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Abstract—Processors with multiple functional units, such as
CRAY-1, Cyber 205, and FPS 164, have been used for high-end
scientific computation tasks. Much effort has been put into
increasing the throughput of such systems. One critical consider-
ation in their design is the identification and implementation of a
suitable instruction issuing scheme. Existing approaches do not
issue enough instructions per machine cycle to fully utilize the
functional units and realize the high-performance level achievable
with these powerful execution resources.

In this paper, the dispatch stack (DS), an innovative instruction
issuing approach designed to overcome this limitation, is pre-
sented. The DS enhances performance in these systems by
employing dynamic code scheduling to permit 1) one or more
instructions to be issued per machine cycle and 2) instructions to
be issued nonsequentially.

The effectiveness of the DS has been evaluated with extensive
simulation using the Livermore Loops. The simulation results,
which cover various Instruction/Execution unit configurations,
are presented here. The statistics obtained establish that instruc-
tion issuing with DS results in speedups ranging from 1.71 to 2.79
over serial dispatching schemes.

Index Terms—Dispatch stack, dynamic instruction scheduling,
instruction issuing, instruction unit, multiple functional unit
processors, multiple instruction dispatching, processor perform-
ance enhancement.

1. INTRODUCTION

ROCESSORS with multiple functional units (FU’s), such
as CRAY-1, Cyber 205, and FPS 164, have been
configured for high-end scientific computation workloads.
Due to the advent of very large scale integrated (VLSI) circuit
technologies, it is likely that computer architects will adopt
multiple FU architectures for a wider range of applications.
Much effort is being put into improving the throughput of such
‘‘supercomputing’’ systems.
The throughput of a computer system is defined in this
investigation as the number of instructions processed per unit
time. The primary ways of enhancing throughput include:
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reducing the machine cycle time, reducing the memory access
time, and increasing the concurrent processing of instructions.
This investigation concerns the last approach.

To obtain reasonably high throughput in these execution
structures, it is essential to keep their functional units as busy
as possible. Let the number of functional units in a computer
system be n and the machine cycle time be ¢. The maximum
instruction execution rate of such a system is n/c. This implies
that each functional unit receives and executes one instruction
per cycle, a feat not easily realized.

The desire to increase the FU utilization demands that each
instruction be issued as soon as it is free of data and path
constraints. In a system such as the CRAY-1 [22], this is not
possible due to its policy of sequentially issuing at most one
instruction per cycle. In a study of the CRAY-1S architec-
ture, Srini and Asenjo [23] point out that this is a performance
bottleneck in an otherwise well-balanced configuration. Thus,
even though this processor is capable of concurrent execution
of instructions on its multiple function units, performance is
bounded by its serial dispatching scheme.

In other existing [7], [24], [27] and proposed [11], [33]
systems, a situation analogous to that of the CRAY-1 exists in
that instructions are issued to real or virtual functional units
sequentially, according to their positions in the instruction
stream, and at most one can be issued per machine cycle.
Consequently, in all of these instruction issuing schemes the
instruction execution rate cannot be higher than 1/c.

In this paper, we present the formulation and evaluation of
the dispatch stack (DS), an instruction issuing approach that
provides dynamic scheduling of serial instruction streams. The
proposed mechanism, originally conceived by Torng [28],
(291, [30], offers significant improvements over existing or
previously reported approaches in two main aspects: 1) one or
more instructions can be issued per cycle and 2) instructions
can be issued nonsequentially.

Also presented are the results of extensive simulation work
with the Livermore Loops. For various configurations, the
speedups achieved over serial dispatching schemes range from
1.71 to 2.79.

In the following section, the general architecture of multiple
functional unit systems is described. In Section III, the
motivation behind dynamic code scheduling is discussed. The
DS is formulated and described in Section IV; and an example
is given. A comparison to previous approaches, including
Tomasulo’s reservation stations and common data bus used in
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the IBM 360/91 [27], appears in Section V. Sections VI-IX
contain a description of the evaluation methodology and the
DS simulator. This is followed by the simulation results and
their analysis, in Sections X and XI. Hardware system
integration aspects are discussed in Section XII. In Section
XIII, other issues, including treatment of conditional
branches, static scheduling via compilation, and code optimi-
zation, are qualitatively considered. Conclusions are presented
in Section XIV.

II. GENERAL ARCHITECTURE

A multiple functional unit processor can generally be
partitioned into two parts: an instruction unit IU) and an
execution unit (EU), shown in Fig. 1. The IU fetches
instructions from main memory into an instruction window,
decodes these instructions, and fetches operands, if necessary.
Decoded instructions, together with their requisite operands,
are sent to the EU. The instruction window serves as a buffer
for prefetching and decoding instructions.

The EU consists of the functional units and a bank of
registers, connected by a suitable interconnection network.
The FU’s are responsible for performing arithmetic/logical
operations and can operate in parallel, providing the primary
degree of concurrency in the processor. An additional level of
concurrency can be incorporated into the FU’s by implement-
ing them as pipelined processors for scalar and/or vector
operations [13], [20].

The registers serve as buffers between the “‘fast’’ functional
units and the ‘‘slow’’ main memory. These registers supply
operands to the functional units and receive results from them.
They also load from and write into the main memory. This
constitutes a register-register architecture, with memory being
accessed via load/store operations.

The design of the interconnection network is often critical in
determining multiple FU system performance. The types of
networks can range from nonblocking, fully connected cross-
bar switches to dedicated buses. Many tradeoffs arise in
choosing' an appropriate interconnection structure, including
throughput, delay, connectivity, size, and cost [34]..

Variations to the general organization of Fig. 1 can be found
in practice. One possibility is to have an independent
interconnection network in the EU between main memory and
the register bank. This can serve to reduce some of the
contention on data transmissions between registers and FU’s.
Another possibility is to use separate program and data
memories, or caches. These can eliminate potential memory
conflicts since they are accessed independently by the IU and
EU. .
III. INSTRUCTION SCHEDULING

- As suggested earlier, one key issue in improving perform-
ance in systems with multiple functional units is to schedule
the execution of programs effectively. Code scheduling
involves arranging instructions in order to minimize register
~ dependencies and execution resource conflicts. The scheduling
" of instructions can be categorized as being static or dynamic.

A. Static Versus Dynamic Code Scheduling
Static code scheduling is often done in software at compile
time. It entails having a highly optimizing compiler produce an
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Fig. 1. Multiple functional unit processor—general architecture.

execution schedule that does not change while a program is
running. Unfortunately, compilers capable of this optimization
are slow and likely to be highly machine dependent. Further-
more, due to dynamic dependencies that cannot be resolved at
the compiler level, it is usually not possible to statically
generate optimal schedules.

Dynamic scheduling is usually a runtime activity performed
in hardware on a window of instructions. As discussed in [33],
dynamic scheduling carried out in hardware has the following
advantages over static scheduling.

1) The machine performance is not dependent on the quality
of the compiled code, relieving compilers and/or programmers
of what is often a very difficult and burdensome task.

2) Dynamic dependencies, not available at compile time,
can be uncovered. This has some of the characteristics of data
flow scheduling approaches and is especially useful in
branches and loops.

3) The execution schedule is dynamically generated with
precise knowiedge of the available execution resources, which
is particularly important when the scheduling algorithm must
adapt to variations in processor configurations due to compo-
nent failures.

