
ARCHIVE OF DOCUMENTS AND REFERENCE MATERIALS

REGARDING THE IBM ACS-1 MACHINE

Lynn Conway
February 16, 1999

This volume contains documents and reference materials that I have compiled regarding the
IBM Advanced Computing Systems ACS-1 supercomputer. These are copies of original
documents dating back to the ACS project itself. Taken together, they may be sufficient to
disclose many of the system architectural innovations of the ACS architecture team.

The front-matter for the archive contains a brief overview of each document, including some
details regarding the document’s context within the ACS project. Also included is my initial
letter to Dr. Mark Smotherman of Clemson University regarding the possibilities of
reconstruction of many details of the ACS-1 machine.

PAGE:CONTENTS:

i. Overviews of Archive Papers and Documents.

ii. Letter to Dr. Smotherman, January 2, 1999.

1. "Dynamic Instruction Scheduling", February 23, 1966. 001

2. "ACS Simulation Technique", March 15, 1966. 022

3. "Dual Arithmetic on ACS-I", May 1, 1967. 051

4. "Architecturally Critical Paths in the MPM", May 12, 1967. 054

5. "MPM Timing Simulation", August 25, 1967. 059

6. MPM Architecture and Simulator Reference Notebook, as of August 1967. 093

7. Timing Simulator Source Code Listings, as of August 1967. 211

8. "ACS Logic Design Conventions: A Guide for the Novice", November 29, 1967. 328

9. "A Proposed ACS Logic Simulation System". October 31, 1967. 347

10. "The Computer Design Process: A Proposed Plan for ACS", August 6, 1968. 367

1. "Dynamic Instruction Scheduling", February 23, 1966:
L. Conway, B. Randell, D. Rozenberg, D. Senzig

The background on this paper is as follows. Sometime in late ’65, I suddenly visualized a
solution to the general multi-issuance and conflict-resolution problem. I quickly compiled
block diagrams and notes to capture the ideas, and during the next few days I presented
these ideas in staff meetings in the architecture group. There was a rapid, very positive
reaction. I was tasked to document the ideas in more detail, to incorporate one of the
branching schemes then under study, and to turn the scheme into an architectural "proposal".

Since I was quite junior and had little experience with coordinating and writing ACS
proposals, I worked with a number of ACS staff members, including Don Rozenberg, Brian
Randell, Don Senzig and others to produce the resulting paper. There was a sense that these
weren’t just ordinary ideas, and we worked hard to frame the concepts in a tutorial form, so
that they would be clear to team members. Brian Randell in particular came up with some
wonderful articulations about the DIS schemes, in his inimitable British manner. We hoped
to be able to publish the ideas openly later on.

But things then moved fast, and within a year the ideas in the paper had became the basis
for, and were implemented within, a fully revised ACS-MPM architecture.

Although the original dynamic instruction scheduling ideas were mine alone, the paper was a
team effort. As inventor, I was the lead author, and was followed by Brian Randell, Don
Rozenberg and Don Senzig. I think Ed Sussenguth and Herb Schorr gave useful feedback
too; had the paper gone on to publication they might have been included as co-authors.

The dynamic instruction scheduling paper is labeled "[DRAFT]". I believe that by late
February ’66, we saw this paper as a work in progress towards formal publication. The ideas
were already, in parallel, being evaluated for use in the actual machine. Thus in this draft I
think we stepped back from revealing thinking on exactly how the ideas might be applied in
the machine, as, for example, by using dual instruction windows.

But by then we also needed a tutorial on the ideas for those outside the architecture group,
such as the logic designers, to use as a reference. Thus this "draft" version of 2-23-67 was
released within ACS. After that date, no further work was done on the paper. It was
completely overtaken by the escalating events surrounding adoption of this scheme for use in
the ACS machine. Thus the invention itself then became quite "secret".

Interestingly, the name "dynamic instruction scheduling" never really entered into the team’s
"lingo". Instead, the relevant structures were usually just called "instruction queues", or
"instruction buffers", or "contender stacks" for short, as is seen in all the later documents.
It’s possible that many ACS vets won’t recall the specific title of the paper. Could that
perhaps explain why no one from the team has ever come forward and mentioned this work?

On the other hand, it is very likely that copies of this paper surreptitiously passed into
circulation outside IBM during the late 60’s and early 70’s, providing a path for transfer of
this knowledge, and its name, into computer architecture circles outside of IBM.

2. "ACS Simulation Technique", Mar. 15, 1966: D. Rozenberg, L. Conway, R. Riekert

This paper documents the methods used to build the ACS MPM register-transfer level
simulator. This paper may prove valuable by helping later analysts better understand and
interpret the source code and the output results of the "MPM Timing Simulator".

The simulator was built in FORTRAN IV. Thus it is relatively easy to "read the code" that
defines the workings of each module and functional unit. The simulation methods were also
aimed at being fast enough to support long runs involving many, many variations of the
machine architectural parameters.

The simulator was initially used to take quick looks at architectural variants, watch code
passing through them, and figure out why things got blocked or didn’t work as expected.
Later it was used to gather data on the performance of many serious MPM variants running
lots of real code, and then to "balance and tune" the emerging ACS-1 machine.

Notice the use of a "memory queue" function as the tutorial example in this paper. I believe
that by this time in ’66, we were already doing basic simulator implementations and
evaluations of various "instruction queuing" structures and controls, as part of our
explorations of dynamic instruction scheduling methods. I think we may have just simplified
and then "reused" some of that code to create the example in this paper.

Don Rozenberg was lead author, I was second and Bob Riekert was third. Bob had done
important work on the simulation methods at Yorktown, but didn’t go west with ACS.

3. "Dual Arithmetic on ACS-I", May 1, 1967: T. C. Chen

This paper is an internal proposal from Tien Chi (T. C.) Chen to Jack Bertram regarding
methods for implementing dual floating point arithmetic in ACS-1. It contains interesting
references to dual arithmetic on the ILLIAC IV machine.

I include this paper as a good example of an ACS "proposal", though I do not recall right
now the details of how this particular one turned out.

Note that the data-path register-transfer-level details of the arithmetic-functional units were
an independent architectural dimension of the project that had to meet logic design/machine-
cycle constraints on the one hand, and bussing/pipeliningflissuance-control/architectural
constraints on the other.

Thus only the timings of the ACS-I’s arithmetic units, and not those units’ internal functional
details, were modeled in the timing simulator. (An "unroller" processed assembly code input
instructions to produce the input instruction stream to the timing simulator). This was in
contrast to the OP fetch, Bussing, OP interlocking and issuance, SKIP, Branch and Exit
functioning, etc., which were fully modeled in the timing simulator.

4. "Architecturally Critical Paths in the MPM", May 12, 1967: E. Sussenguth

This is an important intemal memo from Ed Sussenguth to Herb Schorr that summarizes the
results of detailed MPM architectural design studies during the spring of 1967. It pins down
the final list of critical paths that must be insured against any performance slippage in any
later design iterations.

In each particular case, the critical path functions are identified as needing to be completed
within a certain number of machine cycles. Then, for each of these functions, there would
have been related critical logic design exposures, wherein specific logic functions had to be
completable within a machine cycle.

This memo was the result of an intense period of simulation and tradeoff studies to tune and
balance the MPM mechanisms for OP fetching, Bussing, OP interlocking and issuance,
SKIP, Branch and EXIT mechanisms, functional unit timings, etc.

Together with the other documents, this paper shows that the near-final form of ACS-1
machine architecture was completed and was being fme-tuned during the spring of ’67; thus
it supports the inference that generalized dynamic instruction scheduling must have been
incorporated into the revised ACS machine architecture sometime in the latter part of’66.

The details in this memo about MPM critical paths should really help during efforts at
interpreting other ACS documents, and reconstructing the MPM’s architecture.

5. "MPM Timing Simulation", August 25, 1967 (ACS AP #67-115) : L. Conway

This paper is a gold mine of detail on the system architecture of the ACS-1 MPM.
originally intended as a users’ manual that others could reference, in order to
simulator input and interpret simulator output. I was sole author of this paper.

It was

submit

The simulator was written in FORTRAN IV (H), and ran on an IBM S/360 Mod 75 under
OS/360. It operated at a rate of approximately 10 simulated instructions per second; typical
programs thus ran at a rate of about 20 instructions per second.

By this date, the simulator was the de facto formal description of the structure and functions
of the timing and controls of the ACS-1 MPM. All architecture team members coordinated
their work with the making of modifications to the evolving versions of this simulator.
Detailed functional modifications were seen to work or not, by whether they functioned as
expected during simulation runs.

By the time this document was written, a lot of experience had been gained in the effects on
machine performance of variations in machine parameters. In particular, it was clear by then
that the 3 out of 8 issuance scheme for A-Ops was near optimal in terms of mean OPs/cycle
while meeting the logic-level and machine cycle-time constraints. This paper uses that 3 out
of 8 scheme in a very detailed example, including detailed timing diagrams and the
corresponding simulator input and output listings.

Therefore, this paper provides a peek inside an ACS-1 MPM actually running code, enabling
the reader to see how the OP fetching, Bussing, instruction scheduling, Branch and Exit
functions, functional unit timings, etc., all worked together.

The paper defines and elaborates on the mnemonics of all those machine facilities, enabling
readers to make detailed interpretations of timing diagrams and simulator output listings.
Those mnemonics were used widely within ACS by this date, so these definitions will be
helpful in interpreting other ACS documents. This paper includes a list of all instruction
mnemonics, but, unfortunately, no detailed descriptions of the instructions themselves.

This manual, together with the detailed "Timing Simulator Notebook" and the "Timing
Simulator Source Code Listing", provides sufficient information to possibly enable later
analysts to reconstruct a running version of the ACS timing simulator.

This document, with all its details of how the ACS-1 processed instructions, may also have
passed into circulation outside of IBM, and thus helped to propagate ACS architectural
concepts into the computer architecture community.

6. MPM Architecture and Simulator Notebook, August 1967: L. Conway

This notebook contains my working documentation of the ACS-1 machine architecture, and
materials regarding translation of that architecture into the MPM Timing Simulator. It
contains very detailed information on the ACS-1 as of late August 1967, which was a
mature point in the machine’s evolution, and the design point for which important
benchmarks have been described elsewhere. The notebook consists of about 120 pages of
flowcharts, tables and notes, in addition to the ACS AP #67-115 paper.

Unfortunately, these notes do not contain a description of the OP set itself, as it was
documented in a separate memo that, I believe, was entitled "ACS-1 MPM Instruction
Manual" (we should really try to find a copy of that one, if one still exists). However, many
important details regarding the OP set, including the OP Tags, are included in these notes.
A listing of the contents of this notebook is included on the following page.

Listing of contents of the Timing Simulator Notebook (draft listing, as of 1-21-99) :

059

093

103

111

143

152

168

189

MPM Timing Simulator, ACS AP #67-115: Timing simulator user’s guide as above.

A Unit Interlock Simulation: A primer based on the sort of code used in the Timing
Simulator. Hardware diagrams, flowcharts and code are condensed from the actual
simulator, and give the essentials of A-Interlocks for a simpler "ACS-like" machine.
Also constitutes a tutorial on the micro-architecture of the A-Unit Interlocks.

Facility Structure:
Some details of the XFAC’s, AFAC’s, INBUS #’s, OUTBUS #’s, delays;
M.E.H.’s diagrams coordinated via E. Sussenguth, dates 2-15-67 thru 7-26-67.

OP Decode Tags:
Contains tabulation (unary) of all decode tags for the 227 instructions,
i.e., the internal claims on facilities, busses, etc., for all OPs,
in a 256 by 70 table for the instruction set of April 17, 1967.

Various flowcharts and notes:
Definitions of simulator Common Variables; I,J indexing ofA-SD’s, X-SD’s.
More on the decode tags, format of XBUFF and ABUFF.
Bussing of OPs to A and X Buffers.
Format of Execution Simulator output cards; Example of Output.

Various architectural and simulator details:
Block diagram of machine’s major dynamic instruction modules.
Flow charts for key functional module routines.
"Event running times within the cycle", in 0. l’s of a machine cycle.
Stack to Register timing: key difference between A and X stack algorithms,

bussing and facilities.
"Full Bypassing" timing; "No Bypassing" timing.
Common Vars, "Revised 18 May 1967", Common Vars, "Before Revision".

Memory timing details:
Memo to file by G. T. Paul re "MPM-BLCU Interface for Store OPS", 5-24-67,

with diagrams by M.E.H., G. P., 5-17-67, revised 6-7-67.
Memory Timing Diagram; Routines re memory instructions.
Instruction fetching overview.
Handling the Back-Up Registers - overview.
M. Homan’s notes re Back-Up Logic, as of about a year earlier: 7-25-66.

Skips, Branches and Exits:
SKIP instruction overview; Execution of EXIT instruction -overview.
BRANCH and EXIT Handling, complete details of, in a coordinated, hand-written
"memo" of 3-27-67 by B. O. B. (?), along with similar memo re "old branch info"
by B. O. B. dated 3-17-67, followed by detailed timing diagrams.

7. Timing Simulator Source Code Listings, August 1967: L. Conway

This notebook contains a set of listings of the source code for the near-final version of the
ACS machine’s register-transfer level timing simulator. There are about 5000 lines of
FORTRAN IV (H) source code in these 100 or so pages of listings. This is probably the
version of the code used to generate the examples in the ACS AP #67-115 paper.

By mid-67, the timing simulator was the de facto formal description of the overall team-
coordinated details of the evolving ACS-1 architecture. Therefore, these listings, when
taken together with the Timing Simulator Manual and the additional diagrams, flowcharts
and other details in the Timing Simulator Notebook, provide a very detailed account of the
ACS- 1 system architecture.

8. "ACS Logic Design Conventions: A Guide for the Novice", Nov. 29, 67: L. Conway

On joining ACS, I found that there was no single convenient source for this information.
Some of the information was not documented in any available references. Since most of the
logic designers used different notations and conventions, it proved to be a time consuming
and confusing process to learn the precise details of this very simple, basic material. Many
of the designers related to me that they had had similar initial experiences.

At the time I made some notes for my own personal use, and later formed these notes into
this memorandum in the hope that it might prove useful to newcomers to ACS. This memo
may prove useful in ACS retrospectives and reconstructions by enabling more precise
analysis of original ACS DRKS design records.

9. "A Proposed ACS Logic Simulation System", Oct. 31, 1967: L. Conway

This memo proposes an LSS to provide a means for debugging the logic design of the ACS
machine. Included is a means to extract design partitions from DRKS files and run
simulations on the partitions based on interface signals extracted from the equivalent
partition of the system-level (MPM timing) simulator. Considerable detail in the form of
block diagrams, flow-charts and calculations are included to clarify interfaces and interaction
in the overall system. One requirement for such a system to work would be formal
acceptance of the system-level simulator as the formal description of machine structure and
functions, and forcing of logic design partitions to implement the functions of the equivalent
system-level partitions. This seemed feasible at the time, since the MPM Timing Simulator
had already become the de-facto formal description of the machine. This memo may provide
useful insights into various practical aspects of ACS logic design and engineering at the time.

10. "The Computer Design Process: A Proposed Plan for ACS", Aug 6, 68: L. Conway

This memo builds on item 9, and proposes a detailed design for the overall ACS machine
design process, including system architecture, logic design and engineering, physical
specification and process automation, and maintenance. The thesis is that proper design of
the design process is as important as proper design of the machine itself. It exploits the
System-level Simulator as the overall machine specification, and discusses the overall
integration and protocols for use of that simulator with the LSS, DRKS, Physical
Specification and Process Automation tools. It addresses many concerns, such as the fact
that design phases do not follow serially but overlap in time, that some partitions may be far
along in specification while others may be quite tentative, and that later design phases
constantly feedback feasibility or cost issues to earlier (higher-level) phases. This proposal
was fairly widely circulated and had gained considerable support just before the project was
cancelled. This memo provides useful insights into practical aspects of ACS system
architecture, logic design, engineering, physical specification and process automation at the
time. [Also, taken together with the other materials, all this work substantially informed my
later explorations at Xerox PARC on VLSI design and implementation methodologies].

LYNN CONWAY

PROFESSOR OF ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE

THE UNWERSrrY OF MICHIGAN
COLLEGE OF ENGINEERING

170 ATL BUILDING
ANN ARBOR, MICHIGAN 48109-2110
313 763-5509 FAX 313 763-1260
INTERNET: conway@engin.umich.ed u

2 January 1999

Dr. Mark Smotherman
Department of Computer Science
Box 341906
Clemson University
Clemson, SC 29634-1906

Dear Dr. Smotherman:

When I came upon your web site identifying the IBM-ACS machine as "the First
Superscalar" computer, many past events came rushing back into my mind. I had been at
ACS, first at Yorktown Heights, then in Sunnyvale and then up on Sand Hill Road, during
the period when the exciting architectural work was being done there.

There were publications and talks, by Herb Schorr in the early 70’s and later by John Cocke
and others, that hinted at the scope of the ACS innovations. But these early retrospectives
lacked detail about the system’s architecture and lacked a context in which to embed the
ideas so as to fully convey their significance. Many computer architects sensed that amazing
things had happened at ACS, but few could be sure quite what, or why it even mattered.

As modem VLSI superscalars emerged into widespread application, and details of their
architectures were described, I became aware that important early ACS innovations had
transferred directly into those machines. Even the early ACS name for one of those
innovations, dynamic instruction scheduling, is now used by superscalar architects, and is
described as such in modem computer architecture textbooks.

More than thirty years after the original work, modem superscalars now at last provide a
context for understanding and appreciating the value of the early ACS innovations. For
some time now, I’ve hoped that someone from the ACS team might step forward and point
towards the sources of those concepts. However, no one has come forward.

When I read the ACS retrospective on your web site, I began thinking about why such
claims haven’t been made before. The sudden elimination of the project, followed by exits
and transfers of the architecture team members, must have meant that few, if any, original
ACS documents were saved by anyone. Thus the machine seemed to have just "vanished",
and there was little material evidence on which to base any retrospectives.

It vanished almost everywhere, that is, except in a notebook, documents and computer
listings that I compiled and kept stored away all these years.

Hopefully, the materials that I have saved can be used to reconstruct many details of ACS
machine architecture, and more fully document the accomplishments of the ACS team. I’m
interested in helping with such an effort, and in helping contact other ACS alums who might
have original artifacts and personal knowledge of events there.

The years I spent at IBM-ACS were among the most intellectually exciting of my life. It
was an incredible opportunity for me to be able to work with John Cocke, Herb Schorr, Fran
Allen, Ed Sussenguth, Don Rozenberg and all the others upon just finishing my graduate
work at Columbia. Reflections on my experiences at ACS, and the documents relating to
my work there, may help you and others reconstruct the overall story.

When I joined ACS, the team was based at IBM Research in Yorktown Heights N.Y., and
the effort went by the code name "Project Y". I joined in a support role to build the
register-transfer timing simulator for the emerging supercomputer. In that role, I had
ongoing access to almost all the team’s architectural discussions and debates.

During the early phases of the project, I became fascinated with John Cocke’s "open
questions" about computer architecture. By an amazing stroke of luck, I hit upon a pretty
good general solution to one of those questions, namely the problem of multiple issuance.
The team was very democratic and open to suggestions and proposals from any member, at
any level. They listened to my ideas, and then acted on them.

We initially called the resulting invention "dynamic instruction scheduling". It went on to
play an important role in the overall system architecture of the ACS main processing module
(MPM). Fortunately, among my documents are those describing this invention, and showing
how it was exploited in the ACS-MPM. These documents are identified in an annotated list
attached to this letter.

Included in the attached list are my reference notebook, the source code and a detailed user’s
manual for the MPM timing simulator. During 1967, the timing simulator became the de
facto formal description of much of the machine’s architecture. Therefore, these materials
can be used to reconstruct many details of ACS machine architecture. It’s even conceivable
that a running timing simulator could be reconstructed someday, based on these materials.

Given the significance and impact of superscalar computers, I really do feel the need to set
the story straight, namely that the ACS machine, a long forgotten "orphan", was never really
dead. ACS lives on after all, as the original source of many fundamental innovations that
have since passed on into modem machines.

I commend you on your efforts to reconstruct events at ACS and to document details of
ACS machine architecture. The independent, detailed context that you have already
established, together with my materials, should at least confirm the origins of generalized
dynamic instruction scheduling. That invention is one of the coolest ideas I’ve hit upon. It
would mean a very great deal to me for its origins in my ACS work to be acknowledged.

I’m not sure how to best proceed from here, but I do suggest that initially we try to acquire
more materials, contact more ACS alums, work on a project timeline, etc., before releasing
further preliminary conclusions. Also, by putting more ACS materials on a web site, we
could perhaps clarify that a lot of materials do still exist, and thereby interest others in
participating in reconstruction efforts.

Many of the events surrounding ACS were shaped by internal IBM politics that I and most
of my colleagues were unaware of at the time. The sudden demise of the project completely
stunned us. I never understood why the decision had been made that ACS must be 360
compatible. However, it was clear right away that the 360 decision meant that the ACS
architectural innovations were going to be shelved.

You can imagine what the project’s demise meant to those who had done the creative work
there. Sure, John Cocke went on to become famous among the cognoscenti in computing.
Indeed, four members of the early ACS architecture team, including John Cooke, Fran Allen,
Ed Sussenguth and myself, were later elected to the National Academy of Engineering for a
variety of other contributions. But imagine how much it would have meant to John and the
rest of us if the ACS designs at least had been saved, and approved for later publication.
Instead, almost all that wonderful work was discarded, as if it had never existed.

Since I’m not sure what sensitivities remain regarding theories about the project’s
cancellation, I’d like to proceed carefully when gathering information on the overall story. It
is certainly important to try to contact ACS team members named in the various documents
in advance of any public uses of those documents. Efforts should also be made to involve as
many ACS alums as possible, so that a wider set of perspectives can be gained and a more
thorough history compiled.

I really enjoyed talking with you recently about ACS. I look forward to interacting with you
further on this interesting project.

Sincerely,

Lynn Conway

Professor of EECS, Emerita
University of Michigan, Ann Arbor, MI

Attachment: Annotated list of reference materials regarding the ACS-1 machine

¢

IBM CONFIDENTIAL

MEMORANDUM TO :

SUBJECT :

ADVANCED COMPUTINGSYSTEMS
SAN JOSE
February 23, 1966

File

DYNAMIC INSTRUCTION

SCHEDULING (.D1RAF_ T)

L. Conway
B. Randell
D. P. Rozenber~
D. N. Senzig

O<m~

[,~, con’w~
~ " Archives

/

INTRODUCTION

DYNAMIC INSTRUCTION SCHEDULING

The order in which the instructiSns bomprising a program are
to be ~xcecuted is normally assumed to be given by the order in
which the instructions are held in program storage and by the
sequencing control indicated by transfer and conditional transfer
instructions. However a programmer, or compiler, can produce
many different but equivalent " verslons of a program merely by

making minor alterations to the sequence in which instructions
are placed. Normally the actual choice among these alternative
sequences will be somewhat arbitrary, though careful programming
or compilation often involves an attempt to design a program
whose detailed sequences are tailored to make best use of a com-
puter’s control and functional capabilities. This can be partic-
Ularly worthwhile for computers whose internal organization has
been designed to attempt to overlap the use of its various func-
tional capabilities.

Take, for example, a computer which initiates execution of
instructions in strict sequence, without necessarily awaiting the
completion of one instruction before execution of the next instruc-
tion, provided that the operands of the second instruction are
ready, and the necessary busses and functional units are available.
On such a computer the sequence (written here for convenience
in a 3-address format)

R1 + R2 -> R3

R1 x’R4 -~ R5

R6 + R2 ~ R7

R3 X R6 -> R8t

might well be preferable to

R1 + R2-->R3

R6 + R2 ~ R7

R1 x R4 ~ R5

R3 x R6 ~ R8

’if the adder and m~tiP~e~

W"

were independent functional units.

[L. Conway

4

Thus~if really effective use is to be made of the internal
capabilities of such a computer, careful attention must be paid
to the detailed sequencing of instructions in frequently executed

........ portions of a program. This ’scheduling’ can be_done by an ambitious
optimizing compiler, or an extremely conscientioushand-coder.

¯ There is often, however, a difficulty in achieving really optimum
sequencing by such means--that of the effects of’memory interfer-
ence~ which if present will cause variations ih the times which
operands take to reach the arithmetic and control unit from storage.
The effects of such memory interference will not usaally be calcu-
lable in advance of program execution, particularly if the inter-
ference is caused by autonomous I~0 units using the memory.
Thus there is often cause to consider the possibility of supple-
menting (or even replacing) the static scheduling performed by
coder or compiler by dynamic scheduling performed by the computer
as it executes a program. In this paper we describe a technique
of dynamic scheduling permitting non-sequentlal instruction execu-
tion. Furthermore, the technique presented is shown to be capable
of controlling the simultaneous execution of two or more instructions
at a time on machines with suffieiently generous bussing and func-
tional capabilities. In any actual computer design care would of
course have to be taken to ensure that any possible gains achieved
by such dynamic scheduling were not offset by the cost (both in
speed and in circuits) of the extra hardware necessary to perform
the scheduling.

The scheme presented uses a very general, but conceptually
simple, method of controlling non-sequential instruction execution,
and of identifying groups of instructions which are mutually
independent and can be executed simultaneously. Brief descriptions
of earlier schemes for achieving some of these aims have been given
by Amdahl [1], Chen [2], and Thornton~[3].

: 0

L, Conway,
Archives

--3-- m

NON-SEQUENTIAL INSTRUCTION EXECUTION

.
....... In this section we restrict our attention to the sequencing

of straight line coding comprised of instructions, the locations
¯ of whose operands and results can be determined directl~ from the

instructions themselves, rather than needing any address computa-
tion to-be performed.

The sequence in which aseries of instructions have been written
implies the total effect that these instructions are intended to
have when executed. Each separate instruction contributes to
this total effect by performing its operations on the contents
of certain registers (accumulators, index registers, indicators,
etc.) and setting its results into other registers. A dynamic
scheduling technique has to insure that any instructions obeyed
out of sequence do not change the contents of any registers which
are to be used by any instructions whose execution has been delayed
temporarily.

A simple set of rules for determining if a given, instruction
can be obeyed out of sequence is as follows:

(i) The required busses and functional units are available.

(ii) The instruction must not use any registers which are
used as result registers by instructions whose execu-
tion has been initiated but not yet completed.

(iii) The instruction must not use as result registers any
registers which are used as operand registers by any
preceding instructions, which have not yet been initiated.

(iv) The instruction must not use any registers (either
as result or operand registers) which are used as result
registers by any preceding instructions which have¯
not yet been initiated.

These checks can be made in a systematic fashion using what
are here called ’sequencing matrices’ Two matricesare used,
namely a ’source matrix’ (S) and a ’destination matrix’ (D}.
At each cycle, when the machine is attempting to choose an instruc-
tion to.be executed, rows in these matrices are set up correspond-
ing to each of the instructions which are being considered by the
schedulingmachanism. (The cycle referred to above is a clock
cycle, which corresponds to the maximum rate at which instructions
can be initiated, and Will presumably be much shorter than a
storage cycle.) The elements in each row of the matrices indicate
whether a given register is being used, or will be affected, by
the corresponding instruction.

.w
¯ ’ -- OG~-

" - -.- I L. Conw I
................. " [Archlves -’|- I

°

The element Si,j is set to one if the ith instruction uses

_~ the contents of register j as an operand. The element Di,j is set

- to one if. execution of the ith instruction will cause the contents

of register j to be replaced.

"Tu~ke, for example, a very simple machine with eight registers

and a 3-address format, using a scheduling mechanism that processes
four instructions percycle. A typical situation would be:

¯

Instruction Source Matrix Destination Matrix

i. R3 "4., R4-~R7

2.- R7 x R2-~R4

3. R1 + R2-~R5

4. R8 ÷ RI-~R8

12345678

1 1 .

1 1

1 1

1 1

Fig. 1

12345678

1

1

1

1

Thus each row has been set up by processing the register
address.fields of the corresponding instructions, and converting
these addresses into unary form. However in more realistic machines
the setting up of the matrix elements would not be so straight-
forward. Almost certainly it would involve decoding the operation
code part of the instruction to determine what implied registers
are used by an instruction in addition to those indicated by address
fields.

In addition to the matrices, which provide a conveniently
coded form of indicating the register requirements of instructions
awaiting execution, a ’busy vector’ "(B) is used to indicate the
current status of the machine registers. The length of the vector
is equal to the number of registers. The_ element Bj is set to

one when execution of an instruction whzch will cause the contents

of register j to be replaced is initiated; it is reset to zero
¯ when the replacement has been completed.

Once the sequencing matrices and the busy vector have been
set up[as described, the basic algorithm for choosing an instruction
to be executed can be described as follows. Starting with the top

row of the matrices, each instruction is checked--instruction i
can be executed if:

(1) The required busses and functi6nal units are available.

(li) The elements of B corresponding to the non-zero elements

of the ith rows of S and D are zero.

- oo~

" - " i’ L. co oyI
- * I Archlves.

-5-

le

2.

3.

4.

j~

(iii) The elements above row i of the columns of D corres-
ponding to the non-zero elements of row i of S contain
only zeroes.

(iv) The elements above r0wi Of the c01umns of s and 6
c̄orresponding to non-zero elements of row i of D contain
only zeroes.

Returning to theprevious example, with the busy vector set
up to indicate that certain registers, 3 and 6 for instance, are
still to have their contents repl~ced, by the action of previousl9
initiated instructions

Instruction Source Matrix

R3 + R4-~R7

R7 x R2-~ R4

R1 + R2-~R5

12345678

1 1

1 rl

1 1

1 1R8 ÷ RI-~R8

Fig. 2

Destination Matrix Busy Vector

12345678

1

1

1

12345"678

I J l.llI.ll J

(iv)

"Instruction I cannot "be executed because of rule (ii)
q

Instruction 2 cannot be executed because of rules (iii) and
)

However instruction 3 can be executed, provided that the
necessary bussing and functional capabilities are available.

Each cycle," while the scheduling mechanism is attempting to
choose an instruction to initiate, adecoding mechanism could be
processing a further instruction, taken from the address in the
instruction store given by an instruction counter. In contrast

¯ to a conventional instruction counter, this counter does not
indicate which instruction is currently being executed, but rather
which instruction is next in line for processing by the scheduling
mechanism. With non-sequential instruction sequencing it is not
possible to have a conventional instruction counter. This can
in certain circumstances be a disadvantage of the system and
is discussed further below.

At the end of a cycle, if an instruction has been chosen
(it is of course possible that none of the instructions can be
initiated until some of the non-zero elements of the busy vector
become zero), the=ows~d6rrespo~ding £othe instructionare removed
from the matrices. The remaining rows are then pushed upwards_

-- ¯ -- 1 c 1
ii

I

--6- q
0
4

to fill in any gap, the bottom row of the matrix is.replenished
using the instruction which has just been decoded, and the instruc-

"tion counter is incremented. All is then ready for the scheduling
........... mechanism to again scan the matrices in anattempt to choose another

,instruction to initiate.

"In the above example, the situation at the start of the next
. Cycle--m~ght be (assuming that registers 3 and 6 have still not had

their contents replaced) as shown in Fig. 3. During this cycle the
Divide instruction will be chosen for execution.

0

Instruction Source Mat~ix Destination Matrix Busy Vector

i. R3 + R4 R7

2. R7 x R2 R4

3. R8 ÷ R1 R8

4. R6 - R3 R3

12345678.

1 1

1 1

1 1

1 1

12345678

1

1

1

1

12345678

Fig. 3
..

In the above general description of the proposed technique
for non-sequential instruction execution the discussion has been
limited to the scheduling of straight-line coding composed of
instructions whose register requirements can be determined immedi-.
ately from inspection of the instructions. The next two sections
of this paper deal with the effect of unconditional and conditional
branch instructions, and with a technique for scheduling instruc-
tions which refer to indexed addresses in storage.

-5 1..¯_ :

o ~:7

lq: coow , i
---:l Arc :;i-ves-:’j

a -7-

UNCONDITIONAL AND CONDITIONAL BRANCHING

................. There is one kind of branch instruction, namely the unconditional
branch to an explicit instruction address, which can be handled very

. simply, without recourse to the sequencing matrices. The instruction
is executed as soon as it has been decoded, causing the appropriate
modifi-c~tion to the instruction counter which indicates the location
-from which the sequencing matrices are to replenished.

The other types of branch insbructions, where the branch address
and/or the question of whether the branch is to be taken, cannot be
determined directly from the instruction, but rather depend on the
contents of one or more registers, cause rows to be entered into
the sequencing matrices in.the usual way. However refilling of
the matrices then stops until the branch instruction has been
executed and any necessary modification has been made to the instruc-
tion counter. Thus once such a branch instruction has entered into
the matrices, the matrices will gradually empty until the execution
of the branch instruction permits refilling to begin. This means
that every effort should be made to initiate execution of the branch
instruction as soon as possible, and that once the branch instruction
has been executed, empty rows of the matrix should be replenished
as quickly as possible. Otherwise, the matrices will spend’much
of their time only partly full, and the chances of finding an
executable instruction each cycle w~ll be considerably reduced.

Since a scan of the matrices enables all the executable instruc-
tions to be identified, what is required is to ensure that a branch
instruction is given priority over any other executable instructions.
The simplest way of doing this, since there can never be any instruc-
tions in the matrices below a branch instruction, is to always choose
the lowest executable instruction, whether or not this is a branch
instruction. However it could be argued that this is taking
unnecessary liberties with the sequencing of a program, which will
cause undue complications in program debugging. The alternative is
to arrange some system whereby if there is an executable branch
instruction it is initiated, but that otherwise the highest
executable instruction is chosen.

The second requirement, that of speedy replenishment of the
matrices once a branch instruction has been executed, required decoding
facilities operating in parallel on several instructions. The alter-
native of relying solely on the normal decoding and replenishment
mechansim, which fills only one row each cycle, is unlikely to be
adequate.

An ’Execute’ instruction, which can be regarded as a temporary
branch for the duration of a single instruction, involves only
slight extensions to the above system. Filling of the matrices is

~ halted once an Execute instruction has been reached, until it can
be obeyed and the instruction which it specifies can be fetched

_ ~’ ~ ’,
|..... I L. onw ¯

I Archives

-8-

and placed in the matrices. Unless this is another Execute instrucl
tion, or a branch instruction, filling of the matrices can then be ’

¯ resumed, starting with the instruction following the original
Execute instruction.

) I

--u

!’-, con~ay !

-9-

THE SEQUENCING OF STORAGE ACCESSES

f

"Another area where dynamic scheduling can be of value is the
sequencing of accesses interleaved storage. Such storage is char-
acterised by the fact that access to one of the autonomous memor~
units, or of which the storage is comprised does not have to awalt
the completion of previous accesses to other boxes. Rather, storage
accesses can be made at the rate at which they can be accepted
by the bussing system, provided that repeated accesses to the same
box are sufficiently separated. Thus the problem of sequencing
storage accesses can be regarded As having similarities to that of
sequencing instructions, with boxes taking the place of registers,
and ’bus slots’ the place of clock cycles.

The particular box involved in a storage access is determined
from the effective address of the location to which access is being
made (typically a group of the least significant digits of the address
is used). Such an address will normally be the result of a calcu-
lation involving the contents of one or more registers. Thus the
box used by a storage access requested by a register load or
store instruction cannot be determining directly by examination of
the instruction, it being necessary to wait until the effective
address can be calculated.

Though one can conceive of a single scheduler being used for
sequencing both instructions and storage accesses, it seems more

reasonable to have a.second scheduler just for sequencing storage
accesses, operating in conjunction wlth the instruction scheduler.
The storage access scheduler could opezate accordin~ to the same
general principles as the instruction scheduler, using source and

destination matrices (SA and DA, s&y), and a busy vector (BA),
whose respective columns and elements correspond to the various boxes.
It would receive requests for storage accesses both from the
instruction scheduler, on behalf of load and store Instructions~
and from the instruction fetch mechanism which is used to replenish
the instruction scheduler.

The instruction scheduler described above is designed on the
assumption that once an instruction is removed from the matrices
and issued, it no longer has any demands on the registers that it
uses for its operands. Therefore, a set of buffer registers are
included in the storage access scheduling mechanism to hold the
contents of registers which are to be stored, until the required
storage access can be initiated.

Certain constraints must be placed on the order in which storage
access requests can be issued to the storage access scheduler from
the instruction scheduler. For example, a store request must not
be issued to the storage access scheduler before any preceding load

request. Only when the boxes involved in these requests have been
determined will it be possible for the storage access scheduler to

perhaps make such modifications to the sequencing of storage access
requests. In fact what is necessary is for the instruction scheduler
to treat the store as a single extra register. Therefore an addi-

tional column is added to the S and D matrices, and an element is
added to the busy vector. However this extra busy vector element
is not set to one unless the storage access scheduler is unable to
accept any further storage access requests. All load instructions
have-t~e extra element in their row of the S matrix set to one; all
store instructions have the extra element in their row Of the D
matrix set to one. The normal sequencing rules will then apply
the necessary constraints to the issuing of access requests.

Figure 4 demonstrates the setting of the matrices and busy
vectors of the two schedulers on a machine with 4 registers and 4
storage boxes. The instruction scheduler processes six instructions
per cycle; the storage access scheduler processes four access
requests per bus slot. Instructions are either 3-address format,
or specify single-indexed loads and stores., The vector B indicates
that registers R1 and R3 are still involved with previously

initiated instructions, and that the storage access scheduler has
capacity for further storage access requests. The storage access
scheduler contains only three access requests--a load of register
R3 from address 53 in box i, and a store of the literal 91 [the

content~ of some register) In address 29 of box 2, and a load of

register R1 from address 25 of bo~ 3. The vector BA indicates
that box 1 is still involved in some earlier access request.

When the instruction scheduler initiates execution of a load or
store instruction the rows corresponding to the instruction are
removed from the S and D matrices, and the B vector (except for
the last element, corresponding to the store) is updated in the
usual way. The effective address is calculated, and it and the.

address of the register to be loaded or stored are transmitted to
the storage access scheduler (together with the contents of the
register, in the case of a store instruction). This storage access
request causes the highest unoccupied row of the matrices SA and DA
to be set up so as to indicate the box requirements of the request.

Q
e

¯ -" -11-

2o

3.

4.

5.

6.

Ri "+ R2 "-->R3

S[R1 + 2]-~R3

S [R2 - I] -~R4

R2 S[RI

R1 x R3 --)R1

R4 - RI-~ R2

INSTRUCTION SCHEDULER

.S
1 2 3 4 S

i 1

Ii 1

ii 1

1 1

1

1 :1

D
1 2 3 4 S

I°

1

1

1

1

1

B
112i 3 4 S

1 1

io

2.

3.

4.

1:53

’91’

3:25

R3

2:29

R1

STORAGE ACCESS SCHEDULER

SA DA . BA e
1 2 3 4

1

1

2 3 4

1

i12
. .

1

Fig~ 4 Example of a 4 Register, 4 Storage Box

Machine

° or’Z_

- j" L, Conw~,,,,

¯ ~ Archives I

-12- 4

The matrices SA and DA are scanned each bus slot time, in order"

to choose an access request which can be issued ahead of any preceding
requests which are held up, and which does not involve a boxindicated
by the vector BA as being still involved with a previous access.’ The

¯ corr@sponding to this request are removed from the matrices, the rows
are pu_shed up to fill in the gap, and the busy vector updated. When
a storage access to a box has been completed the corresponding element
of BA is made zero once again. If this access was on behalf of a load

instruction, the appropriate elemeDt of B is made zero when loading
of the register has been completed.

Returning to the example demonstrated in Fig. 4, the situation
after one machine cycle and bus slot time is shown in Fig. 5. The
third instruction, a load instruction, has been chosen for execution,
the effective address specified~by it has been calculated to be
location 57 of box 4, and it ha~ been issued as an access request to
the storage access scheduler. Meanwhile the second storage access
request has been issued, the preceding request being still blocked
because the required box is still involved in an earlier access.

e

e

J L, Conway
| Archives]

.

-13-

. 1.

2.

3.

4.

5.

6.

°

R2

R1 x R3

R4 - R1

R2 S[9]

°. +

R1 + R2 R3

S- ~R1 + 2] R3

S[R1 + i]

R1

R2’

INSTRUCTION SCHEDULER

S

1 2 3 4 S

1 1

1 1

1 1

1 1

1 1

1

D

li.2 3 4 S

1
I

r

1

1

1

1

B -,

1 2 3 4 S

lJ 1 1

40

I

+

STORAGE ACCESS SCHEDULER

io

2.

3.

4,"

1:53

3:25

4:57

R3

R1

R4

sA
1i 213 4

1

1

1

DA
112 34

1
1+ 2 3 4

1 1

Fig. 5. The Example of Fig.

