© Date:

From {location

- U.S. mall address):

October 31, 1967

Advanced Computing Systems

- ™ Menlo Park, California :
{ wsmas: 988 /031 . EM
folcphone Ext.: 2 52
Swject: A Proposed ACS Logic Simulation System (1.SS)
Reference: 1. Specifications for Input and Output of ACS/TALES Simulator,
A. G. Auch, Dept. B24, SDD Poughkeepsie, September 20, 19867.
2. TALES - ACS Simulation Capability, A. G. Auch, Dept. B24,
SDD Poughkeepsie, August 15, 1967.
3. ACS AP #67-115, MPM Timing Simulation, L. Conway,
Auqust 2b, 1967,
4, ACS AP #56-022, ACS Simulation Technique, D. P. Rozenberg,
L. Conway, R. H. Riekert, March 15, 1968,
To: File
()

O -8418-10

X Claiy

L. Conway

LC:aw

A4
L. Conway
Archives

CONTENTS

Introduction

The L3S Programs

Possible Procedures for Use
Requirements for Development

Additional Benefits of 1SS

Ay

L. Conway
Archives

Page 1-1

Introduction

This memorandum describes a proposed ACS Logic Simulation System(1.33).
This system has been only tentatively defined. The purpose of this memorandum
is to set down the current thinking and stimulate some feedback from

potential users, potential implementers, and other critics on the feasibility

and utility of such a systemandon the practical details of its implementation

and use,

The purpose of the proposed L3S is to provide a mechanism for aiding the
debugging of the logical design of the ACS-1. The logical designer may know
that for a given section of logic circuitry a certain set of inputs should produce
a particular set of outputs (for a given initial internal state) according fo

the "system level" description of the design which he implemented in the

logic circuitry. The LSS will provide a means of inserting the circuit

inputs into a logic simulator which simulates the action of the circuitry

on these signals and then compares the resulting output with the output
expected by the designer. Any mismatches would indicate a logical

design error in the circuit (see fig. 1)

A group in Poughkeepsie can provide ACS with a package of pfograms capable

. of performing the logic simulation, The ACS designer would provide

input to these programs indicating the particular partition of the machine

to be simulated and the input-output lines on the interface of this vartition.

The programs would use this input to extract from the DRKS files the

detailed description of the logic of the partition selected.” The designer

would then need to apply a sequence of inputs to the logic simulator corresponding
to a proper sequence of input-output line signals at the interface of the

partition. The programs would simulate the logic operating on the input

signals and mark any mismatches in the logic output and expected outmut.

The designer would then use these mismatches to debug his logic design.

A major obstacle to the practical application of this proposed system is
the difficulty of generating the I/O signals at the partition interface. It

~does not appear to be at all practical, or even feasible, for the logic

designers to generate by hand all the correct test patterns necessary to
"moderately" debug all the partitions of the machine,

A method has been proposed to solve this problem by providing a programmed
means of automatically generating these interface I/0O signals. A detailed
timing simulator now exists for the MPM (ref., 3). This simulator times

the activity of all MPM hardware, as described at a system level, during

the execution of an input program. :

29

L. Conway
Archives

Page 1 -2

Now, suppose we wish to use the LSS to study and debug a particular—
partition of the MPM. We could carefully define the interface of that
partition and rewrite the appropriate sections of the timing simulator

such that (i) the same interface existed in the timer as in the logic circuitry,
(ii) the same "system" level description is used in the timer to describe

the partition that was used to formulate the logical design of the partition,
(iil) provide for output to suitable files of the timing simulator interface
signals during each simulated cycle of execution.

The timer thus modified could become a practical source of the 1/0
signals needed to drive the LSS. The timer would have to accurately
reflect the MPM only at and within the interface of the partition to be
studied. Any errors in this system description would be discovered

early in the debugging process. After this phase , many selected programs
could be run on the timer to yield as many interface signal sets as are
necessary to debug the logic design of the partition to the required level
(see fig. 2). '

The timer could also assist the designer of the partition in his efforts
to find a particular bug when the LSS indicates a mismatch in outputs.