It should be noted that dynamic scheduling can also benefit
from static scheduling techniques. For instance, a suitable
allocation of registers might substantially improve the dy-
namic scheduling possibilities of a given instruction stream.

Yet there are disadvantages to dynamic code scheduling. It
can lead to more complex hardware that is harder to design,
debug, and maintain. It may also slow down a processor’s
instruction issuing phase. Despite these drawbacks, the advent
of VLSI has resulted in low-cost implementations of very large
and fast systems. In light of this, there has been a trend in
recent years to move some software problems into hardware.
Thus, dynamic code scheduling in instruction issuing mecha-
nisms should be considered as a method for improving
performance in future systems.

Within dynamic code scheduling, there is another division
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that can be made regarding instruction streams. Dynamic
scheduling can be performed on the instructions as they appear
in memory, constituting the static instruction stream [32].
This is the order of instructions as they are generated by a
compiler. Alternately, dynamic scheduling can be conducted
on the dynamic instruction stream, which is the sequential
execution order of instructions in a compiled program. Both of
these models have been proposed and implemented in concur-
rent dynamic scheduling systems.

The DS mechanism, described in Section IV, performs
dynamic code scheduling on the dynamic instruction stream.

B. Instruction Data Dependencies

The criteria used to determine data dependencies for
instruction scheduling purposes is now presented. The idea is
to detect parallelism in a series of operations in an instruction
* window in the instruction unit of a processor. In general, the
emphasis is on approaching optimality on a local level with
respect to concurrently executable instructions. The approach
discussed here is more thoroughly described by Keller in [11].

Throughout this work, the following instruction format is
assumed:

i: OP, S1, 82, D (1)

where / is an instruction label, OP denotes a binary operation,
S1 and S2 specify operand source registers, and D specifies
the destination register. The semantics of such an instruction
are such that its execution has the following effect.

i: D+<[S1] OP [82]: @)

The instruction format, specified in (1), is identical to that of
the CRAY and Cyber machines. With registers D and S1
identical, the instruction takes on the same form as the
instructions for the floating-point execution unit in the 360/91
system. It is also possible to think of S1, S2, and D as being
vector registers, with OP specifying execution on a vector
functional unit. '

For instruction /, a domain and a range-can be defined as
follows:

domain(i) = {S1, S2}
range(i)={D}.

These registers can be thought of as sources and sinks,
respectively, of instruction i. Register conflicts due to data
dependencies can then be defined in the following way.

If i and j are two different operations, then conflict(i, j) =
TRUE if, and only if, either

domain registers:

range registers:

(1) range(i) N domain(j)#0
or (2) range(j) N domain(i) #0
or (3) range(i) N range(j)+#0.

Otherwise, conflict(i, j) = FALSE.

The conflict relation can be used to partially order the
operations in an instruction window according to their data
dependencies. This, in turn, leads to the following local
optimality criterion (for branch-free code).
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Principle of Optimality: (Keller [11]) Whenever j is an
operation corresponding to an instruction in the window, and
there is no preceding operation / that is either being executed
or is pending execution such that conflict(f, j) = TRUE,
then j should be issued.

IV. THE DispaTcH STacK

An instruction window for the instruction unit of a
conventional multiple functional unit processor is depicted in
Fig. 2. The window is used as an instruction buffer for
prefetching instructions from the dynamic instruction stream.
It operates in a first-in-first-out (FIFO) sequential fashion, and
each stack cell is implemented with a register. Hence, in a
given cycle, the topmost instruction can‘be removed from the
window and issued to the execution unit. As entries are
vacated by instructions that have been issued, the other
instructions in the buffer are ‘“‘pushed’’ upward. Subse-
quently, new instructions are fetched from memory and
appended to the bottom of the window.

As an illustration, the IU deposits the sequence of opera-

tions given below into an empty instruction window.

10: AD, RO, R1, RO
I1: AD, R2, R3, R2
12: AD, RO, R2, RO

I3: AD, R4, RS, R4
R6

R4

14: AD, R6, R7,

I5: AD, R4, R,

16: AD, RO, R4, RO. 3)

In (3), RO, R1, -+, R7 denote registers, and 4D stands for
the ‘‘addition’’ operation. This program adds the contents of
RO through R7 and leaves the result in RO. After receiving
this sequence, the window can be depicted with Fig. 3. Note
that an *‘instruction tag’’ field is not necessary because of the
strict sequential ordering maintained by the window.

The drawback of the instruction issuing mechanism em-
ployed in conventional instruction windows is that the IU
examines only the instruction at the head of the dynamic
stream; at best, only one instruction can be issued for every
machine cycle. If the topmost instruction cannot be issued due
to a violation of any one of the 3 conditions stated below.

Condition 1: Lack of a requisite functional unit.

Condition 2: Lack of requisite interconnection paths to
transmit operands and/or results.

Condition 3: Data dependencies among instructions (in the
sense of the conflict relation).

The instruction flow is stopped entirely. This situation exists
in the CRAY-1 [22]. The proposed dispatch stack is aimed at
relieving the bottleneck imposed by Condition 3.

The incorporation of reservation stations (i.e., virtual
functional units) and the common data bus (CDB) scheme [27]
reduces to a certain extent the constraints imposed by
Conditions 1 and 3. Weiss and Smith have demonstrated that
considerable speedup can be accomplished when this scheme
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Fig. 2. Initial schematic diagram of an instruction window.
top
OoP S1 S2 D
AD RO R1 RO
AD R2 R3 R2
AD RO R2 RO
AD R4 R5 R4
AD R6 R7 R6
AD R4 R6 R4
AD RO R4 RO
Fig. 3. The sequence of instructions in (3) deposited into an instruction

window.

is used in conjunction with the CRAY-1 scalar execution unit
[33]. Nevertheless, at most one instruction is issued per
machine cycle and these instructions are issued according to
their positions in the instruction stream—sequentially.

The proposed DS strives to relieve multiple functional unit
processors from this limitation. It accomplishes this by
maintaining additional information for determining data de-
pendencies among instructions.

A. « and B Fields

An instruction in an instruction window can be immediately
processed with an available functional unit if it does not have
data dependencies with any preceding instructions that have
yet to be completed. Based on the conflict relation, the
following three observations can be made to guide the
instruction issuing process. .

1) An ipstruction is data dependent upon a preceding,
uncompleted instruction if one of its source registers appears
as the destination register of the latter.

2) An instruction is data dependent upon a preceding,
uncompleted instruction if its destination register appears as a
source register of the latter.

3) An instruction is data dependent upon a preceding,
uncompleted instruction if its destination register appears as
the destination register of the latter.

For example, in (3), instruction /2 is data dependent upon
I0. This is so because one of its source registers RO is the
destination register of /0. In other words /2 uses the result of
10 as an operand and, thus, must wait for the completion of 70
in order to begin executing. Instruction /2 is data dependent
upon /0 in another sense: its destination register R0 is one of
- the source registers of J0. If 12 is issued and completed before
10 does, I0 may mistakenly use the result of 2 as one of its
operands.

The above observations lead us to the formulation of the
dispatch stack by enriching each entry in a conventional
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instruction window with data dependence information. The
resultant fields are the following:

Tag, OP, S1, a(S1), S2, «(S2), D, (D), B(D), I2.
(4

The « and (§ dependence fields in each DS entry are defined as
follows:

a(R) = the number of times that register R is designated

as a destination register in preceding, uncom-

pleted instructions.