Later

I
I

4 One .Cycle and One" Bus Slot
". . +~_

- o14

K.¯

¯ -14-

There are many possible variations on this scheme for sequencing

~, storage accesses. For instance, one can dispense with extra buffer
............ registers and continue to hold quantities in the working registers

until the appropriate memory unit can be accessed. What is required
¯ to avoid unessential slowing down of the instruction scheduler is

that the registers used in the calculation of the effective address
be released before the instruction is necessarily removed fromthe
matrix. This introduces a new complexity. Previously an instruc-
tion was not modified in the matrices, except for its possible bubbling
towards the top, until its complete removal from the matrices.

#

The bits in the source matrix corresponding to those components
of the effective address calculation would beset to zero as soon
as they are used. This at least releases those registers for use
in further calculations. One might further refine interlocking
on register usage so that effective address calculations were per-
formed before the contents of the register to be loaded or stored
were available.

Indirect addressing can be handled in much the same way as
branch and execute instructions’. If the various levels of indirect
addressing use new indexing registers~ at each step then no instruc£ion
can be permitted to be executed whic~ may result in any register
modification. Unless memory read buffers are present this effec-
tively means that indirect addressing will stop instruction initiation
though matrix replehishment can proceed. If indirectaddresslng does
not require new indexing registers but simply generates new memory
store access requests then only succeeding store instructions must
be inhibited until the indirect addressing chain is terminated.

%

O~5

-15-

SIMULTANEOUS EXECUTION OF INSTRUCTIONS

.................. Q

The instruction scheduling method described above uses the
¯ sequencing matrices in order to detect which instructions can be

obeyed out of sequence. As a byproduct it automatically detects
which-~nstructions can be initiated simultaneously, at least in so
far as register usage is concerned. Thus, given sufficient functional
Capabilities and sufficientbusses between reglsters.and functional
units, the scheduling scheme can he used to control the simultaneous
initiation of instruction execution. The matrix scanning~algorithm
would remain unchanged, though from a hardware point o~ view if not
conceptually the procedure for cQmpressing the remaining rows in
the matrices upwards to fill i~ any gaps becomes more complex.

We assume that the machine has 9 number of ind4pendent func-
tional units-in addition to the memory and branch control units.
Typical additional independent specialized functional units are
floating point add/subtract, multiply, and divide units. We make
the further assumptions that each functional unit has a buss connect-
ing With the registers and that there is only one functional unit of
each type. The complexities that arise when these assumptions "are
removed will be discussed below. " ¯

-.,

The requirements for simultaneous initiation of instruction
execution is the addition of a bit to the busy vector for each
functional unit that cannot accept operands every cycle and a column
appended to the destination matrix for every functional unit.

The busy vector bit corresponding to the functional unit is
turned on by the initiation of execution of an instruction in the c
corresponding funtional unit. The busy vector bit is turned off when
the functional unit is able to accept a new operand pair.

Rule (i) of the sequencing algorithm given informally above can
here be stated as: the elements of B representing the functional

units_must_ have zeros corresponding to non-zero elements in the

ith row of D. The elements above row i of the columns of D corres-
ponding to the non-zero elements of D contain only zeros.

The operation code portion of the instruction is decoded to
the extent that it is known which functional unit is going to execute
the instruction. This information sets a one in the bit position
whose row index corresponds to the instruction and whose column
index corresponds to the functional unit.

Going back to the example used in Fig. 2 and assumming that
the functional units are an add/subtractor that can accept a new
pair of operands every cycle, a multiplier and a divider that cannot
accept a new pair of operan~s every cycle, and a branch controller,
we have the situation shown in Fig. 5. -

¯ o ¯

¯ -16-

As in Fig. 2, Instruction 1 cannot¯ be executed because of rule
(ii). Instruction 2 cannot be executed because of rules (iii) and
(iv). In addition Instruction 2 cannot be executed because of rule
(i), i.e., because the multiplier is busy. The execution of Instruc-
tions 3 and 4 can be’initiated--they violate none of the rules on
register usage and the appropriate functional units are free.

As is done-in the sequential case, at the end of the cycle,
instructions that have been chosen for executiDn are removed frQm
the matrix. The remaining rows are pushed up to fill in the
gaps, and new instructions are inserted at thebottom of the matrix
to replace those which have been initiated, and the instruction
counter is incremented.

In the above example (Fig. 5) the situation during the next
cycle might be as shown in Fi~. 6. The instructions 1 and 2 are
inhibited by the same reasons as before. Since the Busy vector bit
corresponding to the Branch unit is zero (indicating no Branch
instructions in the matrix) new instructions can be entered. The
new instruction 3 (R6 - R3-gR3) is inhibited by rules (ii) and (iv).

The new fourth instruction specifies a branch to the memory
locations specified by the contents of register R1 plus 71" ~

if register R2 contains a zero. Since all of the registers used by

this instruction are free this ins£ructlon can be initiated. Since
we still can have but one branch instruction in the matrix at a
time no Branch column on the Destination~matrix is needed though the
equivalent may be needed by the replenishing mechanism. The Branch
bit on the Busy Vector is needed to inhibit the matrix replenishing
hardware.

q¯

In the case of the sequential control the point was made that.
preference should be given to branch instructions. Here, because one
can say tha~ each functional unit is looking for work, no special
priority need be given to a branch instruction.

0~’7.

°o

R3 t R4 "R7
R7 * R2 R4_

R1 + R2 R5

R8 " R1 R8

SOURCE MATRIX

12345678

i
1 1

1 1

I1
|

1 -|

I

il

-17-

DESTINATION MATRIX
+

1 2 3 4 5 6 7 8 x -’. -

I Ii
1 ! 1

t
il! i

i
11

I 1 ’i

BUSY VECTOR BRANCH
+

12 34 5 6 7 8 x’-

[! I,I 1 !,I I t,i i

Fig. 5. Example of Multiple Instructions per Cycle Inltiation--
Cycle I..

R3 + R4 R7

~r * R2 R4

R6 - R3 R3

71, RI; R2 =f

SOURCE MATRIX

12345678

1

1 iI
1 1

1 1
i

DESTINATION MATRIX

12345678 x~+

I 1 i

II I 1 I

I
1 I 1

i I I

" BUSY VECTOR BRANCH

12 3 4.5 6 7 8 x"

Fig. 6. Example of Multiple Instructions per Cycle Initia-tion--
Cycle 2.

-18-

If more than one functional unit of a given type exists but each
.has its own busses then it is necessary to add a bit to the busy

vector corresponding to the new functional unit. No additional
columns are added to the Destination Matrix.

.In the discussions above it has been tacitly assumed that the
functional units were completely passive since the scheduler dispenses
operands to the functional units for execution. If instead one takes
the approach that the functional units are active, and that the

-sequencing matrixes are used by the functional units to providethe
necessary interlock information th~n the handling of multiple
functional units of a given type is perhaps easier to-envision.
The functional unit then executes the uppermost instruction that
has a One in the column of the Destination Matrix corresponding to
the functional unit and has its registers free. With multiple
functional units the individual functional units must in addition
check the status of all life functional units.

If the number of instructions that can be initiatedper cycle
is restricted by the number of busses, i.e., one has fewer busses
than functional units or rows in the sequencing matrices, one can
then take the approach that each instruction uses a functional unit
called buss in addition to the functional unit explicitly requested
by the instruction.

Q

i

O

-19-

CONCLUSION

................. In this paper we have described a dynamic schedulingmechanism
for providing a look-ahead capability which enables the execution

¯ of instructions to be initiated out-of-sequence. In addition the
mechanism is capable of controlling the sl itaneous initiation of

two o-r-more instructions

The generality of register and functional~ unit interlocking pro-
vided by the mechanism may well be in excess°of what is necessary
for a given computer design. The modification~ to suit any par-
ticular design will usually be reasonably obvious and are beyond the
scope of this paper.

0

0";’0

-20-

REFERENCES

L.

i.

o

o

G. M. Amdahl. Engineering Aspects of Large, High-Speed Computer
Design; Part If--Logical Organi’zation. Paper presented at
the Office of Naval Research Symposium on High-Computer
Hardware, November 17-18, 1964, Washington D. C.

|

T. C. Chen. The Overlap Design of the IBM System/360 Model 92
Central Processing Unit. AFIPS Conference Proceedings
Vol. 25, Part 2. 1964 Spring Joint Computer Conference.
Spartan Books, Washington D. C. (1964) pp. 73-80.

J. E. Thornton. Parallel Operation in the Control Data 6600.
AFIPS Conference Proceedings Vol. 25, Part 2 Spring Joint
Computer Conference. Spartan Books, Washington D. C
(1964) pp. 33-40.

o .

Q

.,/.

IBM CONFIDENTIAL ADVANCED COMPUTING SYSTEMS

SAN JOSE

March 15, 1966

MEMORANDUM TO:

SUBJECT:

File

ACS Simulation Technique

D. P. Rozenberg

L. Conway

R. H. Riekert

LC/DP/RR:kp

cc: Architectural Distribution List

f

02-7-

IL, Conw
,Archives !

INTRODUCTION

°

A brief description of computer simulation of physical systems in gen-
eral and ~he features of current simulation languages is given.

A technique is then described for simulation using FORTRAN IV, which
maintains the essential features of current simulation languages with
a great improvement in run times and core requirements.

This technique may be useful in the production of very large simula-
tion programs where run times and core requirements are such that
programming in existing simulation, languages may not be feasible.

o.

I

¯ °

-I-

SYSTEM SIMULATION

Assume’that it is of interest to study the behavior of complex systems
or automata. If the level of complexity is such that the number of
states of the system and the possible sequences of states is very large,
then a logical approach to such a’study is to simulate the system
using a digital computer.

Physical systems are usually described in terms of laws or logical
rules relating causes and effects; i.e., a given state together with
inputs to the system causes or determines the state (or the proba-
bility of selecting the state) at some future time. The "behavior"
of the system is thus the sequence of states of the system during
the passage of time, in response to a specific input sequence.

A computer simulation thus consists of identifying variables which
determine the states of a system and the rules for future state
selection (the cause and effect relation) and implementing this
model with a computer program. Thus it is possible to artificially
experiment with the system, and to study the sequence of states for
chosen sequences of inputs, with time as an independent variable of
the simulation.

In simulating a system it is necessary to perform a computation only
at those times when a state or an input has changed since
it is only at such times that a future change of state can be
caused. It is therefore not necessary to examine the system at
regular clocked intervals. Indeed, this may be vastly more efficient,
than examining a system at clocked intervals of simulated time
if the time interval between changes of state varies over a wide
range of values.

Thus it is found that digital simulation languages may provide the
programmer with utility routines for (1) providing a means of causing
at future times those effects determined by past and present system
States and inputs, and (11) advancing time, as an independent variable
of the simulation, to the next scheduled effect (change of state)
or to £he next change of the input sequence, and (111) passing control
to that subroutine which simulates the effect and which itself may
cause future effects. Perhaps the best known simulation languages
of this type are SLMSCRIPT and GPSS . These languages have
in addition to the above features a number of utilities which (i)
ease the specification of variables and events,(2) ease the writing
of the simulation model description, and (3) simplify the production
qf output routines.

-2-

For many purposes: these additional utilities are not essential.
¯ Indeed, they may cost a high overhead in terms of core space and

...... running time.

GPSS has eased the writing of the simulation to the point where
one often cannot specify sufficiently complex tests for branching.
Thus, hl does not document well a complex description. SIMSCRIPT
is sufficiently general but a high cost is extracted in storage
and running time because it attempts to simplify the handling
of variables.

So, to have a powerful simulation language or technique without all
the unnecessary utilltv features of existing languages, it was
decided to write utility routines to perform the basic simulation
requirements. A decision had to be made on the language in which
to write the simulator utilities routines and also the simulated
system description.

If it is important to use the program listings as documentation of
the model, a high level language may be necessary. Otherwise,
an assembly language might give slight time and storage advantages.
In either case, it is desirable to use a common language which runs
under a reasonably powerful operating system.

Since in most detailed simulations, the exact model description and
documentation can only reside in the simulation program listings,
a high’level language was chosen as the basic language..

Thus, the utility routines described in the following sections and
the model descriptions are all written in FORTRAN IV whic~ is a
common high level language running under IBSYS. IBSYS is an
operating system which is sufficiently powerful so as to be a
valuable aid in running and debugging programs.

°

-3-

THE FORTRAN IV SIMULATION ROUTINES

A general description of the simulation utility routine written in
FORTRAN IV follows.

The central idea in the operation of the simulation program is the
ordered placement ofevent notices into a calender of future events
as the related cause statements areencountered. The calender is
ordered according to increasing time of occurrence. When an event
terminates (i.e., the event subroutine terminates), the ordering
of the calender indicates the most imminent event and its scheduled
time of occurrence. Thus time can be advanced to that scheduled
time and the appropriate event subroutine can be called¯

A set of arrays, located in blank common, comprise the calender.
An event notice consists of one element from each array with
the same index. Each notice contains linking information, the
scheduled time of occurrence, an indication of the event routine
to be called, and three parameters, to be used by the event routine.
An event notice will be said to occupy a row of the calender.

During the execution of an event routine, conditions may call for
the causing of an event. This is implemented by calling utility
subroutine CAUSE with the parameter set: Name of event routine
being caused, the time at which the event is to occur, and zero to
three parameters to be passed to the event routine. The utility
subroutine CAUSE will place in the calender the appropriate event
notice. An event may cause any number of events including itself
to occur at a future time.

After completion of an event routine,,control is returned to
routine MAIN. MAINthen calls the utility TSTEP which extracts
the next most imminent event from the calender, sets simulated time
to the scheduled time of that event, and transfers control to the
appropriate event routine. Upon completion of one event routine,
control is passed to next most eminent event routine which will
then have the capacity for causing additional events.

In some instances it is desirable to cancel an event which may have
been scheduled for the future. To accomplish this a utility sub-
routine REMOVE is included. It is called with the name of the
event to be canceled as a parameter and its function is to search
the calender for the first instance of an event notice having
the name of the event to be canceled. That event notice is then
removed.

The rbutine package for any given simulation would contain MAIN,
CAUSE, REMOVE, and TSTEP plus all of the event subroutinesnecessary
for specifying the model being simulated. CAUSE, REMOVE, and TSTEP
are all utility subroutines which are invariant from one Simulation
to an-other. MAIN varies from one simulation to another only in that

.- . .

J L coow , I

.o

-4-

it is desirable to have .MAIN contain common statements which include
"all the systems variables and initializations of system variables.

Included in COMMON are the special variables and the system
¯ variables. The special variables include the calender arrays; TIME-

the current value of simulated time; IPAR i, IPAR 2, and IPAR 3 -
the parameters associated with the current event;

and ISL and ITL - pointers utilfzed
in the calender manipulation. The system variables are those vari-
ables in terms of which the programmer describes his simulation
model.

The calender consists of six single indexed arrays which are indexed
by the same pointer. Thus the calender will be referred to as
though it were a two dimensional array with six columns. Column 1
contains linkage for the ordering of event notices. Column 2
contains the time of occurrence while Column 3 contains the
reference to the event routine. The remaining columns contain
parameters to be passed to the event routine; associated with the
event are two pointers - ITL which specifies the next most
imminent event and ISL which specifies the row to be filled by the
next call of subroutine CAUSE.

As part ~f the initialization in ..MAIN, the linkage in the calender
is set up. The first row is linked to the second, the second to the
third, and so forth. The link in the last row is set to zero to
indicate the end of the chain. The first row of the calender is
set to indicate an event with a very large value of scheduled time.
(This simplifies the calender searching in CAUSE. Finally, ITL

is set to 1 and ISL is set to 2. -

To Schedule an event (i.e., place an event notice in the calender)
the time of occurrence, the event routine reference, and the three
inputparameters are stored in positions 2 through 6 of the row
indexedby ISL. Following this~ ISL is set equal to the value
of the link in the same row. Next, column 2, the time of occurrences,
is searched beginning with the row designated by ITL in the order
given in column i, the linkage column. The object of that search
is to find an event row k with a time of occurrence Which is greater
than the occurrence time of the event being scheduled. When such
a row is found, the links are adjusted to schedule the new event
ahead of the event in row k. The initial event in row 1 guarantees
that we find arow k.

Whenever TSTEP is called, position 2 is stored in the COMMON variable
TIME, and positions 4, 5, and 6 are stored variables IPAR i, IPAR 2,
and IPAR 3. In addition, the old value ofposition 1 goes into
ITL, the old value of ITL goes into ISL, and the old value of ISL
goes into position I. Finally, the event routine reference is
used to call the appropriate event.

An example will now be given to illustrate calender manipulation, o~7~

Assume that the calender is in the state given in figure i.

" [L, Conwc./ i

Index
f

Link Time Event Reference

1 0 1030

2 4 1.0

3 6 2.0

4 3 1.5

5 1 4.0

6 5 3.0
.o

7 8

8 9

9 I0

Event 1

Event 17

Event 3

Event 9

Event 5

Calender

Par 1 Par 2 Par 3

ISL=7, ITL=2

)

FIGURE 1

°.

¯~°

Assume that ~he next encountered utility call is

CALL CAUSE (EVENT 12, 3.25, 0, 0,0).

The resDlt is shown is figure 2.

Index Link Time

301 0 i0

2 4 1.0

3 6 2.0

4 3 1.5

5 1 4.0

6 7 3.0

7 5 3.25

8 9

0

9 I0

Event Reference

Event 1

Event 17

Event 3

Event 9

Event 5

Event 12

Par 1 Par 2 Par 3

ITL=2, ISL=8

FIGURE 2

Y

i 0

~> If the next encountered utility call is:

CAm TSTEP

The result is given in figure 3.

!

Index Link

1 0

2 8

3 6

4 3

5 1
o.

6 7

7 5

8 9

9 i0

Time

1030

2.0

1.5

4.0

3.0

3.25

Event Reference

Event 17

Event 3

Event 9

Event 5

Event 12

Par 1 Par 2 Par 3

ITL=4, ISL=2

FIGURE 3

-5-

.t0

The final subjec£ of this section is the transfer of control to
the intended event subroutine when the statement CALL TSTEP is
encountered in MAIN. Two satisfactory methods have been used. The
first method utilizes FORTRAN IV in a perfectly straight forward

¯ manner and is the method to be described in this report. The
other_method (Method 2) has the advantage of being simpler and
easier-to use than Method i, but has the disadvantage of depending
on specific characteristics of the IBM 7090/94 IBSYS compiler.

In using Method 1 a variable in a ~lock of named common
is defined for each event routine. This variable is the event
reference mentioned earlier and is thought of as the event name
while the event subroutine n~me consists of the same FORTRAN N
symbol prefixed with an X. For example, a particular simulation
model might consist of the following five events. The correspond-
ing subroutine names are also given below.

Event Names Subroutine Names

MOVE X MOVE

GENER X GENER (A)

DELAY X DELAY

PROC X PROC (X,Y,Z)

FINIS ~ X FINIS

Further, it is required that the event names be assigned unique
integer values from 1 thru N where N is the number of events.
The initialization of event names may be done in routine MAIN.

The organization of MAIN could be as follows:

COMMON Ii. . .
COMMON /NAMES/ MOVE, GENER, DELAY, PROC, FINIS

INTEGER, GENER, DELAY, PROC, FINIS

C

C

SYSTEM INITIATION STATEMENTS

CALENDER INITIALIZATION STATEMENTS

MOVE = 1
GENER = 2
~ELAY = 3
PROC = 4
FINIS = 5 . I L’ C°nwayIArchives

¯ ¯o

C

-6-

°

PLACE INITIAL EVENT NOTICE
CALL CAUSE (MOVE, 1.0, 0, 0, 0)

I000 CALL TSTEP (NEVENT)
GO TO (I, 2, 3, 4, 5), NEVENT

1 CALL X MOVE
GO TO I000

2 CALL X GENER (IPAR i)
GO TO 1000

3 CALL X DELAY
GO TO 1000

4 CALL X PROC (IPAR i, IPAR 2, IPAR 3)
GO TO i000

5 CALL X FINIS
GO TO 1000

END
o.

Thus TSTEP returns as the event reference the event number defined
in the initialization of event names. The event number is then
used to branch to the statement which calls the intended event
subroutine.

Method 2 requires less bookkeeping’on the part of the programmer.
The event subroutine names are the same as the event name and are
not included in COMMON. Further, the statements for entering the
event subroutines are unchanged from one simulation to another as
contrasted to Deck MAIN of Method 1 which must be modified whenever
an event is added or deleted¯ However, one special variable
MYSELF is located in CO~MON. Its use will be developed later¯

Referring to the above example, assume that it is desirable to
have event MOVE cause event DELAY T units of time in the future.
Subroutine MOVE will contain the two following statements:

Subroutine MOVE

EXTERNAL DELAY

CALL CAUSE (DELAY, TIME + T, 0, 0, 0)

RETURN

END

o° °

-7-

When subroutine CAUSE is entered the address associated with the
¯ parameter DELAY is the address of the entry point in subroutine

.... DELAY._ Therefore, what gets stored in column 3 of the calender
is the first executable instruction in subroutine DELAY. Thus,

¯ the event references mentioned above are the first instructions
of the event subroutines. As will be apparent below, this Method
2 mechaDism works because the first instruction of a subroutine
is always a transfer to the prolog of the subroutine.

|

In deck MAIN, the subroutine selection statements are:

d

i000 MYSELF = N~.IENT (ITL)

CALL TSTEP (MYSELF)

GO TO i000

When statement I000 has been executed MYSELF contains the first
instruction of the event routine to be entered. Following that,
subroutine TSTEP is called with the address of MYSELF as the para-
meter address.

The for~ of TSTEP is:

SUBROUTINE TSTEP (DUMuMY)

Q.

IP.~R 1 =
IPAR 2 =
IPAR 3 =

CALL DUMMY (IPAR I, IPAR 2, IPAR 3)

RETURN

END

The address of DUMMY is, remember, the address of MYSELF¯
CALL DUMMY is translated intothe following instructions:

The

TSX MYSELF, 4

TXI 3

PZE

PZE IPAR 1

PZE IPAR 2

- PZE IPAR 3 os 5

IL. co ov!
Archives jl

-8-

,0

. The TSX MYSELF, 4"instruction causes the control to transfer to
~’ a location.in COMMON with linkage established in index register

........... 4. -As mentioned above the first instruction of a FORTRAN IV
subroutine compiled by IBSYS is always of the form:

TRA Prolog

Therefore, after the TSX transfers control to the location of
MYSELF, the value of MYSELF transfers contol to the prologs of
the desired event without modifying the return or parameter
linkage. This is precisely the desired transfer.

The variable MYSELF serves one other important function.
Because FORTRAN does not allow a routine to contain an EXTERNAL
statement which contains the name of that routine, event routine
MOVE cannot contain a statement of the form:

CALL CAUSE (MOVE,).

" However, the desired effect will be obtained using:

CALL CAUSE (MYSELF, . . .).

The complete listings of the utilities routines required for
both Method i and Method 2 are given in the appendices.

L. Conwcry

Archives j

4 °

-9-

" . EXAMPLE ¯

An example will now be described which illustrates the details of
implementation of a system simulation in FORTRAN IV.

The system under study will be a simple computer memory queue.
Suppose a computer has several independent memory boxes. We
may thus queue up memory requests and each computer cycle
examine the queue and the memory boxes to see if there is a
request on the queue for some non-busy box. K simulation will
enable us to experimentally determine such things as average
time on queue, average queue length, etc., as a function of re-
quest generation rate, number of memory boxes, and the memory
cycle time.

The system may be roughly described as consisting of three parts,
as in the following diagram:

~ MKMORY
BOXES

Generator of’
i

Memory
Memory --~ --~> ~ "

- Requests
I

Queue

The generation of memory requests will be artificially.modeled
by forming either no request or one request per computer cycle,
according to some probability, with the box number of the re-
quest chosen at random. A generated request will be placed on
the queue, if there is space for it. Every cycle, the queue will
be scanned for the first request for a free memory box. If
one is found it will then cause the memory box to be set busy
for the cycle time.

A detailed description of the simulation now follows, with
the FORTRAN IV event subroutines separately listed and described.

GENER -

The simulation of the generation of requests is performed by
GENER, a routine which first causes itself one cycle later and
thus runs every cycle. GENER causes a request to be generated
if a random number, uniformly distributed between 0 and I, is
found to be less than the specified probability of generating
one request in a cycle. If the request is to be generated, a
random number is then used to select a memory box for the request.
If there is room on the queue, the request is caused to arrive
at the queue.8 units of time later, at the "end" of the machine
cycle. The listing of GENER follows.

-o%5

............... - !’-. coo,,, I
......... --- ! A chiv ..j

°

$IBFTC GENER

......... .SUBROUTINE ¯ XGENER

-10-

COMMON

GENERATE MEMORY REQUEST

CALL CAUSE (GENER, TIME + 1 0)
| ¯ ¯

CALL RANDOM (R)

IF(R.GT. PROBI) RETURN~ ’

CALL RANDO:4 (R)

BOXNO = (R ¯ FLOAT (NBOX))+ 1.0

IF (QMPNT.EQ.NQM) RETURN

INUMB = INUMB + 1

(
CALL CAUSE (QBUSY, TIME + . 8, BOXNO, INUMB)

RETURN

END

QBUSY "

The event routine QBUSY simulates the arrival of a request
on the queue¯ This is done by incrementing the queue input
pointer QMPNT, and placing the instruction number and memory
box number into the queue array QM.

$IBFTC QBUSY

SUBROUTINE XQBUSY (BOXNO, INSTR)

COMMON

C PLACE REQUEST ON QUEUE

QMPNT = ~E.4PNT + 1

(~4 (QMPNT, I) = INSTR

QM (QMPNT, 2) - BOXNO

RETURN

END

~. ~4CON

The simulation of the control of the queue is performed
bx ~4C9N. This event first causes itself to run again one
cycle later. Then a scan pointer QMSCAN is initialized to
one. The queue entry indicated by QMSCAN is then examined to ~ee

-

...... J -. ~..onway

¯ °

-ii-

"’°

%f the indicated memory box is busy. If it is, the scan
pointer is advanced and the next entry similarly examined.

....... If the box isnot busy, the memory request is issued by
causing the events MBUSY and QUEMP at .8 units of time later
(at the "end" of the cycle), and by causing the event MCYCC
at a time .8 + CYCT later.

$IBFTC QMCON

SUBROUTINE XQ~ON

CO~MON

C QUEUE CONTROL, SCAN QUEUE AND

C SEND OUT MEMORY REQUEST, IF POSSIBLE

CALL CAUSE (QMCON, TIME + 1.0)

QMSCAN = 1

. IF(QMSCAN, GT, QMPNT) RETURNI0

BOXNO = QM (QMSCAN, 2)

INSTR = QM(QMSCAN, I)

IF(M~4BSY (BOXNO).EQ. i) GO TO 20

CALL CAUSE (MBUSY, TIME + .8, BOXNO, INSTR)

CALL CAUSE (QUEMP, TIME + .8, QMSCAN)

CALL CAUSE (MCYCC, TIME + .8 + CYCT, BOXNO)

RETURN

20 QMSCAN = QMSCAN + 1

IF (QMSCAN.GT.N~) RETURN

GO TO i0

END

MBUSY

This event sets the indicated memory box busy by placing INSTR
into position BOXNO the array MEMBSY.

~BFTC MBUSY

o.

............ SUBROUTINE XMBUSY(BOXNO, INSTR)

¯ COMMON

o-b7

! ’
L, Conway

Arc nlvesL=,,~

-12-

~ C PLACE REQUEST INSTR IN MEMORY BOXNO

........................ MEMBSY (BOXNO) = INSTR

¯ RETURN

° END

QUEMP
I

This eventremoves the indicated entry from the queue,
up" any following entries, and decrements the input pointer.

$IBFTC QU~4P

"moves

SUBROUTINE XQUEMP (QMSCAN)

C

COMMON

REMOVE REQUEST AT QMSCAN FROM QUEUE

J = NQM - L

"DO 9 L = i, i0

7

9

DO 7 K = QMSCAN, J

QX(K,L) = ~(K + i, L)

QM (N(~,L) = 0

0MPNT = QMPNT - i

RETURN

END

MCYCC

This event simulates the completion of the memory cycle by
resetting the memory busy indicator of the specified memory
box.

$ IBFTC MCYCC

SUBROUTINE XMCYCC (BOXNO)

COMMON

AT ~EMORY CYCLE COi~PT.ETION, FREE BOX - - -": ~ " ~

M~MBSY (BOXNO) = 0

°.----R~N . ~ . _

END

¯ --- I " ! fl

............... - I: Ar.c hiw~,~-~-3
-

-13-

STATS

........ Included in the list of events is one called STATS which is
an output routine. STATS causes itself one cycle later, and

¯ outputsthe current system status. The run stops if a
specified value of simulated time MAXT is exceeded.

$IBFTC STATS

SUBROUTINE XSTATS

COMMON

C STATS IS THE OUTPUT ROUTINE

CALL CAUSE (STATS, TIME + 1.0)

COLLECT AND OUTPUT SYST~4 STATUS

~/ ’/// //// ,-" ,."////// / .,,.- ///
IF(TIME .GE.MAXT) STOP

RETURN

END

RANDOM

Random is a random number generator. The statement CALL
RANDOM(R) returns R to the callinu routine a value
between 0 and 1 with uniformdistribution.

CAUSE

CAUSE is one of the simulation utility subroutines previously
specified in this report. It is called to place an event into
the calender.

TSTEP

TSTEP is one of the simulation utility subroutines previously
specified in this report. It is called from MAIN to advance
simulated time to that of the next event in time, and get the
parameters and number of that event.

MAIN

MAIN is the first entered and "main" routine of the simulation
program and performs a number of functions. First it initializes
the common variables to zero. Then the run.parametersare read

into the-appropriate common variables. The calender is then
initialized with the proper linkage and starting events are

placed into the calender with CAUSE statements. Following and

5q

I IL: Conwcry !

°" o

-14-

including the statement number i000 in MAIN are the instruction
"necessary to cycle thru the events in the calender.

Assume that the following COMMON and specification statements
¯ are included in every routine described, and indicated by
"the statement: COMMON

1

2

3

COMMON TIME, I~AR i, IPAR 2, IPAR 3, ID, ISL, ITL,

LINK (200),CTIME (200), N,EVENT (200), KOLI (200),

KOL2(200.), KOL3(200), NBOX, NQM, CYCT; MAXT,

PROBI, QM (32,2), MEMBSY(64), QMPNT, INUMB

INTEGER QM, QMPNT

REAL MAXT

COMMON / NAMES / GENER, QBUSY, QMCON, MBUSY

QUEMP, MCYCC, STATS

INTEGER GENER, QBUSY, QMCON, QUEMP, STATS

i01

The listing of MAIN follows.
o.

$1BFTC MAIN

COMMON

EQUIVALENCE (COM(1), TIME), (X, CTIMEC (i))

C MAIN INITIALIZES COMMON TO ~EROES. READS IN

C SYSTEM PARAMETERS, SETS UP THE CALENDER, INITIALIZES

C THE EVENT VALUES, PLACES STARTING EVENTS INTO THE

C CALENDER AND THEN CONTROLS THE SEQUENCING OF EVENTS

DO I01 I = 1,3000

COM (I) = o

READ PROBI, CYCT, NQM, NBOX, MAXT

92

TIME= 0.0

DO 92 ITL = 2,199

LINK (ITL) = ITL + 1

ISL = 2

ITL = 1

X = i. 0E30

GENER = 1

050

°¯ °

o

QBUSY = 2

................... QMCON = 3

MBUSY = 4

. QU~MP = 5

MCYCC = 6

1000

1

2

3

4

5

-15-

I

STATS = 7

CALL CAUSE (STATS, TIME + 1.0)

CALL CAUSE (QMCON, TIME + i.i)

CALL CAUSE (GENER, TIME + I.I)

CALL TSTEP (EVENT)

GO TO (I, 2, 3, 4, 5, 6, 7), EVENT

CALL GENER

GO TO I000

CALL XQBUSY (IPAR i, IPAR 2)

GO TO i000

CALL XQMCON

GO TO i000

CALL XMBUSY (IPAR i, IPAR 2)

GO TO 1000

CALL XQUEMP (IPAR 1)

GO TO 1000

CALL XMCYCC (IPAR I)

GO TO I000

CALL XSTATS

TO iooo

p

o5 \
llJ~ t

k. Conway
Archives-

REFERENCES

K. Blake and G. Gordon, "Systems Simulation with
Digital Computers," IBM Systems Journal, Vol. 3,
No. i, 14 (1964).

o R. Efron and G. Gordon, "A General Purpose Digital
Simulator and Examples o~ its Application: Part I
Description of the Simulator, " IBM Systems Journal,
Vol. 3, No. I, 22 (1964).

.
"General Purpose Systems Simulator II," Form B20-
6346-1, International Business Machines Corporation.

Q
B. Dimsdale and H. M. Markowitz, "A Description of

" IBM Systems Journal, Vol 3,the SIMSCRIPT Language,
No. i, 57 (1964).

Q
H. M. Markowitz, B. Hausner, and H. W. Karr,
"SIMSCRIPT, A Simulation Programming Language,"
The RAND Corporation, 1963, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey.

¯ L¯

7o~7-

¯-Archives

°

I

Appendix A

Listings of utility routines for Method 1

°.

¯f

-. " !, t. conw~ I

CAOSE - EFN SOURCE STATEMENT

............ ,t °

" SUP, ROUTINE CAUSE(IEV,T, IPl,IP2,1P3)

IFN(S)

K.:

0311816~

COMHON TIME, I PAR[, IPAR2, I PAR3, If), ISL, I TL,
XL INK(200) ,C TIME(200} ,NEVEN T {200) ,KOL! (200} ,KOL2{ 200) ,KOL3 (200)

C CAUSE ENTERS EVENTS ONTO CALENDAR

C ". I TL.__IS LOCATION OF FIRST EVENT IN CALENDAR

--C--’" ISL IS LOCATION OF FIRSTAVAIL ROW IN CALENCAR
NEXT=ITL
GO TO 20

C lO LOOP UNTIL GIVEN TIME IS LESS THAN NEXT ENTRY IN CALENDAR
lO LAST=NEXT

NEXT :I~ INK{ NEXT).
...... 20 IF (T .GT. CTIME{NEXT)) GO TO 10

ID=ISL
I SL=L INK (I SL)
L INK(I D) =NL-XT

SEE IF THIS EVENT WILL BE THE FIRST ON THE LIST
IF {’,IEXT.EQ. ITL)GO TO 40

C
.°-

LINK(LASTI=ID
30 CTIvE (ID)=T

NEVErlT (IO) : IEV
KOLt(ID)=IPt
KnL’Z(ID}=IP2
KOL3(I.D)-I P3
RETURN

40 ITL=ID
Gr) TO 30
END

O44
I , c-...-~ "~

I’JArchives

R E,~.OV E - EFN SOU;ICE STATEMENT

o .
’̄t °

~SUPA~OUTINE RE~,OVF(EVENT,STi~F,I,J,K)
Cn~’r10.N TIHE,IPARItIPAR2tIPAR3~ID,ISL,ITL,

IFNiS)
03118166

--; XLINRI2(]O’),CTIME(200),NEVENT(200) ~KOLI (200),KOL2(200),KOL3[200)
INTEGER EVENT

¯ NEXT~ITL
I F(NE V EN T (ITL }-. EQ-~E-VEN’T-)--GO TO-20

C

I0

C
20

LAST=NEXT
NEX T=L [rJK(Ni-_ XT]
IFINEXT.FQ.O) GO TO 30
I F (,’~E VEN T (NE XT) . NE . E VENT)

WE FOUND EVENT
ST IME=CT [ME (NEXT)
I=K(|L I (NEX T)
J=KQL 2 (NEXT)
K=KQL 3 (NEXT]
L INK (LAST) =L I~K(NE XT)
L INK (NEXT) = I SL
ISL=NEXT
RETURN

c
30

GO TO 10

EVENT IS FIRST IN I. IST
CONTINUE
ST I ~’E=C T IME (NE XT)
I=KOL[(NEXT)
J=KOL2 (NEXT) ~- -
K=KOL3 (NEXT)
ITL=LINK(ITL)
L INK(NEXT) =I SL
ISL=NEXT
RETURN

EVENT NOT PRESENT
CnN I I NUE
STIME=TIME
I=O
J=O
K=O
RETUR-N
END

5
I

I Archives -J

o

TSTE.~P - EFN SOURCE STATEMENT - IFN(S) -

.............. -!"

.:~....;::~ .’ "- SUBR{IUTINE TSTEP(IEVENT)
......... C{}M.;4DN -TIME, IPAR I, IPAR2 ,.I P A;~3 t.I D,.I SL, ITL,

XL INK{ 200), C TIME (20(I) ,NEVENT(2OO} ,KOLI (200), KOL2 (200) ,KOL3(200)
C . SUBRDUTINE TO STEP
C I TL I S LOCATION OF
C . ISL IS LOCATION OF

IrI=ITL
ITL:L INK (ID)
L INK(ID) =I SL
ISL:ID
TIME-CTIME (ID)
IPAR I=KOL I (ID)
IPAR?:KDL2 { ID}
I PAR3=KOL3 (ID)
IEVENT=NEVENT(ID}
RETURN
,END

03118166

EVENTS IN CALENDAR
FIRST EVENT IN CALENDAR

.FIRS"[AVAIL--ROW IN CALEN-DAR

°.
.--° , {

Q

°.

c>~r L~

poq~H xo~ s~uT~nox X~TI$~n ~o s6u$~s$~

x~pu~ddv

!

o

¯ ~+..

P

CAUSE
I ¯

C
C
C

C

C

NExr=I TL
GO TO 20

10

0311816E
- FFN SCURCE STATEMENT - IFN{S} - "

SUB,(C]uTINE CAUSE(IEV,T,IPL,IP2,IP3}
COMz40~ T-.I-ME,I.PA:{I,IPAR2.tIPAR3,I_P,~M.YSELF,ISL~ITL, . "

XL INK (2C01 ,C TIME { 200), NEVEN T {200}, KOL.I { 20r1 } t KOL2 (200) ,KOL3 (200 }
¯ CAUSE ENTERS EVENTS ONTO CALENDAR

I TL IS__L.OCATION_OF FIRST EVENT IN CALENDAR
ISL IS LOCATION OF"FIRSI’-AVAIL R[IW IN CALEI’dC}%R

LI’)(IP UI’ITIL GIVEN TIME IS, LESS TitAN NEXT ENTRY IN CALENDAR
tO LASt=NEXT

NFXT-LINK(N~XT)
----20 IF {T .GT. CTIME-{NEX:r’)-)-GO-TO].0

ID--- I SL
I SL=L INK { I SL)
LINK{ ID} =’WEXT

SEE IF THIS EVENT t~ILL BE THE FIRST ON THE LIST
IF {NEXT.EO. ITL}GO TO 40
L INK{ LAST) =ID

30 CTIr..IE (ID)=T
NEVENT(ID) = IEV
KOL I { ID} =IPI
KOL2{ Ir)}=IP2

__K(1L 3{ ID}=IP3
RETURN

~0 ITL=ID
GO TO 30
END

e

R.E~t)VE - EFN SOURC~ STATEMENT - IFN(S) -

" "SUI~i¢OUTINE RE,V,P.VE(EVENTtSTIHF,I,J,K)
..... C FIH~4.ON T’IME, IPAR L, IPAR2, I PAR), I D,Y, YSELF, I SL, I TL,

XL INR (20,)), CTI.’4F (200)-’NEVENT (200) ,KOL L (200 }, KOL2(200) ,KOL3 (200)-
INTEGER EVENT

C

C
20

NEXT= I TL
I F (,’IEVE~ T("ITL’}-.I~C)-~-EV-E-I~T-)- -GO TO 20

|0 LAST:~IEX T
NEXT=L I’~JK (NEXT)
IF(:~EXT.EQ.O) GO TO 30

I

IF(t’~EV~’NT(NEXT)-t~E,EVENT) GO TO 10
WE FOU.*’D EVENT

ST IMF=CT IP4E (NEXT)
I=KIIL L (~EX T}
J:KUL2 (NEXT)
K=KOL 3 (."J EX T)
L INK (L.’~S T} =L INK(NE XT)
L INK (NEXT) =ISL
I SL=NE XT
RETURN

EVENT IS FIRST IN LIST
cnr, f I r~;lJE
STI.~tE-C r IME (NE XT)
I =KOL IiNEXT)
J=KOL 2 (’~’ EX T }
K=KOL 3 (NEXT)
ITL=L I~K(I TL)
L INK(NEXT} =ISL
ISL=NEXT
RETURN

....... E 9-E-NT--’~ OT"-P R ESEN-T
CNN T INLIF
STIME=TIME
I=0
J=O
K_=0 ’
RETURN
END

0311816(

¯ °

.{

O~cl

TSEE P - EFN SCURCE STATEMEMI - IFN(S)
................. j- ¯ ___

SUB,~OUT INE TSTEP (DUMMy)

............. COM:4(}N -T..INE, IPARI. t IPAR2., I PAR3~ I D, MYSELF, I SL, I TL,
XL INK(200),C. I’IME(200) ,NEVENT(200), KOLt (200) tKOL2(200) ,KOL3 (200)

C . SIJI~R3UTINE TO STEP EVENTS IN CALENDAR
C I TI-__!.S_L_.OC.AT_I_ON_OF FIRST EVENT IN CALENCAR
C ISL IS LOCATION OF--FIRST--AVAIL-RDW IN CALENDAR

ID= I TZ
ITL=L INK(IF))
LINK(ID)=I SL
ISL=ID
TIME=CTIME(IP.]
IPAR I =K(ILI (ID)
I PAR2=KtlL2 (ID)
IPAR3=KaL3 (IO]
CALL DUMMY(IP&RI,IPAR2,1PAR3]
RETURN
END

031181O

i

Date:

From (location

~r U.S/:m.ail eddress):

)L & Bldg.:

Telephone Ext.:

May i~. 1967 ~
Advanded Computing Systems
Menlo’iOark, California
985
275

IBM CONFIDENTIAL

Subject:

Reference:

Dual Arithmetic on ACS-I

S. ;T. C.C., 1967 and our recent conversation

To: Dr. 3. E. Bertram

One of the more formidable features of the ILLIAC IV is dual
arithmetic, where a pair of floating point numbers are made to interact
with another pair, yielding a pair of independent results:

C

r
\

.

e

.

e

The scheme is useful on the ILLIAC IV for the following reasons:

The 64-bit word length is adequate for a pair of hex-floating
numbers, each with 8-bit exponent and 24-bit hex-fraction.