- The timing charts produced by the timer will give a concise pictyre of the

state of the machine at a system level in the region of time surrounding
and including the cycle in which the bug occurred. This may help to
determine if the bug is at the level of system specification or logic circuit
implementation, Both the timer and LSS can provide the states of specified
triggers within the partition and a comparison of these can aid the designer

in debugging.

In the following sections of this memorandum some of the details of this
proposed LSS system are described and questions are raised which must be
answered before any serious development of the system can begin.

The main point to keep in mind is that there are two levels of simulation
involved in this scheme -- the detailed simulation of the logic circuitry of

a design and the system level simulation of the same design. This two

level simulation technique for debugging logic circuitry was originally proposed
to ACS in August, 1966 by G. T. Paul. The technique now appears to be
feasible because of the availability of an adequate logic simulator and ACS
experience with the current timing simulator. : '
Comments and criticisms are invited, especially on questions concerning

the feasibility of the system, its utility to the ACS logic designers, its

cost relative to any alternative systems, and the various practical problem
of its implementation and use, 250

L. Conway
Archives

Page 1-3
FIG1. THE BRASIC IDER OF LSS

REPLY SAME INPUT TO BoTh LEVELS oF SimuLAaTioN -

AND COMPARE CUTPUTS. ¥ CUTPUTS ARE DIFFERENT —

THEN ERMROR TAISTS ™ LOGIC DESIGN.

SIMULARATION OF
SYSTEM™M LEVEL DESIGN ')

L]
)
]
SiMuLATION ofF LOGIC 1

CIRCUITS 1MPLEMENTING = OUTPUT"_
THE SYSTEM LEVEL DESIEN

INPUT

FIGZ. AUTOMATIC GENERRATION OF SYSTEM
LEVEL INPUT/OQUTPUT, LOGIC SIMULRTOR INPUT:

SYSTEM LEveL DESIGN 1S iMBEDDED 1N SYSTEM LEVEL SimunhTion) OF ENTIRE

MACHINE, WHEN THIS SIMOLATOR RuUNS WS AUTOMATICALY GENEAATE (m-a'a sr-wr:\ TwE I/o
AT THE DESIGN INTFTAFAGCE « WE MAY LATER APPLY IWESE INPOTS To THT LOGIC S:MULATOR

FoR THE SAME DESIGN AND comPARE THE LeGia GUTPUTS wiTH TwE SySTEw LEVEL oUTPUTS.

SYSTEM LEVEL SIiMULATAR FoR COmMPLETE MACHINE

gYsTfM LavalL Si1mutATOR AUTPUT,
INPUT s
- SRR~ Y

FOR PART OF MACHINE

. (COXPHKE) ' -

LOG 16 SimMULATOR FOR :
- | Lol QIRCLITS IMPLEM. [251
SELECTED PART OF AACWiNE

L. Conway
Archives

. | Page 2 -1

* The 133 Programs -

In this section the programs forming the 1SS are identified and described.
The relationships between the various programs and the designers input
and output to the system is described. This specification was developed
from information contained in ref. 1 and the notion of using the timing
simulator to drive the LSS, This specification is very tentative in nature,

The simulation of the logic of a portion of the ACS-1 machine operating
on a sequence of inputs may be viewed as occurring in three distinct
phases within LSS,

The first phase is the selection of the specific partition of the machine to
be studied and the specification of the I/O interface for this partition,

The designer will specify the partition and interface in a card input deck.
This deck is used by the L3S to extract the detailed information describing
the logic circuitry of the partition from the DRKS files and DRKS rules,
The program performing this extraction is termed the Simulation Interface
Program (SIP), and is to be written by the Poughkeepsie people.