B(R) = the number of times that register R is designated
as a source register in preceding, uncompleted

instructions.

The I? field ‘‘summarizes’’ this dependence information, as
will be explained in the following section.

The sequence of instructions in Fig. 3 is now represented in
the DS of Fig. 4. In this illustration, instruction /0 is at the top
of the stack and no instruction precedes it. Consequently,

a(R0O)=a(R1)=B(R0)=0.
Instruction /1 is preceded by 70, but neither of its source or

destination registers, R2 and R3, are used as a destination
register by /0. Consequently,

a(R2)=a(R3)=0.

Furthermore, its destination register R2 is not employed as a
source register by /0. Thus,

B(R2)=0.
For Instruction 72,
a(RO)=a(R2)=1

as RO is the destination register for 70 and R2 is the
destination register for /1. Also

BRO)=1

since RO is used as a source register in /0. Other « and 8
values can be similarly explained.

B. Instruction Issue Index

The issue index (I?) for an instruction is defined as
I2=a(S1) + a(S2) + (D) + B(D) (5)

Consequently, 12 is the sum of all the dependencies for a given
instruction entry in the DS. At each machine cycle, the DS is
scanned. Any instruction with an I2 value of 0 can be issued if
an appropriate functional unit is available and if the processor
is capable of doing so. It is important to note that in a given
machine cycle, zero, one, or more than one instruction can be
issued. Furthermore, instructions can be issued out of se-
quence. Various issuing modes based on this approach are
discussed in Section VII-A.

Let us examine Fig. 4 again and, for the sake of simplicity,
let us make the following assumptions.
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Tag OP SL__afS1) | S2  ofS2) D oD #D) [P
10 AD | TRO 0 R1 0 RO 0 o0 0
1 AD R2 0 R3 0 R2__ 0 0 0
12 AD RO 1 R2 1 RO 1 1 4
I3 AD R4 0 RS 0 Re 0 0O )
4 AD R6 0 R7 0 R6 0 0 0
15 AD R4 1 R6 1 R4 1 1 4
16 AD RO 2 R4 2 RO 2 2 8

Fig. 4. The sequence of instructions—with «, 8, I? fields—in the DS.

1) There are 4 ‘‘addition’’ functional units and these units
are initially free.

2) It is possible to issue up to 4 instructions per cycle.

3) The operands are available at their designated registers.

4) Adequate data paths are available to transmit operands
and results.

Instructions 10, /1, I3, and 14, all with an I2-value of 0, are
issued concurrently to the 4 free functional units,

Assuming that the register fields for each DS entry are
content addressable, at the completion of an issued instruc-
tion, its destination register is used as a ‘‘key’’ to content
address the S1, S2, and D fields of those instructions that
follow it in the DS. Wherever there is a match, the appropriate
« values are decremented by 1. Similarly, its source registers
are used to content address the D fields of all subsequent
instructions and decrement the appropriate 8 values. Note that
for each completed instruction, ‘‘updating’” is an O(1) process
because all of the entries in the DS are updated concurrently.
Some aspects of the implementation of these content address-
able fields are discussed in Section XII.

The DS update process is illustrated with Fig. 4. At the
completion of Instruction 70, its destination register RO is used
to content address the S1, S2, and D fields of all instructions
that follow /0 in the DS. The S1 and D fields of /2 and 76
match the RO key and their corresponding «(S1) and «(D)
fields are decremented by 1. Simultaneously, the source
registers of 70, namely RO and R1, are used to content address
the D fields of all instructions that follow /0 in the DS. The D
fields of 72 and /6 match the R0 key and their corresponding
B(D) fields are decremented by 1. Instruction /0 is removed
from the DS to make room for subsequent instructions. The
result of these reductions is presented in Fig. 5.

Similar (and perhaps concurrent) completions of /1, I3, and
14 reduce the contents of the DS to that shown in Fig. 6. Now
instructions /2 and /5 can be issued and their completions
reduce the I2 value of /6 to 0.

With the assumptions given above, the issue and execution
schedule of the sequence of instructions in (3) is

1st 10, 11, I3, 14

2nd 2, IS

3rd /6.
Note that this represents an optimal schedule. In fact, as long
as there are enough functional units and the above assumptions

hold, the dispatch stack issuing scheme is optimal in the sense
of the principle of optimality of Section III-B.
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| Tag OP St__ofS1) | 82 ofS?) | D __ofD) 8D} | P
I AD_[ Rz~ 0 R3 0 R2__ 0 0 0
I2 AD | RO " © Rz 1 RO 0 [} i
13 AD | Re © Rs 0 Rt 0 0o _|o
I¢ AD R6 0 R7 0 RS 0 0 0
Is AD | Rs 1 RE T R4 1 1 4
15 AD [ RO 1 Re 2 RO 1 1 5
Fig. 5. The contents of the DS after decrementations and shifts, initiated by

the completion of instruction J0.

To. OP S1___ofS1) S2 __a(S2) D oD 4D | P
2 AD RO 0 R2 0 RO 0 0 0
15 AD R4 [ R6 0 R4 0 [¢] 0

16 AD RO 1 R4 1 RO 1 1 4

Empty spaces ready for subsequent instructions

Fig. 6. The contents of the DS after decrementations and shifts, initiated by
the completion of instructions 70, /1, I3, and /4.

V. CoMPARISON TO PREVIOUS APPROACHES

In Table I, a comparison of the DS with other dynamic
scheduling approaches is presented. The CRAY-1 'issuing
scheme is also included, even though it does not really make
use of dynamic scheduling techniques.

In this table, the dependence criteria column specifies the
dependencies that are checked before issuing an instruction.
RFU and VFU designate that an appropriate real or virtual
functional unit, respectively, must be available to issue an
instruction. Similarly, SRC and/or DST imply that in order for
an instruction to be issued, it must be free of source and/or
destination register data dependencies with uncompleted in-
structions.

Note that Tomasulo’s reservation stations, together with the
CDB [27], are actually a refinement of Thornton’s scoreboard
[24]. For example, since the CDC 6600 does not have
reservations stations, the issuing of instructions is dependent
on having the appropriate real FU’s being free. In [1 1]' Keller
treats Tomasulo’s algorithm in the more general and formal
setting of lookahead processor architectures.

Major differences exist between Tomasulo’s scheme for the
360/91 and the dispatch stack concurrent instruction issuing
mechanism. In Tomasulo’s algorithm, instructions are issued
sequentially and at most one instruction is issued per cycle.
However, there are no restrictions on issuing due to SRC or
DST register dependencies since this information is kept in the
reservation stations using tags. Instructions can be issued as
long as there are reservation stations available. As can be seen,
the dynamic code scheduling is accomplished by the CDB’s
forwarding of results at the execution level, and not at the
instruction issuing level. Moreover, the data tags are used for
maintaining the dependence mformanon in a distributed
fashion.

In the DS approach, the instruction dependence criterion is
more restrictive, yet instructions can be issued in parallel and
nonsequentially. Instruction dependencies are maintained by
keeping usage counts for their source and destination registers
in the instruction window. Thus, the data dependence informa-
tion is centrally kept in the IU.