Significant Lime savings can be achieved in the PE by using
flhe already-wide data paths for dual arithmetic. There may

be an extra shift cost of 2 cycles per instruction comparing
with single 64-bit operations, this extra cost is something like
33% on floating adds (8 cycles rather than a possible 6) and may
be more than offset in multiplies because of the shorter fractions.

For usual partial differential equations even 16 fraction bits may
be adequate because of the sizable discreiizing error. Parts of
computation which call for longer lengths can be localized without
serious effort.

Many problems do exhibit low-order parallelism exploitable by
this feature. This even includes Monte Carlo computations,
where the precision demand is low; radar signal analysis, and
pattern analysis in general. Where parallelism is lacking, the
two components in the packed word can be detached for individual
attention at low timing cost.

--’4

¯ p

IBM CONFIDENTIAL

.

Dr. J...E. Bertram
May I, 1967
Page 2~

Dual Arithmetic on ACS-1

With the dual arithmetic feature, the ILLIAC IV PE can claim to
be an 8-MIPS machine. Their weather program (NCAR model) by the
full 4-QUAD machine is said to achieve 600x6600, with upper and lower
hemispheres treated "dually".

The proper way to counteract this claim is to install dual arith-
metic ourselves. There are several difficulties:

.

The 48-bit word length is not adequate for an independent pair
of floating point numbers each with 12-bit exponent. The
fraction would have only 12 bits, small even by the most op-
timistic advocates of short precision arithmetic.

o Unless one performs at a rate of two operations per cycle, the
saving in time is invisible. The shifting cost would be a major
handicap.

.

Excessive hardware to achieve dual arithmetic is more likely on
a pipeline machine, where the "fixed-time duration" requirement
is compounded by a "uniform flush rate" requirement.

o The operation code repertoire is already near the 256 "limit".

/

I would like to advocate a limited form of dual arithmetic in which
one exponent is shared by two fractions. This "block-normalization"
philosophy is quite acceptable for partial differential equations and matrix
computations (Cf. discussions in an earlier memo to file, "Mixed floating
add operations" by T. C. Chen, dated March 14, 1967). The following
advantages of the new dual arithmetic are apparent, many are unique to
the block normalizing format.

I. Parallel comparison shifting with one single shifter.

.

.

Parallel add with one 48-bit adder (with, however, added extra
sign detection, overflow detection, and perhaps extra partial
recomplementation features).

f

Parallel post-shifting (normalizing usually just one of the fractions).
o % "L

+

Dr. J. E. Bertram
May 1, 1967
Page 3

Dual Arithmetic on AC S-i

IBM CONFIDENTIAL

.

5.

6.

Parallel multiply (with added hardware blocking of carries).

Only one exponent handling mechanism is needed.

TWO OPERATIONS PER CYCLE PER UNIT.

(It is suspected that the ILLIAC IV dual operations will turn out to be "block

normalized" also, to reduce the circuit count.)

¯

/
/

There are still some problems. With exponent unaltered, the fraction
length is only 17 bits + sign, adequate only for very limited computations such
as the weather problem and radar signal analysis. A better deal might be the

format

SIEFI;S2F2
or SIEFI;F2S2

with

i bit for SI ,

¯ 8bitsfor E ,

19 bits for FI;

i bit for S2 ,

19 bits for F2;

(7090 size!)

Tien Chi Chen

TCC :va - DO %

cc: Dr. G.~ M. Amdahl Dr. H. Schorr

Mr. G. F. Nielsen
Dr. E. H. Susseng~th

Mr, R. E. Pickett SADL

which will have roughly the same fraction capacity as the hex-fraction of

24 bits.

There ought to be a reasonably full dual-instruction set, including
packing and unpacking (but perhaps no pipelined divide). I feel dual arith-
metic to be more useful than double multiply and double divide, and am
again advocating their removal to make room for/~~mstructions.

c/,

Date:

From (Iocxtton

.S. me" 4ddress):
/
[¯ Bldg.:"

Telephone Ext.:

IBM CONFIDENTIAL

May 12, 1967
Advanded Computing Systems
Menlo’ iOark
986/031

Subject:

Reference:

Architecturally Critical Paths in the MPM

To: Dr. H. Schorr

Attached is a list of critical timing paths within the MPM from an archi-
tectural point of view. Degradation in any of these paths Would have a
major detrimental effect on overall MPM performance. By overall is
meant a global effect, rather than a local effect such as slippage in divider
performsnce.’)~0f the twelve points noted, those involving the contender
stacks and inferlocking are by far the most critical.

(
E. H. Sussenguttl~

EHS: slb

cc: SADL

.. ,

IBM CONFIDENTIA I,

L "" Effective address path: (7 cycle path)

ea generation (three input add) 1
bus to BLCU 1/2
BLCU interference resolution 1
storage delay including bussing 3
BLCU decision per tag entry 1
bus to MPM 1/2
internal MPM bus to functional unit 0

IL By-pass from functional unit output to input (0 cycle path)

I. Full bypassing is eminently desirable.

2. If specialized bypassing is necessary the following groupings
are the most important:

add to add
add to mpy
mpy to add
mpy to mpy
add to crop
mpy to crop

mixed mpy to d.p. add
d.p. add to d.p. add

integer add (with respect to carry register)

shift to shift
shift to logic
logic to shift
logic to logic
shift to crop
logic to cmp

index add to ea add
index add to crop

crop to branch/skip control

EL A-unit interlock control

When an instruction satisfies its interlock constraints, it must
be logically removed from contention so that other instructions
dependent on it (because of destination-source interlocks or_bus
conflict interlocks, for example) can start execution on the next
cycle

~L, Conway

IBM CONFIDENTIAL -2-

IV. ’ ’X-unit interlock control

When anX-contender stack position is vacated, it is refilled with
another instruction so that the new instruction can be interlocked
and vacated on the next cycle.

The X-unit register data is bussed to the functional units simul-
taneously with the interlock determination. If the interlocks fail,
the functional unit action is logically stopped in such a way that
it can restart on the next cycle. (In particular, a unit with a
pipeline rate of 2 or more, must not be "busy" working on the
illegitimate data.)

V. Instruction start-up path (3 cycle path in X-unit)

Storage bus to IB’s
IB to dispatch register
Dispatch to contender
Contender to functional unit

0 (bypass to dispatcher?)
1
1
I (2 in A-unit)

VL Effective branch address path

The worst case timing situation occurs when an EXIT has been
detected (in the X-dispatch registers) and the BRANCH instruc-
tion has not been executed (is in the X-contender stack).

The computation path is:

interlock tests on BRANCH
compute eba, successful/unsuccessful
test top DO table entry:

if DO entry is correct:
next instructions to dispatchers

if DO entry is incorrect:
correct DO table
next instructions to dispatchers

cycle 1
cycle 2

cycle 3

cycle 3
cycle 4

VIL DO Table alteration

On each cycle both A- and X-pointers can be moved, an old entry
be deleted, and a new entry be accepted.

05(,,

IBM CONFIDENTIA L - 3-

DO table control of instruction flow

The table entries indicate the number of cycles required to validate
DO table entries and permit movement of new instructions to
dispatch registers.

IX.

X.

if top DO entry is correct incorrect

if required instructions in IB IB storage

unsuccessful branch exit 1 2 I + access

successful branch exit 1 2 I + access

no exit (normal sequence) 1 2* 1 + access*

*pathological case (hence unnnportant)

Next-fetch mechanism

On each cycle the next-fetch mechanism must search IB addresses,
send an address to BLCU, search PSC registers, increment its
contents by 8, and accept an override signal from the branch
control.

Computation dependent SKIPs

The following sequence of instructions illustrates the problem

A3 . any A instruction

C2 .A3 _> AI0

SKIP if C2 or C30

* any A instruction

The data/control sequence is

end of computation (A-unit)
result to compare unit (A-unit)
compare result to condition bit
condition bits to skip test unit
compute skip condition (X-unit)
skip condition to A-unit interlocks
start bussing on NOP the *-ed op (A-unit)

cycle 1
cycle 2

cycle 3

cycle 4
o%7

IBM CONFIDENTIAL -4-

The sequence noted (A-unit compare, SKIP, * on A-op) is probably
¯ the worst case as the path involves A-to-X and X-to-A communi-
cation and is a relatively frequent occurrence in ’code. The dual
sequences are:

(X-cmp, SK, * on A):

(X-cmp, SK, * on X):

(A-cmp, SK, * on X):

X-unit skew should alleviate this

no inter-unit paths (but important
in X-unit)

one inter-unit path, of less program-
ming significance

k.

XL Computation dependent branches

A discussion similar to VIII obtains.
is:

A3 e any A instruction

C2 e A3 > AI0

BRANCH if C2 or C30

EXIT

An illustrative sequence

xmlo Functional unit performance

The current performance of the functional units are noted below

Floating point, 48-bit

Floating point, 96-bit

Floating point,

Integer

Index integers

Shift, logic, moves
(A and X)

mixed

ADD 3/1 and 4/1
MPY 3/1
DIV 10/7 or 10/8
CMP I/i
ADD 4/1
MPY 5/3
DIV 17/14
CMP I/I (maybe 2/1)
MPY 3/1
DIV 10/7
ADD 2/i
MPY 4/2
ADD i/I
MPY 4/2 (improve to 3/1)
DIV 13 max, 8 avg (improve to 8 max)
CMP 1/1 -.

1/1 o5~

[}ate:

From (locstlon

U.S r "° address):

(~ ,t" & Bldg.:

IBM CONFIDENTIAL

August 25, 1967
Advanced Computing Systems
Menlo Park
986/031

ACS AP #67-115

Subject:

Reference:

MPNI Timing Simulation

1. ACS AP #66-022, ACS Simulation Technique
2. ACS-1 MPM Instruction Manual
3. ACS AP #67-068, MPM-Instruction Sequencing

To: File t:

L. Conway

I~slb

cc: SADL

_.

IBM CONFIDENTIAL

CONTENTS

Introduction

The Unroller

The Timing Simulator "

Current Job Running Procedures

Table of Implemented Instructions

Planned Modifications

t~

0-I

i-I

2-1

3-1

4-1

5-1

"’. IBM CONFIDENTIAL 0-1

INTR ODUCTION

¯ This memo describes the programs which perform MPM timing simula-
-tion. It is primarily a "users manual" for these programs.

Two programs, the Unroller and the Timing Simulator, are run consecu-
tively in order to time the MPM’s execution of a user’s input program.

The Unroller program accepts an ACS assembly language program
and control information concerning branch and skip execution, and
"unrolls" the program to produce a trace of the instructions executed
by the MPM when running the program. The trace is the sequence
of instructions along with their addresses, register fields, and certain
other information. "

The Timing Simulator then operates on the trace of instructions executed
by the MPM and produces timing charts indicating the timing of the
activities initiated by these instructions in the various hardware components
of the MPM.

The following diagram illustrates the functions and relationships of
these two programs.

...........- ,.-__...__..._..._i -- i l <:: : :__

In the following sections of the memo, these programs are separately
described with examples given illustrating preparation of input and
interpretation of output.

The job running procedures for using the programs is described, and
the MPM ops currently implemented in the Timing Simulator are listed.

Since the programs are currently undergoing changes, the current and
planned changes are described to assist users in their planning.

Criticisms and suggestions from potential users are welcome and will
be helpful in making the Timing Simulator useful to ACS.

IBM CONFIDENTIAL I-I

THE UNROLLER PROGRAM (Prog. by J. NovicM, CSC)

The Unroller program produces the input trace to the Timing Simulator
-from an ACS assemblycode program plus control information.

In the past an Execution Simulator, which performed a detailed simula-
tion of the execution of an input program, was used to generate the
instruction trace. It was found to be inconvenient to use an execution
simulator for this purpose because that requires the accurate program-
ruing of all the tests and computations which determine the desired
path of execution through the program. It often proved to be difficult
and time consuming to write a correctly executing program even though
the path to be followed was easily described.

The Unroller program was written to solve this problem. Given an
ACS assembly language program, explicit indicators are placed on the
branch and sMp instructions of the program to determine the path
of instruction execution. For example a branch op might be followed
by (3 BEGIN, *) to indicate that the first three times the branch is
executed it is successful with the branch being to the instruction labelled
BEGIN, and the fourth time the branch is executed it is unsuccessful.

This program and control information is processed by the Unroller
to yield the trace of instructions executed, which may then be used
as input to the Timing Simulator.

Input Lanquaqe, Card Input Format

Input cards may contain a label, an op code and operands. The Branch
and SMp instructions may contain additional control information.
A free form format is used with no fixed starting columns for each
of these fields but with certain delimiter restrictions. An asterisk
in column 1 indicates a comment card.

Label: A label can be up to 8 characters maximum and must start
with one of the characters A through Z or $. A label can contain no
imbeded blanks and must be terminated by a delimiting colon.

Op Code: An op code can be up to 6 character~ long with no embedded
blanks. It may be immediately followed by an asterisk to indicate the
skip flag. At least one blank column must be between the op code and
its operand fields.

IBM CONFIDENTIAL 1-2

Operands: The operand fields can contain information for the i, j, k,
and h fields of the instruction. Two fields must be separated by a comma
and a missing field will be indicated by two consecutive commas.
The first blank column terminates the operand fields. The i, j, and

-k fields may be one of the following formats:

(i) Ldd
(ii) dd

where "L" is the letter A for Arithmetic Register or the letter X for
Index Register or the letter C for Condition Register or the letter S
for Special Register. "dd" is a decimal number from 00 to 31 (leading
0 may be omitted). The h field may contain a symbolic label or a
decimal number (up to 5 digits).

Branch Parameters: A string of control parameters may be listed
after a branch instruction to determine the path of instruction sequencing.
The parameters indicate if the branch is successful or unsuccessful
for each time it is executed. The branch parameter information must
begin with a left parenthesis and end with a right parenthesis and contains
no imbedded blanks. Two parameters in the list must be separated
by a comma. The parameter format is:

(i)
(ii)

dL for a successful branch
d* for an unsuccessful branch

where d is an optional digit indicating the number of times the branch
is successful or unsuccessful, L is the symbolic label of the instruc-
tion branched to, and * is an indicator for an unsuccessful branch.
For example, if we have the instruction

BEQ CI, C2, X4 (3ABC, *, XY)

the program would be expanded to reflect the branch execution as
follows:

(i)

(ii)
(iii)

first three executions of branch are successful and
branch is to instruction labelled ABC
fourth execution of branch is unsuccessful
fifth execution of branch is successful - to XY

Skip Parameters: A string of control parameters may be listed after
a skip instruction to determine the effect of that instruction on the_
sequence of skip states. The paramet@rs indicate whether the sMp
is taken or not taken each tLme it is executed. The parameter string

o@%

IBM CONFIDENTIAL 1-3

has the same format as the branch parameter string with any dummy
label serving to indicate that the skip is taken, an * indicating the
skip is not taken. For example, if we have

SK~R CI, C2 (2*, LABEL, *)

the Unroller would set the sMp state in the trace to reflect the execu-
tion of the sMp as follows:

(i)
(ii)
(iii)

first two times sMp is executed it is not taken
third time skip is executed it is taken
fourth time skip is executed it is not taken

Output of Unroller

Corresponding to the sequence of execution of the instructions of the
input program the Unroller produces the standard input trace for the
Timing Simulator: a card deck which is described in detail in Section
2. One card is produced for each instruction executed. The card
contains the op, i, j, k, h fields, branch and skip states, instruction
and data reference addresses and certain other fields.

The Unroller also lists the input program and output trace. Certain
diagnostic messages may be listed:

(i)
(ii)
(iii)
(iv)

Too many input cards (300 maximum)
Operand Field error
Error on following card (i. e. label information error)
Op code on next card not implemented

Example: On the follow-ing page are the listings of a simple input
program deck and the trace deck produced by the Unroller from that
input deck. Note that the branch parameter list specifies branch
successful two times then branch unsuccessful. Thus we make 3 passes
through the loop. The branch and skip states in the trace (see trace
format Section 2) reflect the branch and skip execution. Note: the
OP "STOP" terminates unrolling, and the pseudo op "END" marks
the end of the unroller input deck.

EXAMPLE: UNROLLER INPUT DECK

LOOP: CGEX 2,4,3
BAND 2,2,0_~_0 12LQOP,*)
CGEN 1,192
AXK .3.,3~0~]

- " AN 1,198
LA 8,0,0,1000
AN 2,2~9
LA 9,0,0,2000
SKOR I,I (*,2DUMMY}
MN* 1,1,2
EXIT
STA 1,0,0,I000
STOP ~-’:

~- END

,T

CORRESPONDING UNROLLER OUTPUT DECK

0 CGEX 02 04 03 00000 000 00000 i 87 I

I BAND 02 02 O0 00000 I00 00000 3 139 2

3 CGEN Ol 01 02 00000 lOb 00000 4 79 1

4 AXK 03 03 O0 00000 i00 00000 6 76 2

6 AN Ol Ol 08 00000 I00 00000 7 166 1

7 LA 08 O0 O0 01000 100 01000 9 7 2

9 AN 02 02 09 00000 100 00000 10 166 1

I0 LA 09 O0 O0 02000 I00 02000 12 7 2

12 SKOR Ol nl O0 00000 100 noooo 13 15n]

13 MN* Ol Ol 02 00000 I01 00000 14 178 I

14 EXIT O0 O0 O0 00000 100 00000 0]~_£__I
0 CGEX 02 04 03 00000 000 00000 1 87 1
I BAND 02 02 O0 00000 i00 00000 3 139 2

3 CGEN Ol Ol 02 00000 I00 00000 4 79 i

4 AXK 03 03 O0 00000 100 00000 6" 76 2
6 AN Ol Ol 08 00000 100 00000 7 166 i
7 LA 08 O0 O0 01000 100 01000 9 7 2
9 AN 02 02 09 00000 100 00000 I0 166 I

10 LA 09 O0 O0 02000 100 02000. 12 7 2
12 SKOR Ol Ol O0 00000 I00 00000 13 150 1
13 MN* Ol Ol 02 00000 1il 00000 14 178]
14 EXIT O0 O0 O0 00000 110 00000 0 199 I
0 CGEX 02 04 03 00000 010 00000 1 87 1
I BAND 02 02 O0 00000 010 00000 3 139 2
3 CGEN Ol Ol 02 00000 010 00000 4 79 i
4 AXK 03 03 O0 00000 010 00000 6 76 2

6 AN Ol 01 08 00000 010 00000 7 166 I
7 LA 08 O0 O0 01000 010 01000 9 7 2

9 AN 02 02 09 00000 010 00000 10 166 1
10 LA 09 O0 O0 02000 010 02000 12 7 2
12 SKOR 01 01 O0 00000 010 00000 13 15D 1
13 MN* Ol Ol 02 00000 011 00000 14
14 EXIT O0 O0 O0 00000 010 00000 15
15 STA Ol O0 O0 01000 010 01000 17

L

A-."-..~

178 1
199 1

9 2

Arc hives ~

IBM CONFIDENTIAL 2-1
J

THE TIMING SIMULATOR (Prog. by L. Conway, J. F. Parsons)

©

For the purpose of MPM hardware or program evaluation we may need
~.e~ailed timing of the execution of-a program by the MPM. The MPM
is sufficiently complex that hand-timing of all but trivial programs
is a very tedious process. The Timing Simulator is a program written
to perform this timing by simulating "m complete detail the hardware
controls of the MPlVL

The Timing Simulator is written in FORTRAN IV (H) and run~s on a
S/360 under OS, requiring an H level machine. The simulation technique
is similar to SIMSCRIPT but uses simpler utility routines which are
written in FORTRAN. Reference 1 provides a complete description
of the simulation technique.

The level of hardware modelling performed by the Timer is best described
as being an "architectural" level. Individual hardware triggers are
included when they serve an individual control function, but buses,
registers, etc., are modelled as logical entities rather than simulated
to the bit level. Thus the timer does not model the detailed engineering
implementation of the MPM. It does model all control algorithms
in all sections of the MPM, to accurately simulate the timing of instruc-
tion execution by the MPM.

The Timer currently operates on a MOD 75 at a rate of approximately
10 simulated machine cycles per second. Typical programs are thus
simulated at a rate of 20 inst./sec.

A detailed description of either the Timing Simulator program er the
MPM model simulated is beyond the scope of this memo. Users may
assume that the program reflects the latest specification of hhe MPM.
This model is documented at an architectural level in Reference 3
and other similar references soon to be issued. Those who are familiar
with the hardware design of the MPM and have specific questions about
the details of the simlflation model should contact the author.

The remiinder of this section on the Timer is concerned with the
practical problems of preparing input and interpreting the output timing
charts.

The input to the timer is a "trace" of the instructions actually executed
by the program to be timed. The trace consists of the sequence of
instructions executed along with certain control information. This
input is prepared by running an ACS assembly code program through
the Unroller program (see Section i).

o

.$;~C

[L, Conway

IBM CONFIDENTIAL
¯ °

2-2

Certain job controlling cards including a specification of the hardware
parameters for the run are added to the trace deck to form the input
deck.

-The output of the Timer is a series of timing charts which illustrate
the activities initiated by the instructions of the input program trace
in the various hardware components of the MPM as a function of time.

A detailed description of the input and output formats and output inter-

pretation is given on the following pages. Examples are given which
follow the paths of individual instructions through the various sections
of the MPM as a function of time. ,~:
"B.

Timing Simulator Input Preparation

Input Trace Cards: The Unroller program is used to produce the input
trace card decks for the Timing Simulator. An ACS assembly code
program is run on the Unroller and a trace deck is produced as output.
Refer to Section 1 for information on this program. The trace deck
produced by the Unroller is an instruction by instruction record of
those instructions actually executed by the program to be timed.
Each instruction of the trace is present on a separate card. The format
of these cards is specified in Fig. 2-I.

Timer Input Deck Format: Each program to be timed is formed into
one deck beginning with a machine parameter card, followed by the
trace cards for the program, and ending with a card containing 999
in cols 55, 56, 57 (a "ST(2FP" card). A number of such input decks
may be stacked and timed during one execution of the Timer. An
example of this stacked job deck structure is illustrated in Fig. 2-2.

Parameter Card: The first card of each input program deck is a para-
meter card which specifies certain MPM hardware parameter values
and certain parameters for the running of the job (maximum simulated
time, etc.). These parameters are the following:

JOBNAME: Up to six characters identifying program

NABUF, NATEST, NAG(~: The number of A Buffers, the number tested
each cycle for OP issuance, the maximum number of OP

which may be issued for execution each cycle from the A
Buffers (A Contending Stack).

NXBUF, NXTEST, NXG(~: Similarly for X unit Contending Stack.

-: j. .o

o%q
;~

/""
’"

t L, onwoy

IBM CONFIDENTIAL 2-3

NQBUF, NQTEST, NQG(~: Similarly for Data Memory Queue.

NB@~X: Number of memory bores.

NBBUF, NSBUF: Number of Exit History Table positions, number

N~D~T:

N@PSC:

NDBUS:

NADSP:

of Skip Table positions.

NXDSP:

Number of D(~ Table positions.

Number of PSC registers.

Number of Dispatcher Buses.

Maximum number of OPS which may be dispatched to the A
Buffer per cycle. ~.

Similarly for X dispatching.

IVIXTIME: Run control paramet@r. Maximum simulated time allowed
for run (in machine cycles). Run terminated if this time
is exceeded.

MEMDLY: Memory Delay Time. See example of arithmetic load G7
on page 2-13 for exact definition.

@UTLVL: One of four output levels may be chosen. Level 0 is most
detailed, Level 3 is least detailed (and fastest cunning).
Level 1 is normally used and is level shown in the examples
at the end of this section.

FSTADD: Starting address of the input program.

Fig. 2-3 specifies the format of the parameter card. Minimum, typical,
and maximum values of the parameters are given. The TYP values
represent the "most likely" values of the hardware parameters.

There are other machine parameters not controlled by the parameter
card which may be easily varied by changing certain initialization
tables in the Timer. An example of this is the busing and facility
characteristics in the A and X execution units. Thesestructures
are listed in the output for each run (see output portion of this section).
If changes in these machine parameters are desired for a particular
timing study, contact the author.

.......... ~ ~ ~ ...

-°

IBM CONFIDENTIAL . 2-4

Figure 2-I. Timer Input Track Card Format

io

2.
3.
4.
5.
6.
7.

e

o

I0.
Ii.
12.
13.

Instruction Address
Op Code Mnemonic (left justified)
I (Dec)
J (Dec)
K (Dec) .:
H (Dec)
Branch Successful bit. Indicates result of
branch op. Applies from arid including branch
op to and including EXIT op.
Skip Flagged ops bit. Indicates sMp state.
Applies to op after skip to and including
next skip
Skip Flag
Effective address accessed (LOAD/STORE)
Address of next instruction to be executed
Numeric Op Code
Long Op = 2, Short Op = 1

COLS

2-6
8-14

16-17
19- 20
22-23
26-30

35

36

37
41-45
48-52
55-57

60

Figure 2-2. Timer Input Deck Format

Example: Two PROGRAMS PR(~GI and TEST to be timed:

I

_ [T~S~- c;~,.~’~,~’r,~.s~ I! I/-
............... __ ~.., .-. I qqq III I-’-

IBM CONFIDENTIAL 2-5

Fiqure 2-3. The Parameter Card Format

PARAMETER MIN TYP MAX C OLS

- J ~BNAME

NABUF

NATEST

NAG@

NXBUF

NXTEST

NXG(~

NQBUF

NQTEST

NQG(~

NB(~X

NBBUF

NSBUF

N(~D(~T

N SC
NDBUS

NADSP

NXDSP

MXTIME

MEMDLY

@UTLVL

FSTADD

1

1

1

1

1

1

1

1

1

1

I

I

1

0

1

1

1

2.0

0

0

8

8

3

3

3

3

8

8

2

8

3

4

6

8

2

-4

3

300. 0

5.0

1

0

12

NABUF

3

12

NXBUF

3

16

16

NB~X

16

8

8

16

8

2

NABUF

NXBUF

-3

1-6

9-I0

II-12

13-14

15-16

17-18

19-20

21-22

23-24

25-26

27-28

29-30

31-32

33-34

35-36

37-38

39-40

41-42

60-66 (F7. I)

68-71 (F4. I)

73-74

76-80

0-7 0

IBM CONFIDENTIAL 2-6

Timinq Simulator Output Interpretation

For each input job, a deck headed by a parameter card and terminated
by a 999 card, an output listing is produced of the following form:

(i) The first page lists the job name and all parameters of the
run including the busing and facility structure.

This is followed by a listing of those input trace instructions
operated upon by the MPM during the first I00 simulated cycles
of time.

This is followed by a listing of timing charts indicating the
activities initiated by those instructions of (ii) during the first
I00 simulated cycles.

(iv) Items (ii) and (iii) are repeated for successive I00 cycle periods
till the run stops or is terminated by IV/XTIME.

Figure 2-4. Overall Form of Output Listings

|

_°- : .

.........

........ ¯ ,-+/

.. _ ¯L --

7///,,:>,.’t I
/,/V////!
.’,’///X/,I :

.’, t .." "’/~,,,>{,,’X, ,’>C"

!.!Z’;::"- ’,:i / >".

....................................... ,;.. _

/’/ ,/

.......................... l

-:".:;;- -..- ,- ~’ i i ; --~- -’- .- I .._ :_ . o.-~ ~.~_- , - , . ¯ . . ,_,--_-~.-_.--.-~,.
¯ " ’ " ’ I :--- " :~~1. L.. ~._.OnWU~. ~ _ . -

...... - (.............: : I ¯ -- " - " - " " | .-, _ _ .,- ,. ._ _’ ~ ~’" "

L z:_ ~~;if :._ ::"_>’7:z_ ~...._ ..- -..... "--.-~: "

"f

IBM CONFIDENTIAL

We will now examine the general characteristics of these three components
of the output. A sample output listing is included at the end of the
section for reference while studying these general descriptions.

Some specific examples will then be developed which illustrate the
progression of instruction activity through the different sections of
the MPM. These examples are referenced by markers on the sample
output listings.

Parameters of Run: This page lists the job name, date and time of
run, and the MPM hardware parameters for the run. Many of these
parameters are those specified on the input parameter card, described
earlier in this section. The A and X unit busing and facility structures
are printed for reference in a table with the following entries:

I. The abbreviated name of the facility (FAI = floating adder I).

.

The Rep Time of the facility - the number of cycles an opera-
tion keeps the facility busy.

.

The Delay Time of the facility - the number of cycles the
facility requires to perform operation.

.
INBUS - the numbers assigned indicate which facilities share
a common inbus.

.
BOX - the numbers assigned show which facilities share
circuitry and cannot be simultaneously busy.

6. OUTBUS - the numbers indicate which facilities share a common
outbus.

Input Program Trace: For each block of i00 cycles of simulated time
the Timer prints the instructions of the input trace which have been
operated upon,by the MPM during that time. This is used to reference
the timing charts for that period of time. The input program trace
printed is a copy of the input cards with five fields added:

(i)

(ii)

Time markers are placed indicating the time (approx.)
that the instruction entered an IB.

A letter is assigned to each instruction by decoding the
instruction address MOD 26. This letter is then used
as the marker for that instruction in the timing charts.

IBM CONFIDENTIAL 2-8

(iii), (iv) Bits are set indicating whether the op is to be dispatched
to the A unit, X unit or both.

(v) The number of the IB into which the instruction was
fetched. This along with (i) will locate the instruction
marker’s first appearance on the timing charts (in a
dispatch register).

The Timing Charts: A set of timing charts are produced for each
I00 cycle period of simulated time. The general form of these charts
is as follows:

MACHINE]
FACILITIES [o~

rkers indicating]

achin@ facility |
ccupancy by inst. |
f input trace J

TIME

f~

The time axis has markers every cycle and number indicating I0,
20, ..., 90 cycle points in the I00 cycle period. The time of the period
is listed at the top of the page (ex. : SIMULATED TIME = 300 TO 399).

The machine facilities included in the timing charts are identified
as follows:

DSPXI, DSPX2, DSPAI, DSPA2: These are the dispatch registers
XI, X2, AI, A2. The IB number and DO table entry are listed
which correspond to the contents of the dispatch register.
The eight 24-bit instruction fields are shown for each register
with markers indicating which instructions of the input trace
are currently present.

BRANCH CONTROLS: These are hardware triggers controlling
the branching process. ERI, ER2, ER3, BEI, BE2, BE3,
ETI, ET2, ET3 are the exit resolved, branch executed, and
exit taken entries in the Exit History Table (EHT). BRXP,
BRAP are the X and A pointers to the EHT. The description
of the other listed controls is beyond the scope of this introductory
memo.

SKIP CONTROLS: Skip state triggers with SKXP, SKAP~ the X
and A unit pointers to the triggers.

2-9IBM CONFIDENTIAL

A BUFFER, X BUFFER: These are the A and X unit contender
stacks where ops are tested for interlocks before issuance
to the functional units. This is the point where ops may be
issued out of order if the appropriate interlocks are satisfied.
The instruction occupancy of the buffer positions is indicated
by markers.

A FACILITIES, X FACILITIES: These are the various functional
units such as adders, multipliers, shifters, logic units, etc.

The instruction markers are placed in a facility position for
that period of time during which the instruction actually has
the facility busy for interlocking purposes. Note that an op
keeps a facility busy for a number of cycles equal to the REP
TIME of that facility.

MEMORY QUEUE (D): The data memory queue. This is the queue
which holds data loads and stores after issuance from the
contender stacks and before issuance to memory. This queue
roughly approximates the timing effects of the BLCU with no
paging activity. If appropriate interlocks are satisfied the
requests may go out of order. An instruction is indicated
by its marker.

MEMORY QUEUE (I): Instruction fetch memory queue. This queue
holds the instruction fetch requests prior to issuance to memory.
The markers are the IB destination number of the fetch. Four
markers are Flaced corresponding to the four pieces of one
request. When all have been issued a new set may enter.

MEMORY: Here we can observe the relative timing of loads, stores
and instruction fetches as their markers indicate busy memory
BOMS. The marker for an instruction is placed on the second
of the two cycles that the op is activating the BOM--noting
that thememory BOM REP TIME is one cycle.

A REGS BUSY: When an OP is issued from the A contender stack
to a functional unit, the A destination register of the OP is
marked busy with the OP marker. This is used to interlock
the issuance of other OPS in the contender stack (which use
that destination register) until the result arrives at the register
(or is available for bypassing to the input of another facility).

0-7

~nwoy

IBM CONFIDENTIAL 2-I0

ABU REGS BUSY: The A Back-Up Registers are the destination
registers for A loads and X to A moves (instructions issued

from the X unit contender stack). At the time of issuance the
op marker is placed in the ABU REGS BUSY position corres-
ponding to the op destination and remains till the load or move
is completed.

X REGS BUSY: The busy bits for the X Registers, similar to the
A REGS BUSY described above.

Example of Timinq Simulator Output

At the end of this section is a copy of the output listing for a typical
run of the Timing Simulator. The parameter page is followed by 3
pages listing the input trace for the first i00 cycle period of time.
Then 4 pages are listed containing the timing charts for the first I00
cycles.

The program being timed is a version of Crout Reduction. In this case
the MPM is active for only 58 simulated machine cycles--a starting
transient is followed by three passes through the inner loop of the
program.

The interpretation of the timing charts can be somewhat complex.
In this memo only a few simple illustrative examples are given which
follow the paths of certain instructions of the sample program through
the various sections of the machine.

A thorough knowledge of the MPM hardware controls and consider-
able practice are necessary for a complete interpretation of the timing
charts. However, certain subsets of the charts may be studied with
a detailed knowledge of only that section of the MPM. For example,
someone interested in compiler scheduling of instructions could focus
his attention on the performance of his input programs in the A and X
BUFFERS and A and X FACILITIES, observing the effects of various
schedulings on the timing through these units. A knowledge of the
interlocMng rules of the contender stacks and of the busing and facility
structure would be sufficient to get a start at this.

Certain simple observations may yield useful measures of MPM perfor-
mance on the input program. The overall time of the run is easily
determined. It is given as the upper time limit on the last set of pages
listing timing charts for the run. In our example this overall run
time is 58 cycles. Another measure which is often useful is the time
taken to execute a program loop. If the input program is of the type

-, .t-_.-. "

IBM CONFIDENTIAL 2-11

@

which repetitively executes a loop, the loop pattern will be obvious
in the A and X FACILITY busy markers on the timing charts. This
is because a given op has the same marker symbol each time the loop
is executed (the marker is determined by the instruction address).
-Thus the loop time is found by measuring from marker to similar
marker in the A FACILITIES for example. In our sample output we
find that the MPM executes the program loop 3 times in the FLOATING
MULTIPLIER between cycle 33 and cycle 52. The pattern has not yet
settled down to a repetitive one in the example, but the loop time is
seen to be approximately 8 cycles.

Somedetailed examples follow. Refer to the sample listings at the
end of this section.

Instruction Fetchinq: At time -- 1 an instruction fetch request to fill
IB(1) has been placed on the MEMORY QUEUE (I). It is issued to
MEMORY in the next cycle and (after some busing time) we observe
at time = 4 that MEMORY BOMS I, 2, 3, 4 are busy servicing this
request. The fetched instruction is then bused to IB(1) (not indicated
in output). At time = 8 we observe that DSPXI and DSPAI have been
loaded from IB(1). The instructions which were fetched are seen to
beA, C, E, G, which areXOPSandinDSPXl, and G which is anA
OP and in DSPAI.

Notice that instruction fetching occurs up to time = 33. After this time
the loop has been contained in the IB’s and no further instruction fetching
is required to run the problem.

Multiplv Instruction E37: At time = 37 we find the instruction MN 13,
5, 6, which is marked by an "E", in the instruction trace section of
the output.

Let us follow the activity of this instruction through the MPM. We
observe from the trace that E was fetched in.to IB(8). At time = 38
we notice that IB(8) -~DSPA2 and we find E in DSPA2(1). At time = 38
only two positions are free in the A BUFFER so the OPS X and Y in
DSPAI move to the A BUFFER at time = 39 but E remains in the dispatchers,
moving up to DSPAI(1).

At time = 39, the A BUFFER has two free positions so at time = 40
instruction E along with F are bused to the/~ BUFFER. We find E
in A BUFFER (4) at a time = 40.

IBM CONFIDENTIAL 2-12

Now at time = 40 another multiply instruction, P, is present in the
A BUFFER and ahead of E. This multiply, interlocking E, is issued
the next cycle while E remains present at time = 41 in A BUFFER (3).
At this time there are no ops ahead of it in the buffer which interlock
it so it is issued for execution and is not present in A BUFFER at time =
42. Notice that A REG BUSY (13) goes on with the marker E at time =
42 to interlock any OPS following E which use A REG (13) as a source
or destination.

The multiplier FM under A FACILITIES is found busy with E at cycle
time = 43 (one cycle of busing required from A BUFFER to A FACILITIES).
Then at time = 44 the A REG BUSY (13) is no longer marked by E
indicating that the result of E will be available (for bypassing) at the
output of the multiplier at cycle time = 46. Note that the delay time
of the FM is 3 cycles, the multiply E taking cycles 43, 44, 45, with
the result actually back at register 13 at cycle 47. But the multiplier
is only "busy" with E for one cycle (the REP TIME of FM) so the
multiplier could handle a new op every cycle. The timing of the busing
and multiplication are illustrated in Fig. 2-5, for the specific example
instruction E37.

Figure 2-5. Timina of Example Instruction E37

I II!

IBM CONFIDENTIAL 2-13

L Arithmetic Load Instruction GT: At time = 7 we find the instruction
LAT 9, 0, 31, 136 which is marked by a "G", in the instruction trace
section of the output. We observe from the trace that G was fetched
into IB(1). It is both an AOP and an XOP and will be dispatched to
both units.

At time= 8, we observe from the timing charts that IB(1) -~DSPXI,
IB(1) + DSPAI. At that time O is present in DSPXI(7), DSPXI(8),
and in I~PAI(7), L~PAI(8). G is a long OP and takes two of the 24-
bit positions in the dispatchers.

Let us follow the A unit activity of G first. We note that at time = 8
G is the first AOP to enter the dispatchers and thus it is bused to
the A BUFFER the next cycle. At time = 9 we find G in A BUFFER (i).
This part of G is a "replace" operation and is issued the next cycle,
causing A REG BUSY (9) (the destination of the load) to be marked
busy with a G at time = I0. This sets the "front" register busy waiting
for the "back-up" register to be loaded by the X-unit.

Now let us follow the X unit activity of G. Since three other X OPS
precede G in DSPXI at time = 8, and at most 3 ops may be dispatched
to the X BUFFER per cycle, G remains in L~PXI at time = 9. At
time = I0 it is bused to X BUFFER (2), for it is the next op to be dispatched
to the X BUFFER and both A and C leave the X BUFFER at time = I0
allowing G to enter.

We now find that G remains in the X BUFFER through time = 16.
This is because it uses X REG (31) as an index and X REG (31) is busy
through time = 15 waiting for a load to arrive.

At time = 16 G finally satisfies the contender stack interlocks and at
time = 17 its execution is initiated by (i) starting effective address
computation in X FACILITY EAI, (ii) placing an entry in the MEMORY
QUEUE (D), (iii) marking the ABU REG BUSY (9) with G. The queue
entry waits on the queue another cycle for the effective address to
arrive, and then is issued to memory. We note that at time = 21,
MEMORY (i) is marked busy with G, and at time = 23 the busy bits
on ABU (9) and A(9) are turned off indicating that the load has arrived
at ABU (9) and then moved immediately to the waiting A(9).

The detailed timing of this memory activity is illustrated in Fig. 2-6.

¯ ...-"

+o

IBM CONFIDENTIAL 2-14

(
Fiqure 2-6. Timing of Memorv Activity of Example G7

r-

".+" . - . ¯

++%-:~

!

- . +:"

e . .