The next phase of the L33 simulation is the generation of a sequence of
interface signals for the selected partition. This is done by running ACS
program on the modified timing simulator. Once the designer has assisted
in forming the proper timing simulator specification for his partition, the
production of these interface signals requires no more effort by him.
Many programs exist which run on the timer. The designer would merely
select those programs which might best be applied to debugging his
particular section of the machine. An addition must be made to the
existing timing simulator to extract and file the proper interface signals
during each cycle of simulated time. Let us call this the interface signal
file generator. This program would be written here at ACS.

The final phase of the LSS run is to perform the logic simulation itself,

This is done by a program to be called TALES, which is to be developed

by the Poughkeepsie group. The interface signal files produced by the
timer-interface file generator programs are processed by a reformatting
program called TAMIP (also to be written by Poughkeepsie) and then input

the TALES logic simulator. The TALES simulator uses the logic files formed
by the SIP program to perform the proper logical functions on the input
signals to yield interface output signals for each simulated cycle. If the

logic simulator output signals differ from the expected output signals produced
by the timing simulator, an output listing to this effect will be produced

- and certain information printed to assist the designer in finding the cause

of the mismatch,

In figure 3 the functions of the three phases of LSS are illustrated by flow- -
charting the relations between the designer's input, the various LSS programs, 352
the DRKS files, and the various L3S internal files, L. Conway

Archives

FIG 3. THE RCS LOGIC SIMULATION SYSTEM

T. SELECT PARTITION OF MPM:

DESIGNER S

SIP: SIMULATION INTERFACE PROGRAM .

(To 88 waiTtENV: Pox), EXTRACTS SELECTED
INPUT CRRDS. | o

" SPECIFY LOGIC
To SE SELECTED

LoGic FRoM DRWS FILES AND FORMS
INTO INPUT FOR LOGIC TiMULATOR

T . GENERATE PARTITION INTERFACE SIGNALS:

INPUT TROGRAM™
Fot TimiNG
SIMULATOR

TIMING SIMULATOR : (ALREADY WRITFEN: RCS)
TEAFORMS SYSTEM LEVEL SiMMULATION oF
MPM EXECUTING THE INPUT PROGRAM

v

INTIEREACE SIGNAL FILE SGTNERPBTOR:
(To 82 waiwen:ACS) . EXTRACTS INPUT fouTPuT
SAGNALS AT THE RESIQGHERS INTERFECSE WiTHIN
THE TminG SimulLATOR DURING ERACY Cy<LE

OF S1MULATED EXECOTION. FORMS FiILE OF THiSE
SVENALS TO WPUT THE LOGIC SIMULATOR

TIT. SIMULATE LOG1C OF SELECTED PARTITION:

TAMIP PROGAAM (T 85 WUTMENL POX),
OPERATES O THE

FILE REFGRMATS FILE To Follm TAES mNPUT

|

TRLES PROGRAM: THE LBGIC SIMULATOR :(To 8F wR\TEN:Pox)|

SIMULATES Tré IFLECTED LOGIC CIRCUITS QPFRATING UPIN THT GENEAATED
INTERFACE 1WPUT S1anA S . CompPaRRES CI1RCUIT OUTPUT S1GNALY wWITH

TwosE SENERATED BY THE TiminG SIMULATOR. ANY MiSHATOHES ARE
TRINTED OuT WiTH ADDITIOM AL, DERIVGES NG

IMFORM ATIOMN

INTERFALT S1GNAL ot

o

SV\GHNRL

N

23573

P&fie' 2-2

SELECTED

LoG\C FILE

/

L. Conway
Archives

- Page 3-1

=

Possible Procedures for Use o _ -

So far we have examined the overall functions of the LSS and identified
the component programs and files., Al of this is very tentative. In this
section let us explore some of the many different possibilities which -
exist for organizing and using the LSS system, and identify those areas
which are only tentatively defined and need to be worked on.

. Many questions and alternative approaches are outlined which must
be resolved before the system can be considered feasible, useful, and .
economical, Criticism on these specific questions from everyone concerned
is needed to formulate the answers to these questions.

