A67/B689A617888899
D0 123456 12222222222222222222345611123456066611
1 1§ WE m)M E M
2 1¢ btp XF M PXEl M PXFF M
3 K AYQ XF O QXfy O QXFF O
3 4 K AAG ZHHHHHERHEHEHKEHHHH © O QZH#H O QZHHH O
5 M €5 ZHGHRARRHHEEHRHRRAR QYSZha QYSZAHH @
6 M C ¥ JIJIJIIIIIIIIIIIII R S P R S JIJIRR
7 G KRKKKKKKKKKKKKKKKK KK KKKK
8 €5§ LLLLLLELALLLLLLLLLL LLE LLLL
O————+—1-1 ey e | A——fmgf e — ===~ —d=———b
DSPAZ 18 :\ 9999$65999959599999A THI9VA T789999AA
DO 3333533333333335334 6422¥3 56111122
1 \ MMMMMMMMMMMMMMMMMM HE) M WEMMMM
2 \ T RMMMMEMMNMVNNMEAMMAM XFMAM XFMMMM
3 | COOGGCCO0CCBL00C00 XFOOU| X FUGDO
4 VvV OCGOC06G000G0GG0G00 ZHOGCY ™ 240000
5° \ 1 QCQQEQQQQAGEQRQAQACY ZHQQQY ZHQQAQYY
6 V RRRRRRKRRRARRRRRRR JRRR| JRRRR
7 \ . X
8 L L
0 + 1\ 2———=——==3-————+# 4 tom—=5————t—mmp
ERANCH CONTROL—-ER 1 \ \ 111
- .ER 2 1
ER 3 \ 1
BE 1 \ \
BE 2 { .
BE 3 \ 1 .
ET 1 ' i1t {
. ET 2 { 1
5 ET 3 \ I
BRXP 111111111111311111331111111111111122222222233333333111111111
BRAP 111111111111111111111111111111111111222222233333333111111111
. XHLT \ ' o34
AHLT \ \ L.cm_l
Are
AECT Archives—

YFD

11 H

o “REP e e T B S AR |
3 B80SC ‘) 11111 :ﬂ1111 1111
- BNOP ¥ 1 \ 1 1
ek Tatd Sttt st Aot ARSI ML) S, A A S S
SKIP LENTROL- -SR 1 !
SR 2 1 ’ .
SR 3 \ \
SR 4 \ \ —
SKXP 11111lit 11111111111111111111111111111\111111111111111111111
_ SKAP 11131110 A1111211223112230 20111131 e BR800 2100 0032032212131
i - 0—~——+—L- T J——— TR S ek bt o
A BUFFER 1 QAGPPPPPPPPPPPPPPPPPPPPukKLu\PQFKHQ&PQXFJQQQ
N 2 \ VK ClOQQuuRLQLOLeClQuURRQGSHMRRAQSHMRRPQS ZHMRR
3 $555555555555SSSSSSSEKD PREEKD PQSWEJD
4 G Ahrnnnhhhnnhnnn W XEFLQ GEHLQ QSWXFKQ
5 \ XXXXXXXXXXXXXXXXZFH R SXFHL R SWXZHL
6 \ IilI7iZIITLTITLTIEHY Wl J WXZE
7 EELEEEEEEEEEEEEEF K K 1EF
a FEFFFFFFFFFFFFF \
O s | D Sty SR L AN S DAL St AR
X BUFFER 1 A CLGLO N DUURHAAGGKMGSSSSMSURYSSCHSURYSZOMSUNY
2 A iTI1MORrAACCT IMOSUZCHOUKYSUZFUQULWYSUBFOUAXY
3 EIKKKKKKNCSYACCEGRKKGRUXBFASKYQUXBHSh YQUXCHS WY
g——+———=]=————% - 2-————+————-3-—~-——+—-———4—— — = —— =5
A FACILITIES FA 1 J K WK K QR KJ RQ
FA 2
FN 3 W PEL W A& PWEL
IA S ,
" 6 |L.Conwoy
10 7 [Archives
C 8
L 9
'S 10 ,
P pmag; SRS e R Bam— Sy BRSPS i e
X FACILITIES EA 1 AE)0 A G G XZFSM G XSFM Q SZIFM
EA 2 C gNQ C I HO ZHG X HO -
L 3 Y E KMGU SUKWYU SUWYU SUNWY
S 4 :
M 5 SSUUWH
0 6
XA 7
C 8 8 B B
Q————#———=]m———#=f e 2 m e F g ————4 +— 5 =
MEMGRY QUEUE (D) 1 AAE 55) 0 AAGGCGXXZFSMORQRUXXSZIM - QQSSZFHMO
: 2 cC 'HMQ CCIl ZFSHO SIFQ XXFHMO
3 £ i FM IFH 7HNO
4 r&g . , o HM 0
5 §]
. \
7
: \ |
g——=—t————]————t——— —-——,—+—-—--——3————+—--—-—4 =k 5 —d— {
MEMGRY QUEUE (1) 1 123456 789 A Bt C 1 2 33 '
Z 123456 185 A By C I 2 3
3 123456 78S A B C 12 3
4 123456 18S A By C 17273
Qeem—g——m e pm m e 2} e prmm — Fm— e pm mm— = e G — b — ——
) 1 135 79E ©s CIT @ X3 Q XHO Q X
2 ‘135 769 8 1 3
) 1 3 5 17 9C 8 17773753 94
4 135 179 8 1 3 - '
5 2 4 6 8 TAKFQ T C 2 FHND ™ FHMO
& 24 6.8 A c 2 :
7 7 4 6 8 A O C AG2 SZ