For an ideal, albeit unrealistic, processor, both the DS and
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TABLE I
COMPARISQN OF DYNAMIC SCHEDULING APPROACHES

Issue Instruction Max Instructions Dependence
Approach Order Stream Issued/Cycle Criteria
Thornton’s Scoreboard sequential dvnamic one RFU
(CDC 6600) G Y ' DST
Tomasulo’s Reservation
Stations-—-Common Data . .
Bus (IBM 360/91), sequential dynamic one VFU
Keller (1975)
RFU
CRAY-1 sequential dynamic one SRC
: ' DST
Tjaden (1972) RFU
Wedig (1982) nonsequential static one or more SRC
Uht (1985) : DST
Tjaden-Flynn (1970) RFU
Dispatch Stack nonsequential dynamic one or more SRC
: DST

Tomasulo’s algorithm conform to the Keller’s principle of
optimality. Consequently, the dynamlc schedule generated by
either scheme should be the same. When this is not the
situation, the DS always guarantees issuing dependence-free
instructions. On the other hand, the sequential nature of
Tomasulo’s algorithm makes it possible for data-dependent
instructions to be using up execution resources while data
independent instructions are held up in the instruction win-
dow, :

This Jast point is illustrated if the schedule produced in the
example of Section IV is compared to what would be obtained
in a 360/91-like system. Since this scheme examines instruc-
tions sequentially, J0, /1, 12, and /3—being at the top of the
instruction stream—are issued to the 4 free units (real or
virtual). However, since at most one instruction can be issued
per cycle, a delay of at least one cycle occurs between issuing
each of them. In addition, /2, due to data dependén_cies,
occupies a functional unit without actually being computed.
That unit can be more advantageously employed to compute
14, as is done by the DS.

Tjaden [26], Wedig [32] and Uht [31] have explored the
generation of dynamic schedules using static instruction
streams. (The DS, as you might recall, uses dynamic
instruction streams.) For ideal processors, their algorithms are
also optimal. When used to schedule instructions for nonideal
processors, these schemes attempt to use hardware bookkeep-
ing mechanisms for consistent execution of the static streams.
These can get complicated, especially when the entire static
program does not fit into the instruction window.

Tjaden and Flynn [25] have suggested a look-ahead scheme
for detecting independent instructions dynamically and execut-
ing them concurrenily. Their approach relies on reducing
dependencies by means of a register renaming algorithm. One
* ‘drawback of their scheme is that O(n?) comparison hardware
is required to simultaneously decode 7 instructions in a
window.

It should be noted that since the DS issuing mechanism is
independent of scheduling at the execution level, there is no

reason why a more complex dynamic scheduling scheme at the
execution level cannot be used. For example, it is possible for
both the nonsequential, parallel issuing capabilities found in
the DS and the freedom from register and FU dependencies
offered by Tomasulo’s reservation stations to coexist in a high-
performance system. ! —

VI. EVALUATION METHODOLOGY

The effectiveness of the DS is now evaluated by analyzing
various systems that employ it to issue instructions. This is
accomplished via simulation techniques. The simulator is
written in C [12] and runs under the Unix™ operating system
on a VAX®-11/780. It allows characterization of a system with
a DS by providing programmable instruction and execution
unit ‘configurations. A more complete description of the
simulator and the simulation results appears in [1].

A block diagram of the simulator appears in Fig. 7 (note the
similarities with Fig. 1). The input to the system conists of an
assembly language program and parameter settings to confi-
gure the instruction and execution units. The IU and EU are
attached to a ReaD-only Program Memory and a READ/WRITE
Data Memory, respectively. The simulator output includes
statistics describing the number of instructions executed and
cycles consumed, instruction issuing information, instruction
execution information, and resource utilization.

The general approach used in obtaining statistics for the DS
evaluation is to:

1) Choose an appropriate set of benchmark programs and
hand-compile them into the simulator assembly lan-
guage.

2) Run simulations to gather statistics for various IU and
EU configurations.

3) Tabulate, plot, and analyze the results.

! Virtual FU’s and the CDB can also be used in conjunction with other
schemes in Table I in order to relax the FU/SRC/DST issuing restrictions. An
analysis of such a modification for the CRAY-1 appears in [33].

™ UNIX is a trademark of Bell Laboratories.

® Vax is a registered trademark of Digital Equipment Corporation.
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— 3 Asembler Program INSTRUCTION
RISC-like | Object Memory UNIT
Assembly Code -
Language
Program IU Parameters ..-..3n - Dispatch Stack
IU Statistics &----{ - Program Couater
Data EXECUTION
Meniory UNIT
EU Parameters .....;y - Functional Upits
EU Sutistics <----{ - Registers

Fig. 7. Simulator block diagram.

VI. INsTRUCTION UNIT SIMULATOR

The main parameters of the IU are the size of the dispatch
stack, the number of banks in the program memory, and the
issue mode. The systcm can fetch as many instructions as there
are memory banks within one cycle. These are placed in the
DS and subsequently sent to the EU according to the issue
mode. Note that while instructions are executing; they also
remain in the DS to insure that dependencies are preserved.
When instructions finish executing, they are returned from the
EU to the IU and removed from the DS window.

A. Instruction Issue Modes

Using the simulator, statistics for studying and comparing
various instruction issuing mechanisis are obtained. There
are four basic modes in which the IU issues instructions.

Uniprocessor: Sequentially issues dt most one instruction
per cycle. The IU must wait until an instruction completes
execution to issue the next instruction.

CRAY-1: Operates as a conventional instruction window: it
sequentially issués a new instruction every cycle as long as it is
not dependent on instructions already executing and the
required execution resources are available.

n-Parallel: Up to n instructions can be dispatched per cycle
as long as they are not dependent on each other or on
instructions already issued and executing, and the required
execution resources are available. These instructions do not
‘have to appear sequentially in the DS.

Fully Parallel: This is a generalization of the n-parallel
scheme in which as many instructions as possible (up to the
size of the DS) can be issued in one cycle. .

The n-parallel and the fully parallel modes implement the
dispatch stack parallel instruction issuing mechanism. These
are also the only ones that perform dynamic code scheduling
since instructions are not forced to be issued sequentially. Both
the DS n-parallel and fully parallel issue modes can benefit
from static scheduling specified by the compiler and/or
programmer. Static code scheduling is the only scheduling
method that can be used to increase performance in the
CRAY-1 issuing mode.
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B. Instruction Set

The instruction set chosen for the sirhulator is modeled after
the Berkeley reduced instruction set computer (RISC) [18].
This provides instnictions in the form of quadruples such as

oP, S1, S2, D (6)

(see Section II). One addition to these fields is a bit in each
instruction that indicates whether the condition codes should
.bevs‘et'by' it. The instruction set is appropriate for a register—
registér architecture in which mernory can only be assessed via
load/store operations and data can only be operated on while it
is in registers. This conforms with the stnicture depicted in
Fig. 2. :

It should be pointed out that branch instructions are never
sent to the EU. Whenever a conditional branch is encountered
in the mstructlon stream, the IU stops fetchmg new instruc-
tions. It waits until all mstructxons in the DS that set the
condition codes are executed. Then the branch outcome is
determined by the IU based on the condition codes. Subse-
quently, the program counter is loaded and new instructions
are fetched from the appropriate stream.

VII. ExecutioN UNIT SIMULATOR

The EU can be configured in a variety of ways by means of
the appropridté parameters. These include the number of
registers and FU'’s, memory and bus delays, number of cycles
per operation, and FU types.