Most of these questions center on the organization and management of
the system, i.e., what technical form should the system have in order
to be usable by the designer ? For example, how do we partition the
machine, how large or small should the partitions be, and how do we
select the interfaces? How should the designers specify the system
level description of their partition?

(1) Partitioning the MPM: How large or small should a partition be ?

'~ From an organizational and system simulator point of view, the
larger the better. If a partition is too large, however, the designers
may have a difficult time in debugging the logic. This problem might
be eased by placing certain triggers internal to a partition in the
set of outputs the designer can check. If the partitions are too small
and thus many in number, we will have difficulty in managing the
study--there will be too many interfaces, and some of them may be
inconvenient to specify at the system level. '

It seems undesirable to have a single partition so large or so chosen
that two different design groups design sections of the partition, The
utility of the LSS system is increased by having formal interfaces
between the various groups of designers, to allow a successful
segmentation of the design. It is natural that the interfaces between
design groups would also be interfaces in the system level simulator

in L3S.

An approach to choosing partition size might be the following:
choose the partitions as large as is possible subject to the folowing
constraints, {i) the boundaries of the varicus design groups,
{ii) the maximum amount of logic which the logic simulator will
handle. It is likely that the second limit will usually be met first.
This raises the question of whether the logic simulator (TALES)
: 354

L. Conway
Archlves

(1)

(iii)

Page 3 - 2

. »

can handle a large enough partition for the LSS to be practical.
This question is quantitatively studied (section 4) later'in this

- memorandum, and the answer currently appears to be yes.

Selecting the Interface: Suppose we wish to formulate a partition of
the MPM whose approximate size and boundaries are known. We
face the problem of selecting the exact interface that is to exist
between this partition and the rest of the machine, This is the
problem of selecting an interface which is reasonable both in the
logic and in the system level of description, The problems involved
in doing this do not appear to be serious if the partition is large,

for then certain natural boundaries (the phases) within the MPM may
be chosen as interfaces. If the partitions must be very small and
many in number, we will have serious problems for the system
level description as a whole will become much more detailed and
unmanageable, We might not be able to simulate on a cycle by

cycle basis, but have to generate and check interface signals at many
different times within a machine cycle.

Describing a Partition: In order to correctly generate the interface
signals for a given partition, the timing simulator must accurately
reflect the system level description of that partition, An important
question to be answered is how is the detailed system level description
of a partition to be formed, in what language, and by whom? There is
a wide range of possibilities.

Method (2). The designers could give a verbal, nonformal description
of their partition to a programmer who would formalize the description
by writing the code which performs the system level simulation.

This is probably not adequate because it would be too difficult to
maintain the description. The designers would have no direct

link to the formal description when they desired to make a change.

Method (b). The designers could produce a "sem?-formal" description
of their partition by creating a combination of flow charts, diagrams,
and written description which attempted to document as accurately
as possible {(outside a formal language) all the details of their design.
A programmer could use documents of this type as a direct basis for
his coding of the system level simulation. This at least solves the
problem of maintenance of the program. A change in a flow chart
could fairly easily point to the necessary corresponding change in
the simulator code. Even with this method, serious problems arise
(even more serious if using Method (a)). Since the designers would
not themselves have a complete, formal description at a system level
of the thing they have designed, many errors are bound to occur
in the system descmptlon—-errors which would be difficult to debug.
355

L. Conway
Archives

e

(iv)

Page 3 - 3

E

Method {c). We might go a step further in the specification of a
partition by the designers and require that they help formulate and

have access to a complete, formal description of their partition

at the system level. This could be done by having the designers
partitipate actively in the production of the formal description,

The obvious choice of a language for formal description is the simulation
language used in the timing simulation program. This language is

an "elementary form" of "Simscript, " and is written in FORTRAN

(see ref. 4). '

The designers could produce the flow charts, etc,, as in Method (b),
but then assist in the production of the System simulation code to

the extent that they would fully understand and be able to modify (with
programming assistance) the system level description.

The system simulation code would then be the formal description
for the designer. It would be easy for the designer to introduce
changes into the formal description.