¯ ° . o

.. ACS-I MPN SIMULATION PROGRAM

p

INPUT PRCGRAM FOR ¯THIS RUN = CR-FS

TI~E/OATE 8{ RUN = 4DTZCBFE"CO67194F

~AChLNE PARAMETERS FCR THIS ~UN

NUMBER OF A BUFFERS = 8 NUMBER OF X BUFFERS = B NUMBER OF Q BUFFERS= 8

NU~ER A OPS TESTED = ~ NUMBER X CPS TESTED = 3 NUMBER Q OPS TESTED= 8

~AX A 6PS .ISS/CYCLE = ~ ~AX X OPS ISS/CYCLE = 3 NAX-Q OPS ISS/CYCLE = 2

MIiNI~U~ Q-MEN DELAY = 5.0

NUMBER OF 80MS = 8

NUPEER BRANCH REGS = 3 NUMBEROF SKIP REGS = 4 SIZE OF DC TABLE = 6

J~ER OF PSC REGS : 8

¯ NU~ER DISR BUSES : 2

MAX A OPS OSP/CYCLE = 4 KAX X OPS CSP/CYCLE = 4

A ~ACILITIES - - FAI FA2 FM FD’ IA IN ID C L S

REP TIME = i I I 7 I 2 I0 I I I.

DE,LAY ,TIME = 3 :4 3 9 2 5 ,15 I I I
INBCS : 2 I] L 1 2 2 I 2 3

BOX = I 2 3 4 2 ~ ~ 5 6 7

OUTB~S = 2 I 4 3 2 ~ 4 6 I 3

X FACILITIES - - EAI EA2 L S M D XA C
RE~ TIME = I I I I 2 8 l I

DELAY ~I~E = I L I I 4 8 I I
= L 2 3 4 5 ~ 6 l
= 5 6 I 3 2 2 7 I0

... [..;.._,:-,.. " :. :

.

TZ~’~E~ 0.0 - copy o/TR,,~E

3.00 __ / e]5

6 .U-O
7,.00.

TIME=

u.,E=
---(~..Mi-=

T IJ~E=
TIHE=
I I.ME=

Aw_ . 0 LX 1 0 0 135 OCO 135 2 2 210 I

6 2 LX 31 0 0 130 OOO 130 4 2 210 1

TIME=

4 LX 36,0 0 128 ,. 000 128 6 2 210 1

O,,,,,,LAT , .9_._’..0__~.~ 136 J OOO 136 8 15 2.1t I
.E

_(,G
8.00

I 8 LAT 7 0 30 136 OCO 136 10 15 211 2

K tO LAT 5 0 31 19o 000 196 12 15 2it 2

M 12 LAT 1 0 0 132 000 132 14 15 211 2
13 14 LAT Z 0 0 126 OCO 126 16 15 2it 2

T1~E= 9.00
O to EAT 3 0 30 196 OCO 196 t8 15 211 3

S 18 MXK i t 0 3.0 080 58 20 77 210 3

U 20 MXK 4 31 0 30 000 30 22 11 210 3

W 22 MXK 3 30 0 30 000 BO 24 71 210 3

TIME= &O.O0 -.
Y 24 AXK 5 31 0 30 000 30 26 76 210 4
A 26 LAT 8 0 4 78 000 78 28 t5 2It 4
C 28 LAT 4 0 4 80 000 80 30 15 21I t~

30 AXK 2 30 0 30 OOO 30 32 76 210 4

TIME= J.I .OQ

r G 32 LAT IC 0 3 78 OGO 78 34 15 211 5
[34 LAT 6 0 3 80 OOO 80 36 15 21I 5

K 36 AXK 3 3 0 & 000 i 38 76 210 5

M 38 AXK 4 4 0 I 000 1 40 76 210 5

TI~E= ..t2.0.O
0 40 AX i 1 31 0 000 840 41 71 llO 6
P 41 MN 1.1 9 tO 0 OGO 0 42 178 tOt 6

Q 42 LAT 9 0 5 196 000 256 44 15 211 6
$ 44 tAT 10 0 3 80 OOO 82 46 15 211 6

U 46 AXK 5 5 0 60 000 90 48 76 210 6

TIME= 13.00 :.
TIME= 14.00

N 48 MN 12 7 8 0 000 0 49 I78 i01 ?
X 49 LAT :’- ? 0 2 196 O.O0 256 51 15 211 ?
Z 51 LAT 8 0 4 80 000 82 53 -[5~2-[-1 7
B 53 CGEX I I 5 0 OQO 930 54 87 IIO 7

54 BAND l i 0 41 IO0 881 56 139 210 1C
TIME= .15..00

£ 56 MN 13 5 6 0 100 90 57 178 tO1 8
F 57 LAT 5 0 5 136 I.CO 316 59 15 211 8
N - 59 LAT 6 0 ~ 82 100 84 61 15 211 8
J 61 AN 2 12 2 0 tO0 30 62 i66 101 8
K 62 AN t It I 0 tO0 840 63 166 tot
L 63 MN 14 3 4 0 [00 2 64 178 lOt 8

64 LAT
66 LAT

3 0 2 256 100 316 66 15 211 9
4 0 4 82 100 84 68 15 211 9
2 14 2 0 100 30 69 166 101 9
1 13 1 0 I00 840 ~lO 160 t01 9
4 4 0 2 tO0 3 ~72 76 210 9

~1.

-R 69 AN
S 70 AXK

flEE= 17.00

TIME= 19.0.0

-TIME=- 22.00 I
.r I~H E= 23.00
TIME= 24.00
lIME= 25.00
TI,ME= 26.00
TIME= 27.00

~E= 28.00
. 2 .60
TI~E= 30.00

IIII ,onwoy i

TIME= 31.00
IINE= 32.00

U- 72 AXK I 3 0 2 I00 3 74 76 210 A
W 74 AXK 2 2 0 60 100 90 76 76 2LO A
¥ 76 EXIT fl 0 0 0 I00 0 41 199 ill A
P 41 MN Ii 9 I0 0 000 0 42 L78 I01 A

IIEE= 33.00
TI~E= 34.00

O 42 LAT 9 0 5 IS6 OOO 376 44 15 21[6
S 44 LAT I0 0 3 80 000 86 46 15 211 6
U 46 AXK 5 5 0 O0 000 150 48 76 210 6

TI~E= 35.00
W 48 MN 12 7 8 0 0C0 0 49 178 I01 ;
X 49 LAT 7 0 2 Ig6 000 376 51 15 211 7
Z 51LAT 8 0 4 80 000 86 53 15 2[I 7

53 CGEX [I 5 0 000 990 54 87 ii0 7
C 54 BAND 1 I 0 41 IGO 881 50 139 210 7

TIME= 86.00
II~E= 37.00

E bO PIN 13 5 6 ¯ 0 100 150 57 178 I01 8ii ii ii,

F 51 LAI b 0 5 136 IC0 436 59 15 211 8
H 59 EAT O 0 3 82 I00 88 61 15 211 8
J 61 AN 2 12 2 0 100 90 02 166 lOT 8
K 62 AN I 11 1 0 I00 840 63 16b i01 8
L b3 MN 14 3 4 0 I00 6 64 178 I01 8

TI/~E= 38.00
H 64 LAT 3 0 2 256 Ifl0 436 66 15 211 9
0 66 LAT 4 0 4 82 100 88 68 15 211 9
Q 68 AN 2 14 2 0 100 90 69 166 I01 9
R 09 AN I 13 1 0 100 840 70 166 I01 9
$

TIEE= -39.00
lIME= ~O.0D

U

70 AXK 4 4 0 2 100 5 72 76 210 9

72 AXK 3 3 0 2 100 5 74 76 210 A
74 AXK 2 2 0 60 100 150 76 76 200 A

Y 76 EXIT r; 0 0 0 O 100 0 41 199 lll A
P

TIME= 141. O0
II~.E= ~2.0@
II~E= 43.00

41 MN II 9 10 0 000 0 42 178 I01 A

8
C

Q .42 LAT 9 0 5 196 000 496 44 15 211 6
-S 44 LAT I0 0 3 80 000 90 46 15 211 6
U 40 AXK 5 5 0 60 000 210 48 76 210 6
W 48 MN 12 7 8 O 000 0 49 178 i01 7
X 49 LAT 7 0 2 196 000 496 51 15 211 7
Z 51 LAT 8 0 4 8.0 000 90 53 15 211 7

53 CGEX 1 1 5 ~ OCO ~’050 54 ".’~7 liO 7
54 BAND I I 0 41. 100 881 56 139 210 7

E 56 MN 13 5 6 0 100 210 57 178 I01 8 -
57 LAT 5 0 5 IB6 ICO 556 59 15 211 8

H 59 LAT 6 0 3 82 IGO 92 61 15 2li 8
d 61 AN 2 12 2 0 I00
K 62 AN I 11 I O" 100
t 63 MN " 14 3 4 .0 1.00

T TMr-~ :/.~ rl~’l

150 62 166 l lOl 8
840 63 166 I01 8

I0 64 178 I01 8

64 LAT
66 LAT

3 0 2
4 0 4

256
82"

, nway
.~ A~chlvos

SIMULATED’TIME = 0 TO 58 INPUT PROGRAM = CR-FS

0 + i + 2 + 3-’-- +----4 + 5----+ b
DSPXI 16 11222222233444455556677789AA607779AA667789AA

O0 11222222233444455556011123445566023344556122
I A Q G U NU MU
2 A Q G X U X MU X FMU

.............. 3 C K S A If C X OW Q X Oi~ Q X FOW

4 C K S A I I Q ZZ hO~ Q Ii OW Q ZZHOW
- - 5 E .td,-~MMMMM.b-’UCC KK SSZZ H YYSSZZ YYSSZZH YY

6 "E VMNMMMMUUCC KK SSB6 SSBB SSB8

~. ~OOO000~4WEEEENNMNUUCCC S
~000000~WE E EEM~NNUUCCC S
I +----2 + 3

8

{BB333334~55556666778689A
.333335344555566661122234
~QQQQQYYGGGGO000 MU

I~Q~QYY~GGG XXFFFMU
SSSSSSAAIIIIQQQQXXFFFOW

K SSSSSSAAIIIIQQQQZZHHHOB
MiUUUUUUCCKKKKSSSSZZHHH Y
MtUUUUUUCCKKKKSSSSB8
O~ ~hWWWEEMHM~UUUUCC S

O-~-+---
DSPX2 IB

.

3
4
5
6
7

UUCCCS UUCC S
UUCCCS UUCC S

+ 4 + 5 + 6
677888A 77889
5661113" 55661

U M
XXFFFU XXFFM

QXXFFFW XXFFO

S6B 88_
UCC. CC S

OSPAI

Oh [~ ~.i ~, W ~ W E ~ M M ~-’~i~ UUI; U C C S UCC CC S
0 + i-~---+--~-- 2 + 3 + 4 +-----5 + 6

00 .1234t56 1222.222222222222222234501112345666611

2 IQ ~P XF M PXi M PXFF M
3 K A|-Q 5 O 5

K A_~Q ZHHHHH~hHhB~BHHHH " 0 QZ 0 QZHHH 0
M C ZHH~HHHHHHHHHHHHHH QYSZ QYSZHHH Q

6 M JJJJJJJJJJJJJJJJJJ R S R S JJJJRR
7 KKKKKKKKKKKKKKKKKK KKKK

8 LLLLLLLLLLLLLLLLLLL ILLL

O SPA2

0 +--- 2 + 3 + 5 + 6
I8 999999999999999999A)A 789999AA

333333333333333333~ 6
MMMMMMMMMMMMMMMMMM

2 MNMNMNMMMN~NMMMMMM XFMMMM
3 000000000000000000 XFO000

DO
1

56111122
WEMMMM

4 060000000000000000 ZHOOO ZHOO00
5" ~-- QQQQQQQQQQQQQQQQQQYZHQQQ ZHQQQQYY
6 RRRRRRRRRRRR~RRRRRJRRR JRRRR
7 K K

L
.... +----2 + 3 +----6--

8
0 + I

BRANCH CONTROL-ER I | III
- .ER 2 I I

ER 3
BEI
BE 2
BE 3

l
1 I

I
+ 5 + 6

ET L
ET 2

I

l
1 ILl l

ET 3
BRXP
8RAP
XHLT
AHLT
XFCT

i
Iii111111111.I11111111111111111111122222222233333333111111111
I111111IIIIIIIIIiIIIII1111111111111122222223333333311111111t

~O-I

..... - ~ - %e-’V
50SC

1
8NOP

0 +-

SKIP C~NTRUL- -SR L
SR 2

1_~, SR 4
SKXP 111111]
SKAP 1111111~

A B~FEER 1

4
5
6
7

A FACILITIES FA I
FA 2

FO 4

11111
~1111

fill
1 I I

--- l + 2 +’---3
+-~_-- 4

+ 5 + 6

l II 1111111111 lllllllilll/IIII lllil Ii[I.11 IIIIII illl
111 Ii II III II ll:llllilll/llll L 11111111111111111111
1 +----2 + 3 + 4" + 5 + 6

(~(QAGPPPPPPPPPPPPPPPPPPPPQFK(JQ PQFKGQP, PQXFJQQQ

i K C IQQQQ~QQQ(jQ~(~CQQ~QQQ~SHMRRI[QSIIHRRPQSZHMRR
sSssssssssssssssssssEKo Pc~o PQSWEJO

| XXXXXXXXXXXXXXXXZFH R SXF__~I_R S~XZHL
--I z z z z z z z z z z z z z z z z-Eh-J---~-~i~~---~----- -
l ¯ ~-~E~E~E~EE~EEEEF K K~ .
l ~ ~ F ~ F ~ F F F,--~--F~ F--~~~ - -

o+--~ +~+>--~+---~,:.~-:~~+
f~. i llI]I~:(Qt’,~’:A~CC l I I~OSUZCHOU~;YS~~U~Y

--- ----~T~~ ~~ ~ ~ s~ ~F~~~
0 + 1 +-~=-2 + 3 + 4--I--+----_5 + 6

PEL i~- ~ P-W-E- [

IA 5
I M .6
IO 7
C 8
L 9
S I0

0 + i +--

X F,aC ILI TI l~S EA I ~E (j
EA 2 C
L 3
S 4
M 5
D 6
XA 7
C 8

0 + ~I"

ME/,~GRY QUEUE (D} I
2

AAE
:CC

3 E
4
5
6

c~%5
L, Conwav~

--2 + 3 + 4 + 5 +
0 A G Q XZFSM ~ XSFM O SZFM
MQ C I HO ZHO X HO

Y E K~CU SUHYU SUWYU SUWY

SSbUWW

B B B
.... +--- --2 + 3 + 4 +-~--5 +

0 + I +----
MEEI.CRY QUEUE {I) I 123456 789 A 6

AAGG~GXXZFSMOQQXXSZM~’QQSSZFHMO
CCII ZFSHO SZFO XXFHMO

HM ZFH ZHMO
0 HM 0

0

4

123456 789 A B
123456 78S A g
123456 389 A b-

0 + I +
1
2

1 3:5 7 9 E
I 3 5 79

.3
4

I 3 6 7 9.6
135 79

---=+ 3 + 4 + 5 + (
C 1 2 33
C 12 3
C 12 3
C 1 2 3

.... + 3 + 4 + 5 + (L

8 I 3
B I 3Z S SZ
8 1 3

5
6

246 8
2-46 8

AK~Q C 2 FHMO F M FHMO
A C 2

"/ 2 4 6 8 A 0 C A G2 SZ

A R~GS BUSY
0 +----’I----+---- 2 ÷--- =---B-~-+ 4 +----5---_-+ O

0 ~ "

II PP PP PP

12 WW WW~_ ~W

13 E,E ~ EE

14 LL EL LL

15
16
17
18-
19
20
21
22
23
24
25
26
27
28
29
3O

--~ 31
0-~-+I +----2----+ 3 +--~4 + 5 + 6

ASU REGS BUSY 0
l MNMN~M

2 000000
3 QQQQQQ MMMMMMMNHMMM NMMMMMM

4 CCCCCC 0000~00 000000 00000000

5 KKKKKK FFFFFF FFFFFF FFFFFF

6 IllIIi HItHHHH HHHHHH HHHHHHH

7 tlIIII XXXXXX XXXXXX XXXXXX

8
9

I0
II

..... AAAAAA ZZZZZZ ZZZZZZZ ZZZZZZ
(GGGGGG) QQQQQQ QQQQQQ QQQIJQQ

GGGGGG SSSSSS SSSSSS SSSSSS

IZ
13
14
15
16
17
18
19
20
21
22

-..~ 23
24
25
20
27
28
29
3O

X RkGS BUSY 0 ~
I ~AAAAA SSS ~
2

3 : W~W
4 UUU
5

Q 6
7

~ 8
9

_ 10
It
L2
13
14
15
I6
17
I8
19
20
21
22
23
24
25
26
27
28
29
30 EEEEEE
31 £CCCCC

0----+ I +--=-2 + 3 + 4 + 5 + 6

IBM CONFIDENTIAL 3-1

CURRENT ~[OB RUNNING PROCEDURES

This section describes the procedures to be followed in order to use
-the timing simulation program. These procedures are to be completely
revised and expanded in the near future so that the programs may be
stored on disk atthe MOD 75 comp lab and users may submit runs
directly at the comp lab (see Section 5).

To use the timing simulator at the present time:

(i) Write the assembly code input program for the Unroller (Section 1).

(ii) Prepare the machine parameter card required for the Timer
input deck (Section 2).

(iii) Submit these items to L. Conway, Room 203, Extension 252.

- . . ¯ : .

IBM CONFIDENTIAL

TABLE OF IMPLEMENTED INSTRUCTIONS

The table on the following pages lists the ACS-I instruction set op
- -codes and indicates (with an X) if a given op is implemented in the

Timing Simulator.

IBM CONFIDENTIAL 4-2

OP OP OP OP

- ACH X CEQXK X EqA X LD
ACL X CGED EQC X LDA
ADN CGEI X EqX X LDH- -
ADR CGEN X EXIT X LDHAA
ADU CGEX X EXITA X LDHBA
AI X CGEXK X EXITL X LDHCA
AN X CMEQD EXITP LDHDA
ANDA X CMEQN X LL X
ANDC X CMGED IAg&
ANDX -X CMGEN X FAFA X LIVIS
AR X CNTAA X FAFC X LMX
AU X CNTAX X FAFX X LR X
AX X CNTDA X FOFA X LX X
AXC X CNTDX X FOFC X LXA
AXK X CNTT X FOFX X LXC

CUGEI X LXCA
CUGEX X LXH X

BAND X CUGEXTg X HIO
BEQ X CVF X
BFAF X CVI X MAX
BFOF X CVN X IC MCX X
BOR X CVS X IDA MDN
BTAF X IFA X MDR
BTOF X IFX X MDU
BU DDN IFZA X MI X
BXOR X DDR IFZX X MKL.- X

DI X IR MKP
DMI ITUMA MKR X

CBA X DMN ITUMP MLC X
CBMA DMR IVIB MLX X
CBMX DN X MMI
CBX X DR X LA X MMN
CEQD DRX X LAA ~U
CEQI X DRXK X LAH X X
CEQN X DX X LAT X MOT
CEQX X DXK X LATH- X X

o~o

I i
L, Conway
Archives

¯ IBM CONFIDENTIAL 4-3

OP OP OP OP

IVIRC X. SCAN SIOF X TAFA X

MSX SCH X SPl X TAFC X
MSXZ SCL X SPX X TAFX X
MTX SDN SR X TCH
MU X SDR

¯
STA X TOFA X

M_X X SDU. STAA TOFC X
MXA X SHA X STAH X TOFX X
MXC X SHAC X STAT X

MXK X SHD STATH " X
MXP SHDC STD XORA X
MXS SHDX STDH XORC X
MXSO SHDXC STDHAA XORX X
M_XT SHX X STDHBA
MZT SHXC X STDHCA

SI X STDHDA
SIA X STL - X

NOlO X SIAC X STMA
SID STMS
SIDC STMX

ORA X SIO STMZ
ORC X SIX X STMZA
ORX X SIXC X STR X

SKAND X STX X
SKEQ X STXA

PAUSE SKFAF X STXH X
PI SKFOF X SU X

SKOR X SVC
SKTAF X SVR

RND SKTOF X SWA X
RX X SKXOR X SW-X X
RXK X SN X SX X

SNF X
SNI X
SNX X

IBM CONFIDENTIAL 5-1

PLANNED MODIFICATIONS

Certain modifications to the simulation programs are now being made
or are planned for the near future. These are briefly described below
to assist users in their planning. Updates to this memo will be issued
as these changes are included in the programs.

Unroller Chanqes

The control specification facilities will be extended.

Timing Simulator Changes

(i) Additional OPS will be implemented.
(ii) New output features and options will be added.

Job Running Procedure Changes

Currently jobs must be submitted to L Conway who will handle
the processing of the jobs. Two separate programs must be run consecu-
tively to process one timing simulation. This results in a rather
long overall turn-around time. To improve on this, the two programs
will be merged, with the trace temporarily stored in core or on disk
and automatically passed between them.

Also, the program will be placed on disk at the MOD 75 comp lab.
The running of jobs will then be handled directly by the user, who will
submit the assembly code input deck, parameter card, and appropriate
JCL cards to call for the timing simulator. "

These changes will greatly reduce over-all turn-around time and allow
a much greater number of users to be served than is now possible.

0 ~"L

L. Conway

I

R UNiT ~JT~K aM uLR TIOI~J -
ill i |

PL

R u~lT

’~K E’TCH OF

~G

FEB I 51968
OR~

¯ o

,,, II

In __

F R~F~¢
i ,

¯ o

~’T~c ~ "

0
_0

) ~:z-eu-s]

~-- NP4:Bc’-e

I

ill
Ill

, +

c ~ G ~ . tT t JrS~ oPS
~� odP.~i~,tM Jc./../

4y S’E"n’b,l <~

EX~i ~/G P~o ~JT

-- llJ llmll I

i L,+o°’++1Archives

2.$

2~

Oq"/

"t.. Conway
Archives

c_
c..

C J’,~’, 9~suS3

~.~Tucc~

G

J~ u 8 If¢~= vt" Y~c K’.

C
C

c..

.

Ic~C>

i-[: c oow~ I

=-

"e. 3 ’-I S (o 7 ~ ~ Io
I

!:

II

.............. I Archives I .

.

!

I ~,, |

! . i .ee¢l Z. ~e ---i~
i

I i

"

........ ~_-.... v i ...
KL- i t

li

I

.... S’14. - ~
-;j.. . ~p ~z. +,~ - __.

", -. |

~ ~,~
j i

~U.~z_._:..u_.___.i
, ,~. I L ooo.<,!! ,

. ._ ¯ . . . :

~i~.(..p>,)---(i, ,_-m×~/.:..,;-j ,:.~ ~ r

- - -- "<°" ~,’Z’ ~/,<,,~7 ~..’,J

"~-~ Jg~ "~’~’�~r~ : ~J.~

I
U ii

! I
: J

r.

!
T
I
!

v

1
! T

T r I" "T "T 1" "T
0 0 0 0

[,

i;%

1"

)

®
w

1 /f....,.u. <.t-

4/o

..... ,/V3- ,.77

. ~ ’ ~-,,-,, ’<," "~.
’~-~~-------F~---~--~-’~ -- ¯~o..~ ...- . /
I A L.:_’:,’) ~"~5 i i Conwav I ~l~.~_,’<a
-.’2_-_ ~"~--,,-’--"-~-i--T:~ I -’ . T ! ~ -t ~-- ,"
~. "i. _ _~:’: ; _ ..+ I ~r~ hlwi~_e I

1

3

0
0

L

0

0

t

~ L
L ,

i
i

1 , t
! ’ l

1
! l

I r ,

t~

Cv~u~
I S’~.~ : ;-~.

-=-!H 3.w | ",sI , ~ I~l

L, Conway
Archives

.... !

................. nl / X~D ,, "’- "

................ .~ov~z~ ,, ". "" i
s1,,44 z ~ ,, _ ~’/J7~4 ~,£ ’" I

........................... 1"4 i X-,~..O " ~ ’ " .

.........{,l.~41~ . Ii/-’

.... (51.c/~p -----,,/-_ ,,, -.::__.
::. :.:--: :-:._ :-::-:::..-. _: -.

-° -

................... _: ; . , . - . :-.

°°
..... - -..

-¶ - : - :.. J : ~c,q .

k~i :. co~,~ov ’ ’I_ .. Ar_ht~es, i;

.......- - - ~ I

. _. : / _z./.

¯
’ " " :’: :--:-~ ": ~ ::7:T--’-------’:-;:’~iT~" i

" ¯ - ¯ ~ , .- ¯ . ¯ : , i-- .~: ; , .
% ~ ~._ - o

. ~/5 7" OF Kd/J~TiO zJAZ U,~i7-S , d ~, :>_..._~__.; _~ _

f. . . ¯ ¯ _ _

-- ~] ~~ r-."-_

.: ._ 1~. z> ,, ,> ,, ,:, e. _..: _~/.~ m,.,e,<~2k-~-X~/~, >5;~x;~?D-~~,;~h".;e;~
- - t _ : -- :- :

@

............... j5 ux~4 4 7--,’/)
._ . ._ .~xo~~./~-

_ {,~ re.,,e<__.r ,/’ --.~s~Z;,~T--’x~+~ ~)’~ J. - !

..... " I~D ~ (e);) -"-,i,~.-- i :.:_L__~:.i::Z:.:iii--_i_..i:-Y__~..: ii;.~

...... .--

(........

- , .

........
~2" .. 2-

"i
.... .--"-:-:: i-;il ::_L-I_.:);._ :-~ : i~

.-,o

. .-- t’. " ,- I
o.

............... :[...... ;:- - - -~, 4 :_

............. " .. ~"-’.-~-d~ --

@- --.:- ~ ~----:::~~ :t--t:-co,,w~, !
. - . % :_.: ,[........ : " ":"

"
,-

"
ff

............... " ~ ’/l....._,-, h , "~---~--""
..~,, :~...~,.~.z_~....

r

| *

- ?

I

I
J

I

J’._

J

J

JJ

J

J

¯ .

.

°

J

lid
1

L, Conway
Archlv~s

0

, -- ,, T- ,-, l ... i

~ ~ ~I~GI ~ ~ ~ ~ ~ FI U~ ~ ~/lB~.~. -I) - II. _. w U P --- II---II

I Z 3 ~ 5 q 7 ~ 9 io II IZ, i$ lq’ 15 iq ~’I I$ i~ 2n,:

i i..~, H × x x
L"X X X. X

3 L~
~" ~T ~H × X X
5 STX . X X X

STXFt
7 L~.C.

~ LxC.P~
~’ LRH x,x X X

Io LP~ ~c x X X
i~ LP~G
IZ ST~-/H X X X X
IS ST~ x X X X
Ik~ ~TnPt
IF l-~H
I¢ l-l)
17 ST:bH
I~’ ,.STD

It LPGH X ~ X X
.__ 2.~ uP~’i" X X X X,

ZI $’t PITH X ;4 X X
2,2 .~’r ~Y’V :4 X)< X
2.3 LL X X X X
~’t" L~ X X X X
~..~ STL X Y, X X

LM X

30 ST I~l 1~

31 I-MS.
8~ S Tt’,’~S . ~tt

I L, Conw !
" | Archives t

........ ~ ~-¢,-~--,;,-~-~:~--~-~,- ~ -;4~ L ~ ’~

3~
3~t
55"

;37

.... LiD
all

Lt7

So
51
.SZ

5ff

5"
s7

(-o

~Z

6’+

MXP,
I~MX
l~ Kt..
l’4 KR,
MI-.X
I’4X$
N~X
M SY,7_
Mxs
MXC
McX

MRC
M ,X’P
h~k’9

P~N

R~N
R,q.
P~DR,
Ru
P~:bU
$t4
S~N.
s&

X
_ _ k

x ~(x

X Y X
....... ° ¯

× X %

X

×X X
X

XX
×
X

X

X % X ×

)< Y, X x

X

X

X

X

X

.X

X x

x X

X %
j L. Conway
[Arch,!ves I

~5
;6
(=7

70
71
"7z
,--/~

7~
’75

77
’78

So
~’1
’~?..

~o
’:/!

~3

¢t5

Su x X X X
,S:DL)
MN X X × "X
~N
i’-1I~
M3)P,,
PtU
1~3r.r.bu
~MN
MF’~U
3~N
"~’bH
::DR,

"P-.N’~
3"PF"
SNF

x X X 1<

× X .X

× X X ;~

X x ;K
X x /,.
X x X
X x x

S~
MI
{’IM[
"I:> z
~)B~
8cu.
.$C~.

x 7, X

×

X
x

x ×

X
X
×

x

x
X

r-

..,)

m

r"-

:’:

D

× ,,-4 X ~)4

x 7< ~ ~4 x

X

i°

>4
;,<

>(

;,<
r

>4

X >4
1

>4
/-<

Y- "~4 -./.

X

I~ ¯

.-.. ×�~,

.4: Plx:S

~’)’= .,I’

~ K :;..I"

~, Xz: $

..~ X,~ =:’]:)

,,~ X:’~"’).~ 5

..~ X~’+I=::])

o~ X~r =:,~

9

~6~ SIR
I~?. SIX
16~ Sl RG
IGbt" ~I XC

ir~G SI]:)C
1~’7
i#o
IG9
17o 8~:D~
171 TRFfi
17Z FaFR
173 ~i~, I~
171"1" T~)~Fa
175 F%~FPI
17~ E~ R
177 X.~RI%
17S R~’D’X
179 TRFX
IEo FRF~

X ~ R,X

IS7 T~,FC
I ~ .FR F (.

19o T.~Fr~
191 F@~c

x X ..x
X X)~

X ×X
X X×

X

X~
X
X
x

X
X
×
X
X

X
X
X
x
x
X

X
X

X
× X

>(
X
X
X

)<

X
X
X
X

X

×
X
X
X
X

X
X
X
×
X
X
X
x

i L. conway I

X X
X

X ~_
X
X

X x
X X

X
X

r

..... i

I L. Conw~y

~._. Archives

... ¯

.... o~ol¯ 0..I~. ~ ~.
....... . - if-_ II. -qr Ii-- I! -. h-. ,11--- -.--II-.:---,=,,-_ .-- liB-- II

........... ~:- U U--£,I ~ u~ h-,- m X- ~- C)

t~

I LXH
P.. L’X

q" ST ",<H
5 5TX

3T~R
7 !..%C

’~ LXCR

LRH
1o LR
i I LP~P~
IZ. STPIH
I$ ’STR

I~ 5"TRR
l~ I.-’D H
IG I-’b

ICl L~’TH
2.o LP,’T
2. I S"t PITPt

LL

ST L

6HX,

2~ L~
3o ~T~’4 ~
31 LI~.S

X

X

X " X

× X

X

X
X x
X~ x

X X X "7, X
X X X x X

X)4
X %

X X X × X
XX)< X X

X X
.X)~ X
X X X X X
%% 7, x X
X ~ X
X X X

...... °
I I

L. Conway
Archives

I

X)< x X

X X ×

X

× X
X X

X X X
X × X

)<

×

X

X

L

%.o

! .. conw,~, I

¯ ¯ ::.::-:~: ! ~. c~i

o " I

0

Su
S:DL~
I,¢N

70 l’-t P,.
71 I’43)~
7Z ~o

7~ F~N
75 h4~%U

7~ ~3)N
77 "~,I

~)~

3"PF.
~NF

~7

go S~.

9~. ~M I:

- " X

X

X

X .

X
X
X

X

X

×

X ~ 3---I

I-L, ooowov I

0

q7
qB
qq
IoO
}ol

I0"~

Ioq.

IO5

I o~’
IO5
IlO

Ill

113

lib
IIG
11"7

119
lao
I~..{
12.z.

17.q

Iv.f,

12.7

FIc~
8cH

CVN
CVI

~X
MX

P,x
Ft~c
~XK
MXK
DRXK
DXK
~XK
S~X
SNX

¢G~D

CF~G~I

×
X
X

x

"x

X
X

X

X

X
X
X

X
X
g

X

X

X X
x X

X
X

X
X

r

I

ill Coo"o;i

J

I

IZGI
i~,o

131

13~
13Lf

135

13"7

. 138

I ~o
IH-I
tqZ

I h~7
¯ le-f~

ILf,::/

151

1,5"7.

i ,,s’-~.
aSS
IS"~
IF7
i,sZ
ts~
16o

C~G~I)

CGt~I

CUG~I
C.6 ~X

C~X

CUG~X

CC-6XK

CUG~K

C~R
cgM~
c.B×
cB~ ,v,

SHR
~HK
SH Re.

SH~

SH.~..’<C
SV~

SIvA
:IF’X,
IFZ~
IF~_X

,~e~-r, ~
._~I~ ~o~ ,x. O-u O- ~ ~ ~ a; o

Lt iT,).3 2~1 ?,$ Zg ~lZ’/Zil ~.-el .30 "~I 3t., 33 3~ 3~’ .~ 37 ~ 3? ~I)

X X X

......... x ~ x
X X ×

x, × "/
× X "/,

X~ X
× x

.

× X
× x

;R x x

X X X

X

X,

×

X
X
x,

X
X
X
×

)<

X t "7_"S

I L, ~.onway
I,,,A’°~’v~ I

,,%

.. I1. ~11-" "J

...... i~i. ,I . - ,a

~I~
i,

~..: ×~’,,,.-. .-, ~. ~ ’~ ,~,,
+o ~ tO-~-~ -u~)¢ ~-0

~ SzR
aGz SZX
IG~ S! ia, C.
I G’-l- £I XC
I(o5 SI’D
tC~& SI~DC
167
t(4’
i¢~c/
170 8N~A
17 1 TBFfi
17Z F.~FB

1714" T~A
175 F~FR
17& 5CRR
177 X(~ZR, R
17~ R~oDX
79 TR F X
I~’o V:6F’K
I~j q~p.x

P’~FX

T~FC
FRFC

19o T~FC

19Z E~C

×

X
X
X
X
X
X
X
X

)<
X

X

X
X

K
X
X
X.
X
X
X

×

X

X

X
X
X

X

X
X
X

X
X

X
X
X
X
X
X

X

X
×
X
X
X
X
;K

Iv,-- -

I,. "L_~

Arc~tves
I

~Q3 X~RC.
lqH CNTT
195 CN’I’~
IC16 CN TI)F~
Icl7 C N TP.Y,

.9,,OO

2o~ ~F~F
2os I~

2.o’7 ~ F~F

o_o~ I~x~R

;2. I I E ><,Y~
~.IZ EX~’~ L
~3 ExITP,
,~.1~- E~,~TT3

2IS ~K~N’J~

2.17 S I< FI-~F"
~I~’ ~K~I~
:2.~9 SK’~,b F
p.zo ~;KF~F

IVz,~

X
X

k_

X
X

_ X

X

x

x
X

X
%

7,

X

X
X

X

R

7,

X

l
X

X

R

×

×
X

X

X

X
~K

X

X ×
X X
~ x
X X
× X

X X
X ¯ y,

7,- X

X
X
X
X-

X

X
X

;<

X
X
X

"K

X

X
X

X
X

X

X
X
x

X .!?-~

I L. coow~ I
~ Archives

2.2.~
2ZG
227
229

ZZ3
230
231

23Z
233

23~
235
2.~G
2.37

2.33
2~o
2HI
2L~?.

2HH
2~5

2H7

2H3

251

253

25S
25~

P~OsE

SvC

Ic

TCH
FIT’~

i’.19r
l: TOHfl

i:pa

L’O~-t g.~.

~TD P~f~

STb P,C¢~

ZI "~Z

¯ r--.

l "LG

i
III

L. Conway i

, Arol~Ives

............................. 4t_ 4z. 43 _Nq 45 ,t~, 47 4t’ 41 so s~ s~. S3 s,t s5

P__.Z
2,2_

22
2.’7_
’7.. ’Z.

:2..7_
7_ 2.
27

J L,. Conway
........ | ~rchlves !

. - o

J

F.R| I~?. I~

35

37
MXR

M~S
NSX

HI,, M~B~
H7 M XC
% M CX
H~ M LC
~o MRC
51 M ,X?
5Z M ~’~
~3
5~
SS
5’. F~N

Pt’bN
~R

~o ~u
61 f~L)
~z S t4

L-o

L
t

IL. Conway

i, Aio~!,,,~ I

q7
q~
cFi

lO0
Ioi

Io~
IO5
IO[)
I o7
I o~:

IIO

111
IIZ,

I13
11~
If5
11G
117

11"~
119

I?-..I
| Z.?..

IZ3

I%’7

AC~
$cH

"SN
CVN
CVI

Pi%
~X
MX
.’I)%X
3"/,
RX
Rxc.
~XK

"~RxI<
DXK
’I). X,R.
S’PX
SNX

c.(i=.,,,~

CG~.’b

CMG’~N

1
1

1_
1

J_

L

_ J.
L
J.

t
L

cta~u~

CG~I

CUGEI
CGEX
C~QX
CUG.=X
CG~ XK

CUGE;~K
C~F~
C,~ F~
CI~×

................
i

.................

I
l
.t
l
L

L

~HFt
~HX
SH ~c
5;1-’I %(,.

SH~bX

SNDXC.

~vJ~

l

l

.k

l

].

o

°

-- "r’-

J

IG2.
163

165
IG&

t~9
17o
171
1"72.
173
17t¢
175
17&

177

~79
I~0
I~!
187-.

I~S "
I~
IZ7
I~’~

Io,,o
19t

SIX
S1~c
B’[XC
SI’D
SI~C

i

8~R

FaF~

F~FF~

EQ F~
,×~a
R~D ×
TRFX
F~FX
c~x
-r.~ F ×
F~;X
B~Y-.
x~X

T~ FC
FRFC

T~. ~C.
F~ ~C

1
l
1
1
1
l
1 I ~3 ?.-

...... ?

J

t,=13

v ’-t
IqS
life,
jcl7

2.oo

2ol

2~B
2o~.}-

2o5
2..o,~
2.o’7

2o’:/
2-1o
2.11

217-.

R.13

;Z.l14-,
21S
2..16
2.1"7

2,. ! ~’
:zj~/
.22.0

2ZS

X �iRc..
CNTT

CN T~R
c NT,~X,
c N-’r’~x

"g ~lg’b

"I~TRV

:5-.r~ F’
3F~F

"gu

!~’),.. IT~

S~,T~F
S"Ki",~ F

SK×~F,
I’~;g

~9.’P

L

!
l
l

[
I
t
1
l

t
t

-- r-

i$3

L. Conway

J

22~,
2Z7
2Z’~

zz~
230

13Z
z23
~gLt
IE5

a~G
2-37

/39
2qo
lel

2,~7

~f9
~LSO
251
2~Z
2s3
25~

~6

P~UsE
PI
,SCRI~
SVC
$V’R.
"[C

TCH

MT~
M~T

FI~T
TOM R

r TU~ ~"

Iron
uDA

CDh~%
C’b,",t ¢

LD.~D,q
STD H~,q

STD ~C~

.... I I I

L~H

3 L~¢F~

5 STX

3TX~,
7 LY,.C

LXCR
i..RH

13 3T~
IH" ~T~R
I~ I.-’D H
I~ I..~
17 ST3)H
l~ ~Tb
I~ L~rN

Z! $7 f~T~t
Z2 3"T ~’~
?..3 LL
~f L.~
~.~ ~T L
2G ~Tg,
,9.] LI-1)~

2~/ LM PI
30 ~T ~fi
31 L,"~ S
~- STp~S

I

I

33
3~
3S
3&
37
3B

WK
~3
~W

H&
~7

So
51
52
S3
59
5~
5&
s7

5~
~o
61
~Z
43
6~

MXF~
t~PtX

MI~R
M uX
MT~S
N~X

M ~C

~uC

I’,1 ~P

~N
P~N
R~
F~D~
Ru
R~DU

S~N

2

I
I

Z

2

2

2

J

tsfo

I, con,,, !

p’p~ ,-,

G

i--

1--~

i..r

i--

I,-" I-,--

Iv l.-- i..w

PO

O

%.

it,

ll~l"

tt’~’

Q

"rl

"!%

"ll

i,-I

¢~

J

ct7
q~
�~
loO
IOl

IoH-

IO5
IO~

I o7

IO~
IIO

111
II~

I13
11~-
If5
lIG

11"/
11~
11~
IZo

I ~.

17..~
I z.5

12.’7
I~

RCH
$cH

SNI
CVN
CV!

~X
hlX
3%X

F~Xc.
~x1<
M,x,~
~kxl<
1~XK
1~×~
S’P~
SNX

1
1

k
J,-

=

129
I~0

131
137_.

13"~

135

13-/

IH-o
I~I-I

lh’3

I ~FE
ILt~
I ~7

¯ l’~g

ISo
ISl
IS’Z

I E’~/,
~$5

IS’7

IGo

C~GL=’I)

c.G~ "[

CECIL
CUGEI
CGEX

CUG~X
CG-~XK
C~XK
CUGE,~K
C~3F~
C~MF~

c~t~X

SH ~
EH % C.