A general block diagram of the multlple FU execution unit
organization being simulated appears in Fig. 8. Note that four
types of pipelined functional units are available. The intercon-
nection network is modeled as a set of buses between registers
and FU’s. The global data memory, which looks like another
FU, is also connected to the registers by the interconnection
network.

This véry general EU model was chosen over modeling a
particular EU, such as the CRAY-1 because it provides a more
generic framework for evaluating instruction issuing schemes.
Since the issuinig mechanism used by the IU is independent of
the EU, the system performance can be examined with respect
to various EU configurations. For this evaluation, the follow-
ing EU’s are used (see Table II for a summary of specific
parameter values).

Paracomputer (PARA): This is an ideal machine with
potentially an infinite number of FU’s (i.e., as many as
necessary in any given cycle) capable of performing any
operation in one cycle [10].

Crossbar Machine (XBAR): This machine provides a
fixed number of nonpipelined FU’s. The registers are con-
niected globally to the FU’s by means of an unlimited number
of buses that function as a nonblocking crossbar intérconnec-
tion network. There is a delay associated with accessing
memory. _

FEight-Bus Machine (EBUS): Like XBAR, this EU con-
tains a fixed number of nonpipelined FU’s. However; the
FU’s are connected to the registers by a fixed number of
buses. The use of these buses results in transmission delays.

Four-Pipe Machine (FPIPE): For this machine, there is
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Fig. 8. Architecture of the execution unit simulator.
TABLE II
EXECUTION UNIT PARAMETERS USED IN SIMULATIONS
Parameter PARA | XBAR | EBUS | FPIPE
SRo
Fixed Add FUs 2 2 1
- Stages 1 1 1 2
- Delay/Stage 1 1 1 1
Fixed Mult FUs 2 2 1
- Stages 1 1 1 2
- Delay/Stage 1 1 1 -1
Float Add FUs - 2 2 1
- Stages 1 1 1 3
- Delay/Stage 1 2 2 1
Float Mult FUs 2 2 1
- Stages 1 1. 1 4
« Delay/Stage 1 3 3 1
Registers 84 64 64 64
Number of Buses - - 8
- Delay/Bus 0 4] 1 1
Memory Delay 0 1 1 1
Notes:
1) A **-”" means that an unlimited (i.e., as many as are needed in a given

cycle) number of resources of the given type, are available.
2) Delays are given in number of cycles.

only one FU of each type. Each of them operates in a pipelined
fashion. The. interconnection network is treated as another
pipeline stage. .

One of the basic assumptions in the EU is that the memory
access delay is fixed, i.c., there are never any memory bank
conflicts. This assumption was made to simplify the simulator.
Note, however, that a separate data memory is being used.
This data memory may have many banks and can be accessed
in parallel with the program memory. Consequently, there
would probably not be many memory conflicts anyway and the
assumption seems justified.

The FU’s being modeled are all scalar. Hence, the results
are for performance with respect to scalar operations. Study-
ing scalar performance is important since it can often limit
vector performance in supercomputers. Nevertheless, because
of the IU/EU independence alluded to earlier, the DS can
easily be extended to operate with vector registers and
instructions (in either pipelined processors or processor
arrays).

For example, if a system such as the CRAY-1 is equipped
with a DS, data dependencies among nonsequential vector

" instructions can be determined.  This énables those that are free

of dependencies to be activated simultaneously. Thus, the FU
utilization is increased because the instruction flow to its
pipelined vector functional units is not halted by sequential
dependencies.
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IX. BENCHMARKS

The benchmark programs measured are the compittation
intensive Lawrence Livermore Loops [17], [21]. They repre-
sent typical inner loops or small routines found in numerical
scientific programs. In Table III, the benchmarks are de-
scribed and their static and dynamic instruction counts are
given.

The input to the simulator is obtained by hand-compiling the
programs’ Fortran source code into the RISC-like Assembly
language used in the system. In doing this, the register
allocation is crucial since the DS uses register dependencies
among instructions as the criterion for issuing them. Register
allocation and code scheduling are intimately related issues for
increasing the performance in high-performance parallel
computers. Thus, assigning registers for such things as loads/
stores, calculating array indexes, and performing arithmetic
computations must be accomplished in such a way as to
exploit the inherent parallelism of the program. Techniques
analogous to those of tree height reduction [5], [14], [15],
used for extracting parallelism from arithmetic expressions
and other program constructs, can be employed within a
compiler for register allocation.

In hand-compiling the berichmarks, a ‘‘dumb’’ compiler has
been assumed. Such a compiler, although being simple, fast,
and reliable, is not capable of improving the code it generates
using complex optimizations [2], [3], [9]. For instance,
redundant subexpressions and redundant loads are not re-
moved. Besides performing the register allocation, the only
other optimization being used is to put loop indexes in
registers. In typical Fortran progamming environments, com-
pilers can easily do this optimization.

X. MEASUREMENTS AND RESULTS

The simulation measurements using the Livermore Loops
are now presented. These results are analyzed in Section XI.
The key parameters are the following:

1) instruction issuing mode,

2) dispatch stack size,

3) fetch count (number of program memory banks), and
4) execution unit configuration.

To reduce the volume of data, the statistics reflect totals or

means for all of the benchmarks.
The following notation is introduced for describing multiple
FU processor and DS configurations.

P[c, DS[s:f]] = multiple FU processor using EU config-
uration ¢ and an IU dispatch stack with a
window of size s and a fetch count of f.

When the DS size or the fetch count is unlimited in magnitude,
““inf”’ is used to designate their potentially infinite size. The
following abbreviations are used for designating the issuing
modes.

U = uniprocessor

C=CRAY-!1
1P = 1-parallel
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TABLE III
LIVERMORE BENCHMARKS USED IN SIMULATIONS

Name Description g:::i Dé::::c
loopl Hydro Excerpt 19 6802
loop2 Inner Product (5 terms at a time) 37 6604
loopd Inner Product 13 9004
loopd Banded Linear Equations 30 7648
loop5 Tri-diagonal Elimination, Below Diagonal 31 9658
loop6 Tri-diagonal Elimination, Above Diagonal 47 14987
|loop? | Equation Of State Excerpt 45 5182
loop8 PDE Integration 235 9014
loop9 Integrate Predictors 75 7302
loopl0 | Difference Predictors 130 12802
loopll { First Sum 13 6999
loopt? | First Difference 10 7994
loop13 i 2-DParticle Pusher 1134 16898
loopl4 | 1-D Particle Pysher 63 9152
total . | 882 130025

2P = 2-parallel
4P =4-paralle]
FP=fully parallel.

A. Throughput
Throughput is the primary measure of performance used
here. If

Idynamic(#) = dynamic number of instructions of
program ¢

Texecution(f : A)=execution time, in cycles, of
program ¢ on machine A

then the throughput of executing ¢ on machine A4 is calculated
as follows:

Idynamic(?)
Texecution(f : A)

throughput(f : A)= @)

As described in Section I, in a real machine, performance is
intimately related to the actual cycle time. Yet cycle time is
often associated more with technology than machine architec-
ture. In this vein, the simulator simply treats the cycle time as
one time step.

Plots of throughput versus DS size appear in Figs. 9-12 for
the four EU’s described in Section VIII. To isolate the window
size effect on performance, the fetch count is unlimited,
although it is actually bounded by the DS size.