Method (d). We can go one step further and require that the designers
independently produce a formal system description of their partitions
in some language common to all the design groups. This is a goal

to strive for in later design efforts, It seems impractical at the
present time, however, because of (1) the time required to educate
the designers in some formal language, (2) the even greater time
required for them to gain "programing" experience--the experience
needed to use the language to describe their design at the proper system
level. Most logic designers probably conceptualize their design

not as a system description being implemented in some logic
circuitry, but as the logic circuit implementation itself, That

this is likely is indicated by the current lack of detailed system
descriptions within engineering and the current wealth of logic

circuit diagrams.

Considering the methods (a), (b), (c) and (d) outlined above, it
would appear that the most useful and feasible method for currently
producing the necessary system level descriptions for the I.SS

is Method (c).

Selecting the Partition in the Logic: When we have selected and
described a partition at the system level, we face the problem of
selecting the same partition at the logic circuit level. The description
of the logic circuits is formal and is contained in the DRKS files.

The Poughkeepsie group will write the SIP program which actually
extracts the logic design of a partition and forms the file to input

the logic simulator. 256

L. Conway
Archives

(v)

Page 3 - 4

kS

The designer's input to specify the logic to be selected by the SIP
program has been tentatively defined in reference 1. There will
have to be a study by all concerned to produce a specification of the
SIP input conventions, Once the procedures for use of the LSS
system have been defined, it would be desirable to specify input
conventions for SIP which are the simplest possible in nature which
meet the needs of the LSS. The smaller and simpler the interface
between ACS designers and Poughkeepsie programs the better.

Sequence of Partitions to be Studied: An important property of the
proposed LSS using the existing timing simulator as a starting
point in the system level description is that the debugging of one
partition may proceed independently of that of another partition,
We can thus choose a sequence of partitions to be debugged which
corresponds to the schedule of design of the partitions.

We could have chosen not to use the timer, but to apply Method (d)

of the previous section and develop a formal and accurate system level
description of the whole machine, Let us examine some of the
problems within this scheme and thus learn the advantages of using
the timer.

Suppose the machine could be divided into four partitions:

A B

c D

We could have the designers write the programs described A, B,
C, and D and then run these as an accurate timing simulator,
obtaining input and output signals at the interfaces.

The problem with this is that the system level programs must all
exist and be reasonably debugged before the whole system level
simulation will run. Of course the individual partition programs
could be run separately toyield partition outputs for a given set
of partition inputs. But this does not solve the original problem
affecting the feasibility of logic simulation--the difficulty of
generating by hand ali the input-output patterns. It only half -
solves the problem.

367

L. Coriway
Archives

* Page 3 -5

Another difficulty with this approach is that we would be heavily

. committed to whatever techniques were chosen to implement
Method (d).

Clearly we do not need to face these problems and uncertainties,
The existing timing simulator can be used to circumvent them as
follows:

We chose for LSS debugging the first partition whose design is
"completed. " Suppose this is partition A,

A

Timing simulator dummy
for rest of machine

We already have a working, debugged timing simulator which simulates
an approximation to the whole MPM, We write and place into the
timer (replacing existing code) the the description of partition A at
the system level. Now the remainder of the timer serves as a

" dummy machine which can properly interact with partition A once

' the system description of A is debugged. Now we may not get

exactly the same feedback from the dummy portion of the machine
that we would get from the eventual real machine, but this does
not matter. We will get valid feedback which will properly drive
partition A. We will automatically get both inputs and outputs of
A every cycle while the simulated machine runs an input program.