SH~×
S~t~C

S~
~v~X

~FX

][F~X

s4 s7 st~ ~ ~,o ~1 6~, t~3 G~I 6S ~6 67 ~ ~7 7~

l

....

£

1

L

H

l
\ 1~--.

l

H

l

..... °

J

IG?..

IGH-

1~7

!(~9
17o
17 !
172.
173
17H-
1"75

17"7
I"/~
1"79

I~1

I~
I~-~
I~
I~
187
I~

191

$I×C
SII)
SI3)C

1

Fl~)vl
T~Ffi

F~F~

E~ F~

TAFX
I=~,FX
q~x
T~F

~QX
×.~RX
BN~
T& FC
FF~F¢

F@ ~c

. - . _ .

I
!
J
1
1
1
1
1

_

.J

~93

Jq7

2,oo

2.ol

2~3

2.05
2oG
2.o7

209
2.1o

2,.11

iklLf-
215
7..IG
2.17

~J9

~2t
2~2.
223

X �,Rc.
CNT"T
CNTPIPI
CN 7"~) rl
CNTAX

C N "F:bX

"8 Rlgl)

"~TPIF
~F~qF

F~F

I xCR
"Bu

S K.TF~F’
S I<IFF~F

SK~-#F
S’KF~F

1
t
1

. .L

I,--k

J

22G
227
22~
2z~
23o
231
2~Z
233

23~

~37

~HH

~7

~H9
~o
251
25~
2~5

25S

~A, OSE

~cA~
SVC
$VI~

MT~
~XT

C~HP.R

STDH~..~

HC~
°

@UT~.V L c~rTP~T ~’~E~ �ob~. ~S ST~TS.

~Rcs~, STCS~ ~,,e ~.., s,,e l~,K, I L, Con.~
SI~P, SkT, p ~F,~P x,A Po,~Tp_C~

Cn~..’l~¢S IDENT, cvc.&l’N’r" d(~ll

- L. Conway
Archives J

"5 =G5 : cI3 (o’~

~J

~" = R?-- :

,.T- ~ ¥ "

i 1 ’

L. Conway

IIIArchives I

t

T~e..

tl

&@S "
H

7

tl

R C~} = so~cc¢
R (-=~ = I>~ST

II Pt (,Y-) : S o~�~.�

15 c B (z) "- ~)~sT

?,Z
~3
"2,’~

"Z.G
z"7
F..’S’
z~

B "~ (zl = :be,,C’T

CC~).= D~s’r
~_.(.:~ = ~0~,~-~.

ST<~ �.PI GE = "~> E ~"T"

~ l zs~, so’)

~HG

[L. Conwm,
[Archives,]

!

I.IZ.

~3
~Lf
~5

q7

P~>D q
F M i>"/

C I,,1~

<~HFT

P.
I..-

.J

d

m

.... Archives

’ P’oP..~T_ o;:: XI~uFFt I~uCF"

~J

I
?..

i+

7

IO
J1

IZ,
13
Iq-

I�,
r7
J~

"2.O
Z(
?.Z.
?.3

2~
25

I.ETTE~.
oP

iOENTIS "l ~6

N ~)(’~ il EIC. (~ t:=~)e.

,|

K ill

s F~= ~>DIZEF$
RC>P

S~P

~L,Conway

_Archives I

nun iii

L,,.,,__ -_ _ J .

Su~,.)Ec...T To. ~I-
f~vRt~.. Ps~" FoP-

- | I . .

I

X

I,e- ~ ~’auF --> l

xaN DT
,l’I""" R,NI’T

;<BUFF

~uFF

FI~N £T

INT~(1, F ROE-

: " " " "X "" "’ I("

Fo ~T bP
III

II I

out P~ Cf~i’~.’b~
BE.

/
?

t

I.I

IK
I LIl"
@R,~NCM
~KIp

-~PNu~
~ENGTH

1

9.4

53

G!
6?..
G3

,l.X IS
.l.X AG,
~x Z~

IxI%

3~5

2)~%1

11
II

Archlves

.

/j., ’~BM CONFIDENTIAL ’ -4-
..../-:~.

,

’.

) * OUTPUT TO BE USE-b---As’IiNI3"U-i~O--TTt4-i~G;--gRO-C-kX~
/ ~ .. .+

" ~: i- ICCOGCAXKWIcOOg2 11,00,00,I00046)0
AXKk

O i I o0oo~ -A XK~
0

1CC006- AXK~
IC c o oe--Cx

0 " ,oeoos
. ,. - I 000 10

¯ ICCOlt

0 xcco12
16001]
I-00015 LXW--

0 IC0011 LXW
..................... I coo t’:;

. I GO02C

0 icoo2z
IC0023
l’C-O0 ~-~ LA

0 100026 LA
....................... 10002 ~ LAW

IC0025 STA

0 " I C0030 STA
1 C.0031 STAk
I-C-OO 3-3 LAD

0 zcoos4
-- -- ’100035

(~J

: 1C003~
/- lCO03/

I C0031~
z -Co0-4-~

12)O(J, O0 , 100047)0
13)00)00) I0004())0
14)00)00 , I00056)0
0-I’-)-00-) 00-)--i’99999)0

tX C0)II)00)199999)0
LX CI) ~1)00,199999,~
LX . C2)12)00)199999)0
LX C3,13)00,199999)0
LX~4 C4 ,C t ,00 ,I00048)0

6b ,01)02) 10004 I)0
GO ,01,01,100047,0

STX 01)CO) 14) 199999,0
SIX 00)1~,01)199999)0
STXI~ C2)OZ)O0) 1000~6)0

.OOG I00046 100002
¯ OOG 100047 ICCC04
. 000 100048 100006

000 IGO0.56__IOCC08
000 199999 I00009

000 100046 IC0010
000--160046 IOO01l

OOG 100047 100012

000 100048 ICOC13

OOC 100049 I60C15
000--I00050 IO001?
000 160049 I00019
000 100056 ICOG2C
000 100057 IC0021
000 IC0058 I00023

STXW co,oo,03,1ooo~6,_9__oo.o__IC.O9SgICO025

7-1zc
__130 ..

130
130

I00046
IG0048
100050
IC0056
IC0058
160060

60)00)11,I99999)0 OOG
CI)00)13)199999)0 000
02tO2tO0)IO0048|O 000
C0)00~16tI99999)0 OOG
02,02)14,1909~9,0 000
C1)02)02)IC0066)C COG
60,00,II’~199909)0 OOG 100046 180034

LAD 02,04,II , 199999,0 OGC
LAD C4)0-~) 13)I09999)0 OLC
STA8 ’C0,00,14) I99999)0 OOC
STAD " 02)04,14)199’)99)0 000
LADW C6)00)00)124s24)0 000
LADW 08)00)04)I00056)0 000

lCO050 106035
[C0053 IC0636
:00056 100037
100060 100038
124£e4 IC0040
IcOO~O I0OO4 2

I

2_°

2
2

1

1
1
1
2

1 "-

.1
.... 1~;

1 ’
1
2)

2. 2
2 2 ’ ’:
3 I

4--2"--7---,
4 2

ICOQ.24L _ 6 I "
IC0027 6 I
100029 7"~ 2
106030 8 l" "

IC0031 8 1
I00033 9 2

16 1
]G l
lC I
12 1
12 1 ,

11 2
..... 1I 2 ’ "

0 IC0042 LAD~ I0)03,05#I00056,0 OOC IC00~ IC0044 11 2

............... f I’ __ --. __I_; l | -| T0

.... ,-
~

I1" i ’ / ’ !o,: ~-~-. ,:)I,, ,) "°°~-~’°~"~’~’~_
o-:,-,--

¯ " i.- i ! B~’.a),)ch so~(: o,) =x,, B~,’r CtF f’)o l I II e,.,,,.,,- ;, : ~ -~_- ~ .. .

.OP ~1 r~ ~ ~,~, o~:~’ ~" .,
-0

I~ ~T 1

I i _ ii

t
t
t

ii

1

(

F~l SSS’t C~

i

z L6TTE~

L gusto

_ ii

t

I °’)
tj

C

f~Sus sC (~t, Io,~

?_ L~TT ~R

t

!

!
i

~egolE

1

II

i :: oo~wa,, i
Archives

o

¯
0

q~

!~~ ~,. ~%)

" ~�~ ~ "~4. ~,s~.~

C

C
C

C

2-
~ 6v$"/ (PeST)"o

¢

L, Conway
Archives

r

THS EV EI,4"I"

L, Conway
| Archives

TIMI NG i i
u - "’

:i

X ~,,,+t~ ,+ ,-,,, +,,. .+ ,-,~

~- ~.,~. ~~.~ ^.-~

P~

I

e~�~�

! L, co,-,,,,<:,,,, I

¯ -- m_

t
¯ A

iI |

D.

/ -

1~?o5 I~qo6 177o7 l ~?o~’ 179o?

J

i

MAY 1 8 1967

I

I:IRST

x~g ~z .oo)

t~oz.9
xF~csc (’,zoo3

IG 030

1710S
APSL.¢’r(3oo)

177Zo

~77~7.

mSm~,z 18 3~’ ?-..

8’ ~ mo
"/~ C ~ l~P ~, L=-mf’

II

~I l.,I..

12. "7."I

�1 67._ ~3

~¢J~ WATe3T H~TE~T

i i

2.a7

l

X~:u e,,:: (rzao)

2q ,g

I ~3 oq m B ~o ISI 1 o

16 I~o

I a,,::;,:t o

16380

172.32.

17

J’;Tio 177(; I 177lD~ I

I w

<j R, (.8") .~T(~’) sK~,,=

i i i i i

I’~7

181’/3
ssTt~p

832.~
xil’x.~ (’,,~’)

I
"’ L. Conway]

...... Archives

Archives

®

i

I 3 ~ ~ ZL~

q)

~-. ~--~ "’r "~-~’~"_ ~.---~,-~ . ~.~.\ ~-

eFs~o~ ~r.) : 3

iwse,~s (7) = ’t

l G--?

~, ,...onway
Archives

Subject:

Reference:

MPM-BLCU Interface for Store Ops

Conversation with Mr. G. ~f. Paul, R. ~’. Robelen and Mr. J. R. Wierzbicld

*o: File - -"

" --., " . - . - . . - . . . - . ". .

It is desired to associate the Request Stack1 with the ea buss1 and the

Request Stack2 with the ea buss2. Additionally, index type store~

shil~ 24 bit data words to Request StackI on X DATA BUSI and to Request

Stack2 on X DATA BUS2. These busses are associated with and

energized at the same time as their Corresponding ea busses. See

diagram in Figure I for X unit, Figure 2 for the BLCU Request Stacks.

The situation of interest occurs with A unit type stores. The STO

effective addresses are processed in the X unit initially. Store addresses

are presented to the BLCU Data Request Stacks in strict order. Ea bUSSl,

ea buss2 or both ea bussI and ea buss2 may be selected. When both are

selected, the first store will be on bussI. A STO. BUS First-ln-First-

Out "column is filled in o__rder with the names (I and/or 2) of the ea busses

~used to transmit the effective addresses to their corresponding Request

Stacks. At the end ofthe X unit interlock cycle the A unit interlock

cyc~ may respond to the particular store initiated by the X unit, Wherr

the A store address arrives at its corresponding Data Request.Stack, it

is assigned a slot in that particular stack and that slot name is placed

in either the REQI or REQ2 First-ln-First-Out column. t
/ /"

k6%
~’ L, Conway

Archtves

" ~~:~::~:~::~;~"~!:~-~i~’’I~~ :~ ~: "~~-~- ~--i~: (:" i~~:~?~~~"~ i. ~~:"::~:~"!:~. "~i
,-~-..--/(~;~;p~-e ~. :: ~- " " : ~ ~~i-?!~;"..--:~.. ~.~-,~’::~,"..:~i-~-~: :~:~- ’"-. :~~-.~: :;

Meanwhile, the A unit instructions in contention examine the top two

entries in the STO BUS column for validity. One or two stores are I

allowed to "go" if the ent~’ies are valid and the other staridard inter-

locks are satisfied. The first store takes the buss designated by the

- iname at the top of the STO. BUS buss column; the second store would

.... take the next name in the column if it is different from the topname.

Our current thinking is that two uninterlocked stores can "go" in the "

¯ A unit if [hey are in adjacent contender positions. For this reason

if three stores in a row are in contention and the store buss colu-I~ff---

is as follows:

V Name

11 i 2
: I1 1

I0 I -
I0 I -

only the top A store wi!l go this cycle. The column will then look like:

V Name

1
0 I -
0 I -

, 0 .[-

The top two A uninter!ocked stores will go now if they are adjacent in

the contender stack. The first store will transmit on A DATA BUS2 and

the second on A DATA BUS1 to the corresponding Request Stack. The

name of the slot of the data buffer to be filled is taken from the top

i-L. Conwa¥
I Arc~ltves I

entries of the REQI or REQ2 column. Because two stor4s occupy

both busses, only the top entry of each REQ column may be intel-rogated.

The top entry is removedfrom the appropriate column when the data

J
L. Cor~way
Archives

.... " ~’:~ ’ :!:i~:~iI:i:’

+F?, -’~" " -" L .

... . --

.... ~__.__: ,+.:. ~- ;.+- :.~.+++ :-+- +: -:

+. - , - t+ .- ¯
.. .. .

___; ::" :’2....,+~’+ .. + -.-~+:- : - : + " ¯

+ + ’
. ~- -+

.... ++- - +.

.................... g~z
..... f ~..

- I,+o L-I L
+:ro a I,.,+0+I ’

I

.

t

<CE]],9 ,

,---~)(’,. ~.T.~l

- X b~’+-" ";’,,..+~� . I~ ’.-"-

t
!

I

I ~-’+’: I

~___ 1

i_.-: -,.

" ~-"/~ +..

L, ConwaY
Archives

.P~ ~..8 "2..

D~-T~ f3oS !

°

~- i~T~ ~,~ ~

%

-I
---I

......... i-..

- . r-

d

\-TZ-

|_,,,,Archives _ "

- ,;..

7

N<

S
-e,

/ ’!

,tJ

e,K, : I~E’~])W =~.o o

~L4

IL. Conway
Archives I

C

c.

C\ J

JO

Jl

J~o

L C~ C:z, L~,) = o

"btii~ ~0 "r:..I.,, ~l~$P’t.t.

t-7~

i L, Conway
Archives !

.....

c.

(:

C

31

32-

too

IF(~(,~s, J~,1, eQ.o’) ~ ~ coo

I:;S’uE iNS" T’~ (’.l(r-I~TY

I:)~T : (.9,(.1~$I i(;)

X -- ~Cl~s, f)

3)p 30 z : ~S~H

spT~

[I
L. Conway
Archives

iii I I

C_

C

(2

C.

P...

E~’rlt.v x ~ Ibus’/

/.. = ’P~A?.

9

/t BuFu L./.gEST) = S,
R~TUR/4
/~ 8 u,,f’y (’Pe:)T) = O
"~. ~, (~)~r)=o

Eu’~y
~9~ io

i~= 7.oooO
C=l©l

r-

i ii

I -’ Conway
i_ Archives 1

C

...... C

" ¯ ¯ C

c
C
C

C

C

C...

.

A:~6$’Y (3) = I.
-r-~ i,o

w ~ L ,,

F 5 T~#,6

�.-)~ 1"1 ~
a ~ -’r$ 7

Z..-

H

cft d I") ~ u ~

w o~m" w~

~o (.~~ ~.

Dg~ H ~ =-,,31

~,~ (~,)-~

I
’" ,_. cor’,way !

Archives i

........... 7 7 : : :

E :- Is31
IF Cs~,SA(z, "=.).’~..L) =,, "r-~, 6’

C.

IL, Conway

.A_rchtvesI

r’+

~-+ ~ _’_,~_.

:
F

- !

%g 6usy

~u ~LL

~ ¯ ~r-,~vA)’ / D

_ ~ ~_~" ~ _

~o \°,
I . P~ ~- o

~3J

.

°

v ,,.+,,~

d

Loci z

\

":t,.~,,x ~-L.~., ~+-...,-.~

I i NT6,.’�.

ill ii iii

$

~J

i

i,

(i{~ IF ST = 0) IZ~ovr sw~ e (:~r,

I.I~ $’T~ UC, T’I 0 I~ $

Z:

i.

]I

6Ot~Jr. Pr’r ~’~0 oF r-)<.6(. "Trios /NTI. I< o~

........................ : TZ.

................................... Cor~’r~)E R.

[
| . . I

I

................ ONE ~c L ~_ ~ ~n ~- ~,

. ~, ExiT "r-N%T ~NTK

.......... A)

I

PEr.. IA L ~7+jT

.. p,, AL~ C~ba

EXiT EX F. r..~G~o ~J

ET-

I . CYCLE

3~T E~IT ~’~

~e-o,,., AN E×)T

I .

,9

)

F"L4(-, "re..

L. con,,,;~,/t

!) V°,_!__ ~_-_-7-.-_._:n~RANcH Fl^Nbu~ oNr

i

ET E6A .._ EE=

l~&-

.................... ESA =

................................ ,"~ _. EFFFCTavF_ ~R,,t~c~

... :_A DO~.~
..

~Flkl~TlO 1,,1.~ ’,

i

.. CoN-re~EP.. iSo~. AH~,~b- OF I

_5~ ~NoP-
......................... ~kloF>

i CYCLE

RsT ’#’AL~b i~,,T" ON
!

i
i

A.~ T "
-- .

0

i
!
I

t

P

,�..

~. ~. - ,~, __._.__
tU

d"

u~

!!’
L~:~ t

°
. 1 ¯

\ q :~

:!--~:.{-l.L"i.~+i .i.: ,. i::’ .. f -:i ’~.:+ -~. i i-r "t+,.+:-,f+:i :<:~.:..;~.. !,:~,+T:.+.+.~ ,~ t : ¯
--+" ~, - " ~ ’~’--~;--’-~--"---’+--- i-.. [....--~" "~’~-- .~ ~ ’ ~-~-+" "~ "~ ’-"’ ’ " ’ --¯ +

’ l r " " i " "

! | " . ,
s - [¯ < ~ , i , . +’ ,

...... :-’-- i " i

{ ¯ .

.............................. -~ ~_-__
,e

..... - T"~ i

- ... - _ . . +

I+ ++++!+ + ++
............. ___ . . X . 0 - ~v~+’~l+l _ --:- -.

i,

j , , :-’; , _+:

...................................... + °.- I ...

¯

................ °

............. ¯ i +,.

w"-

¯ + t~7 +.

(d.-,~:~ ,~ ~-;~~ ~ ~ !. ~ " i’~ i.-)

,:. !. "-X 0

!

I

I A~’" ’- k. L’

IF. t,’, .’~..’, C %i:: L~,i’, Y.’:’-~ b,

l- }::’L_ "~ ’ ’" .; ""C.’., :- ;’!"N" : , :2

ri !

:2;

\

["" -’ i.".:_-,’ :?.... /. ; .L ,,!":-

! ~} : F,-- ",, ,’-,k’-:: ;’:.£.

~t.j

¯ 2.

:i’. ,:’: .::."..’. ’.7

~" ’.i!" : i:i’~¯-
i"¯ ;~" L-~

L. Conwayii
ii

Archives I

.-~/ ,?. ~,?
i.!. &"; ,,--.

1

AT

° .

°

&

1

O.. A~ ~ "-0"_

°

~,,~- ~ ,~ ~,~,~

!
!

\

I

I

1

IC’LO uO .

]

’T

I:!:

0

_L~ NT1 -X

: ’- ’ - : .; . .~ %-50N qd ~N ’
.~~t~:o.~ ~x4 "-, ’i ,. " , : -: ""

©

¯ .{-6.;:::--’.: ::u...=:: "~LL" !

- "7

¯ °

°.

._!/ 1,%o~
¯ i L. Co.w~ I

i A~ch~v~s !

..... i se^l~4oZV~ . " ..

I l/a::>,~uoo "t.

-<°%:.:.-: .~ ;,"WL-. - ~ :" ’ " " -. - .-
¯ -"- v :--.: ---,,-,.~- .~ ~~?.’~+: ?-rFh’’’’*’:~-__,. ,,--., :<-"’.-,-w

"z.i,.sj~,~/’,¢S q?-d/=i -~__A-d~-..znQ f "V ~" - 0 - /. ’:" L/ (..j

j - _.~lrt(?--~(..... ~. - : ¯ --’~ ’

¯ ~ ; j; ,~;_:,n - .-,<C’l-z"~’J) ~., ~..
"::" ~ , ~ ~ /,, :’ I , (,. , -n " , "

. .-.--:~.~.-W.:--.- - " - - . " " - --.
¯ .~47._ ~;~ ~ ¯ ¯ - . .
"’"?"~ " - - -_A~---+-:<-’~---,--", --- of>

" " - - -y’v×,_~ -’-X:-_-y~"~’ -_:
~.~ ,,~

/). . -

~.,~?_’:-~’J ~1"/.~? . , ~) S, eT-m ~._c7~,.-~
I’I I :!:, "/."Y~_~4 "/., ," ~- .--<~j.:J:., ~ - " t,. ~i" . ’ I " (;7 /-! ¯ >,.:-7 y"y, .~’,. / .~:~’ # - .

,.~" ;:..... ,
~- ~ ?_:. .: X,. .

¯ :
i: ".

i : :

m:: L : : ×?..~ h.~::::..Y:/__....... "7""L" &.
I ¯ . ¢i.~_:_~:_,_ ,. ~ .::-~: -_.~~

-: ..

h ~ , :-:: "
~, .::," - ~ - ,’~ : /I - /l " .

* " . ~4.~, i" ¯

.. .- j?,:,o~,j V-._ - --- "" <," ’, -
... :* -_.

....... : " : " " : " " " : ~ 1 - ""

,’t

rill

0

I

2

3

4

5

6

7

8

9

A

B

C

D

E

JF
L.

HEXADECIMAL AR|THB~I¢ --

I 2 3 4 5 6

02 O3 04 05 06 O7

03 04 05 06 07 08

04 05 06 07 08 O9

05 06 07 08 09 0A

06 07 08 09 0A 0B

07 00 09 0A 0B 0(2

08 09 0A

O9 0A 0B

0A 0B 0C

OB OC OD

OC OD OE

OD OE OF

ADDITIONTABLE

7 8

08 09

O9 0A

0A 06

.9-~..:-:;A ¯ ec ~O..~-Y
’1111 I I .~

o0"::~" ’~;~:01~ ~~ 0f

"08 " ~: "0C ’:i. 0D .0E ."’.0F ~ - 10:

’ oc oo-. oF OF ~,0 f’~

F "

¯ -I’O:.i ¯

12

I
"0B

0C

0D

OB OC OD

OC OD

0D 0E OF

0E OF 10

OF 10 11 !2

10 11 12 13

0E OF 10 11 12 13

OF 10 11 12 13 14’

10 11 12 13 14 15

OF

10

il

0C

0o
0E

-01)/

OE

OF

01: I0.

10 11

11 12

12 13

13 :.. 14

14

14 15

15 16

j]6 : 17

OE--OF."i.}’]O’:’’ -~iI:: i2- 13-

!. or ’::"-~ "::fi
10. 11 12

. i~ .IZ. ’ 13.
.. 12.::...13 : 14.:.

.: : :.

11I~;~ 13 - 14 .!

13. J4.. 15

~4 ~s,: 16 :
15 16 ~._JT...

:,~_

=.,

98

1 2 3
I I

2 04 06

3 06 "09

- 4 08 0C

5 OA OF

6 0C 12

7 0E 15

8 10 18

9 12 1B

A i4 IE

B 16 21

C 18 24

D 1A " 27

E lC 2A

i.F 2B1E

4

08

0C

10

14

18

1C

20

24

28

2C
3O

34

39

3(:

5

0A

01:

14

~.9

IE

23

28

2D

32

37

3(2

41

46

4B

..: ¯ ~ , ;.-.~- .:~..-
6 " 7 8 � -~:’ A B*’ C. . O ’. - i~ . F=.~:..~- ..,"

.... " ’ ,"It " ~ , 11 ~ .

OC OE I0’" 12" ~.: ~: i4 16 ¯ - 18 .:..I~,:, !C :"IE:.}~:
:I

12 ; ¯ .15 :t’I8 ::11’~.~ ~|’E 2i 2"~" ":-}27. ~ ::~" ’{’::
...,.’. ;. ¯ a"-’~- - -~ " ~;:~"~.. :"~’-"’" I: ,

., . i’-. " ; ’ ’" ~i ’ ’ ’ " ’~ ’~ ~’

~ .,’. ; ~’ " " "" ’" ’ I’ " "

2A ~ ’3~: - ~8 3F :46 4D 54 : ’: b~ -... 62,. -.;.~ 69
" . -’": . .. ~., . ’;-- ’ " ~L.:~.,,J,t- T).~: .. !..

30 ~:I-’~6"~.::40 4s’,,’~.vso se 60.. ?’~. 70..~’..~78~y
¯ 2~,..~:~I ~: . ,

... ,;~:,,;.... ~
.. .. :, ":,e’":":" ...,

.; .- .
, .

.....:.,.:....:... ,~, ~,.-:.,,g.. :... :.
,.3C. ~ 5A::...:. ;.::~:-:. ,6E ! 7.S.~:i ’,.~.i~,.~!~"7.~ :~-’9~:I~ ,,

-~,~’:i F:..Y:" ’ ".":’: ".; ’, ~ ’ ," ~-’~

4E i 5B 69 75;":,; ~:~l~: ,’~--.,,..B6~,.~ .,’~ C2.,.,.~.,:
. ~,. ,,, ; 4’~ ~.,¢ .~-54 :~i.. 62 70"-’:~ ~’::;".;. ’,.’~;-.gA:: .-;/AS !::’ :::..~ ."-B6’,. ~. ,C:~ :...:.:’..." ..,.-~D~ ~.’.,..:.-,";,

sa i6~ : 7o . ;~::~,..~ : ",~:i . ~,..i;= ~ c3-*.’,: o~-. ~1~Ig, --¯ ¯ " :::_:}:::! "--:~ "- ": " ¯ :" " ...;:P.’:..’,.:.::~’.":ii’ :-...~.:~b:. .,

|:~

..... I L. Conway j

..... ,.,, ~::;~ A~c~v,. I

Appendix D. Powers of Two Table

~" IZ 2-n

1"- 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16-. 4 0.062
32 5 0.031
64 6 0.015

128 7 0.007

256-- 8 0.003
512 9 0.001

1 024 10 0.000
2 048 11 0.000

4 096--" 12 0.000
8 192 13 0.000

16 384 14 0.000
32 768 15 0.000

65 536-- 16 0.000
131 072 17 0.000
262 144 18 0.000
524 288 19 0.000

1 048 576-~ 20 0.000
2 097 152 21 0.000
4 194 304 22 0.000
8 388 608 23 0.000

16 777 216-. 24 0.000
33 554 432 25 0.000
67 108 864 26 0.000

134 217 728 27 0.000

268 435 456"- 28 0.000
536 870 912 29 0.000

I 073 741 824 30 ~ 3~::
2 147 483 648 31 ~. ;.~,.

4 294 967 296-- 32 0.090
8 589 934 592 33 0.000

17 179 869 184 34 0.000
34 359 738 368 35 0.000

~’~i: ,z~’~
J

5":’:i " ~’-

625 . ~>’"
812 5

906 25 ,,.:
953 125
976 562 5
488 281 ~25

244 140 625
122 070 312 5
061 035 156 25
030 517 578 125

015 258 789 062 5
007 "629 394 531- 25
003 814 697 265 625
001 907 348 632 812 5

000 953 674 316 406 25
000,476 837 158 203 125
000238 418 579 101 562 5
000 119 209 289 550 781 25

000 059 604
000 029.802
000 014901
000 007 450

644 ~’~’,.,~ ~90 825
322 ~e~-~,~ 312 5
16i Z~;.847 656 25
580 596 923 828 125

C30
JO0
000
000

003 725
001 882
000 931
000 465

290 298 461 914 0625
645 149 230 957 031 25
322574 615 478 515 625
661 287 307 739 257 812 5

000
000
000
000

000 232
000 116
000 058
000 029

830 643 653 869 628 906 25
415 321 826 934 814 453 125
207 660 913 467 407 226 562 5
103 830 456 733 703 613 281 25

-L.

I L’C°nway i
Archives

Appendix D 135

t ,ArchivesI A,c~,,,~, .~

Appendix E. Hexadecimal-Decimal Conversion Table

The table in this appendix provides for direct con-

version of decimal and hexadecimal numbers in these

ranges:

H~XnDECrMAL vEcrMAL
000 to FFF 0000 to 4095

For numbers outside the range of the table, add the

following values to the table figures:
HEXADECI.~.fAL OECI~fAL

1000 4096
2000 8192
3000 12288

|IEXADECI~IAL DECIN[AL

4000 16384
50O0 20484
60O0 24576
7000 28672
8000 32768
9000 36864
A000 40960
B000 45056
C000 49152
D000 53248
E000 57344
F000 61440

0 1 2 3 4 5 6 7 8 9 A B C D E F
O

000
010
020
030

040
050
060
070

080
090
0A0
0B0
0C0
0D0
0E0
0F0

100
110
120
130

140
150
160
170
t~o
190
JA0
1B0

~:~ ICO

ID0
1E0

I Ir___L_°
136

0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 00150016 0017 0018 0019 0020 0021 0022 0023 0024 00"25 0026 0027 0028 0029 0030 00310032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 00470048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063
0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 00790080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 00950096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 01110112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127
0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 01430144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 01590160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 01750176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191
0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 02070208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 02230224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234[0235 0236 0237 0238 02390240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0o~0 0251 0252 0253 0254 0255
0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 02710272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 02870288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 03030304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319
0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 03350336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 03510352 0353 0354 0355 1~356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366"-03670368 0369 0370 0371 0372 0373 0374 0375 0378 0377 0378 0379 0380 0381 0382 0383
0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 03990400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 04150416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 04310.t32 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 04470448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 04630464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 04790480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 04950496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

:+

p,...

-I

++’~ z++’+ E"+ ~M ~~ ~+l~ "~ l~ +-’+ ~ ~ ~ m ++++
~ ~’~ ~ ~t~

~ ~4~
~L~ ~00~ ~ t+~

{.0 c+; ..1 1--.+ <~ c,,.~ ..~ ~-, (Jr ~, {,~, ~-+ e.,~ (.D

l--+k~

ram+++++ ++ +++++ ++ ¢+¢~ ~m NN"++,or++ ++ ++-+=

~:, (...~ C.~ C.~ C.~ +--.+ +-.,

-..+] ~,-.-+ C.~ C.~ +.0 (~, ~,-,+ C,.~ e.,D ~" C..;t

t a ~a
+~ ~ ,-++-+-,_--to,°° --.3

I,-, �,~, .+~. e,,~
L+~ ~I~ @0 0":’ ~L~ e.~ t-,~~ ~ ~

(.’t ,~.
~

,.~. I .~ ~, ~-~ ~ ~+~
~L~ ,~+.,~ ~ ~ +,~. ~ L~

""rX ~"" ~.~t
~" 1"~ 000+~

++~xx++++++=x++r+r++++++o~++~+o oo~= ~r+
~m +a ~ "+ ’- + "-+" ++ ’+ +
~.-..+�,’lt ..r-.Xk...., ~’-"�,’t ~.0 C~......I~...., +..O0.:’’-I ~..-’�.~C..D(+~ -~-...e.jIt{..O I--+ �,;t

++++ +¢,~, EE,~+

~+++.4 ++ "+mt+~, +++ I~ It~ t~,.It+,,~,~ ~++m+=== ~ t, + I-+ ~m+ i-, i-,

t~

~+++-41~++ ~’ ~ + ~+~ -4~ ~ I0++++ ~++++., O~ ++"+4+ ~ I-, i~ l-~+~+~.4+te~
,-zj

-ooo oo+ +m o,o + ~ +++ +~ "’"

++oo oo+¯I .?~t ~ +~ O~ ,,,.~ I~
)..,+

,-~oo~+++~oo 0o~ ~ooo+.,, +.+,,+.,,ooo~
L~

+++++ +oo~ ~oo ++ ooo +oo

++o oo0M oo o
�Oe+_O

+’-" �’L+rl ~____. "’t ~--’~

+=~ ~°°~ ° ~ ==aa aooa ==°=..,.., ~ ~ ~

sm +mm m mmm -4

..,.,.00~ ~o~ ,o=,o~ +"’+"’

++++oooo+++++oooo++ moo +++++

o~-~?J o~.+-++ o~ 0o~ ~.~c~

,--.,...,oo oooo °°Po~ °°~ ~oo~ ooo ooo ~ooo t~

t..,,+l,--+OC~ OOC:~, OOC~,~ O0 0

,-’,-’oo oooo oooo oooo o o,=,o~ ~ooo o oo~

oo

0 f

O~

+o0+--++-- +--
+,o,0...~+ +--+

~-, t..@

--++ + +

~ -.4 0"1 Oe_~ Io ~’-’

~+ +3+,~ ~ ~ ~ ~-~

O~ ~0
O~

oo~ N~N B NNN

++ ++ + + +

~.~ ~I ~ ~

ol

,:,,0 1
|

I

,~1

I

¸"-’4 I

° °
0 F

l’

:+::::’:+.::::-:::;+:-;::::++::::~ ~ G,~+7 u_ - +:’-:’- +++ ++" +" -- ;+++-~+’:’~+++ ++-~’: + "’ + ’ ,!
i %

~L~

I

i~;;~ +++;Y~ i: ; .;y; i,+ .. +*--+:

m

I’-"

+~ I~

m~
i 0 °

3

~t
I

+ ’ ~im

I

0 ’ " 0

lip

t

Ii
F¸

ISN 0003 COMMnN TIME, IPAR[~ IPAR2t IPAR3,
A AINPT, NABUF, ABUS(SO;, XINPT, NXBUF,
B XBUS(50), IFADD, IFDST, IFRTN, BRXP,
C BRAP, ER(8), BEI8), ETIBI, NBBUF,
D AHOLDT, XHOLDT~ AFRCT, XFRCT, BOSC, c�

E BNOP, XEP, ALP, PHI(IDOl, PRINT, !
F FSTADD, NODOT, NOPSC, NOBUS, NADSP,
G NXDSP !

ISN O00~ COMMON/RLSI FIRST, NAREGS~ NXREGS, NABUS,
A NXBUS, STATS, ACON, XCON, AEMP,
B XEMP, MXO, AFULL(12), XFULL(12), AGO(12),
C XGO(12), NAGO, NXGO, NATEST, NXTEST,
0 NAFAC, NXFAC, ABUSYZ, ABUSYI20O)~ XBUSYZ,
E XBUSY(200), ABUFF(12,IOO),XBUFF(I2,IOO)~ASOR|[2,2OOI, ~
F XSOR(12,2OO),ADEST(12,2OO~,XDEST(12,200), AFAC(12~IS),
G XFACiI2,IS), AFACSC(~IS~20),ARET, XFACSC(4,15,2OI,XRET,
H ABUSSCI4,10,20),AIBBSYIIO|~XBUSSCI~,IO,20),XIBBSYiIO|,XFIBUS([5),
I AOBUS(I2,1q),XOBUSII2,10|,AFSLOT(IS,20),XFSLOTiIS,20),AFIBUSi[5),
J AFDLY(IS), XFDLY{[5), AFOBUS(15), XFOBUSII5I, NSLOT,
K ABUPSZ, ABUPS(200), XBUPS(200), ABUFUL{200), XBUFUL(200),
L Q(16,16), SDBA{32,2), NQBUF~ NOTEST, NQGO,
M QINPT, QCON, QEMP, MBUSY, MFREE,

......

T SN 0905

N LOAD, ME~DLY, MEMORY(16), NB~X~ EAV~
0 MXTIME~ OUTLVL, IO(~,16I, RTN, LONGBR,
P SR(8), ST(B), SKXP, SKAP, NSBUFe
O APASS(200), XPASS(2OO)e OUT(2), JOBI6), SSTOPe
R MEMCNT(16), ABOX(I5), ABXBSYI[O}, XBOX(15}, XBXBSYIIO)

COMMON/RLS! LAST
ISN 0006
ISN 0007

INTEGER OUT
REAL MEMDLY,MXTIME

ISN
ISN
ISN

0008
0009
O010

REAL TI~E
EXTERNAL FINIS
CALL ABNER(FINIS)

ISN DO11 illI CONTINUE
E .5ISN 0012

ISN 0013
CALL INIT
CALL JSTART{ENDRUN)

ISN Onl~
ISN 0015

CALL [NTPH!
IF(ENDRUN.EQ.I) ST~P

ISN 0017
C STEP THRU CALENDAR

]000 CALL TSTEP(EVENT)
ISN 001.8
ISN 0020

IF(SSTqP.EQ.I) GO TO Ill[
IF(OUTLVL.EQ.OI WRITE(6,900) EVENT

ISN
ISN

0022
002~

IF(TIME.GT.MXTIME) GO TO 999
GO TO |I,2,3,~,5~6,T,8,9,10,11,12,13,1~,15,16,17,I8,I9,20,21,22,

I SN 0025
ISN 0026

X 23,24,25),EVENT
[CONTINUE

CALL XSTATS
lO ISN 0027 GO TO IOO0

I L, Conwoy

1- Archives I
3

2

0

)

I SN
ISN
ISN
ISN
ISN
ISN
ISN

0030 GO TO 1000 9 ! : :
0031 3 CONTINUE z !~’~’~:~i~}::~;
0032 CALL XACON
0033 GO TO 1000
0034 4 CONTINUE OL i ~ :::!~"
0035 CALL XXCON L~ ~,-
0036 GD TO lO00 ET

ISN 0037 5 CONTINUE : ’ :,.
ISN 0038 CALL XAEMP
ISN 0039 GO TO I000
ISN 0040 6 CONTINUE
ISN 0041 CALL XXEMP
ISN 0042 GO TO I000
ISN 0043 7 CONTINUE
ISN 0044 CALL XARET
ISN 0045 GO TO tO00
ISN 0046 8 CONTINUE
ISN 0047 CALL XXRET

)

)

II

II

II

ISN 0048 GO TO I000
ISN 0049 9 CONTINUE
ISN 0050 CALL XEAV
ISN 0051 GO TO I000
ISN 0052 I0 CONTINUE
ISN 0053 CALL XOCON
ISN 0054 GO TO tO00
ISN 0055 II CONTINUE
ISN 0056 CALL XQEMP
ISN 0057 GO TO I000
ISN 0058 12 CONTINUE
ISN 0059 CALL XMBUSY
ISN 0060 GO TO I000
ISN 0061 13 CONTINUE
ISN 0062 CALL XMFREE
ISN 0063 GO TO I000
ISN 0064 14 CONTINUE
ISN 0065 CALL XLOAD
ISN 0066 GO TO 1000
ISN 0067 15 CONT[NIJE
ISN 006~ CALL XRTN
ISN 006~ Gn TO I000

IsN-o070 16 CONTINUE
ISN 0071 GO TD].000

.... I

ISN 0072 17 CONTINUE
ISN 0073 GO TO IO00
ISN 0074 [8 CONTINUE
ISN 0075 GO TO 1000
ISN 0076 19 CONTINUE
ISN 0077 GO TO I000

11

9

8

6

5

3

2

II

|~ c’,--,,-,,~,"~ I

)

ISN 00?8
ISN 0079
ISN 0080
ISN 0081

20 CONTINUE
GO TD 1000

21 CONTINUE
GO TO IO00

PAGE 003 i:

l

6

~t
||

~t

ISN 0082 22 CONTINUE
ISN 0083 GO TO 1000
ISN 0084
ISN 0085

23 CONTINUE
GO TO I000

ISN 0086 24 CONTINUF
ISN 008? GO TO I000
ISN 0088 25 CONTINUE
ISN 0089 GQ TO IO00
ISN 0090 999 CONTINUE
ISN 0091 A=I
ISN 0092 B=20000
ISN 0093 CALL TROUBL(A,8,O)
ISN 0094 GO TO 1111
ISN 0095 900 FORMAT{I8) ..2::..
ISN 0096 END

i

@

@

@

@

9

7

I , ’ ,--" ’. |! c. ~..v,,.uy !

3 I~

2

0

!

5
4

3

2

0

o cox,,., - ’ .- - , _ ~. ~,~,, ~~,+~,+~, ~ _ ~+._.++

0
V.._ F.

..

t
I - +::G

0

.......... ~e,,,,+ -+ +,+~_++ 6,--~,k.__o+ ~-.~u~ ,,+ +...,.t-.,, ~,...,i,,...~ ~ ~+,.+,
0

~.~s ., __ e~ -- ~+~.~0 c.,~"o~ - a~f~"1~- ~L" ~ ~’~7 :__~__,o,,,~ ~ ,.,.,.k,.,.,..~ e ~..�6X,.~ .