In these results, the throughputs are 1.0 when the U, C, and
1P issuing modes are used on PARA. This is to be expected
since these modes can only issue one instruction at a time and
PARA executes all instructions in one cycle. Variations in
these modes can be seen in the nonideal machines. This
illustrates the reason for measuring the 1P mode: although it
can only issue at most one instruction per cycle, it is capable of
doing this nonsequentially and, consequently, benefits from
having a larger DS size. The throughputs for the U and C
modes, on the other hand, remain constant regardless of
window size.

Except for the FP mode, the performance of the parallel
issuing modes levels off at about a DS size = 16. On EBUS
and FPIPE, both the 2P and 4P modes do almost as good as

Throughput CInsvructions/Cycle)

Throughput (lnstruct ions/Cycle>
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the FP mode. In general, as the EU gets ‘‘less ideal,’” both the
effect of DS size on performance and the advantage of having
a Jot of parallelism in the issuing mechanism decrease.

To examine the effects of the number of instructions fetched
per cycle, plots for throughput vs. fetch count are presented in
Figs. 13 through 16. Here, the DS window is unlimited in
size.

The fetch count does not affect performance for the U, C,
and 1P modes on any of the machines. On PARA, the
throughputs level off at fetch counts of 4, 6, and 8 for the 2P,
4P, and FP modes. The fetch count effect on throughput
decreases as the EU gets less ideal; on EBUS and FPIPE,
throughput variations are rather minimal.

Based on the above graphs, three DS conﬁguratibns are
used to illustrate performance results throughout the rest of
these measurements: DS[16:4], DS[32:8], and DS[inf :inf]. In
Table IV, these are used in conjunction with the various EU
types to obtain mean throughput statistics.

The effects of DS size and fetch count are only noteworthy
for the 4P and FP modes on PARA. For EBUS and FPIPE,
the 2P issuing mode is almost as good as the 4P and FP
modes, these last two being equal in performance. Also, on
these machines, the 2P, 4P, and FP modes perform about
twice as good as the C issuing mode. The trend seems to be
that the relative improvements of the 1P and 2P modes
increase as the machine gets less ideal.
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TABLE IV
THROUGHPUT (INSTRUCTIONS/CYCLE)
Configuration U (o] 1P 2P 4P FP
P[PARA, DS[16:4]] 1.00 | 1.00 [ 1.00 | 1.71 [ 2.40 | 2.40
P{PARA, DS[32:8] 1.00°| 1.00 | 1.00 | 1.72 | 2.51 | 2.78
PIPARA, DSfinf:infl} {]1.00 | 100 | 1.00 | 1.72 | 2.51 | 2.79
P[XBAR, D§|16:4}] 0.67 {078 {0.93 | 1.36 | 1.60 | 1.62
P(XBAR, DS{32:8| 0.67 (078 | 0.94 [ 1.36 | 1.64 | 1.68
P[XBAR, DSfinfinfll |10.67 | 0.78 | 0.94 | 1.36 | 1.64 | 1.70
PEBUS, DS[16:4]| 0.30 | 0.39 [ 0.64 | 0.76 | 0.77 | 0.77
P{EBUS, DS[32:8]] 030 (039 064 |0.78 |0.80 | 0.80
P[EBUS, DSfinf:infl] 1/ 0.30 | 0.39 [ 0.64 | 0.79 | 0.80 | 0.80
P[FPIPE, DS[16:4)] || 0.25 | 0.32 | 0.55 | 0.61 | 0.62 | 0.62
P[FPIPE, DS{32:8}} |l 0.25 | 0.32 | 0.56 | 0.64 | 0.65 | 0.65
PIFPIPE. DSlinf:infll [[0.25 | 0.32 | 0.56 | 0.64 [ 0.65 | 0.65

B. Speedup

The speedup is a relative measure of performance between
two computers. Specifically, the speedup of machine A
compared to machine B for executing a program ¢ is

Texecution(t : B)

; (8)
Texecution(? : A)

speedup(f : A : B)=

Using (7), if Idynamic(r) is assumed constant for both
machines A4 and B, the speedup can be calculated from
throughput values as follows:

throughput(? : A)

speedup(f : A : B) =
P p( ) throughput(? : B)

®

In Table V, speedups relative to the Uniprocessor issuing
mode corresponding to Table IV are shown. The greatest
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TABLE V
SPEEDUP (COMPARED TO UNIPROCESSOR)
Configuration U (o] 1P 2P 4P FP
P[PARA, DS[16:4]] 1.00 [ 1.00 | 1.00 | 1.71 [ 2.40 | 2.40
P[PARA, DS[32:8]] 1.00 [ 1.00 [ 1.00 | 1.72 | 2.51 | 2.78
PIPARA, DSfinfiinf]l 1]1.00 ] 1.00 | 1.00 | 1.72 | 251 | 2.79
P[XBAR, DS|16:4] 1.00 | 116 | 1.39 | 2.03 | 2.39 | 2.42
P{XBAR, DS{32:8] 1.00 | 1.16 | 1.40 | 2.03 | 2.45 | 2.51
PIXBAR, DS[infiinfll [[1.00 | 1.16 | 140 | 2.03 | 2.45 | 2.54
P(EBUS, DS{16:4]) 1.00 | 1.30 [ 2.13 | 2.53 | 2.57 | 2.57
P[EBUS, DS(32:8]) 100 | 1.30 | 213 | 2.60 | 2.67 | 2.67
P{EBUS, DSlinf:inf]] [[1.00 | 130 | 2.13 | 2.63 | 2.67 | 2.87
P[FPIPE, DS{16:4]] 1.00 | 1.28 | 2.20 | 244 | 248 | 2.48
P[FPIPE, DS;|32:8]] 1.00 | 1.28 | 2.24 | 2.56 | 2.60 | 2.60
PIFPIPE, DSlinf:inf]} |]1.00 | 1.28 | 2.24 | 2.56 | 2.60 | 2.60

speedup observed is on PARA using DS[inf:inf] and the FP
issuing mode. On EBUS and FPIPE, the speedups for all the
parallel modes are greater than 2.0. This is considerably better
than the C mode. Across all machines, only small variations in
speedups for the 4P and FP issuing schemes are observed.
This is not the case of the 1P and 2P modes. As in the
throughput statistics, their improvement, relative to the 42
and FP modes, increases as the ideality of the EU decreases.

C. Instructions Issued/Cycle, Efficiency

The number of instructions issued/cycle can be used to
examine the efficiency of an instruction issuing mechanism.
This statistic is also dependent on the inherent parallelism of
the benchmark programs. Its value is the total number of
instructions issued for execution divided by the total number
of system cycles. The results given below are for average,
rather than ‘‘peak,’’ instruction issuing activity.

Table VI gives instructions issued/cycle measurements.
Since branches (and other miscellaneous instructions, such as
“‘halt’’) are never dispatched to the EU, these measurements
are slightly lower than the corresponding throughputs. One of
the main characteristics of these results for the 1P, 2P, 4P,
and FP modes is that as the power of the instruction issuing
mechanism increases, its capabilities for issuing instructions in
parallel are used less, on the average.

The efficiency of a given instruction issuing mechanism is
the instructions issued/cycle divided by the maximum number
of instructions the mechanism is capable of issuing. Efficiency
values are tabulated in Table VII. Measurements for'the FP
mode using DS[inf :inf] are omitted since this mode’s 1ssuing
capabilities vary with DS size.