This allows a considerable degree of freedom in the planning of the
debugging process. We may debug the partitions independently

and in sequence if we so desire. It is likely that the various
partitions will be ready for debugging at different times, We

could schedule the debugging to correspond to these design schedules.
We would not be committed to the first procedures chosen to debug
the first available partition. If a method proves unsatisfactory on
the first partition, we can modify our procedures for handling later
partitions,

By using this method we can proceed only as far as we choose in
applying L3S to debugging the logic, We do not need to determine in
advance how much of the logic is to be debugged this way., Some
sections of the machine may remain in dummy {(original timing-

@ simulator) form, Some sections of logic such as functional units

' (adders, multipliers) clearly can have their logic simulator input-

output signals formed by hand or by special programs of much 353
simpler form than system level simulators,

L. Conway
Archives

(vi)

Page 3 - 6

3

Note that the timing simulator can eventually become an exact
system level simulator of the whole machine if that end is desSired.
This method does not preciude that possibility, Indeed, this method
offers a practical means of achieving that end in a step by step
approach rather than attempting it directly,

Debugging a Partition: How does the designer use LSS to uncover
bugs in the logic design? Let us consider various procedures which
might help in the debugging process. '

An important consideration in the debugging of a partition is the
selection of some appropriate input programs for the system simulator.
We wish to run programs on the timer which exercise as fully as
possible the system logic of the partition under study, in order to
debug that partition as fully and efficiently as possible, This

selection process is yet to be developed.

A question which arises here is how far should the debugging of a
partition proceed using LSS. This is a function of input program choice,
the available computer time and manpower available for debugging.

This question must be studied fully in order to estimate the performance
of the LSS system compared to its cost,

An important potential function of LSS which must be explored and
developed is that of providing the designer with information to
assist his debugging effort in addition to the mere indication of

an output mismatch,

One possibility, easily implemented, is to make available to the
designer the timing charts produced by the timing simulator (see

ref, 3)for the LSS run under study. It has proven possible, with
some practice, for individuals to use the timing charts to follow
completely the system level functioning of the MPM, The designer
would thus have available to him a concise description of the states
and functioning of the whole machine in the region of time surrounding
and including the cycle in which a bug was found in his partition,

Another possibility is to have the timer and the lcgic simulator

both provide as output the contents of important registers and

triggers within a partition in addition to those on the partition

interface, This would be especially important if the partition is a

large one, Of course we would have to have the timer quantities

behave exactly as the logic circuits in order for this to work, This

might provide a practical way of allowing large partition size, yet
209

L. Conway

Archives

{vii)

. Page 3 - 7

feasible debugging. As an example, suppose a large section of phase 1
of the MPM is to be contained in one partition, It would be very
useful in the debugging process if the designer had access to the

values of such things as NFA, HISTORY TABLE, DO TABLE, etc.,

in both levels of simulation (i.e,, as "interface output quantities"”).
Usnally these important internal quantities of a partition could be
easily made to function exactly the same at both simulation levels.

Other Modes of Use: During the specification and development of |
the L3S system we must identify and meet the requirements for
any other possible uses of the system and its components.

An example of this is the need to allow manual insertion of interface
signals into the Poughkeepsie programs in order to perform the
debugging of isolated sections of design for which manual signal
insertion is adequate. Examples of such design areas where manual
or special program generation of the interface signals is possible
are functional units such as adders, multipliers, dividers, etc.

Another function the system might perform is the genefation of
files suitable for hardware debugging at a later time.

360

L. Conway
Archives

* Page 4 -~ 1

Requirements for Development

The hai-dware, software, computer time and personnel required to develop,
use and maintain the LSS system must be estimated to determine if the
system is feasible and economical,

It has been determined that the ACS Mod, 75 computer will have adequate
hardware for both the Poughkeepsie programs and the ACS timer-interface
signal generator program, :

Yet to be explored are possible work schedules, documentation requirements,
and forms of communication needed between ACS and Poughkeepsie. It
appears possible for the LSS development to proceed without altering
engineering design schedules, if a proper scheme of development is

chosen. Of course the time required for the designers to specify the system
descriptions of their design areas will add to the design schedule time,

but it appears likely that this system description will be necessary whether
LSS is implemented or not. The requirements for maintenance of the system
are yet to be determined. These depend on the role the designers play

in specifying and maintaining the specifications of their partitions.

There are two important considerations which strongly affect the feasibility
and economics of LSS. These are the computer time required to simulate
and the memory requirements of simulation (determines maximum partition
size).