-

' e el o . 2 i S
A REGS BUSY | B '

e :

T MMEP MM MMEEY e . KK RR KK RR KK RR
CGGLOOCCCoLGoa JJ Q@ JJ QA JJaa
GQUINLENGQEQQ MMMM - MMMHM ANMEAHM
cceeereceeeeecceece COG0C COOCO 0BQ0000
KKXKKKKKKKKK FFF . FFFFE FFFFF
fITIHIITTINIIIIIMT] HHHH HHHHH HHHHHA
TITTIIITLILII XXXX XXXXXX XXXX
AAAAAAAAAAAAAAAAAA 22111 112111711 11111
Ll bGLULLGLLEL QQ QQQ
10 GOLLLGLLLLGGGG6G66 $5555 $SSSS $5SSS
. - ' PP PP PP
i2 : WH YW W
13 EE (FE) EE
14 : LL LL LL

O =i B BN =

QO pm =] —m == Qe m— fm = B m e fm e — e —— B~} ————

ABU REGS BUSY
MERMK M
GGGCCO
QQQeeQ MMMMMM MMMMMM MMMAMMM
ccecce GCO0COG 60C000 C00U00000
KKKKKK FFFFEF FFFFFF FFFFFF
T11111 HHHHHH HHAAAAH HEAAHHH
111111 XXXXXX XXXXXX XXXXXX
AARAAA ZZ.717 ~I2Z11I7 II11ll.

{ GGGGGE ' a4QQegQ QQQQUQ QaCuQQ

o GGGGGG SSSS5SS S55555 S$5555S

O oolal MUKW N~ O

P
-0

——
W

—
W

bt ot
-

-
oo

NN
- O

N
¥

N
W

N
F

OB e

r N
\Vh

N
o

_iL.Conway
[Archives

N
-

N
]

Mo
O

€]
o

R g

o b s i ;”-wm 0‘__-+“;—‘1“““;+“—T‘2;f;;f:“'af__—+—‘__q'—_-¥L A 6
X _REGS BUSY ' ‘ . ‘

i
i
;

A

T AAKAAAA 5SS

el
ULy

Olw ~lor s win =|o

30 EEEEEE
31 [
Qr——=d==—=]-———t—=r=2 + Jrm——p e ——fmmm— =G ———mp ————§

37

L. Conway
Archives

. IBM CONFIDENTIAL e 3-1

CURRENT JOB RUNNING PROCEDURES

This section describes the procedures to be followed in order to use

- the timing simulation program. These procedures are to be completely
revised and expanded in the near future so that the programs may be
stored on disk at the MOD 75 comp lab and users may submit runs
directly at the comp lab (see Section 5). '

‘To use the timing simulator at the present time:
(i) Write the assembly code input program for the Unroller (Section 1).

(ii) Prepare the machine parameter card required for the Timer |
input deck (Section 2). '

(iii) Submit these items to L. Conway, Room 203, Extension 252.

O03%
. : R S L. Conway..] .~
S Archives |

IBM CONFIDENTIAL:

TABLE OF IMPLEMENTED INSTRUCTIONS

4-1

The table on the following pages lists the ACS-1 instruction set op
-~ -codes and indicates (with an X) if a given op is nnplemented in the

Timing Simulator.