As observed above, in the parallel issuing modes, the
issuing efficiency decreases as the concurrent issuing capabili-
ties of the issuing mode increase. Note that even though the 4P
and FP modes achieve much higher throughputs than the C
mode, they are considerably less efficient. In general, the most
efficient of all schemes is the 1P mode.

D. FU and Bus Utilization

Average execution resource utilization is now considered.
This is simply the percentage of cycles in which a particular
resource is occupied. Utilizations give an indication of how
well a processor’s IU and EU are configured for executing
specific workloads.

Functional unit utilizations are shown in Table VIII.
Statistics for PARA are not given since it has an unlimited
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TABLE VI
INSTRUCTIONS ISSUED/CYCLE
Configuration U C 1P 2P 4P FP
P{PARA, DS{16:4 095 1 095 [ 095 | 1.64 | 2.31 [ 2.31
P[PARA, DS[32:8 095 | 095 | 095 | 1.65 | 2.41 | 2.69
PI{PARA, DSlinf:inf] 095 {085 {095 | 165 | 242 | 2.70
P[XBAR, DS|16:4]] 064 [ 075 [ 0.89 | 1.30 | 1.55 { 1.56
P{XBAR, DS{32:8]] (l0.64 { 075 | 0.89 | 1.31 | 1.58 | 1.63
P[XBAR, DSlinf:inf]] |[0.64 | 0.75 | 0.89 | 1.31 | 1.58 | 1.64
P[EBUS, DS[16:4] 0.29 | 037 | 0.61 | 0.73 | 0.74 | 0.74
P{EBUS, DS[32:8] 0.29 | 0.37 | 0.61 ) 0.75 | 0.77 | 0.77
P/EBUS, DSlinf:inf} 0.29 | 0.37 1062 | 0.76 {0.78 | 0.78
P[FPIPE, DS[16:4]] || 0.24 | 0.30 | 0.53 | 0.5¢ | 0.60 | 0.60
P{FPIPE, DS|32:8}} 0.24 | 030 | 0.54¢ | 0.62 | 0.63 | 0.63
P[FPIPE, DSiinf:inf}] 11024 | 0.30 | 0.54 | 0.62 | 0.63 | 0.63

TABLE VIl
INSTRUCTION ISSUING EFFICIENCY
Configuration U C 1P 2P 4P FP
P[PARA, DS[16:4]] 0.95 | 0.95 [ 0.85 | 0.82 [ 0.58 | 0.14
P[PARA, DS{32:8) 0.95 | 0.95 | 0.95 | 0.83 | 0.60 | 0.08
P[PARA, DSlinf:inf]] |/0.95 | 0.95 | 0.95 | 0.83 | 0.61 -
P[XBAR, DS[16:4| 064 {075 | 089 | 0.65 | 0.39 | 0.10
P{XBAR, DS[32:8] 0.64 | 0.75 | 0.89 | 0.66 | 0.40 | 0.02
P[XBAR, DSfinf:inf]] [[064 | 0.75 | 0.89 | 0.68 | 0.40 -
P[EBUS, DS[16:4]] 0.29 | 037 | 061037 |0.18 | 0.05
P(EBUS, Ds|{32:8] 0.29 | 037 | 061 {038 | 0.19 | 0.02
PIEBUS, DSfinf:infl] _}{0.29 | 0.37 { 062 | 038 | 020 | -
P|FPIPE, DS[18:4} 0.24 |{ 0.30 | 0.53 | 0.30 | 0.15 { 0.04
P[FPIPE, DS[32:8] 0.24 | 0.30 | 0.54 | 031 | 0.16 | 0.02
PIFPIPE, DSfinf:inf]] {/0.24 { 0.30 [ 0.54 [ 031 |0.18 | -
TABLE VIII
FU UTILIZATION (IN PERCENT)
Configuration U C 1P 2P 4P FPp
P[XBAR, DS[16:4]] 8.24 | 9.72 | 1172 | 16.91 | 20.31 | 2048
P[{XBAR, DS[32:8]] 8.24 | 9.72 | 11.78 | 16.98 | 20.70 | 21.32
P{XBAR, DS{inf:inf}] |[8.24 | 9.72 | 11.80 | 16.98 | 20.70 | 21.49
P[EBUS, DS[16:4]] 371 {480 | 7.99 | 9.61 | 974 | 974
PIEBUS, DS{32:8]] 3.71 | 480 | 8.00 | 991 | 1013 | 10.14
PIEBUS, DSlinf:infl] 3.71 | 480 8.02 9.99 11020 | 10.20
P(FPIPE, DS{16:4]] 386 [ 499 | 877 | 979 | 989 | 9.8
P(FPIPE, DS(32:8)] 386 | 499 | 886 | 10.20 | 10.38 | 10.36
P{FPIPE, DS[inf:inf]] [{3.88 | 499 | 886 | 10.23 | 10.43 | 10.43

number of FU’s. The highest utilizations are observed in
XBAR, probably because the ideal interconnection network
reduces instruction dispatching delays. Although utilizations
for FPIPE are better than for EBUS, they are not as high as
would be expected when the fact that FPIPE has only four
pipelined FU’s is considered. In all machines, percentages for
the 2P, 4P, and FP schemes are respectably better than those
of the C issuing mode.

Bus utilizations are tabulated in Table IX. Only those for
EBUS appear as this is the only machine with a limited number
of buses. For all of the parallel issuing modes, the bus is much
more heavily utilized than in the U and C modes. This is a
direct consequence of their higher instruction issuing rate.

XI. ANALYSIS

As noted, the dispatch stack dynamic scheduling mechanism
improves over other issuing approaches in two main aspects:
1) one or more instructions can be issued per cycle and 2)
instructions can be issued nonsequentially. This allows the IU

to supply more instructions per cycle to the EU and attack the
problem of under-utilization of the execution resources. The
simulation results indicate that computers using multiple
functional units, such as the CRAY-1, would benefit substan-
tially from the DS concurrent instruction issuing mechanism.

The results confirm that the C issuing mode is obviously
better than the U mode. The C mode keeps the EU busier by
issuing more instructions per cycle. This results in using the

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 9, SEPTEMBER 1986

TABLE IX
BUS UTILIZATION (IN PERCENT)
Configuration U [} 1P 2P 4P FP
P(EBUS, DS[16:4]] || 11.77 | 15.15 | 25.10 | 29.99 | 30.42 | 30.42
P[EBUS, DS[32:8]] || 11.77 | 15.15 | 25.15 | 30.87 | 31.33 | 31.34
P{EBUS, DS{inf:infl] || 11.77 | 15.15 | 25.23 | 31.17 | 31.34 | 31.34

EU parallelism more effectively, something that is not done at
all with the: U mode. Consequently, the throughput is
increased.

All the measurements indicate that the issuing modes that
use the DS parallel instruction issuing mechanism perform
better than the C issuing mode. They are capable of issuing
more instructions per cycle, resulting in higher utilizations for
the multiple functional units of the EU. Due to this, the
number of cycles required to execute a given program is
reduced, and the throughputs and relative speedups increase.
For different IU/EU configurations, these speedups range
from a low of 1.71 for the 2P mode to a high of 2.79 for the
FP mode, relative to the U mode.