Reference 2 indicates that a few seconds of Mod. 75 time would be required
- for the TALES program to perform the logic simulation of one machine

cycle for the largest partition it could handle. The ACS system level

simulation of the whole machine will run at a rate of approximately 10

to 15 machine cycles/second on the Mod, 75.

Thus it appears likely that the feasibility of LSS is not Inpacted by the -
computer time requirements, The required time is down in the range
where the human time and effort in debugging the results would probably
be a stronger limitation than available machine time. Of course these
machine time requirements could be heavy ones and thus it is very
important that the logic simulator (TALES) be made as efficient as
possible, for the running of TALES will probably be the major cost of
LSS,

Let us now consider the question of memory requirements and their _
determination of the maximum partition size. '

QO 2\

L. Conway
Archlves

> Page 4 - 2

P, Shivdasani has formulated the following study of this question, based
on verbal communications with the Poughkeepsie group. His result of
96K ACS circuits as the maximum partition size indicates that we can
choose partitions large enough for LSS to be practical (see section 3(i)).

(i) Storage capacity, S, in K bytes, required to run the logic simulator
is

S =08 + 2L (10 + avg. fan-in +avg, fan-out)

where L = # of nets to be simulated (in thousands)

Also the fan-out from a block {macro, U, L, or dot) is

= .%:1 (source, * load,) < 31
1=

Thus

_ | 10 loads source 1 fan-out = 30

10 9
mMacro | 4 3

Another 200K bytes must be allowed for the worst case op. system,

There is also an absolute limit of 32K on L due to the present simulation

programs,
Thus if we assume L=32
fan-out = 31
fan-in =15

We have S = 3882 K bytes which will easily be handled by the
two LCS's ACS has on order.

AL

L. Conway
Archives

O

(ii} -

(iii)

i Page 4 - 3

Nets:

A net is defined as a logic source feeding any number of sinks,
Thus in U, L. representation each U, L. block leading to a dot is

a net.

net 1

net 2 " net 4 net1

net 3

& macro

4 nets . 1 net

It is important, then to try and define as many macros as possible.

Assume 32K nets as maximum partition. Find equivalent in ACS
circuits,

a) Let X be the number of circuits corresponding to these nets,

b) Assume 80F of the circuits can be represented in macros and
the remaining 20% need a unit logic representation in DRKS.

c) Also assume each macro contains 5 circuits and has two

source outputs.

Then nets due to macros = (—-%——-X—) 2

d) Assume an average dot of 4 in U. L. Then we have b nets
for every 4 circuits.

Ornetsdueto U.L. = (%) o i
L6X , X - 39,000 i
5 4 ? L. Conway
Archives

_ 32,000

BT heK circuits

or X

. Page 4 - 4

(iv). DRKS does not handle macros made up of U, L. blocks from
different portions of the same chip, let alone different chips,
So if a high number of U. L. blocks is being dotted externally,
the above capability will be desirable to keep the net count down.

clA

L. Conway
Archives

Page4 -5

Additional Benefits of 133

- There are some additional benefits which might result from implementing

the proposed LSS system.

The formal specification of the machine at a system level would give the
various design groups a chance to uncover many system level design
errors before the logic itself is tested for bugs.

This formal system level description would be useful to many others in
ACS.

Of course this description would have to be maintained by the designers
to reflect all design changes, If maintained and the timing simulator
reflects the description accurately, then the LSS could be used later to
generate the interface signals for hardware circuit debugging.

Also, an accurate timing simulator would be very useful to the compiler

and system programmers and to any ACS customers who wish to optimize
hand code, ' '

365

L. Conway
Archives

TQ:

L. Conway

Dept. 988

IBM - ACS

2800 Sand Hill Road
Menlo Park, California

-

Paa

Note: If you have any comments, questions, criticisms or ideas concerning the
proposed LSS system, jot them down in the space below and mail this page as indicated

above,

-

366

L. Conway
Archives