C
ISN 0006 COMMON TIME, IPARI, IPAR2~ IPAR3t

A AINPTt ABUS{50)t XINPT~ NXBUF,
B XBUS(50)~ IFDST~ IFRTN, BRXP~
C BRAPt
D AHOLDT~
E BNOP,
F FSTADD,
G NXDSP

NABUFt
IFADDt
ER(8)~ BE(8)t ET|8)~
XHOLDT, AFRCT, XFRCTt
XEP, AEP~ PHI(IO0),
NODOT~ NOPSCt NDBUS~

NBBUF,
BOSC~
PRINT,
NADSP,

ISN O00T

COMMON AREA FOR PHASE I

G
H

K
L
Y

COMMON IPHASI/ OOTLt DOSLt DOCLe IBCL~ HISL~
A SKXV, SKXCt SKXSt SKAV, SKAC, SKAS, CYCL, KY, SY, PTR, XX~
C XIC, AIC~ ASA, NFA~ DFA, DENt DOT, IBN~
D XICR, AICR, PTJ~ PTK, XEXT, AEXT,

DOIB(20), DOST{20), DOAP{20), DOXP(ZO),
LDEV(20), LDOV(20)t LDCKD(20), LDSEQ{20},

I LDAW(20)~ LOAF(20}, LDXW|20), LDXF(20),
J HIST(12), IBA(12), LIBVIIZI, LIBW(IZI,

INDP(30)~ DP(6000), LBXI8), LBA(8),
PBUF(8)t
KNT{50)~ PHEND

ISN 0008 COMMON /PSCS/ LPSV(8), PSCA(8)tPSCB|8)
*, XEXt XEXS, XEXA, XEXBt AEX, AEXS, AEXA, AEXBt

EBA~ EBXSt EBXA, EBXB
*,EBX

@

.,@

0

0

0

®

O

O

I

0

©

C
ISN O00q
ISN 0011
ISN 0012
ISN 0013
ISN 0016
ISN 0015
ISN 0016
ISN O01l
ISN 0018
ISN 0019
ISN 0020
ISN 0021

9 ISN OOZZ
8 ISN 0023
7

6

5

4

3

2

J .-L Conwc~
J Archives [

UPDATE 00 LEVELS
912 IF [LDXF(OOTL|°AND°LDAF(OOTL)l GOTO ?[3

GOTO 915
913 ~ON[INUE

LOEV(DOTL)=O
IBCL=DOIB(DOTL)
DOIB(DOTL)=O
DOST(DUTL)=O
OOAP(OOTL)=O
DUXPIOOTL)=O
LDDV(DOTL)=O
LDAW(DOTL)=O
LDXW(DOTL)=O
LDAF|DOILI=O
LDXFtDOTL)=O

0

0

0

0

0

O

0

’0
ISN 0026 LDCKDIDQTL)=O
ISN 0025 LDSEQ(DOTL)=O
ISN 0026 DOTL=DOTL÷I
ISN 0027 IF (DOTL.GT.DOT) DOTL=I
ISN 0029 IF [DUIL.NE.DUSLI GUTO 9[Z

ISN 0031
ISN 0032
ISN 0034
ISN 0035
ISN 0036
ISN 0037

ISN 0038
ISN 0039
ISN 0041
ISN 0043
ISN 0045
ISN 0047
ISN 0049
ISN 0050
ISN 0052
ISN 0053
ISN 0055
ISN 0057
ISN 0058
ISN 0059

PAGE 002

915
CHECK FOR RETURN OF REQUESTED IB

CONTINUE
IF {IFRTN.EQ.O| GOTO 925
LIBW(IFRTN)=O
PBUPI41=IFRTN
IFRTN=O

925
C

CONTINUE
CHECK FOR RESOLVED BRANCHES

SEQ=O
IF (XEX.NE.O) GOTO 941
IF (AEX,NE.O| GOTD 942
IF (XX.NE.O) GOTO 930
IF (IFDST.NE°O) GOTO 930
IF (LDEV(DOSL)) GOTD 930
NNFA=NFA+8
IF (NOPSC.EQ.O) GDTO 916
DO 926 I=ItNOP$C
IF {LPSVII).EO.O) GOTO 926
IF (NFA.NE.PSEAII)) GOTO 9Z6
NNFA=PSC8(I)

~Z~-2 "’
926 CONTINUE

h-K J

9 1

6 ’

o, ! 0
t[i

~t

: ()

40

©

0

0;
0~

ISN 0060
ISN 0061

)
ISN 0062
ISN 0063
ISN 0065
ISN 0066
ISN 0067

)

] -- ISN 0068
ISN 0069
ISN 0070

)
ISN 0071
ISN 0072

) ISN 0073
12 ISN 0074
11 ISN 0075

) ,o ISN 0076

916 CONTINUE
NFA=NNFA

SCAN 18’S FOR REQUEST
DO 917 I=l,IZ
IF (IBA(1).EQ.NFA} GOTO 920

9IT CONTINUE
I=l
IRCL=HISTIt)

REQUEST INDTRUCTION FETCH

IFAOU=NFA/2
IFDST=IBCL
LIBWIIBCLI=5

SET NEXT DO ENTRY
918 CONTINUE

XX=t
PBUF|I|=NFA
PBUF(2|=IBCL
PBUF(3i=DOSL
IBA(IBCLI=NFA

!

0

0

~)

0

O

0

Z,7 r 0

4 0

0

PAGE 003
ISN 0077 LIBV(IBCL)=I
ISN 0078 DO 919 J=l)I1
ISN 0079 919 HIST(J)=HIST(J+I)
ISN 0080 HISTII2)=IBCL
ISN 0081 DOIB(DOSL|=IBCL
ISN 008Z LDEV(OOSL)=I
ISN 0083 LDCKDIDOSL|=O j
ISN 008~ LDSEQ[DOSL)=SEQ
ISN 0085 LDDV(DOSL)=O
ISN 0086 LOAW{DOSL)=O
ISN 0087 LDAFIDOSLI=O
ISN 0088 LOXW{OOSL]=O
ISN 0089 LDXF|DOSL)=O
ISN ooqo DOSL=DOSL+I
ISN 0091 IF (DOSL.GT.OOT) OOSL=I

0
i:

(:

" 0
9

, @
8

6

o, 0
Lt

~L

0

0

0
ISN 0093 GOTO 930

!0
C REQUEST IN IB, S - SET-UP

ISN 009¢
ISN 0095

920 CONTINUE
IF (LIBV{I).EQ.O) GOTO 917 0

ISN 0097
ISN 0098

~) I SN 0099
ISN 010I 921
ISN 0102

¯ -~ c
ISN 0103 930
ISN 0104

:) ISN 0106
C

ISN 0108
~) I SN 0109

ISN 0110
ISN 0111
ISN 0113 932
ISN 0114
ISN 0115
ISN 0116
ISN 0117
ISN 0118 933
ISN 0119
ISN 0120

C
~ ISN 0121 941

ISN 0122
ISN 0123

" ISN O1Z4
~2 ISN 0125
11 ISN 0126

.~" lo ISN 0127
9

5 | L. ~)w,,,,Ay

,~ ’ | Archives
3 II
2

}

IBCL=I
DO 921 I=1)12
IF (HIST(II.EQ. IBCL) GOTO 918
CONTINUE
GOTO 930

CONTINUE
IF (NOPSC.LT.2) GOTO 935
IF |LPSVfNOPSCI.EQ.O| GOTO 935

MOVE PROGRAM ENTRY INTO PSC
K=I
N=NOPSC-Z
DO 932 I=I,N
IF (LPSV(1).EQ.O) K=I
CONTINUE
DO 933 I=K)N
PSCA(1)=PSCA(I+[I
PSCB(I)=PSCB(I÷II
LPSV{I)=LPSV(I+I)
CONTINUE
LPSVINOPSC}=O
GOTO 935

CONTINUE
XEX=O
AEX=O
EBXS=XEXS
EBXA=XEXA
EBXB=XEXB
XAF=O

®;
oi

:z-,=

0

0

0

,~.i)

©

0

0

0

)

2
ISN 0128 GOTO 945

c
ISN 0129 942 CONTINUE
ISN 0130 AEX=O

) ISN 0131 EBXS:AEX5
ISN 0132 EBXA=AEXA
ISN 0133 EBXB=AEXB
ISN 0134 XAF=I
ISN 0135 GOTO 945

C
D c

ISN 0136 945
ISN 0137
ISN 0138
ISN 0140
ISN 0142
ISN 0143
ISN 0144
ISN 0146

) ISN 0147
ISN 0149
ISN 0151 946

) ISN 0152
C

ISN 0154 943
ISN 0155
ISN 0157
ISN 0159

) ISN 0160
ISN 0161
ISN 0163 947
ISN 0164
ISN 0165
ISN 0166

- ISN 0167
ISN 0168 948
ISN 0169 949

i~ ISN 0170 LPSVIN)=I
ISN 0171 PSCA(N)=EBXA
ISN 0172 PSCB(N)=EBA

j ISN 0173 GOTO 950
C

ISN 0174 955 CONTINUE
ISN 0175
ISN 0177
ISN 0178 GOTO 943

i c
12 ISN 0179 950 CONTINUE
u ISN 0180 DOCL=DOTL

} ~o ISN 0181 ~ 951 CONTINUE
9

8

, ziq
: |L. co0w [
2

)

SCAN PSC~S { INVALIDATE MATCHES
CONTINUE .~ ~’--~ -,
EBA=(EBXA÷8)/8=8~ - /
IF(EBXS.NE.O) EBA=EBXB/8*8’f

IF INOPSC.EQ.O) GOTO 950
N=NOPSC-1
N2=NOPSC-2
IF (NOPSC.LT.2) N=I
DO 946 I=I,NOPSC
IF (LPSVII).EQ.O) GOTO 946
IF IPSCA(II.EO.EBXA) GOTO 955
CONTINUE
IF IEBXS.EQ.O! GOTO 950

INSERT BRANCH ENTRY INTO PSC
CONTINUE
IF (N.EQ.1) GOTO 949
IF (LPSVINI,EQ.OI GOTO 949
K=I
DO 947 I=I,N2
IF ILPSV(II.EQ.O) K=I
CONTINUE
DO 948 I=K,N2
PSCAIII=PSCA(I+I)
PSCB(II=PSCB(I÷I)
LPSV(II:LPSVII+I!
CONTINUE
CONTINUE

IF (PSCB(I).EQ.EBA) GOTO 935
LPSVII)=O

t;

£

PAGE 004 �

0

0

©

0

0

0

0

0

0

0~

0

C)

©

0

0

@

0

0

0

0

_)

)

3

)

.)

.)

)

ISN 0182 IF (LDEVIDOCLI.EQ.O) GOTO 952
PAGE 005

ISN 018~
ISN 0186
ISN 0188
ISN 0189
ISN 0190
ISN 0192

ISN 0194
ISN 0195

952

IF((LDXF(DOCL).EQ,O).AND.(XAF.EQ.O)| GO TO 953
IFI(LDAF{DOCL|.EQ.O).AND.(XAF.EQ.I)) GO TO 953
CONTINUE
DOCL=DOCL+I
IF [OOCL.GT.DOT} DOCL=I
IF {DOCL.NE.DOSL) GOTO 951

NO AVAILABLE ENTRIES IN DO TABLE
NFA=EBXA
GOTO 935

ISN 0196
C

956 CONTINUE
ISN 0197
ISN 0199
ISN 0201
ISN 0203
ISN 0205

IF (LDEVIIgI.EQ.O) GOTO 954
IF (DOXP{19I.EO.EBA) GQTO 935
IF (LOEV{20|.EQ.O} GOTO 954
IF [DOXP(2OI.EQ.EBA) GOTO 935
GOTO 954

ISN 0206 953
ISN 0207
ISN 0209

CONTINUE
IF {IBA(DOIB[DOCL)).EQ.EBA) GOTO 935
IF (XAF.EQ.I) GOTO 956

ISN 0211
ISN 0213
ISN 0215
ISN 0217
ISN 0219
ISN 0220
ISN 0221

954

ISN 0222

IF(LDEVIt7),EQ,O) GO TO 954
IFIDOAP||7).EQ. EBA| GO TO 935
IFILDEViZ8).EQ,O) GO TO 954
IFIDOAPIIBI.EQ.EBAI GO TO 935
CONTINUE
LDSEQ(DOCL/=I
ASA=EBA
SY=O

ISN 0223 CALL SEARCH

ISN 0224 935 CONTINUE
ISN 0225 RETURN

C
ISN 0226 END

12

tl

10

9

s "Z 7---0
7

6 i---I
I

5

4

3

2

0
£

©

9

, ®
8

6

~
LL

~L

0

0

.0

0

0
a

~J

Q~
1

0~

©

©

.... 0

)

~chlves J

0

©

0

0

LEVEL 2 FEB 67 051360 FORTRAN H DATE 67.Z6511~.00.59

COMPILER OPTIONS -- NAME= MAINtOPT=O2,LINECNT=5OtSOURCEtEBCDIC,NOLISTtDECK~LOAOtMAP,NOEDITeNOID

ISN O00Z $UBRUUIINE PHIMUP_/
ISN 0003 IMPLICIT INTEGER=2iA-KtM-SeU-Z)
ISN 000� IMPLI~]I LUEI~AL~IILI
ISN 0005 IMPLICIT REAL IT)

c
ISN 0006 COMMON TIME, IPAR1, IPAR2, IPAR3,

A AINPIt NAbUP, AbU3(50), XINPI, NXBUF,

B XBUS(50), IFADDt IFDST, IFRTN, BRXP,
C OKAPI ~KlUIt BEISi, tllBl, NBUUPt
D AHOLDT~ XHOLOT, AFRCTt XFRCT, BOSC~
E BNUPt xkPt A~P, ~Ht([uOlt PRINT,
F FSTADD, NODOT, NOPSC, NDBUS, NADSP,

NXDSP

ISN O00l

C
ISN 0008

~UMMUN /PHAlli DULL, DDSL, UU~Lt IBCL, H|~L,
A SKXV, SKXC, SKXS~ SKAV= SKAC~ SKAS~ CYCL~ KYt SY~ PTR~ XX~

XICt AIC, A3A, NPAt UFA~ UkNv uUI, IBN~
D XICR, AICR~ PTJ~ PTK, XEX~, AEXT,
G UUIBIZUI, UU~l (ZUIt UUAPIZU), UUXPIZUI,

H LOEVI20I, LDDVI20)~ LOCKOI20), LDSEQI20I,
i LDAW(Z0)~ LUAPIZUly LDXWIZOI~ LDXPIZOI,
J HISTI[2), IBAIX2), LIBVIIZ), LIBN112),

JNUV(~0), OPi~uuuJ, L~XiUI~ LBA(8),
L PBUFI8)~
¥ KNI(501, PHkNU

UP = |IIJN3AUUt (z)MN~M[~ (~)MNLMZt (~|MN~M}t (5111~ (hi|Jr

(7)IK~ (8)ILIT~ (9)SUCC~ (IOISKP~ (11)IEX, II2)ACCADR,

(18)BROP, (19)SKOP~ (20)SKEND~ (21)SPARl~ (22)SPAR2~
(23)SPAk3, iZ~iSR~P, i2~iVAL|U

.()

@:

O

0

C)

0

ISN 0009 ENTRY XMXO

12

I1

9

8

) ,
6

ISN 0010

ISN 0012
I~N 0013
ISN 001~

ISN 0016

MXO=2
CALL CAUSb iMXU,ilME+I.UtiPAKitlPAK2, iPAR3)

711 CONTINUE
XX=O
NCTX=NXOSP
NC~A=N~OSP
DO 3 I=[,8
L~XII)=o

(D

0

L, Conwoy
Archives !

O
2

0

PAGE 002
ISN 0018 LBA(I}=O
ISN 0019 PBUF(I)=O
ISN 0020 3 CONTINUE

C
C INDEX OP FLOW Lt
C ,r--

C MOVE X-OPS TO STACK FROM OISP
C

ISN 0021 DOCL=I7
ISN 0022 XIC=XICR
ISN 002] Ill CONTINUE

)

}

)

)

)

)

)

)

}

ISN 0024
ISN 0026
ISN 0028
ISN 0030
ISN 003l
ISN O03Z
ISN 0034

ISN 0036
ISN 0037
ISN 0039
ISN OO4[
ISN O043
ISN 0045
ISN 0047
ISN 0048
ISN 0049
ISN 0051
ISN 0052

ISN 0053

ISN 0054
ISN 0055
ISN O05l
ISN O059

II2 IF (LOEV(DOCL).EQ.O) GOTO 130
IF (LDXFIDOCL).NE.O) GOTO II6
IF (LDXWiDOCL).NE.O) GOTO I13
DOXP(DOCLI=MOD{XIC~8)
LDXW(DOCL)=I ~"

113 IF (DOXP(DOCLIoLT.T) GOTO 20
IF (DOXPIDOCL;.GT.71 GOTO II5

CHECK FOR IB CROSSOVER

IF [OP(PTR÷25).EQ.O) GOTO 34
IF (OPIPTR+IT)°EO.O) GOTO 30
IF {OP(PTR+IS).EQo[) GOTO ZO
IF (DOCLoGTol7) GOTO 130
IF (LDEV|DOCL~I),NE°O) GOTO 20
GOTO I30

115 LDXFIDOCL)=I
116 IF [OOCL.GT.[7) GOTO I30

DOCL=I8
GOTO 112

C
c CHECK OP ENTRY
C

20 PTR=(DOXPIDOCL)*ZS)÷((DOCL-[I*IZS*B)| ~ ~.~,,.-,~.,/~--.~
C BUS= ’X’

BUS=Z31
IF (OP(PTR+25)°EQ.O) GOTO 34
IF |OPIPTR+IbI.NE,O) GDID Z[
GOTO 30

@

0

0
L~

z

0

0

,:~)

ii)

PROCESS INDEX OP

12

11

¯ ~o

ISN O060
ISN U~6[
ISN 0063
15N OOb5
ISN 0067

7

6

5

21 CONTINUE
IF (XINPI.GI.NXBUP| BUIU I~O
IF [NCTX.LTol) GOTO 130
IP |UP|PIR+I~|oN~oO| GUIU ~I
IF (DPIPTR+20)°NE.O) GOTO ~5

C

IL, Ooow IArch!yes

0

0

04

0

g

0

PAGE 003 9~
MOVEX-OP TO XBUF AND GO TO NEXT

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
[SN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

0069
00~0
0072
0073
0076,
0075
0076
OOT~
0078
00~9
0080
0081
0082
0063
0084
0085
0086
0087
0088
0089
0091
O09Z

ISN 0093
ISN 0094
ISN 0095
ISN 0097
ISN 0098
ISN 0099
ISN 0100
ISN 0102
ISN 0103
ISN 0104

23

C
Z5

CONIINUE
IF IXEXI.NE.O! GUIU Z9

LBXINCTXJ=OP[PTR+23)
XBUS{II=DP|PIR+Z]|~Z96
XBUS(2)=OPIPTR+I~)
XBUSI]|=UPIPIH+51
XBUSI4)=OPIPTR÷61
XBUS(~|=UF(FIR÷I)
XBUS(6|=OPIPTR+t2I
XBUSIII=UPIHIK+II]
XBUSI8I=OPiPTR+I6)
XBUSi~I=UP|PIR+[[I
XBUSiIOI=OPIPTR÷9)
xbu$iLLi=u~iPmK+LO)
XBUSII21=OPIPTR+18)
XBU~iI]|=UPIPIR÷[~)
XBUS(I4)=OP(PTR+20]
NCIX=N~IX--[
CALL BUSTOX
IF (UF(PIR+Z~).Nt.UJ GUI’u Z~
OPIPTR÷I6)=O
GUIU]0

CUNIINUE
XEXT=t
IF |UP|PTR÷ZO|°NE.O| GOlD 130
XEXT=O
OPIPTR~I6)=U
8NOP=O
IF IOPIPTR+9].EQ.O| GOTO 30
XIC=OP(PTR+13)
LDXP(OUCLI=[
GOTO Ill

6i

tl

<)

@

©

0

0~

0

C9

D

D

ISN 0105
----- ~06

ISN 0108
ISN 0109

ISN OLlO
ISN 0111

ISN OII#

STEP BY OP LENGTH (I,2l TO NEXT ENTRY

30 OOXPIOOCLI=OOXP(DOCL|÷OP(PTR÷[5)
IF (UOXPIDU~Li.GI.I| LUXP|UULL)=L
XIC=XIC+OP|PTR+IS)
GUIU Ill

STEP UVER 5PA~E ILl lO NEX[ENTRY

}@ uuxP(uUCL|=UUXP(UUCL)÷I
IF [DOXP[DOCLI.GT.7| LOXFIDOCLI=L
XIC:XILt[
GOTO 111

7 06
5

D 4 0

0

S"

PAGE 004 9
C CHECK X-BRANCH OPS z
C s

6ISN OII5 41 CONTINUE
ISN OII6 IF (BNOP.EQ.O) GOTO 23 oL (~
ISN 0118 NCTX=NCTX-I t[
ISN 0119 OPIPTR+16)=O ~L

’ ISN 0120 GOTO 30 (~
C

ISN 0121 45 CONTINUE
) ISN 0122 IF (ERIBRXPI.EQ.O) GOTO 23 Ci~

ISN 0126 OP(PTR+20)=O
ISN 0125 IF (LOAFIDOCL).NE.O) GO[O 23

) ISN 0127 XEX=I
-~ISN 0128 XEXS=OP[PTR÷9)

ISN 0129 XEXB=OP(PTR÷I3)
} ISN 0130 XEXA=DOAP(DOCL)

ISN 0131 GOTO 23

c (~ISN 0132 130 CONTINUE
ISN 0133 XICR=XIC

c 0
C

ISN 0134 811 CONTINUE

ISN 0135
ISN 0136
ISN 0137
ISN 0138
ISN 0140
ISN 01~2
ISN 01~
ISN 0145
ISN 0146
ISN 01~8

C ARITH OP FLOW
C
C MOVE A-OPS TO STACK FROM DISP
C ~

DOCL=I9
AIC=AICR

211 CONTINUE
212 IF (LOEVIDOCL).EQ.O) GOTO 230

IF (LDAFIDOCL).NE.OI GOTO Z16
IF (LDAW(OOCL).NE.O} GOTO 213
OOAP{OOCLI=MOOiAIC,81
LDAW(DOCL)=I ~ ~’-

213 IF (OOAPIDOCL).LT.T! GOTO 70
IF (DOAP(DOCL).GT,7) GOTO 215

0

0

0

CHECK FOR IB CROSSOVER

12

11

~ m
9

8

ISN 0150
ISN OlSl
ISN 0153

ISN 0157

ISN O161
ISN OI6Z

PTR=IOOAPIDOCL)*25)÷{(DOCL-[)*I25~B))
IF IOPIPIR÷ZS).EQ.Ol ~ulo 8~
!F (OP(PTR+I7).EO.O| GOTO 80
IP (UP(~I~÷LSJ.~g.L| ~UtO #O
IF (D~L.GT.I9) GOTO 230
lh [LUEVIUU~L+II.N~,UI GUIU ¢U
GO TO 230

Zlb LDAP|UUCLI=[

ii:,

0

O~r..

Arch!yes
!

°i0

) O~
i:
£

PAGE 005 9
LISN 0163

ISN 0165
216 IF (DOCL.GT.19) GOTO 230

OOCL=20 8 ;
ISN 0166

ISN 0167

ISN 0168
ISN 0169
ISN 017l
ISN 0173

GOTO 212
C CHECKUP ENTRY
C

C BUS= OAt
BUS=I93
IF (OP(PTR÷25).EQoO) GOTO 84
IP IUPIPIR+ItI°NE°01 ~3IU II
GDTO 80

6

~L

ISN OLT~
ISN 0175
ISN 0177
ISN 0[79
ISN 0181

PROCESS ARITH OP

7l CONTINUE
|P (AINPI,GT.NABUPI GUIO Z30
IF (NCTA.LT.I) GQTO 230
IF (OP|PIR+ZOI.NE.OI GOIO 85
IF(OP(PTR÷26).NE°O) GO TO 75

0

©
C

) c
ISN 0183 73
[SN 0184

) ISN o186
ISN 0[87
ISN 0188

) ISN 0189
I SN 0190
ISN 019L

.) I SN 0192
ISN 0193
ISN 0196

} ISN o[95
ISN 0196
I SN 019�

i) ISN 0198
ISN 0199
I SN 0200

I SN 0202
15N OZO]

) ISN 0205
I SN 0206

C

!) I~N oZo7 7~
~ ISN 0208
11 lbN OZLI9

) ~o ISN 0211

9 IsN 02i,"

8

) ’ ZZ5
6

MOVEA-OP TO ABUF AND GO TO NEXI

CONTINUE
IF IAEXI.NEoO] ~UIU I~
LBAINCTA)=OPIPTR÷23)
ABUS([)=uP(PIR+Z~)~Z56
ABUS|2)=OP|PTR÷I#)
AUU~(3)=UP|PIH÷5)

ABUSIA)=OP(PTR+6)

ABUS(6)=OP(PTR+12)
ABUS(TI=UP(PIR+I~|
ABUS(8)=OP(PTR+16)
AUUbIgJ=UPJPIK÷II|

0

z

0~

0

ABUS(IO|=OP(PTR+9}
ABUS(II|=U~(PIK+IUI
ABUS(12)=OP(PTR+18}
AbUbtI~)=uP(P/K+Ig)
ABUS(L4)=OP(PTR+20)

CALL BUSTOA
|b (UP|PIH÷Z~|.N~.U~ GUIU l~
OP(PTR+I7)=O
~UIU 80

©

CUNIINUE
AEXT=I
iF (O~(./K+ZO)°NE°ui bUlU 230
AEXT=O
OPiP~R*i7)=O

)

©

IL. c onwoy I
0

0

t,

PAGE 006 9
ISN 0213 IF |OP|PTR÷9).EO.O) GOTO 80 z
ISN 0215 AIC=OP(PTR÷13) 8
ISN 0216 LDAF|DOCL)=! 6
ISN 0217 GOTO 211 0L

C. tL

STEP BY 0P LENGTH Ilt2} TO NEXT ENTRY 0
ISN 0218
ISN 0219
ISN 0221

80 DDAP(DOCL)=DOAP|OOCL)~OP(PTR÷I5)
IF (DOAP(OOCL).GT.7! LDAF(DOCL)=I
AIC=AIC~OPIPTR÷I5)

0
ISN 0222

ISN O223
ISN 0224.
ISN 0226
ISN 0227

C
C

84.

GOTO 211

STEP OVER SPACE Ill TO NEXT ENTRY

DOAP(DOCL)=DOAPIDOCL}÷!
IF (OOAP(OOCL)oGT.7) LDAF(DOCL)=I
AIC=AIC÷I
GOTO 211

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

0228
0229
0231
0232
0234.
0235
0236
0237
0238

C
85 CONTINUE

IF (ERIBRAPI.EQ.O) GOTO 73
OP(PTR÷20)=O
IF ILDXF(DOCL|.NE.O) GOTO 75
AEX=I
AEXS=OP(PTR~g!
AEXB=OP(PTR÷13)
AEXA=DOXP(DOCLI
GO TO 75

ISN 0239
ISN 024.0
ISN OZ4I

C
C

230 CONTINUE
AICR=AIC
IF ((AEP.NE.OI.AND.|ER(BRAP).NE.OI| AEP=O

0

0

0

0

0

D

@

12

I1

10

ISN 0243
ISN 0245
ISN O~r
ISN 0249
ISN 0251
ISN 0252
ISN 0253
ISN 0254.
ISN 0299
ISN 0256
ISN OZST
ISN 0258
ISN OZb9

C
C

620

630

UPDATE D|SP A-FLOW
IF (LDEV(I9}.EQ.OI GOTO 620
IF (LDAF(19).EQ.O) GOTO 640
IF (LOEVI201.LQ°OI GUIU bZU
iF (LOAFI20)°EO.O) GOTO 630
CUNIINU~
AFIL=NDBUS
AUSP=I9
LDEV(tg)=o
LD~V(ZU|=U
GOTO 60
CUNIINUE
J=19
K=ZO

0

0

0

0

0
j"l’, Conway J

2

0

! SN 0260
ISN 0261
ISN 0262
ISN 0263
I SN 0264
ISN 0265
ISN 0266
ISN 026T
ISN 0268
I SN OZb9
ISN 0270
ISN OZ~[
I SN 0272
I SN 0Z73
ISN 0276
ISN OZl~
ISN 0276
[SN OZ,T
ISN 0278
I SN OZ ~9
ISN 0280
ISN OZSI
ISN 0282
[SN 0Z83
ISN 0285

ISN 0Z86
ISN 0287
ISN 0289
I SN 0291
[SN 0Z93
ISN 0296
I SN 0296
ISN 0298

DOIBIJ)=DOIBIK)
DOSTIJ|=DOSTIK|
DOAPIJ|=OOAPIK}
DUXPIJ)=DUXPIKI
LDEVIJ)=LDEVIK|
LDDVIJI=LDDVIKJ
LDAWIJ)=LDAWIK|
LDAFIJ|=LDAFIK|
LDXNIJ)=LDXW(K}
LDXPIJI=LDXP{K)
LDCKD(J}=LDCKO(K)
LU3EQIJI=LUSEU|K!
PTJ=(J-I)*200
PIK=(K--I|~ZUU
DO 633 I=1,200
UP[PIJ~II=UP{PIK÷||
CONTINUE
AIE=A|L#8~B+B
AF IL=Z
ADSP=ZU
LDEV(20)=O
GUIU bO

£

PAGE 007 9
L

0

@

D

D

D

D

ISN 0299
ISN 0300
ISN 0302
ISN 0303
ISN 0305
ISN O30~

C

CONTINUE
IF |LDEVIZUI.NE.O| GUIU ZIO
GOTO 635

MUVE [B lO UISP PER UU ENIKT

CHECK)ME DEC 0KU~K LEVEL

60 DUEL=DUlL
IF ((AEP.NE.O}oOR.(AHOLDT.NE,O|} GOTO 210

61 IF ILDEVIDO~LI°EQ.O| GOlD bZ
IF ILDAFIDOCL).EQ.O) GOTO 63

~Z DUEL=DUCL~I
IF (OOCL°GT.DOT) DOCL=I
]P IDUEL°NE°DUSL] GUIU 61
GOTO 210

CHECK ADDRESS FOR LEVEL

63 CONTINUE
IF ILUEKDIUUCL).NE.~] GOlD 61 f
IBCL=OOIBIOOC~..L------’~ .~-’-~-~
[P [|A]E/BIoEQ.[[BA|]BELI/8)} GO[O 6~
IF (LDSEQIDOCL)°NE.0) GOTO 67
GOIu ztu

¯ 0

D 4

3

0

©

0

0
2

D 0

PAGE 008 9
ISN 0309 DOSTIDOCL)=O z
ISN 0310 DOAP(OOCLI=DOST(DOCL) s
ISN 0311 IBCL=DOIB(DOCL} 6

C ol

C CHECK IB WAIT & LIMIT LI
C ~L

ISN 0312 IF (LIBW(IBCLI.NE.O) GOTO 210
C
C CHECK IF DATA VALID
C

l

)

)

)

)

0

0

ISN 0316 IF {LDDV(DOCL)°NEoO) GOTO 68
ISN 0316 LDDV(DOCL)=[
ISN 0317 SY=193
ISN 0318 CALL FETCH

ISN 0319
ISN 0321
ISN 0323
ISN 0324

68

IF |KNT(91.NE.O) GD[O 210
IF (LDDV{DOCL).EO.O} GOTO 210
LDAWIDOCLI=I
LDAF(DOCLI=I

)

)

)

)

)

)

}

ISN 0325
ISN 0326
ISN 0327
ISN 0328
ISN 0329
ISN 0330
ISN 0331
ISN 0332
ISN O333
ISN 0334
ISN 0335
ISN 0336
ISN 0337
ISN 0338
ISN 0339
ISN 0340
ISN 0341
ISN 0342
ISN 0343
ISN 034~
ISN 0345
ISN 0346
ISN 0347
ISN 0349

ISN u~5L
ISN 0352

II ISN O~

ISN 035~
9 ISN 035b
8

69

66

J=ADSP
K=DOCL
OOI8(J}=DOIB{K)
DOAP(J)=DOST(K}
DOST(JI=K
DOXPIJ|=IBA(DO[B(K|)
LDEV(J)=LDEV|K}
LODV(JI=LDDVIK|
LDAW(J)=O
LDAFiJ}=O
LDXW(JI=LDXW(K|
LDXF(J|=LDXFiK!
LDCKD(J|=LDCKD|K)
LDSEQiJI=LDSEQiK|
PTJ=(J-I|~200
PTK=(K-1)~200
DO 69 l=It200
OP(PTJ*II=OPiP[K÷II
AFIL=AFIL-[
ADSP=ADSP÷I
AIC=AIC+O’,---
DO b~ I=ZO~ZO0~Z~
IF (OP(PTJeI|.NE.O) GOTO 210
Ik (API:L.NE°O) ~UIU 62

2i0 CONTINUE
J=19

IU~ ~UNIINU~
IF ILOEV(J)°EQ.O| GOTO 705
IF ILDAPIJI°N~,Ol GUIU 1O~

-ii

0

0

0

)

0

IL. c onwoy I 0

0

~) ISN 0358 K=|J-I)*200
PAGE 009

ISN 0359 O0 70Z I=1~8
ISN 0360

~) ISN 036Z
ISN 0364 701
ISN 0365 IOZ
ISN 0366 705
ISN 0367
ISN 0360

) I SN 037O
ISN 0371 709
ISN 0373
I SN 0374
ISN 0375 110
ISN 0377
ISN 03fU
ISN 0380
ISN 0381

} ISN 0382
I SN 0383
ISN 0384 712
I ~N O38~

IF (OP(K+I7).EQ.O) GOTO 701
[P (UPtK+ZO).N~.O/ GUIU fO9
K=K+25
~ONIINUE
CONTINUE
J=J÷l
IF (J.EQ.20I GOTO 703
GUIU ~IZ
IF {OP(K+24).NE.O) GOTO 710
AEP=I
OPiK+Z4)=I
IF (AEP.NE.O) GUIU IIZ
0P(K+20)=0
|P iLUXP|J).NE.O) ~OiU fZZ
AEX=I
AbXS=UP[K+g/

AEXB=OP(K÷13)
AEXA=UUXPIJ/

£

, 0
9

©

@

CONTINUE
iF {tXEP.NE.OIoANU.{ERibRXP).NE.O)) XEP=O

©

0

ISN 0381
ISN 0389

} " ISN 03ql

ISN 0393
ISN 0~9~

) ISN 0396
----TSN--03g7

ISN 0398
- i s~-o~99

ISN 0400

} ISN 0402
..... /5N~403

ISN 0404
} -rs.--o~o~

ISN 0406
ISN O~Uf
ISN 0408

~IrSN 0409
ISN 0410

-- ISN O~tL
~2 ISN 0412

ISN 0414
[~N 04[5

8

I

~ZU

q-3U

UPDATE DISP X-FLOW
iF tLUt:VZL#~.Vt~.U) Gu~O ,~zo
IF {LDXFI17).EQ.O) GOTO 4~.0
IF (LDEV|ISI.EQ.O) GUru ~0
IF (LDXF(18)oEO.O) GOTO /�30
I, uNI JNUE
XF IL=NDBUS
XDSP=I
LOEV(17)=O
I.DEVTI8 ~0
GOTO 10
CUNIINU~
J=17
K-~I8

DOIB(J)=DOIB(K)
1)OS-V(j)=ousI(K-I

DOAP(J)=DOAP(K)
DUXP|J)=UUXP{K)
LDEV(J)=LDEV(K}
LDDV|J)=LODV(R)
LOAW(J)=LOAW(K!
LuAF(J)=LDAF(~
LDXW(J)=LDXW(K)
LDAF(J)=LDxP(K)
LDCKD|J)=LDCKD(K)
Lu3~Q(JJ=LuSEQ(K)

z

0~

0

0

Ar~hiv#s .
I

4

3 O

N’

0

@

r3

PAGE OlO 9
ISN 0416 PTJ=IJ-1)*200 L
ISN 0417 PTK=IK-I)*200 g
ISN 0418 DO 433 I=ll200 6
ISN 0419 433 OP(PTJ*II=OP{PTK~I) ot
ISN 0420 435 CONTINUE tL’
ISN 0421 XIC=XIC/8*8÷8 ~t
ISN 0422 XFIL=I ~"--’~
ISN 0423 XDSP=I8 ~E- ~ (~)

ISN 0424 LDEV(18}=O
ISN 0425 GDTO 10

ill)ISN 0426 440 CONTINUE
ISN 0427 IF [LDEVIIBI.NE.O} GOTO 110
ISN 0429 GOTO 435 -.,

C
C MOVE IB TO DISP PER DO ENTRY
C
C CHECK THE DEC ORDER LEVEL
C

ISN 0430
ISN 0431
ISN 0433
ISN 0435
ISN 0437
ISN 0438
ISN 0440
ISN 0442

ISN 0443
ISN 0444
ISN 0446
ISN 0447
ISN 0449
ISN 0451
ISN 0452
ISN 0453
ISN 0454
ISN 0455

I0 DOCL=DOTL
IF ((XEP.NE.OI.OR.(XHOLDToNEoOI) GOTO IIO

lI IF (LDEVIDDCL).EQ.O| GOTO 12
IF (LDXF[DOCLI.EQ.O} GOTO 13

12 DOCL=DOCL+I
IF (DOCL.GT°DOT} DOCL=I
IF (DOCL.NE.DOSL! GOTO 11
GDTO 110

CHECK ADDRESS FOR LEVEL

I3 CONTINUE
IF |LDCKD(DOCL).NE.O) GQTO I~{
IBCL=DOIB[DOCL] - /
IF {(XI’CIB}LEQ. IIBAIIBCL}ISI) GOTO I7
IF [LDSEOIDOCLI.NE.OI GOTO I’
LDSEQ(OOCL)=I
ASA=XIC
SY=231
CALL SEARCH
GOTO 110

0

z

0~

0

~)

DATA ADDRESS CHECKED

I SN 0456
ISN E)4~f
ISN 0458

12

11

10

9 ISN O~bO
8

"~3C)

17 LDCKO(DOCL)=I
DuSI(uU~LI=U
DOXPIOOCL)=DOST(DOCL)
I~CL=UUIB(uOCL)

bHU-t.K IB WAIl & LIMII

iF (LiBN/|BCLI.NE.O~ ~ui’O ItU

0

[7co .ay [
!ii

0

0

g

£

PAGE 011

0

) C
9

AL
C CHECK IF DATA VALID 8
C 6

ISN 0662 IF |LODVIDOCLIoNE.OI GOlD 18 o~ ’~
ISN 0666 LODV(DOCLI=I t~ISN 0665 SY=Z31 ~tISN 0466 CALL FETCH

(~C ¯

)

)

)

)

)

)

)

)

)

)

ISN 0667
ISN 0669
ISN 0671
ISN 0672

ISN
ISN
ISN
ISN
I SN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISH
ISN
ISN
ISN
ISN
ISN
ISN
I SN

ISN
I~N
ISN

18

C

19

IF (KNT(81.NE.O) GOTO lIO
IF (LDDVIOUCLI.EQ.O} GU[O 110
LDXW(OOCL)=I
LDXPIDUCL~=I

J=XDSP
K=DOCL
UUIb(J)=UUIBIK;
DOXP(J)=DOST(K)
DUS!IJ|=K
DOAPIJ)=IBA(DOIB(KI)
LDEVIJJ=LDEVIKI
LDDVIJI=LDDV(K)
LDAWIJ|=LUANIK]
LOAF(J)=LDAF(K)
LDXWIJi=O
LDXF(J)=O
LDCKUIJI=LU~KD[K]
LOSEQ(J)=LDSEQ(K)
P1J=IJ--L)~ZUU

PTK=(K-1)=200
DO 19 I=I~ZUO
OP(PTJ+I)=OP(PTK~I)
X~IL=XPIL--1
XOSP=XDSP+I
xiC=xiC+8,.------~:
DO 16 I=20,200,25
IF (UP(PIJ+I).Nt.O) UUIU IXU

IF (XFIL.NE.O) GOTO 12

....... L?

i)

0

"i
0~

0

©

D
12

11

9

ISN
ISN
ISN
ISN
ISN
ISN
I:>N
ISN
13N
ISN
ISN

0%99
0500
0501
0502
0503
0505
0’~0 ~"
0508
o~ 09
0511
0~L3

~-31

C
II0

5O5

CuN! INut
B 0 SC = 0
J=lf
CONTINUE
IP (LUEV(J)okO. O| G01’U ~zo
IF (LDXF(J)oNE.O) GOTO 510
K=(J-L)~zUO
00 504 I=I~8
iP iUviR+Lo).~u.U; UOiO 5u~
IF (OP(K+20).NEoO) GOTO 515
iF (OP(k+iSl.t~.UJ ~uio 503

’e

©

0

i i

i
2

e

ISN 05[5
ISN 0517
ISN 05[8
ISN o519
ISN 0520
ISN 0521

O ISN 0522
ISN 0523
I SN O524

O ISN o526
ISN 0527
I SN 0529
ISN 0530
ISN 0531
ISN 0533
ISN 053~.
ISN 0536
ISN 053T
ISN 0538
ISN 0539
ISN 0540

D

IF (8NOP.EQ.O) GOTO 502
OPIK÷16)=O

PAGE 012 9
Z

GOTO 503
502 BOSC=I
503 K=K+25
504 CONTINUE
510 CONTINUE

J=J+l
IF {J.EQ.18) GOTO 505
GOTO 520

515 IF (OP(K÷24).NE.O) GOTO 516
XEP=I

516

52O
C

OPIK+24)=I
IF [XEP.NE.O) GOTO 520
OP(K+20)=O
IF (LDAF(J|.NE.O) GUTO 520
XEX=I
XEXS=OP(K÷9|
XEXB=OPIK÷I3)
XEXA=OOAP(J)
CONTINUE

0

©

(9

0

@

0

ISN 0541

Q
ISN 0542
ISN 0544
ISN 0545
ISN 0566
ISN 054?
ISN 0548
ISN 0549
ISN 0550
ISN 0552

ISN 0553
0 ISN 0554

ISN 0556
ISN 0558

.... ISN 0~59
ISN 0560
ISN 0~61

i

C
C

911

930

999

931

CONT I NUE
LOAD IBIS

IF [PHEND.GT.O| GOTO 930
CALL PHIIBS
CONTINUE
CYCL=CYCL÷I
DO 999 l=l,lO0
PHI|I)=O
PHII1OOI=PHEND
IF (PHENO.GT.1) GOTO 931
CALL PHIMAP

CONTINUE
IF (|KNTi8I.EQ.OI.ORiKNT(9).EQ.O)) GOTO 932
IF ILOEVIlli.OR.LDEVIIB).OR.LDEV(19I.OR.LDEV|20|) GOTO 932
PHEND=2
CUNIINUE
RETURN
ENU

0

0~

0

0

0

<.)