The 1P issuing mode deserves some attention. Even though
it can issue at most one instruction per cycle, it outperforms
the C mode because of its ability to issue instructions
nonsequentially. This relatively simple enhancement to the
CRAY-1 issuing mechanism seems to pay off very well.
Speedups for the 1P mode range from 1.00 to 2.24, as
compared to 1.00 to 1.30 for the C mode. The 1 P mode is also
the most efficient of the issue schemes studied.

Among the parallel issuing modes, the results for the 4P
and FP modes are practically the same for XBAR, EBUS, and
FPIPE. The performance of the 1P and 2P modes, relative to
the more powerful issuing modes, improves with decreasing
ideality in the execution unit. This improvement appears in all
the measurements. The parallel issuing modes benefit from
having a larger DS and more program memory banks. Yet the
differences are not as striking as might be expected. In
general, the efficiency decreases as the parallel issuing
capabilities of the issue mode increase.

One interesting observation is that the 2 P system performs
much better than the C mode, and respectably when compared
to the issuing modes with greater parallelism. Thus, even a
simple system with a 16-instruction dispatch stack and 4
program memory banks using the 2P issuing mode would
yield great increases in performance, while not being overly
ambitious in terms of the amount and cost of additional
hardware.

XII. SysteM INTEGRATION: HARDWARE CONSIDERATIONS

Having already shown that considerable speedups are
attainable by issuing instructions according to the DS al-
gorithm, some hardware implementation issues are now
considered. The reader is referred to [1] for a more thorough
treatment of this topic.

The instruction unit of a processor, which contains the DS
window, can be conceived as residing on one VLSI chip, with
the multiple functional units of the EU occupying additional
chips. Hence, the IU control chip dispatches instructions to the
FU chips. The DS design should be compact and regular
enough to be amenable for VLSI implementation.
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Three operational control phases exist in a DS cycle: fetch,
issue, and update. It is interesting to note that the fetch and
update phases can be carried out concurrenily since they
operate on different portions of the DS. For instance,
instructions might be fetched into a DS buffer while the
updating is occurring in the DS itself. Subsequently, a simple
merging phase can combine their contents.

The fetch phase is simplified by using a precedence count
memory (PCM) [28] for maintaining global « and B counts for
the entire DS. The PCM is used for assigning & and § values to
newly fetched instructions and is updated along with the DS
when instructions complete execution. This eliminates the
need to recalculate data dependence information every time an
instruction is appended to the DS.

An area of potential concern i the DS operation is the
shifting of instruction eftries required by the update phase.
This arises because of the sequentiality that is maintained in
the way instructions are placed in theé window. However, the
following observation can be made to alleviate this concern:
once the dependence information has been incorporated into a
DS entry, the spatial ordering in the DS need not be preserved.
A proof of this can be found in [1]. There are three important
benefits derived from this:

1) instructions do not have to be appended to the bottom of

the DS,

2) no shifting of DS entries is required, and

3) explicit tags are not necessary because they will implic-

itly correspond to the DS slots occupied by the instruc-
tions.

Another observation that simplifies DS implementation is
that it is iot necessary for the issue index to be implemented as
a sum of the « and @ values, as in (5). The logical or of these
fields suffices to summarize the data dependencies of a DS
entry as follows:

Tor = a(S1)|(S2)| (D) |B(D)- 10

This value should be available as a DS output for controlling
the issue phase.

Probably the most important implementation aspect of the
DS mechanism is its content addressability for updating the
dependence counters. In considering the DS entry fields
proposed in Séction IV, we see that only the OP, S1, S2, and
D fields need to be read/writable. Of these, the three register
fields also have to be content addressable.

The o and B, which can be implemented with down
counters, should be externally writable by the fetch phase
using the PCM. Upon encountering a suitable associative
match in the update phase, they are internally updated. If these
counters are physically located close to the appropriate content
addressable cells, this is a relatively fast operation since no
external control is required.

XIII. OTHER CONSIDERATIONS

The usefulness of the proposed DS scheme in enhancing
system performance in multiple functional unit processors has
been clearly established. In addition to studying implementa-
tional aspects in relative detail, Acosta [1] has examined
enhancements and other topics related to the mechanism.
These are briefly reviewed below.

In terms of conditional branches, various possibilities exist.
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One is assigning a higher priority to instructions on which the
branch is deperident. Another possibility is to incorporate a
delayed branch into the system [18], [19]. This consists of
defining the architecture so that a given number of instructions
which sequentially follow the branch are always executed.
This requires the use of an optimizing compiler to rearrange
the code appropriately. Prefetching instructions along the
preferred branch path can also alleviate the conditional branch
bottleneck. In general, the emphasis is on maintaining more
instructions in the instruction window in order to uncover
greater concurrency among theni.

The identification of a suitable register allocation scheme,
involving static scheduling by an optimizing compiler [2], [9],
can be crucial when dynamic scheduling based on instruction
dependencies is employed in an instruction unit. A simple and
effective approach is to ‘‘spread’’ the execution of a program
over as many registers as possible by means of sirgle-
assignment allocation methods [6]. Other compilation tech-
niques, such as the reduction of expression tree height and
conventional optimizations, should be pursued in improving
performance in multiple FU processors.

Frequent external interrupts (e.g., context switches) can
severely degrade the performance in a system employing a
DS. Unless the instruction window is allowed to empty when
an interrupt occurs, saving enough state information to resume
exécution is a difficult and costly operation. In the case of
internal interrupts (e.g., division by zero), due to the
nonsequential scheduling of instructions, the concept of
imprecise interrupts used in the IBM 360/91 must be employed
[4].

The DS bookkeeping mechanism maintains dependence
information that allows dynamic transformations for improv-
ing instruction streams. In fact, the dispatch stack can perform
as a dynamic peephole optimizer on an instruction sequence
being executed [8], [9], [16]. The optimizations that can be
recognized include eliminating useless assignments, redundant
computations, and redundant loads.

Additional scenarios for usirg the dispatch stack include
operating on multiple instruction streams (edch with its own
program counter, condition code bits, and register set) and
scheduling for multiprocessor systems.

XIV. CONCLUSIONS

The dispatch stack instruction issuing mechanism provides
an effective approach to enhancing performance in multiple
functional unit processors. Through its ability to dynamically
schedule the nonsequential execution of multiple instructions
per cycle, the DS can effectively decrease the number of
cycles taken to execute a given program. This enhances
operational concurrency and, consequently, results in in- -
creases in both throughput and FU utilization. When viewed in
an ideal setting, the DS conforms to Keller’s principle of
optimality.

Since the DS mechanism appears as an instruction window
in the instruction unit, the dynamic code scheduling it
performs is independent of the multiple functional unit
configuration in the execution unit. Thus, improvements in
performance due to using a DS are possible in widely differing
EU configurations. In comparison to serial dispatching
schemes, the results in this paper have shown speedups
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between 1.71 and 2.79 are attainable using various DS parallel
issue modes. -

Although the DS instruction issuing mechanism requires
more complex and costly hardware, the resulting increases in
performance indicate that its dynamic code scheduling capabil-
ities are worthwhile for high-performance systems. In addi-
tion, dynamic scheduling in hardware can free compilers of
burdensome static scheduling decisions. Advances in VLSI
technology are allowing more complex systems to be built at
lesser costs. Hence, the DS offers both an effective and a
practical approach to increasing performance in computers.
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