S B

039

L. Conway
Archives

IBM CONFIDENTIAL

4-2

oP oP OP 0] 5%
ACH X | CEQXK X| EQA X| LD
ACL X| CGED EQC X1 LDA
ADN CGEL X1 EQX X LDH- -
ADR CGEN X! EXIT X | LDHAA
ADU CGEX X | EXITA X | LDHBA
Al X | CGEXK X | EXITL X | LDHCA
AN X1 CMEQD EXITP LDHDA
ANDA X | CMEQN X ' LL X
ANDC X| CMGED ILMA
ANDX X | CMGEN X | FAFA X | LMS
AR X{ CNTAA X | FAFC X1 LMX
AU X | CNTAX X1 FAFX X! LR X
AX X} CNTDA X | FOFA X! ILX X
AXC X1 CNTDX X{ FOFC X1 LXA
AXK X | CNTT X | FOFX X LXC
CUGEI X ILXCA
CUGEX X LXH X
BAND X | CUGEXK X i HIO
BEQ Xl CVF X
BFAF X CVI X MAX
BFOF X i CVN X| IC MCX X
BOR Xt CVS X | IDA MDN
BTAF X IFA X | MDR
BTOF X IFX X{ MDU
BU DDN IFZA X Ml X
BXOR X | DDR IFZX X MKL X
DI X! IR MKP
DMI ITUMA MKR X
CBA X i DMN ITUMP MLC X
CBMA DMR IViIB MLX X
CBMX DN 1 X MMI
CBX . X1 DR X| LA X1 MMN
CEQD DRX X| LAA MMU
CEQIL X | DRXK X| LAH X| MN
CEQN X | DX X| LAT X{ MOT
CEQX X | DXK X| LATH X | MR
290
L. Conway

Archives

"~ - IBM CONFIDENTIAL

4-3

[-
M e

By
!

oP oP 01 opP
| MRC X' | SCAN SPF Xt TATA X
MSX SCH Xji SPI X{ TAFC X
MSXY SCL X| SPX X| TAFX X
MTX SDN SR X| TCH
MU X1 SDR " STA X! TOFA X
MX X} SDU. STAA TOFC X
MXA X | SHA X1 STAH X| TOFX X
MXC X | SHAC Xt STAT X
MXK X | SHD STATH X
MXP SHDC STD XORA X
MXS SHDX STDH XORC X
MXSO SHDXC STDHAA XORX X
MXT SHX X| STDHBA
MZT SHXC X | STDHCA
SI X | STDHDA
SIA X{ STL - X
NOP X | SIAC X{ STMA
SID STMS
SIDC STMX
ORA X | SIO STMZ
ORC X | SIX X STMZA
ORX X | SIXC X| STR X
SKAND X| STX X
SKEQ X| STXA :
PAUSE SKFAF X| STXH X
P1 SKT'OF X| 80U X
SKOR Xt SVC
SKTAF X| SVR
RND SKTOF X| SWA X
RX X1 SKXOR X| SWX Xl
RXK X1 SN Xi 8X X
SNF X
SNI X
SNX X
o\
L. Conway.

Archives

IBM CONFIDENTIAL _ ‘ » 5-1

¢ PLANNED MODIFICATIONS

Certain modifications to the simulation programs are now being made
or are planned for the near future. These are briefly described below

-7 -7 to assist users in their planning. Updates to this memo will be issued
as these changes are included in the programs.

Unrollér Changes

The control specification facilities will be extended.

Timing Simulator Changes

(i) Additional OPS will be implemented.
(ii) New output features and options will be added.

Job Running Procedure Changes

Currently jobs must be submitted to L. Conway who will handle

the processing of the jobs. Two separate programs must be run consecu-
tively to process one timing simulation, This regults in a rather

long overall turn-around time. To improve on this, the two programs
will be merged, with the trace temporarily stored in core or on disk

and automatically passed between them.

Also, the program will be placed on disk at the MOD 75 comp lab.

The running of jobs will then be handled directly by the user, who will
submit the assembly code input deck, parameter card, and appropriate -
JCIL cards to call for the timing simulator. .

These changes will greatly reduce over-all turn-around time and allow
a much greater number of users to be served than is now possible.

09<

L. Conway
Archives