: >

12

I1

10

9 O
8

5

4

3 ~ , I

0

0
2

DATE &7.305/[8.13.4l

COMPILER OPTIONS - NAME= MAIN~OPT=O2~LINECNT=50,SOURCE,EBCDIC~NOLIST,DECK~LOAD~MAP~NOEDIT~NOID

ISN 0002 SUBROUTINE PHISPT~
SUPPuR~ SUBROUTINES - PHASE I

ISN 0003 IMPLICIT INTEGER#2(A-K,M-S,U-Z)
ISN 0004 IMPLICIT LOGICAL~[(L) tt
ISN 0005 IMPLICIT REAL IT)

C
ISN 0006 COMMON TIME, IPARI, IPAR2, IPAR3,

A AINPT, NABUF, ABUS(50), XINPT, NXBUF,
B XBUS(5O), IFADD, IFOST, IFRTN~ BRXP~
C BRAP, ER(8)~ BEIR)~ ETIB)~ NBBUF~
() AHOLDT~ XHOLDT~ AFPCT~ XFRCT~ 8~SC,
E BNOP~ XEP~ AEP, PH[([O0)~ PRINT~
F FSTADD, NOD~T, NOPSC~ NDBUS, NADSP,
O NXDSP

C
C COMMON AREA FOR PHASE I
C

ISN OnO7 COMMF]N /PHAS[/ DQTL, OOSL, DOCL, IRCL, HISL,
A SKXV, SKXC, SKXS, SKAV, SKAC, SKAS~ CYCL, KY~ SY, PTR~ XX~
C XIC, AIC, ASA, NFA, DFA, DEN, DOT, IBN,
O XICR~ AICR, PTJ, PTK, XEXT, AEXT~
G O~IB(?O), DOST(20), D~AP(20)~ OOXP(20)~
H LDFV(20), LDDV(?O), LDCKD(20), LDSEQ(20),
I LDAW(20), LDAF(20), L~XW(20), LDXFI29)~
J HIST(I2), IBA(I2)~ LIBV(12), LIBW(12),
K INOPIO0), OP(4000), LBX(8), LOAf8),
L PBUF(~),
Y KNT(50), PHEND

C
C
C OP = (1)INSADD, (2)MNEM[, (3)MNEM2, (4)MNEM3, (5)II, (6)IJ~
C (7IIK, (8)fLIT, (g)SUCC, (IO)SKP, ([I)IEX, ([2)ACCADR~
C {13)NXAOR, ([4)OPNUM~ (I5)LNG~ (IB)XOP~ (I7)ARP,
C (18)BROP, (I9)SKOP~ (~O|SKEND~ (21)SPARI~ (22)SPAR2~
C (?3)SPAR3, (24)SKIP~ (251VALID
C
C

ISN ~008 COMMON /TAGS/ D(256,70)
C

ISN O00g COMMON IPSCSI PSC(50)
C

ISN OOIO COMMON/PRDG/JTRACE{IOOO,30),INSLOC
ISN O01t DIMENSION LETTER(36)
ISN 0012 DIMENSION INT(4300)
ISN 0013 DIMENSION LETR(OB)

~2 ISN 001~ DIMENSION LPSV(8)
H ISN 0015 DATA LETR/38HOI2345678qABCDEFGHIJKLMNOPQRSTUVWXYZ~I
~o ISN 0018 DATA LETTERI36HABCDEFGHIJKLMNOPQRSTUVWXYZ 123456789/
9

8

7

l,A J

0

r:

0

0
m

0

0

0

.)

0

0

4

3 0
2

0

) ISN 0011
ISN 0018
ISN 0019

)

PAGE 002 � 1
DATA SCT,FCTIO,O/
DIMENSION TABLE(199)
DATA TABLE /1,2,4,5,0,9,10,12,13,4~0,19,20,21,22,0,23,0,24,0,25,

A O,26,10#O,38,39,3*O,42,155,156,4*O,47,48,49,50,3*0,83, B4,9g, Io0,
B I18,119,89,90,91,0,93,0,95,96,97,98,106,107,I08,109,112,113,
C 114,115,123,124,127,128,2"0,131.132,134,135,133,136,21.0,170,

g

?

8

6

0 l?l.172,173,174,175,176,177,178,179,180,181,182,183,184,185,195,
E 196,194,8"0,202,203,204,205,206,207,208,209,215,216,217,218,219, tt!
F 220,221,222,II*0,56,0.58,0,60,0,62,0,64,0,66,0,68,0,0,70,0,72,0,
G 0,76,0,0,78,9~0,212/

ISN 0029 INTEGER*4 NRT(50}
ISN 0021 EQUIVALENCE (LPSV(1),PSC[I))
ISN 002~ F~UIVALFNCE (INT{I),DOTL) ©ISN 3023 801 FORMAT (IXIS,IX3A2,1X,3{IXI2),2XI5,4X311,3XIS,2XIS,2XI3,2X,I&II)
ISN 0024 802 FORMAT(IOXA?,IXIS,IX6AI,3(IXI2),IXI5,4X3II,IXIS,IXIS,2XI3,2X,

X 311,3XAP)
C
C
C
C FEICH ROUTINE
C TO FETCH OPS INTO IB BUFFER
C

ISN 0025 ENTRY FETCH

ISN 0026 FCT=FCT+I ~
ISN 0027 IBCL:DOIB(DOCL}
ISN 002~ DEN = DOST(UOCL)~jI

ISN 0029 DFA=IIRA(IBCL)/B*8)+DEN

©

0

©

0

CLEAR IB OP AREA ,.~,.~L--

ISN ~030 PTS= ([OOCL- t)*(75.~))
I SN O0~l PTP=PTS

~/,ISN 0032 DO 115 I=l,£
ISN 0033 DO I14 J=l,?5
ISN 0034 Do(PTR+J)=O,
ISN 0035 114 CONTINUE
ISN 9036 PTR=PTR+25
ISN 0037 115 CONTINUE
ISN 003~ PAR=O
ISN ,3039 PDL =LETR (Dql B(OOCt.} +1 |

C
C CHECK OP INPUT
C

ISN 0043 129 IF (INOP(25).NE.O) GOTO 121
C
C READ QP CAPD
C
C READ { 5,801, END= 150) (INOPI I), I=1,30)

~2 C
l|

o
o l

@

~D

,()

~r

) I0
’(13:9

8

) 7
!

’o}
ii , r- ii

| Arcr, tves 1 ’O
2

)
PAGE 003 c

) c
C TO USE UNROLLER OUTPUT, SET INOP FROM JTRACE

ISN 0042 DO 131 I:I,15 9
) ISN 0043 INOPIII=JTRACEIINSLOC,I) z

ISN 0044 131 CONTINUE s
ISN 0045 MNI=JTRACEIINSLOC,21)
ISN 0046 MN2=JTRACE(INSLOC,22)
ISN 0047 MN3=JTRACE(INSLOC,23) ti
ISN 0048
ISN 0049

MNT=JTRACE(INSLOC,24)
MNS=JTRACF,(INSLOC,25) 0

IS~! 0050 MN6=JTRACF, { I NSLOC, 26)
C
C

ISN 0051 I NSLOC=INSLOC+I
ISN 0052 INOP(25)=l
ISN 0053 IF (INOPII4).EO.999) GOTO 123
ISN n055 INDP 16)=0
ISN 0056 INOP 17)=0
ISN 0057 INOP 18)=0
ISN 0058 INOP 19)=0
ISN 0059 INOP 20)=0
ISN 9060 INOP 16)=OIINOP(14),I)
ISN n061 IN~IP I?)=9(INOP(14),2)
ISN 0062 INOP 18)=DIINOP(16),3)
ISN 9~63 INOP I~i=O(INOP(14),29)
ISN 0064 IN.qP 20)=O(INOPII4),31)
ISN 00_65 IF (INOP(IO).NE.I) INOP(tOI=O
ISN 0067 PNT=MOO (INQP (I), 26)÷1
ISN 0068 INOP(23)=LETTERIPNT)
ISN 0069 123 CONTINUE
ISN 0070 IF(PRINT.GT.I) GO TO 121
ISN 0072 WRITE(6,802)INOP(23), INOPII),MNI,MN2,MN3,MNG,~NS,MN6,

X (INOP { [} , [=5, 17), PF)L
[SN 0073 121 CONTINUF,
ISN 0076 IF (INOP(I4)oEQ.999) GOTO 152
ISN 0076 II: {INOP(Ii.NE.DFA) GOTO 125
ISN 0078 126 CONTINUF,
ISN 0079 PTR =PTS÷ (OF_N*25 }
ISN 0(’80 r)r) 122 I=1,25
ISN 0081 OP(PTR~I)=IN4IP(1)
ISN 008~ INOP(1)=O
ISN 0083 12~_ CONTINUE
ISN 0086 INOP(?5)=O
ISN 0085 P&R=PAR+I
ISN 0086 DEN=OEN+OP (PTR+I 5)
ISN 0087 DFA=DFA*[]P(PTR+15)
ISN 0088 IF (DEN.LE.7) GOTO 120
ISN 0090 RETURN

C
12 C

0

0

0

0

0

0

ll

.) l0 0
9

8

) 7 ~35 0
I

0

FRROR - OP CARD ADDRESS IS NOT MATCH
CHECK FOR SKIPS

C c~¯
ISN 0091 125 CONTINUE .~ ..------’~
ISN 0092

DFAI=OFAIS*%~ISN 0093 OFA2=DFAI÷8

PAGE 004

ISN 0094 IF (INOP(II,LT,DFAI) GOTO 127

8
6 ,
OLi 0

ISN 0096 IF (INDPI1),GE.DFA2) GOT~ 127
ISN 0098 DPA:INOP(1)
ISN 009g DEN=~OD(DFA)8)

Iti

’0
ISN 0,100 GOT{’) 126 ---~

C
ISN O]OI 121 CONTINUE
ISN 0102 KY=3
ISN 0103 KNT(3)=KNT(3}+!
ISN 010~ 12g CONTINUE
ISN 0105 IF (PaR.NE.O) RETUPN
ISN 0107 LDCKI)|DOCL)=O
ISN 0108 LDOV(DnCL)=O
ISN 0109 LOSEQ[OOCL)=O
ISN OllO RETIJRN

c
C END ~F INPUT DATA
C

ISN 0111 159 CONTINUE
ISN 0112 KY = 10
ISN 0113 GOTO ZOO0
ISN 0114 152 CONTINUE
ISN 0115 IF (SY.EO,231) GOTO 153
ISN 0117 IF (SY.EO.193) GOTO 154
ISN 0119 KY=6
ISN 0120 GOTO 128
ISN OiZI 153 KNT(q)=I
ISN 0122 KY=4
ISN 0123 GOTO 128
ISN 0124 154 KNT[9)=I
ISN 0,]25 KY=5
ISN 0126 GF!T~ lZq

C
C
C SEARCH ROUTINE
C SEARCH IB)~FOR ADDRESS
C

ISN 9127 ENTRY SEARCH
C

0

0

®

0

o!)
0

0

L)

C)

ISN 0128 KY=9 �~
ISN 0129 SCT=SCT+I ~f
ISN 0130 ASH=ASA/8#8
ISN 0131 00 201 I=1,12

)2 ISN 013~ IF (ASH.EQ.IBA{I}| GOTO 210
@

11
10
9
8

) ,
6
5

,
3
2

] L, Conwoy 1

I,Arct~ives
ii i

{.D

0

0

ISN 0138 HIST(IZ):IBCL Lti
C ~t,
C REOUEST INSTRUCTION FETCH ~ 0 ;’C

ISN 0139 IFDST?=IFF)ST
ISN 0140 IF (IcDST2.NE.r)) LIBV|IFDST2)=O 0ISN 0142 LI~V{ IBCL):I
ISN 0143 LIBW(IBCL)=5
ISN 0144 IRA{ IBCL)=ASAI8~8__ ~ 0ISN 0145 I FADD=ASAI2 \
ISN 0146 IFDST:IBCL
ISN 0147 PBUF{II=ASA
ISN 0148 PBUFI?)=IBCL
ISN n149 PRUF(3)=DOCL

C
ISN 0150 ~05 CONTINUE
ISN 0151 XX=I
ISN n152 NFA=IBAIIRCL)
ISN 0153 IF {LDXWIDNCLI.~R.LOAW(DQCL)) GOTO 205
ISN 0155 DOIBIBOCL)=IBCL
ISN 0156 LDDV(DOCL)=O
ISN 0157 LDEV(OOCL)=[
ISN 0158 OOSL=OOCL
ISN n15Q 203 CONTINUE
ISN 0160 D’ISL=DNSL+I
ISN 0161 IF (DOSL,GT.DOT) DNSL=I
ISN 0163 IF (D~SL,FP.OOTL) GQTO 204
ISN 0165 LOEV(DOSLI=O
ISN 0166 GOTO 203
ISN 0167 204 CqNTINUE
ISN 0168 DOSL=OOCL+I
ISN 0169 IF (D~SL.GT.DOT) DOSL=I
ISN nI71 RETURM

C
ISN 0172 205 CONTINUE
ISN 0173 KY = 15
ISN 0174 G~TO 2090

C
C F~UR-WQRD ADDRESS MATCH - SET POINTER TO ENTRY
C

ISN 0175 210 CONTINUE
ISN 0176 IF (LIBV(I).EQ.O) GOTO 201

~ ISN 0178 IF (LDXW(DOCLI.OR.LDAWIDOCL)) GDTO 215

10

9

0

o°j

0

C)
8

) 7
6

5

) 4
3

2

)

-~ "’2 --’~

ISN 0180
I SN 0181
I SN O| 83
ISN 0184

IBCL= I
IF (IBCL.EQ.HIST(12)) GOTO 214
DO 211 I=1,11
IF (IBCL.EQ.HIST{I)) GOTO 212

ISN 0186 211 CONTINUE
ISN 9187 212 CONTINUE
ISN 0188 DO 213 J=l,ll
ISN 9189 213 HIST(J)=HIST(J+I}
ISN OlgO HIST{I2)=IRCL
ISN 0191 214 CONTINUE
ISN 0192 GOTO 206
ISN 0193
ISN 0193 215 CONTINUE
ISN 0194 KY = 14
I SN 0105 G(ITn 2090

C
C
C

ISN 0196 ENTRY INTPHI
C
C INITIALIZE PHASI COMMON

ISN qlO7 DQ 10 I=1,430n
ISN 0193 10 INT(1)=3
ISN 0199 D~ 12 !=i,50
ISN 9200 KNT(I)=9
ISN 0201 PSC(I}=O

PAGE 006

ISN 0202 12 CONTINUE
ISN 0203 PHEND=O

C
C SET INITIAL VALUES

ISN 0204 OOTL=I
ISN 0205 DOSL=I
ISN 0296 DOT=6
ISN 0207 IF (NOOOT.NE.O) OqT=NODOT

C
C AND SET XIC, AIC, ETC.

[SN 0209 PNT=I
ISN 0210 AIC=FSTAOD
ISN OPll XIC=AIC
ISN 0217 NFA=AIC
[SN ~213 AICR=AIC
I SN 0214 YlCR=XIC
ISN 0215 IBA{ I)=NFA
ISN 9218 LIBV(I)=I
ISN 0217 LIRW(I}=5
ISN 0219 LDEV(I)=1
IS"I 0219 I)OIB(I)=I
ISN 0220 DOSL=2
ISN 0221 IFADD=NFA/2

12 ISN 0222 I FOST:I
1}

lo

9

~2’ _
7

i ,,4rcntves j
2

0

’ ®F@

ot 0
Ll
gl

0

0

0

®

0

Oi
m}

¸
0

0

o

.)

©

0

0

PAGE 007 c

C v

ISN 0223 J=l
ISN 0224 DO 11 I=1,12 9

ISN 0225 J=J*! z

ISN 0226 IF lJ.GT.12) J=l s

ISN 0228 ii HISTII)=J J a :

ISN 0229 RETURN ot

C LL

.)

.) "i
©

C
C RqUTINE TO DUMPVARIABLESAND BUFFERS
C

ISN 0230 ENTRY BUFR
i

C r
ISN 0231 GOT{] 2000

C
ISN 0232 2011 FORMAT (’OKY=’I2,’ DOT:’I2,’ OOTL=’I2,’ DOSL=’I2,’ 00CL=’12,

’ IBCL=’I2,’ HISL=’IZ,2X,’XIC=’I6,4(IXI}),’ AIC=’I6,4(IXII),
*’ ASA=’IT)

ISN 0233 2012 FORMAT (’ DO=’,3{2X,4IIXI2I,BIIXII)))
ISN n234 2013 FORMAT I’OIBA=t,12(IXI6,IXII~I1)}
ISN 0235 2014 FflRMAT (’ ’,1216XII))
ISN n236 2015 FQRMAT I’OBR=’,qI3IIXII)ylXI6))
ISN ~237 2016 FORMAT {’ *#’, q(IXIS),/)

ISN 0238 2017 FORMAT (tO CYCL XINPT NXBUF AINPT NABUF SY SCT’,
* ’ FCT PTRB)

ISN 0239 2013 FORMAT I’ IB,ST,AP,XP, EV,CKD,SEQ,DV,AW,AF,XW,XF’)
ISN 0240 2020 FORMAT {’0 KNT= ’,IOIlXI6)I

C
ISN 0241 2000 CONTINUE
ISN n242 WRITE {~,2011) KY, DOT,DOTL,OOSL,OOCL, IBCL,HISL,XIC,BRXP,SKXV,

SKXC,SKXS,AIC,BRAP,SKAV,SKAC,SKAS,ASA
ISN 9243 WRITE |6,2017)
ISN 0244 WRITE (6,2~18) CYCL, XINPT, NXSUF, AINPT, NABtJF,SY, SCT,FCT,PTR
ISN 0245 WRITF (6,2nZO)(KNT(1),I:I,IO)

C
ISN 0248 J=1
ISN 0247 DO 200~ I=1,12
ISN 0248 WRT{J) = IBA{I)
ISN 024g NRT(J+I)=LIBV{I)
ISN 0250 WPT{J÷2)=LT3W(1)
ISN 0251 J=J÷3
ISN 9252 2003 CONTINUE
ISN 0253 WRITE {6,2013)IWnTIJI,J=I,36)

C
ISN 0254 I:nOTL-I
ISN 0255 WRITE (8,201R)
ISN 0256 DO 2001N=I,OOT,3
ISN 0257 DO 2002 K=I,36,12
ISN 0258 I:I+I

~2 ISN 0259 IF (I.GT.DOT} I=i
11
i0

0

0

0

0

0

0

©

0

O

0

PAGE 008 �
ISN 0261 WRTIK) = DOIB(1) p
ISN ~262 WRT|K÷I) : DOST(1) ~;
I SN 026])
I SN 0264

0
WRT(K÷2) = DOAP(I)
WRT(K~3) = DOXP(I)

ISN 0265
ISN 0266
ISN 0267

WRT(K÷4) = LOEV(1)
WRT(K÷5) = LDCKD(1)
WRT(K+6| = LDSEO(I)

@

6

ot 0
ISN 0263 WRTIK+7) = LDDV|I) LL
ISN 0269 WRTIK+8| = LOAW(1) ~t
ISN 0270 WRT(K÷g} = LOAF(1)
ISN 0271 WRTIK÷10)= LDXWII)
ISN 0272 WRT(K+11)= LDXF(1)
ISN 0273 200? CONTINtlE

0

I SN 0274-
ISN 0275 2001 CnNTINUE

WRITE (6,2012){WRT|J),J=1~36)

C
ISN 0276 209~ CONTINUE
ISN 0277 CALL pr)lJ~P (OOTL,INOP(~))O)
ISN 0278 IF (KY.LT.IO) GOTO 2009
ISN 0280 PHEND=PHEND+2
ISN 0281 2099 CONTINUE
ISN 0282 GOTO 1000

C
ISN 02~3 ENTRY r)HI~4AP

C
ISN 0284 [000 C(INTINUE
ISN 0285 IF (LOEV(IT).EO.O) GOTO 1002
ISN 0287 IF (LDXF{IT).NE.O) GOTO 1002
ISN 00~9 PHI { I) =LFTR (001B117)+-I)
ISN 029,). PHI(2)=LETRIr)OST(17)+I))
ISN n2ol K=32~0
ISN 0292 Dr) IO0l J=3,10
ISN 0293 IF (OP(K+I6I.EQ.O) GOTO 100l
ISN 0295 PHI (JI=OP(K+Z3)
ISN 0296 IF (OP(K+IS).FO.I) GOTO I001
ISN 0298 PHI(J÷I)=PHIIJ)
ISN 0299 I001 K=K+25
TSN 0300 lOn2 CONTINUE
ISN 0301 PHI(I3)=PHl(11)
ISN 030P_ PHl(11)=O
ISN 0303 IF (LDEV(lS).EQ.O) GOTq ln,’~4
ISN 0395 IF (LDXF(I~).NE.O) GOTn 1904
ISN .030/ PHI (IL) =LETR (Dnl B(13)+1)
ISN 030~ PHI (12) =LETR (OF]ST (t,q) ÷I)
I SN 0309 K=34’30
ISN 0310 F)fl 1003 J=13,20
ISN 0311 IF (OP(K÷I6).EO.O) GOTO 1003
ISN 0313 PHI(J)=OP|K÷23)
ISN 0314 IF (OP(K+IS).EQ.I) GOTO I003

~2 ISN 0316 PHI(J+I)=PHI{J)

O

O

©

©

@

9 O
8

) , ~_Ho
0

0
4

3

2

PAGE 009
ISN 0317 1003 K=K÷25
ISN 0318 1004 CONTINUE
ISN 0319
ISN 0320

PHI(211=O
IF (LDEV(19).EQ.O) G(3TO 1006

ISN 03?? IF |LDAF(19).NE.O) GOT(3 1006
ISN 0324 PHI(21)=LETR(DOIB(193÷13
ISN 0325 PHI(22)=LETR|OOST(I9)÷I)
ISN 0326 K=360g lib
ISN 0327 D(3 1005 J=23,30 at
ISN 0323 IF (OP(K+I7)°EQ.O) GOTO 1005 J ~)
ISN 0330 PHIIJI:OP(K+23)
ISN 0331 IF (OPIK+I5).EO.I) GOTO 1005
ISN 0333 PHIIJ+I)=PHt{J)
ISN 0334 1005 K=K÷25
ISN c~335 1q06 CONTINUF_
ISN 0336 PHI(33)=PHl (313
ISN 0337 PH|(31)=O
ISN 0338 IF {LOEV(20).EQ.O) GOTO 1003
ISN 0340 IF (LOAF(20).NE.O) GOTO 1008
ISN 0342 PHI { 311=LETR {DOIR(20)÷I)
ISN 0343 PHI 132) =LETR|OOST| 20)÷13
ISN 0344 K=3@OO
ISN 0345 DO 10’~7 J=33,40
ISN 0346 IF (OPIK÷I7).EO.O) GOTO 1007
ISN 03~-8 PHI (J)=OP(K÷23)
ISN 0349 IF (OPIK÷I5).FO.t) GOTO 1007
ISN 0351 PHI(J÷I I=PHI (J)
ISN 0352 1007 K=K÷25
ISN 0353 1008 CRNTINLIE
ISN 0354 PH1 (41)=0
ISN 0355 OF) 1009 J=1,12
ISN 9356 PHIl J+40)=LETR(HI ST{ J)+I)
ISN 0357 lO@Q CQNTINUE
ISN 0358 PHI (541 =LETR (F)OTL÷I)
ISN ~359 ~’H1 | 65) =LET~ { r)OSL÷ l)
ISN .3350 00 1010 J=I,{)OT
ISN n361 IF (Li)EV(J).NE.O) PHI|J÷55)=LETR(OOIB(J)+13
ISN 0363 1014 CqNTIN!IE
ISN 0364 P~UF(8)=KY
[SN 0365 KY=O
ISN 0366 J=66
IS~; 0367 PHI(J+I)=LETR (~BUF (2)+13
ISN 0368 PHI { J+2I=LETR {PBUF 133+I}
ISN 0369 PHI (J+41 =LFTR (P,qUF | #) +I)
ISN 0310 PHI (J÷5)=LETR (PDUF (8)÷13
ISN 0371 J=71
ISN 0372 0(3 tO1Z I=1,9
ISN 0373 IF |LPSV(1)) PHl(J+I)=LETR(38}
ISN 0375 1012 CONTINUE

~ ISN 0376 J=80
11

10

9

5

4

2

©

3

(T)

@

0

0

0~

0

0

b

3

)

3

)

©

0

)

[SN 0377
ISN 0378

PHL(J+I)=LBX(4)
PHIIJ+2}=LBX(3)

PAGE OtO

ISN 0379 PHIIJ÷3)=LBX(2) 9
ISN 0380 PHI(J÷4)=LBXII) z
ISN 0381 PHI(J+6)=LBA(4) s
ISN 0382 PHI(J+T)=LBA(3) a

0

ISN 0383 PHI(J*8)=LBA(2)
TSN 0384 PHI(J+9|=LBA(1)
ISN 0385 PHI(J+ILi=LETR(BnSC÷[)
ISN 0386 PHI(J+I2)=LETR|XEP+I)
ISN 0387 PHI(J÷I3i=LETR(AEP+I)
ISN 0389 DO loll K=l~lh.O
[SN 0389 IOtI PH](KI=PHI(K)#256
ISN 0390 IF (PRINT.NE.O) RETURN
ISN ,,q. 30~_ WRITE {6,RIO) CYCL,(PHLll)~I=I~IO0)
ISN 03’9], Bin FORMAT (’OPH]. ’I6~4(IYZAIvIX8AL)tIXGOAI~IX2OAI)

C
ISN 0304 RETURN

C
C
C

ISN 0395 E~IO

12

0

:

o!
o

©

©

k_,,

II

~ I0 ©
9

0

04

DAI[E 67.2681 IT .,38.16LEVEL 2 FEB 67 0S13~0 FORTRAN H

ISN
~SN

COMPILER OPTIONS - NAME= MAIN.OP~=OO.LINECNT=50.SOURCE.EB£DIC.NOLIST.DECK.InADLMAP=NOEDIT~NnlD

0002 SUBROUTINE UNROLL
0003 IMPLICIT INTEGER*2(J)

9

0
0

ISN 0004 IMPLICIT INTEGER*2(R)
ISN 0005 DIMENSION JSMTAB (200,8)t KSYMAD (200)

6

o, 0
ISN 0006 DIMENSION JABSOP (300)v JCOTYP (300)v JASTCL (300) u
ISN 0007 DIMENSION LCARDN (300I~ LACSLC (300)~ JROWNM (300) ~t
ISN 0008 DIMENSION JCOLP (300)
ISN 0009 DIMENSION JSIDBB (300)
ISN 0010 DIMENSION JIN (300~80)
ISN 0011 DIMENSION JTEMPIT)~JEND(4)
ISN 0012 DIMENSION JTEMP4 (7)
ISN 0013 DIMENSION JIREG(Z)t JJREG(2)~ JKREG(2)
ISN 0014 DIMENSION JHFLD (5)
ISN 0015 DIMENSION JSTOP(6)
ISN 0016 DATA JSTOP/’S’t*T’,*Ot,’P’.’ ’~’ ’I
ISN 0017 DATA JZERO/VOt/
ISN 0018 DATA JEND/ZE’~ INI, lotI l I/ISN 0019 DATA JBLANK~JSMCLN/t 0~ .:v/
ISN 0020 DATA JASTER/’~’/
ISN 0021 DATA JLPARN~ JRPARN~ JCOMMA/’(’t’)t~’~’/
ISN 0022 COMMON IAREA2/ JNB(36)~ JOPCDE (6~256)~ JSIDB [256)~

¯ JITYPE (256}~ JEXITF (300)
ISN 0023 DIMENSION ROWTOT(2OO)~RCNUSF(2OO)eRLPNTR(2001~

X ROWCRT(200)~RSFTYP(200)~RNUMSF(2001~JACDNO(ZO0)
ISN 0024 COMMONIAREA4/JN(80)~IrIJ
ISN 0025 COMMON/PROG/JTRACE|IOOO~30)~INSLOC
ISN 0026 INTEGER*2 INSLOC
ISN 0027 DIMENSION JRNUM(IO)
ISN 0028 DATA JRNUM/’O’,tI=,=2’,’3~,=4o,=5=~’6=~=7t,’8t,~9=/

C INITIALIZE PROG TRACE AREA TO 0
ISN 0029 DO 2000 LLL=I~IO00
ISN 0030 DO 2000 LK=[~30
ISN 0031 2000 JTRACE(LLL~LK)=O
ISN 0032 INTR=I
ISN 0033 INSLOC=I
ISN 0034 WRITE¢6,3000)
ISN 0035 WRITE(6,300I)
ISN 0036 JDECK=I

C
C
C INITIALIZE ONE ENTRY IN JSMTAB

ISN 0037 III : I
ISN 0038 DO 60 LJJ = 1~8
ISN 0039 60 JSMTAB (III~LJJ) = JBLANK

C INITIALIZE
ISN 0060 IJK=O

~ ISN 0041 LOC=O
~ ISN 0042 M = I

0

0

’0

0

0

0

0

0

J

..)

~) 1o ISN 0063 MM = 1

)

)

J !_~onway ! 0

0

}
12

9

8

) 7
6

5

) 4
3

2

ISN 0044 KSKPST = 0
ISN 0045 KBRSTT = 0
ISN 0046 NN = 1

C INITIALIZE WORKING AREAS
ISN 0047
ISN 0048

DO 2005 LLL=I,200
JACDNO(LLL|=O

ISN 0049 ROWTOTILLL)=O
ISN 0050 RCNUSF{LLL)=O
ISN 005[RLPNTR(LLL)=O
[SN 0052 ROWCRTILLL)=I
ISN 0053 RSFTYPILLL)=I
ZSN 0054 RNUMSF(LLL)=I
ISN 0055 2005 CONTINUE
[SN 0056 DO 2006 LLL=I,300
ISN 0057 JEXITF(LLL)=O
ISN 0058 2006 CONTINUE

C
C

ISN 0059 10 IJK=IJK+I
ISN 0060 IF(IJK°LT.300) GO TO 11
ISN 0062 WRITE(6,3)
ISN 0063 STOP
ISN 0064 II LCARDN |IJK) = IJK

C CHECK FOR COMMENT CARD
ISN 0065 12 READ (5,1) JN
ISN 0066 IF (JN(1) .EQ. JASTER) GO TO 12
ISN O068 I = I
ISN 0069 CALL BLNKCKII,INT)
ISN 0070 I= INT
ISN 007I 20 KCOUNT = 0
ISN 0072 LACSLCIIJK) = LDC

C SCAN TO PICK UP WORD
ISN 0073 28 KCOL = I
[SN 0074 30 I = I~l
ISN 0075 00 35 L = 1,36
ISN 0076 IF (JN(I) .EQ. JNB|L)] GO TO 30
ISN 0078 35 CONTINUE

C SAVE LENGTH OF WORD
ISN 0079 KSUM = I-KCOL
ISN 0080 KCOLL = I-I

C CHECK FOR BLANK OR SEMICOLON
ISN 008l IF I JN(I) .EQ. JASTER) GO TO 98
ISN 0083 IF (JN([I .EQ. JBLANK| GO TO 100
ISN 0085 IF (JN|[| .EQ. JSMCLN) GO TO 40

C BRANCH TO SEARCH SYMBOL TABLE
ISN 0087 40 ASSIGN 205 TO IA

GO TO 250
205 GO TO (210)elB

C LABEL WAS IN SYMBOL TABLE
C STORE CURRENT LOCATION

ISN 0088
ISN 0089

PAGE 002
, 0

i9
, ®
8 ,

6
! f0 t ~/

[[i

©

©

(D

0

0

0

©

c)

E

~9

0

0

ISN 0090 KSYMAO(MX-1) = LOC
pA~E 003 �

’ 0
C STORE CURRENT CARD NUMBER

ISN 009I JACDNO (MX-I) = LCARDN(IJK| 9
ISN 0092 GO TO 215 z

C LABEL NOT IN SYMBOL TABLE e
ISN 0093 210 KSYMAD{III -l} = LOC 6

C STORE CURRENT CARD NUMBER oL
ISN 0094 JACDNOIIII -I) = LCARDN(IJK} t~

©
ISN 0095 215 I = I + 1 ~t
ISN 0096 CALL BLNKCK {ItINTI
ISN 0097 I = INT
ISN 0098 IF (I - 80) 28,990,990
ISN 0099 98 JEXITFIIJK) = I
ISN 0100 I = I + I

C CHECK FOR END CARD OR OP CODE
ISN 0101 100 L = I
ISN 0102 DO 105 IJ = KCOL,KCOLL
ISN 0103 IF (JN (IJ} .EQ. JEND|L))~ GO TO 105
ISN 0105 GO TO 130

0

0

ISN 0106 105 L = L + I
C END CARD

ISN 0107 JCOTYP{IJK) = 12
ISN 0108 WRITE (6,6} JN

C MOVE CURRENT CARD TO FILE
ISN 0109 DO I06 N = It80
ISN 0110 106 JIN {IJKtN) = JN(N|
ISN 0111 GO TO 699
ISN 0112 990 WRITE [6,7}
ISN 0113 GO TO ISO
ISN 011~ 993 WRITE {6,43
ISN 0115 GO TO 708

C ~#
C CHECK FOR OP-CODE

ISN 0116 130 JASTCL (IJK) = I
C SAVE STARTING COLUMN OF OP-CODE

ISN OllT JCOLPIIJK) = KCOL
C CLEAR JTEMP

ISN 0118 DO 132 K=I,6
ISN 0119 132 JTEMP(K} = JBLANK
ISN 0120 L = 0
ISN 0121 DO 135 II = KCOL,KCOLL
ISN 0122 L = L+I
ISN 0123 135 JTEMP(L| = JN(II|
ISN 0124 KTOTAL = KCOLL - KCOL + I

C SEARCH OP CODE TABLE
ISN 0125 DO l~O II=1,256
ISN 0126 DO 139 L=l,6
ISN 0127 IF(JOPCDEIL~II).NE.JTEMPIL)) GO TO 1~0
ISN 0129 139 CONTINUE

12 ISN 0130 GO TO 160
II

10

9

~S

0

0

zi

©

0

C~

0

~j
8

5

4

3

2

0

0

140 CONTINUE
C UNSUCCESSFUL SEARCH

ISN 0132 HRITE(6,8) 9
ISN 0133 GO TO 180 z

C SUCCESSFUL SEARCH s
ISN 0134 160 CONTINUE 6
ISN 0135 161JABSOP(IJK)=II oL
ISN 0136 IFIII.EQ.256} JABSOP(IJK)=999 tt
ISN 0138
ISN 0139

JCDTYP(IJK)=JITYPEIII)
JSIDBBIIJK)=JSIDB{II)

0

0
ISN 0140 IFiJSIDBIII)-I) 165t165,170
ISN 0141 165 LOC = LOC + 1
ISN 0142 GO TO 175
ISN 0143 170 LOC = LOC + 2
ISN 0144 175 K = JCDTYP(IJK)
ISN 0145 GO TO (185,185), K
ISN 0146 180 WRITE I612) LACSLC (IJK)~ JN

C MOVE CURRENT CARD TO FILE
ISN 0147 DO 107 N = 1,80
ISN 0148 107 JIN(IJKtN) = JNIN)
ISN 0149 GO TO 10

C SCAN TO A LEFT PAREN
ISN 0150 185 IK = JASTCL (IJK)
ISN 0151 00 187 I = IK, 80
ISN 0152 IF {JN (I) .EQ. JLPARN) GO TO 300
ISN 0154 187 CONTINUE
ISN 0155 GO TO 180

C SCAN THE BRANCH AND/OR SKIP PARAMETERS
ISN 0156 300 JROWNM (IJK| = NN
ISN 0157 NNN = NN
ISN 0158 304 CONTINUE
ISN 0159 302 1 = I ÷ I
ISN 0160 303 IF (JN(I| .EQ. JASIER) GO TO 320
ISN 0162 IF (JNII) .EQ. JCOMMA) GO TO 340
ISN 0164 IF (JN(I) .EQ. JRPARN) GO TO 330

C CHECK FOR NUMERIC
ISN 0166 DO 305 J = 27,36
ISN 0167 IF (JN (I) .EQ. JNB(JI) GO TO 350
ISN 0169 305 CONTINUE

C IF CHARACTER IS NONE OF ABOVE-ASSUME TO BE L6TTER
C COLLECT THE LABEL

ISN 0170 360 KCOL = I
ISN 0171 365 1 = I + I

0

©

0

©

0

0

0

0

©

ISN 0L72
ISN 0173
ISN 0175

DO 370 L = 1,36
IF (JNII) .EQ. JNB ILl} GO TO 365

370 CONTINUE
C
C

CHECK FOR SKIP INSTRUCTION AND
BYPASS SEARCH OF SYMBOL TABLE IF SKIP

ISN 0176 371 IF (JCDTYPIIJK| - 2) 372t 303t 372
12 ISN 0177 372 KSUM = I - KCOL

"2_~

0

0

03

2

0
PAGE 005

ISN 0178 KCOLL = I - I ’ 0
ISN 0179 KK = 0

C SEARCH SYMBOL TABLE 9
C BRANCH INSTRUCTION z ~ |

ISN 0180 400 ASSIGN 405 TO IA 9

ISN 0181 GO TO 250 6

ISN 0182 405 GO TO |410},16 0[(’i~
C LABEL WAS IN SYMBOL TABLE tt
C STORE INDEX IN POINTER ~t

RLPNTRiNN) = MX - I (~ISN 0183
ISN 0184 GO TO 303

C LABEL NOI IN SYMBOL TABLE
ISN 0185 410 RLPNTRINN) = liT - I
ISN 0186 GO TO 303

C ASTERISK
ISN 0187 320 RSFTYP(NN) = 2
ISN 0188 GO TO 304

C RIGHT PAREN
ISN 0189 330 ROWTOT (NNN) = ROWTOT (NNN) ÷ I
ISN 0190 NN = NN +I
ISN 0191 GO TO 180

C NUMBER
ISN 0192 350 RNUMSF(NN) = d - 27
ISN 0193 I = I + I
ISN 0194 DO 307 d = 27,38
ISN 0195 IF (JN(1) .EQ. JNB(J)) GO TO 351
ISN 0197 307 CONTINUE
ISN 0198 GO TO 303

C TWO DIGIT PARAMETER
ISN 0199 351RNUMSF(NN) = tO*RNUMSF|NN| + J - 27
ISN 0200 GO TO 302

C COMMA
ISN 0201 340 ROWTOT (NNN) = ROWTOT (NNN| ÷ 1
ISN 0202 NN = NN ÷ I
ISN 0203 GO TO 302

C
C
C SECOND PASS. UNROLL LOOPS AND PRODUCE FINAL OUTPUT

ISN 0204 899 K = 1
ISN 0205 KN = 1
ISN 0206 700 K = KN
ISN 0207 7059 DO 7089 NI = 1,2
ISN 0208 JIREG(NI) = JZERO
ISN 0209 JJREG(NI) = JZERO
ISN 0210 7089 JKREG(NI) = JZERO
ISN 02lI DO 1719 L = 1,5

©

0

©

0

0

0

©

]2

ISN 0212 1719 JHFLD(LJ = JZERO
C CHECK FOR END CARD

ISN 0213 IF (JCDTYP(K| - 12)
ISN 0214 701 KK = JCDTYP(K)

701,715,715 @i

) io

i

0

t’~i

)

PAGE 006
ISN 0215 GO TO | 704t790~705) ~ KK
ISN 0216 725 KN = KN + X ; i
ISN 0217 GO TO 730 9

C BRANCH I NSIRUCTION z ! 0

~! 0!

ISN 0218 704 IF IJEXITFKK] - I I 703,2725~7725 s i
ISN 0219 7725 IF (KSKPST - I) 703~725~725 6

C SKIP INSTRUCTION oL!

ISN 0220 790 IF {KSKPST - 1 } 703~ 7911v7911 Lt~
ISN 0221 7911 IF (JEXITF(K) -- 1)791,725~725 ~tI
ISN 0222 79X MM =2 0

C BRANCH OR SKIP INSTRUCTION
ISN 0223 703 JTYPE = JCDTYP{K} ,
ISN 0224 N = JROWNM~) 0
ISN 0225 GO TO 800

C ANALYZE I,JvK~ AND H FIELDS
ISN 0226 730 I = JASTCL(K)
ISN 0227 00 190 IM = 1~80
ISN 0228 I90 JNIIM) = JIN (K~IMI
ISN 0229 CALL BLNKCK (ItINT)
ISN 0230 I = INT
ISN 0231 IF (I-80) 158,708~708
ISN 0232 158 IF (KK -7) 1589~7081T08
ISN 0233 I589 IF (JNII) .EO. JCOMMA) GO TO I57
ISN 0235 CALL ANIJK (JIREG)
ISN 0236 GO TO (993),IJ
ISN 0237 I5I IF (KK - 6) 1519~155~155
ISN 0238 1519 IF (JN(1) .NE. JCOMMA) GO TO 993
ISN 0240 I = I÷I
ISN 024L IF (JN(II .EQ. JCOMMA) GO TO 1539
ISN 0243 CALL ANIJK |JJREG)
ISN 0244 GO TO I993),IJ
ISN 0245 IF (KK - 5) I53,155,155
ISN 0246 I53 IF (JN(I} .NE. JCOMMA| GO TO I59
ISN 0248 I539 I = I+l

0

0

0

r:

0
ISN 0249
ISN 0251
ISN 0252
ISN 0253

IF {JN|I) .EQ. JCOMMA} GO TO 154
CALL ANIJK (JKREG)
GO TO (993),IJ

I55 IF (JNII) ,NE. JCOMMA) GO TO 708
0

ISN 0255
ISN 0256

I = I + 1
IF (JN(I) .EQ. JCOMMA) GO TO 708

ISN 0258 00 152 L = 1,26
ISN 0259 152 IF (JNII) .EQ. JNB(L)) GO TO 708
ISN 0261 DO 172 L = 27,36
ISN 0262 IF IJN(II .EQ. JNB(L)) GO TO 173
ISN 0264 172 CONTINUE
ISN 0265 GO TO 993
ISN 0266 173 KI : 0
ISN 0267 IA = I
ISN 0268 174 I = I ÷ I
ISN 0269 KI = KI + I12

11

,~L.~ 10

9

8

~

5

~L~8
L. Conway I

~J

o

0

c~

)

ISN 0270 DO I76 L = 27,36
ISN 027t IF (JN(I) .EQ. JNB(Lll GO TO [7~

,, ©
ISN 0273 I76 CONTINUE
ISN 0274 J = 5
ISN 0275 KK =KI - 1
ISN 0276 DO 177 LL = I,KI
ISN 0277 JHFLD(J) = JN(IA+KK)
ISN 0278 J = J - [tL
ISN 0279 177 KK = KK-I
ISN 0280 GO TO 708 0ISN 0281 157 I = I +1
ISN 0282 IF (JN(II .NE. JCOMMA) GO TO 993
ISN 0284 GO TO 151
ISN 0285 159 IF [JN(I) .EQ. JBLANK} GO TO 708
ISN 0287 GO TO 993
ISN 0288 154 I = I+1
ISN 0289 GO TO 155

C EXIT INSTRUCTION
ISN 0290 705 IF (KBRSTT - [I 707,720,720
ISN 0291 707 KN = KN + I
ISN 0292 GO TO 708

C BRANCH STATE IS ACTIVE
ISN 0293 720 KN = JACDNO(KX)
ISN 0294 M = 2
ISN 0295 JNXTLC = KSYMADIKX}
ISN 0296 GO TO 770
ISN 0297 708 CONTINUE
ISN 0298 IF(JSIDBB (K) - I) 760, 760,765
ISN 0299 760 JNXTLC = LACSLC (K) + I
ISN 0300 GO TO 770
ISN 0301 765 JNXTLC = LACSLC (K) ÷ 2
ISN 0302 770 LIN = JCOLP(K)
ISN 0303 LINI = JASTCL(K) -I
ISN 0304 DO 785 J = 1,7
ISN 0305 785 JTEMP4 (J) = JBLANK
ISN 0306 JJ = 0
ISN 0307 DO 786 J = LIN, LINt
ISN 0308 JJ = JJ + 1
ISN 0309 786 JTEMP4 (JJ) = JIN (K,J)

C
C
C IF INPUT PARAN JDECK=[, PRINT-PUNCH CARD OF TRACE

ISN 0310 IFIJDECK.NE.I) GO TO 2900
C PRINT OUTPUT

ISN 0312 797 WRITE |6,9501 LACSLC(K), (JTEMP4(J), J = 1,71,
*{JIREG(I), l =1,2), (JJREGIIi,I=It2it(JKREG(I.), ! = 1,2}~

0

(..)

©

©

0

C

*(JHFLO(I), I = 1,5), KBRSTT,
= KSKPSTtJEXITF(K), (JHFLD(I), I = 1,5), JNXTLC~

JABSOP(K), JSIDBB(K~

11

©

0

0
4

)

c PLACE INST INTO TRACE
ISN 0313 2900 CONTINUE 9I

ISN 0316 JTRACEIINTRtl)=LACSLC(KI z
ISN 0315 JIR=O
ISN 0316 JJR=O 6’
ISN 0317 JKR=O 0ti
ISN 03[8 DO 2960 LK=I,[O tt
ISN 0319
ISN 032L
ISN 0323
ISN 0325
ISN 0327
ISN 0329

[F(JIREG(II.EQ. JRNUM(LK|) JIR=JIR÷[O$iLK-1}
IFiJIREG(2|.EQ.JRNUM(LKI) JIR=JIR+LK-I
IF(JJREG(I).EQ, JRNUMILK)) JJR=JJR+IO*ILK-I)
IFIJJREG(2}.EQ,JRNUM(LKI) JJR=JJR+LK-I
IF(JKREG|I|.EQ. JRNUN|LK|~JK~=-j-JKR+IO~ILK-1)
IF(JKREG(2}.EQ. JRNUM(LKI| JKR=JKR+LK-[

0

0

0
ISN 0331 2960
ISN 0332
ISN 0333
ISN 0336
ISN 0335
ISN 0336
ISN 0337
ISN 0339

CONTINUE
JIRACE{INTR,5)=JIR
JTRACE{INTR~6)~R
JTRACE|INTR~7)=JKR
JHTEMP=O
DO 2961LK=I~IO
IF(JHFLD(5}.EQ.JRNUM(LK|} JHTEMP=JHTEMP÷LK-1
[F(JHFLD(6).EQ. JRNUM(LK}} JHTENP=JHTEMP+IO~(LK-1}

©

0
ISN 0361 IFiJHFLDI3}.EQ. JRNUM(LK|) JHTENP=JHTEMP+IOO*ILK-I}
ISN 0363 IF(JHFLD(Z).EQ.JRNUN(LK)) JHTEMP=JHTENP÷IOOO~(LK-I)
ISN 0365 IFiJHFLDiI).EQ.JRNUM(LK)| JHTEMP=JHTEMP+IOOOO~iLK-II
ISN 0367 2961 CONTINUE
ISN 0368 JTRACEIINTRt8}=JHTEMP
ISN 0369 JTRACE|INTRt9I=KBRSTT

0

0
ISN 0350
ISN 0351
ISN 0352
ISN 0353

JTRACEIINTR~IO)=KSKPST
JTRACEIINTR,I[I=JEXITFIK)
JTRACE(INTR,IZI=JHTEMP
JTRACE(INTR,Z3)=JNXTLC

0
ISN 0356 JTRACE(INTR,16)=JABSOP(K)
ISN 0355 JTRACEIINTR,I5)=JSIOBB(K} 0
ISN 0356
ISN 0357

00 2977 LK=I~6
JTRACE(INTR,LK+20}=JTEMP6(LK)

ISN 0358 2977 CONTINUE
C

0
C
C INCR. TRACE INPUT POINTER

ISN 0359
ISN 0360
ISN 0362
ISN 0363
ISN 0366
ISN 0365

INTR=INTR+I
IFIINTR.LE.IO00) GO TO 2950
WRITE(6~291~
RETURN

2950 CONTINUE
GO TO (78I~780}~ M ...)

12

ISN 0366
ISN 0367
ISN 0368
[SN 0369

780 M = l
KBRSTT = 0

781 GO TO I796, 793, 795}~ MM
793 KSKPST = 0

0~
E:

I1

) lo ~J

o

0

ISN 0370 MM = I
ISN 0371 GO TO 796

0

©
ISN 0372 795 KSKPST = I
ISN 0373 MM = 1 z
ISN 0374 796 GO TO 700
ISN 0375 715 CONTINUE a
ISN 0376 JTRACEIINTR)II=LACSLCIK) o~ ~)
ISN 0377 JTRACEIlNTR)I41=JABSOP(K| ~�

PAGE 009

ISN 0378 JTRACEIINTR,IS)=JSIDBB[K| ~
ISN 0379 DO 2978 LK=I)6 (~
ISN 0380 JTRACEIINTR)LK+20)=JSIOP{LK|
ISN 0381 2978 CONTINUE
ISN 0382 WRITE(6,3002)
ISN 0383 RETURN

C
C
C ANALYZE BRANCH OR SKIP ENIRY IN TABLE

ISN 0384 800 GO TO (802)803))JTYPE
C EXIT IF BRANCH STATE ACTIVE

ISN 0385 802 IF (KBRSTT - I) 803)725) 725
ISN 0386 803 IF (ROWCRT IN) - ROWTOT(N)) 801, 801) 725

C PROCESS NEXT ROW
ISN 0387 801 KL = ROWCRT (N)
ISN 0388 KL = KL + N - l
ISN 0389 L = RSFTYP (KL)
ISN 0390 GO TO {819e830)) JTYPE
ISN 0391 819 GO TO {820)830)) t

C SUCCESS
ISN 0392 820 KX = RLPNTR(KL)

C FAILURE
ISN 0393 830 RCNUSF (KL) = RCNUSF {KL) + I
ISN 0394 IF (RCNUSF |KL)- RNUMSF [KL)) 850,840) 840
ISN 0395 840 ROWCRTIN) = ROWCRT {N) + I
ISN 0396 850 GO TO (860)880))L
ISN 0397 860 GO TO (870)890))JTYPE
ISN 0398 870 KBRSTT = 1
ISN 0399 880 GO TO 725
ISN 0400 890 MM = 3
ISN 0401 GO TO 725

C SEARCH SYMBOL TABLE RUUTINE
ISN 040Z 250 IB = I
ISN 0403 KKCNT = 0
ISN 0404 00 260 MX = t)III
ISN 0405 IF (KKCNT - KSUM) 255)225)255
ISN 0406 255 KKCNT = 0
ISN 0407 J = 0
ISN 0408 DO 260 t = KCOL)KCOLL
ISN 0409 J = J ÷ I
ISN 0410 IF {JSMTAB{MX)J) .EQ. JN(L))

~ *KKCNT = KKCNT + I

©

®

O

O

O

.)

}l

))o LO

-zs(
I :--Tc%ffw-oZ,] 0

5

4 .0

]

PAGE 01~
ISN 0612 260 CONTINUE

C LABEL NOT IN SYMBOL TABLE
C STORE LABEL

ISN 0613 L = I
9

L @
ISN 0616 DO 265 II = KCOL,KCOLL e
ISN 0615 JSMTAB(IIItLI = JN(II) 6
ISN 0616 265 L = L + I o~ 0

C INITIALIZE NEXT SYMBOLIC LOCATION TO BLANK~ t[~
ISN 0617
ISN 0618

III = III + I
DO 268 LJJ = 1,8 0

ISN 0619 268 JSMTAB (III,LJJ) = JBLANK
ISN 0420 GO TO IA,(205,405)

C LABEL WAS IN SYMBOL TABLE 0
C DOUBLE CHECK FOR CORRECT MATCH

ISN 0621 225 IF (KSUM - 8) 226,230t990
ISN 0622 226 IF IJSMTAB[MX-I,J+I| .NE. JBLANK) GO TO 255 0
ISN 0426 230 IB = 2
ISN 0625 GO TO IA,(205,6051
ISN 0626 I FORMAT (8OAl) 0
ISN 0627 2 FORMAT I’ ’, II0, 8OAf)

3 FORMAT |’ ’,zTO0 MANY INPUT CARDS’)
6 FORMAT {’ ’, IOPERAND FIELD ERRORI)

ISN 0628
ISN 0629
ISN 0630 6 FORMAT(’ ’,IOX,BOAI)
ISN 063I 7 FORMAT (’ ERROR ON FOLLOWING CARD’)
ISN 0632 8 FORMAT (’ ’,’OP CODE ON NEXT CARD NOT IMBLEMENTED’)
ISN 0633 950 FORMAT (t ’,I6,1X,7AI,IXtZ(2AI,IX),ZAIt2X,SAI~6X,3IIt

*3X,SAI,ZX,15,2X,13,2X, II)

0

0

ISN 0634 2910 FORMAT(’ TRACE EXCEEDS I000 INSTRUCTIONS - - - TERM.UNROLL’) Q;ISN 0635 3000 FORMAT(I UNROLLER INPUT PROGRAM -~)
ISN 0436 3001 FORMAT(IHO)
ISN 0637 3002 FORMAT(IHI)
ISN 0638 END

==

O~

O

O

C)

11

©9

B

6

5

z..s- 2_

i" [..L, ..onway I 0

0~ 4

0

0

0

0

0

0

0

0

0

GN] ~IO0 NSI .
N~NI3~ ~I00 NSI

0 08 =NNI EIO0 NSI (,
3NNIIN~D Ol ~IO0 NSI

N~nl3~ IIO0 NSI
0 I=NNI OIO0 NSl

OI 01 09 (~NVISP "b3"__.(llNP) a] BOO0 N~.J
08’N = I OI O0 LO00 N$I

C] rI’II’IOB)NrI~V]~Y/NOWWO3 9000 NSI C
/, ,I~NVlBr VlVO 5000 NSI

NNI’N Z*~3931NI ~000 NSI
0 i (PIZ~3931NI lIDIldWI EO00 NSI

~

-L-~ L~ -- ~ /- -- INNI’N!_~D~N]~ BNI/nO~BnS ZOO0 NSl
~X’OI’IIOBON’dVW’OVOl’~DBOON’ISIlON’DIODB3’BD~nOS’95=INDBNII’OO=IdO6NIVH =BWVN - SNOIldO ~311dWOD

::, Z£’&~’~I/@LO’89]IVO H NV~I~03 09£I~0 (L9 NNC I) ~I 1BAil

.. C

) ... i;i :
LEVEL 14 (1 JUN 671 0S/360 FORTRAN H DATE 68.076/1~.o59°3~1.

) COMPILER OPTIONS- NAME= MAINtOPT=OOtLINECNT=56,SOURCEIEBCDICtNOLIST,NODECKtLOADtMAPtNOEDIT,ID,XREF

ISl 0003 IMPLICIT INTEGER*IIJ)
ISN 0004 INTEGER*2 JANS
ISN 0005 DATA JZEROI’Oil

"j ISN O00b COMMON IAREA2# JNB(36)t JOPCDE (be256)~ JSIOB (256)I
*JITYPE |256), JEXITF |300|

- - iSN 0007 COMMON/AREA4/JN(80|,I,IJ
~} ISN 0008 DIMENSION JANS(2)

ISN 0009 IJ = 2
ISN 0010 DO 10 L = 1,26

] ISN 0011 IF (JN(1) .EQ. JNB(L)I GO TO 40
ISN 0013 10 CONTINUE
ISN 0014 15 DO 20 L= 27,3b

} ISN 0015 IF [JN[I) .EQ. JNBItll GO TO 25
ISN 0017 20 CONTINUE
ISN 0018 IJ = I

) ISN 0019 RETURN
ISN 0020 25 I = I + I
ISN 0021 00 30 L = 27,36

~) ISN 0022 IF (JN(I) .EQ. JNBILi) GO TO 35
ISN 0024 30 CONTINUE
ISN 0025 JANS(1) = JZERO
ISN 0026 JANS(2I = JN|I-I)
ISN 0027 RETURN
ISN 0028 35 JANSII| = JN (I-i)

) ISN 0029 JANS(21 = JN (li
ISN 0030 I = I ÷ I
ISN 0031 RETURN

~) ISN 0032 40 1 = I + I
ISN 0033 GU TO 15
ISN 3034 END

0

®

O

0

0

(7)

0

0

0

0

O

0

©

,_)

L)

©

L)

0

0

)
LEVEL 5 DEC b6 DATE YS!360. FORTRAN H ____DATE 67.23612~0J

COMPILER OPTION~ - NAME=

ISN 0002 BLOCK DATA

HAIN.O~T=00~IINFCNT=50.~nlIRCF,FRCnlEeNNIIST~nFCK~LEtAD.~MAp~NnFnlT~MNI0

i~-N 0003 IMPLICIT INTEGERi2(A-Z)

FORM THE DECODE TABLE HERE WITH DATA STATEMENTS

i ;

GL

ISN 000~ COMMON/TAGS/
T01(2561 ,TOZ(256)IT03(256) ,TO~(256).TO5(25b) ,T06(256) I

T07(256),T08(25b)
X TI~(256),T15(256)
X T21(ZSb),T22{256)
X T28(256)~T29(256)
X T35(Z56)~T36(256)

.TOgIZ56)~TIO[25b|

.T16(256),T[7(256)

.T23(256),T2~(2561

.T30(256),T31(2561
,T37(256).T38(256)

,TII(Z56).TI2(256)
,T[8(256}~T19(256)
,TZS(Z56I.TZ6(256),
,T32(Z56)~T33(256)
,T39(Z56)tT40(256)

T13(25bl.
,T20[25611
,T27(2561.
.T3~(256)~
.T4l(2561,

X T42(256)lT~3(256) ,T4~(256)tT~S(256) ,T461256).T~7(ZSb)~T~8(256).
X T~9(256).TSO(256) ,TSl(256)tT52(25b) ,T53(256).TS~(256) ~T55(256i.

,T58(256}lT59(25b)
,T65(Z56).T66(2561

X T56(256),T57{256)
X T63(256),T64(256)

,T60(25b).T6[(256},
,T67(256)~T68125b)

,Tb2(25b).
,T69(256)~

X T70(25b)
ISN 0005

~L

/

DATA TOl/l.l,O,l,l,3*O,l,l~Oil,ltS*Oi8*lilliO,l,O,3~l,#*Oi#~l,
X 55"0,14"1,3"0,I,I,0,0, I,I,0,0, I0"I.0,I,5"0,I,0,I,510,1,0,I,0,I,

........ Y_9_ ,. L ,.~-~ ,_z 3~o_~, ! ~ ~ 1, ~*o~z, I j} ~9~ 8_*_k~ ~.t33~ ,~} *z, o,i, }?~o/
ISN 0006 DATA T02/8"0,1,1,0,1,1,5~0,8"1,11~0,1,0,1,1,7"0,1,1,5"0,1,0,1,0,

X 1,O,l,O,l,O,l,O,l,O,l,O,l,O,O,O,l,O,l,~O,4~l,O,O,3tl,O,l,O,8~l,
................................ V~ O~ o~,~;~Tf; i ; ~ ;~T3~, ~i~-,-~6~6Ti~T, ~0;~; d;~;~O ;~ ;~ ;i~

Z 610,811,I&*0,3*Ii1410,311,0i811,011,3210/
ISN 0007 DATA T03/201*0,8.1~;-47--0--/------- ..
ISN 0008 DATA 104111*O,l,l,710,l,l,O,O,l,l,122iO,l,SiO, l,O,l,$iO,I,9310/
ISN 0009 DATA TOS/B*Oil,l,810il,liOiO,l,l,131011,O,lilil410,1,O,l,O,liOi

.......... x z~o.i ~o~_z_#o t£tOJ_IJ~ ,_12 }~.Q~ i,o_.i, 4*oj ~ z ,o, ~ ._~ z, 0 ¯ I, 0.8. I. ~*o,
Y l,O,l,5*O,liOil,O,l~Oil,Oili6~O,8~lilb*O,3~li60~O/

ISN 0010 DATA T06/256*0/

ISN 0012 DATA TOB/48tOlltllSiOtiiOillOtiiOillOiitOlllOlilOlltOlli31011101
X 1,4#0,4.1,0,0,3-1,0,1,0,8.1,20.0,1,1,0,0,l]]]770.-3i-i76767i-76i~7 ... ’

Y illtOiliOillOtltOillBlO/Btili61013il16010/
ISN 0013 DATA T09/154~0, I,101~0/
ISN 0014 DATA TlO/25b~O/ ~> ~
ISN 0015 DATA TZZ/SS*O,Z,O,i,O,i,O,i,O,i,O,i,O,Z,O,Z,O,i,3*O;i,d;i,iOi6, ... ;~;,

X 3~I,0,I,0,4#I,24#0,I,Ii0,0,I,i,0,0,3~I,6~0,I16~0,I,9~011~0,I,01
Y 1,8~0,8~I,17~0,2~I,60~0/

ISN 0016 DATA TI2/25b~O/
........ i Sh--d~L~ ~ t ~- ~ ~/~5~.~7-- ...

ISN 0018 DATA T141256*0/
ISN 0019
ISN 0020
ISN 0021

DATA TlS148*O,l,l,72~O,l,l,O,O,l,l,O,O,3~l,btO,l,llb~O/
DATA T16/B*O,l,l,~2*O,I,IOl#O,I,5~O,I,O,1,5~O,1,92~O/
DATA T IT/I, I, 39*0, I, 5*0, I, ST*O, 14~I, 28~ O-~i~O~-i~-5~O~ i~O ,-i~ O.i~~-

X 1,O,l,1310,8*lill*O,l,l,13*O,l,l,43*O/ =~+:
F~ 0022 DA 1’~--T~[~-/25 b*O/ ~.

i~ ISN 0023 DATA T19/I08"0,I,5"0,I,14110/
ii ISN 002~ DATA T20Iltl,O,l,l,3*O,l,l,O,l,l,S*O,811ill*O,li810,1,5810,1411i

X 1410,b*l,O,O,l,5*O,l,7*O,l,O,l,Oil,O,l,15*O,811,11*O,lilil4*O,

5

3

2

)

9

ISN 0026 DATA T2211,1,Otl,1.3*O,ItltO,l~l,5*O,8*l,ll*O.l.67*O,6*lt22*O,
X 3"1,5"0,1,5"0,1,9"0,I,0.1,0,I,15"0,8"I,I1"0,I,I.3"0,8"I,67"0/

ISN 0027 DATA T23/8*0.1.1,8*0,I,,1,0,0,1,1,13*0,I,0,1,I,215*0/
ISN 0028 DATA T26/201"0,8"I,5"0,8"I,36"0/ 6
ISN 0029 DATA T25146"0.1.0-,1,1,72"0~I,1,0,0,I,1,0.0,I0#1,0.l,43"0,8"I,6"3-’0/ ot .::
ISN 0030 DATA T26167"0,I .137"0,8"1,8"0,8~’1.5"0,8"1,36"01 tt : i :.’~’:.

--- ISN 00~1 -DA’TA T27/1,1,6"0,1,1.8"0,1,1,0,0,1,1,232"0/ ~
ISN 0032 DATA T28/3*0,1.1,6*0.1~1~7~0,1.1,0,0,1.1~230*0/ ~~?~

0033
ISN 003;

ISN 0035

ISN 0037

ISN 0039
.... i~-gr-6-O~O

ISN 0061
ISN O062
ISN 0063

DATA T291216"0,8"1,34.0/
DATA T30/0,0, I.0,0,3"I,0,0,1,0,0,5"I,8"0,11"1,0,1,3~0,4"I,6"0,

X--~-l-;,O~-~;OT 1~0~, [;0 ~ l.O~t__071F-~O-V, 1 ,---0¥[-;-0~3-#-13~-;-I ~ ~, 6* 1,6.0, 1.1,
Y 3*0,1,0,I,8*0,3*I,14*0.3*I~0,0,1~1,0~0~I~I~10*0~1,0,4~I~6*0~

DATA T311210"0,3~1,63.0/

DATA T33/8*O,Itl,8*O.l,l,O~O,l,l,13*O,1,O.l,l,215*O/

DATA T35/256~0/

ISN 0045 DATA T4112.2.0.2.2.3"0.2.2,0.2.2.5�0.8"2.230"0/

D~TK’- ~ 33T2-5-6* 0-7
DATA T3T/256*OI
DATA T38/256~0/
DATA T39/256.0/

-- --I-S’l~
I SN 0047 DATA T43141*Ot 1,63"0t I. 1,6"0~, It I ~6~0.I, I. 58"0t 8"I ~ l I*0, I, l. 3~0,

X 8"I,0,0, I, 1,63~0/
ISN 0048 DATA T461167"0,1,0.I,5"0,I,0,1,0,I,0, I,0,I,92"0/

ISN 0050 DATA T66/108~0,3"1,3"0,3"1,139"0/

) ISN 0052 DATA T48/133"0,6"1,0.0,1,114"01
]SN 06-53 DATA T4~-/-6 .7-*-0;~.-[3-7-~,b-~,8~-1--.6~*07
ISN 0056 DATA T501256,01

)
~005~--- -D-KrK--T-S=EI 2~3~ O]

ISN 0056 DATA T521256-01

; ISN 0058 DATA T56/256"0/
ISN 0059 DATA T55/256~0/
ISN 0060 DATA T56/55"0~2~0.2.0.2.0~2.0.2.0.2~190"0/

ISN 0062 DATA T58167~O,1,0,1,OtitlB6X’O/
~66~ D-ATK-fs-9-rI3-&~(T, I ,o, 1,1T 8.0/
ISN 0064 DATA T60188*Otl,l~4*O,ltl,ltl,l,1,93*O,3*1.60*Ol

................................ i~: :- ~ ~i

12

ISN 0065
ISN 0066

~l~lT-O0-67
ISN 0068

DATA T61190"0,1,165"0/
DATA T62192"0,I,163"0/
O AT A’--T~] ~--~8 0~, i~-, 1 .-~7~a~0~i-~-i~-, 0~ 1~~*~ ~, 6* O, 1,11 ~0--7
DATA T64/82"0,1,1,85"0,8"1,79"0/

236

3

2

PAGIE__033~
ISN 0069 DATA T65184~O,l,lt60~Otl,O,It5#OtltOtltO,ltO,l,OjI,93~Ol
ISN 0070 DATA T661256~01
ISN 0071 DATA T671256#0/ 9

ISN 0072 DATA T681256~01 L
ISN 0073
ISN 0074

C

DATA T69/256~01
DATA T701256~01

C
C UNROLLER DATA
C

ISN 0075 DIMENSION JNB(36), JITYPE (256)

~t

! ¯ <,

ISN 0076
ISN 0077

ISN 0078
X (J2tJOPCDE(ItI71)t
X (J3tJOPCDE(L,33))~

DIMENSION JOPCDE (6tZ56)t JSIDB (256)
DIMENSION JL(96)pJ2(96)~J3(~b).J4(96)~J5(96}.J6(96}~JT(96)~J8(96)t

XJ~(961,JtO(96),Jll(96),JIZ(96);’J13196),’j-14(96)’;3i-5(g6).J16|96|
EQUIVALENCE (JItJOPCDEiItI)),

E

_ ii¸

X (J#~JOPCDE(l~49|)~
X {J5~JOPCDE(1,65))~
X (J6~JOPCDE(I~81)),
X (J7~JOPCDE(I,97))~

................................X ~-J~-JO~C-O~-i~’t ~T-)~
X (J9~JOPCDEII~129))~

(JIO~JOPCDE(I~I#51),
(JII,JOPCDE(I~16I))~

X (JI2~JOPCDE(I~I771),
X (J13sJOPCDE(l~195})~
X (Jl~, JOPCDE (1~ 209)),
X (JlS, JOPCDEI l¯2ZS))
X (JI6, JOPCDE (1~ 2~1))

ISN 0079 DATA JIII~ZHL X H L X L X A
A ST XA L XC L X C A L AH
B L A A ST AH S TA S T A A L D H

L A
L D

C /
ISN 0080 DATA J21192HS T D H S T D L A T H L A T S T A

m~

A T H S T A T L L L R S T L S T R , .
A L M S S T M " ";’:B L m X S T M X L M A S T M ..

"f .!~. :/:C S l

..... [S_N O._%B_L D AI"~___._J3LLg?~_S T ~ ZS L~_Z ~ ..
A M X A M A X M K L M KR M L X
B M X S MSX M S X Z M X S 0 M XC MC X
C /

ISN 0082 DATA J41192HM L C M R C M X P M K P
A AN A D N A R
B A DR A U A D U S N SD N SK
C /

ISN 0083 DATA JsIIg2HS D R S U S D U M N M D N
A MR MDR MU MDU MMN

~ B M MU DN D DN DR DDR DM N
11

~) ~o

4

3

2

ISN 0084

ISN 0005

BS X MX DR X DX RX AX C
c 7

ISN 0086 DATA JSII92HA X K M X K O R X K D X K R X K

I SN 0087

A SPX SNX
BCGEN CEQN
-~O--N /

C GED C E O O CM GE N CM E

DATA J91192HC M G E D C M E Q D C G E I C E Q I C U G

BC UG E X KC BA C BMA CB X CB M X
C I

ISN 0008

BSWA SWX IFA
C~ /

ISN 0009 DATA JIIII92HS I A $ I X
....................... ~ ~’-T~- ~

BT A FA F AF A OR A
C 7

ISN 0090 DATA JI21192HX O R A A N D X
FOF X F 0 F X E Q X

8 T A F C F AF C ORE

DATA JIO/I92H S H A
AT ~F-R-X--C-----S~F~ ~BD--X

IFX

SHX SHA
~-R~--F S H D X C

IFZA IFZ ~

SIAC SIXC SID
ANDA

TOFA FOFA EQA

TAFX FAFX ORX
XORX ANDC

TOFC FOFC EQC
C /

ISN 0091 DATA JI3/I.g2HX 0 R C C N T T C N T A A........... A-- A.-X-- - C--N--+r-D--~

B B T A F B F A F B OR B TO F

ISN 0092 : DATA JI~II92HB X O R B U E X I T

CNTDA CNT
~AND

BFOF BEQ

EXIIL EXI

ISN 0093

ISN 0094

ISN 0095

A T A E X I T P S K A N D S K T A F S K F A F SK OR
B S K T 0 F $ KF 0 F S K EQ $ K X OR [V I B NO P

DATA JIS/I92HP A U S E P I S C A N S V C S V R
A I C I R
B S I O H I D T C H M T X M X T M Z T

DATA JI61£gZHM 0 T I T U M A I T U M P I D A L D A
.... ~--6--H A--A-----L-O-h-8- i~- -- L---D--FI-C--A I--ti~tl-~C-- - ~-~ -DI--~-~i-A- ..

B S T DH B AS TO HCA STDHDA.. .__S_Ti 0
C P /

DATA JNB/ ’A’~ ’B~ ’C~ ’D’~ ’E’, ’F’~ =G’, ~H’~ ’I’, =J=~

! }

ISN 0096

~0

8

*

OKOt iLlt tMo~ ONO~ DO,~ ~po~ iQil OR.~ oSI~ OTO~ ~Utt tVl~

,Wo, ,XO~ ,yo~ iZ,~ ’0’~ °I°~ °2=~ °3o, i~o~ oSi~ o6op ~7o~
oSI, O9Ol

DATA JSIDBIIi2,2,1,4*2,l,2,2, lt2,2,1,2, l,211,2~Iill=2,

L

i_L
l _]

)
PAGE 005

8 I,I,2,I,2,I,I,0,0,0,2,18~I,0,0,I/ oL
ISN 0097 DATA JITYPEI20I*4~9~I,~=3,8=2,33=6tI2/
ISN 0098 COMMON IAREA21 JNB,JOPCDE,JSIDB~JITYPE,JEXITF
ISN 0099 END

F

11

} 1o

~ IUI,.

tEVFI 2 FF~ 67 0S/360 FnRTRAN H OATF 67.255/11.~a-51

cnMP!LE~ nPT!OuS -- ~^ME= M^!~=nDT=nO:L!NEC~T=50;SOU~CE:Escn!c=..~3L!ST;OEC~;LO~D:M~p;NOE9!T;NO!D

ISN 0002 SUBROUTINE INIT
ISN 0003 IMPLICIT INTEGER~2IA-Z)
ISN 0004 DIMENSION COM(300)
ISN 0005
ISN 0006

ISN 0007

ISN noo8
ISN 0009

DIMENSION SAV(20000) o~ ::L;:-
COMMON TIME. IPARI. IPAR2. IPAR3. �[

A AINPT, NABUF, ABUS(50), XINPT, NXBUF, ct

B XBUS(50), I FADD, IFDST ~ IFRTN~ BRXP~
C BRAP, ER(8I~ BE(8)~ ET(8), NBBUF ~,
D AHOLDT, XHOLDT v AFRCT~ XFRCT, BOSCv
E BNDP, XEP, AEP~ PHIIIO0), PRINT,
F FSTADD, NODOT, NOPSC, NDBUS, NADSP,
G NXDSP

COMMON/RLS/ FIRST~ NAREGS, NXREGS, NABUS, T
ACON, XCONt AEMP~
AFULL (12) ~. XFULL(I2)e AGOII2I e
NXGO, NATEST, NXTEST,
ABUSYZ~ ABUSY(200) ~ XBUSY~ L ¯

12,100),XBUFF{ 12,100),ASDR(12,200),
12~200],XDEST(12~200)~, AFAC(12~15)e I
(4,15,20) , ARET, XFACSCI4,15,20) ,XRET, I

,XBUSSCI4,10,20),XIBBSY{IO) ~XFIBUSIISI~ I

A NXBUS, STATS,
B XEMP~ MXO,
C XGO(12), NAGO,
D NAFACt NXFAC ~
E XBUSY(200) ~ ABUFF (
F XSOR(12 ,200) eADEST(
G XFAC([2,15), AFACSC
H ABUSSC(k,[O~PO)~AIBBSY(IO)
I AOBUS(I2,10),XOBUS(12,10),
J AFDLY(15), XFDLY(15).
K ABUPSZ, ABUPS(200I,
L Q(16~16), SDBAI32~2)v
M QINPT, QCON,
N LOAD, MEMDLYe

AFSLOT(15,20),XFSLOTIIS~20),AFIBUS(15),
AFOBUS(15). XFOBUS(15). NSLOT.
XBUPS(20OI, ABUFUL(200), XBUFUL(200),
NQBUF, NQTESTe NQGO,
QEMP, MBUSY, MFREE,
MEMORY(15), NBOXe EAV~

0 MXTIME, OUTLVL, IQ[@,16) ~ RTN~ LONGBR,
P SR[8)~ ST(8), SKXP~ SKAP~ NSBUFe
0 APASSI200), XPASS(200), OUT(2), JOB(6), SSTOP,
R MEMCNT(16)~ ABOX(15)~ ABXBSY(IO)~ XBOXIISI~ XBXBSYIIO}

COMMON/RLS/ LAST
INTEGER OUT

ISN 0010 REAL MEMDLY,MXTIME
ISN OQll REAL TI~E
ISN 0012 COMMON /CALNDR/ ISL, ITL, LINK[20O),

A CTIME(2OO), NEVENT(200)~ KOLI(200), KOL2(20O), KOL3(20O)
ISN 0013 REAl_ CTIME
ISN 0014 REAL X
ISN 0015 INTEGER I
ISN 001~ COMMON/TAGS/D(256,70}
ISN OOt7 EOUIVALENCEICQM(II,TIME),IX,CTIMEII))
ISN 0018 EQUIVALENCE(SAV(1),FIRST)

C
C
C ZERO ALL COMMON

~i ISN 0019 DO 520 I=I,300
~ ISN 0020 520 COM(1)=O
~o ISN 002I DO 525 I:I,20000

. >.i~~

PAGF 002
ISN 0022 525 SAVII)=O
ISN 0023 526 CONTINUE ~ ::~:~:.~

C INITIALIZE THE CALENDAR
ISN 0024 DO 92 ITL:2,199 6 :: : ~
ISN 0025 92 LINK(ITL)=ITL÷I ot . -~÷..
ISN 0026 ISL=2 t~

ISN 0027 ITL=I at : .;/:~
ISN 0028 X= [.OE30
ISN 0029 TIME=O.O

C
C
C INITIALIZE THE EVENT NUMBERS

ISN nOlO STATS=I
ISN 0031 MXO=2 ::
I SN O03P_ ACON=3 ~c:=
ISN 0033 XC 0N=4
ISN 0034 AEMP=5
I SN 0035 XEMP=6 : -i!~7~!7
ISN 0036 AR ET=7 I
ISN 0037 XRET=8 j
ISN 0038 EAV=9 [
ISN 0039 OCON= 10 �
ISN F}040 ~EMP~--~I J

,sN oo4 M R _E:,3
ISN 0044 RTN=I5

C
C SET UP STARTING EVENTS

ISN 0045 CALL CAUSEISTATS,TIME÷O.O,O,O~O) ~J
ISN 0046 CALL CAUSE(ACON,TI~E÷O.I,O,O,O) i
ISN 0047 CALL CAUSE(XCON,TIME+O.I,O,O,O)
ISN 0048 CALL CAUSE(OCON,TIME÷O.I,O,O,O)
ISN 0049 CALL CAUSE(MXO ,TIME÷O.6,O,O,O)

::. ’:~i
C ii:" ,~:
C
C INITIALIZE THE MACHINE PARAMETERS

ISN 0050 BRXP=I
ISN 005i ,3R AP= I
ISN 0052 SKXP=]
ISN 0053 SKAP=I
ISN 0054 NAREGS=90
ISN 0055 NXREGS=90
ISN 0056 AINPT=I
ISN 0057 QINPT=I :-"
I SN 0058 XI NPT=I ~"

~2 ISN 0059 OF) 50 I=1,32
11

2.C> ~

L i¸ :

)

}

)

3

)

ISN 0060
TSN 0061 50
ISN 0062
ISN 0063
ISN 0064 51
ISN 0065

ABUPS(I)=1 v .

DO 51 I=33y89 9 ~4
ABUPS(I)=O z
XBUPS(I)=I 8
NSLOT= 15 6 ,’ ~-" .~=

ISN 0066
ISN 0067
ISN 0068
ISN 0069
ISN 0070

lO

ISN 0071 9
ISN 0072
ISN 0073
ISN 0074 8
ISN 0075
ISN 0076

INITIALIZE AFAC TABLES
NABUS=6
NAFAC=IO
00 I0 I=I~I0
AFSLOT([,3)=I
00 9 J=4~9
AFSLOT(4,J}=I
AFSLOT(6t4)=~
00 8 J=4,12
AFSLOT(TTJ)=I
AFDLY(I}=3
AFDLY{2)=4

ISN 0077 AFDLY(3)=3
ISN 0078 AFDLY{4)=9
ISN 0079 AFDLY(5)=2
ISN 00~0 AFDLY(6)=5
ISN 0081 AFDLY(7)=I5 i
ISN 0082 AFDLY(8)=I I
ISN 008~ ~FDLY(g)=I |

ISN 0084 AFDLY(IO)=I [
ISN 0085 AFIBUS(I}=2
ISN 0086 AFIBUS{2)=I
ISN 0087 AFIBUS(3)=3
[SN 0088 &FIBtJS(4}=I
ISN 0089 AFIBUS(5)=I
ISN 00gn AFIBUS(6)=2 j
ISN OOgl AFIBUS(7):2 i

k

ISN 0092 AFI~USIR)=I
ISN 0093 AFIBUS(9)=2
ISN 0094 AFIBUS([O)=3
ISN 0095 AFOBUS(1)=2
ISN 0096 AFOSUSI2}=I
ISN 0097 AFOBUS(3)=4
ISN 0098 AFOBUSI4)=3
ISN 00~9 AFOSUS(5)=2
ISN 0100 AFOBUS(6)=4
ISN OIOI AFOBUS(7)=4
ISN 0102 AFOBUS{8)=6
ISN 0103 AFOBUS(9|=I
ISN 0104 AFOBUS(IO)=3
ISN 0105 ABOX(|)=I
ISN 0106 ABOX(2)=2
ISN 0107 ABOX(3)=3

~ ISN 0L08 ABOX(41=~
11

lO

’/-L ~L
:
3

k

)

PAGE 004
ISN 0109 ABOX(5)=2
ISN OIlO ABOX(6)=4

z

6 T

ISN Olll ABOX(7)=4
ISN 0112 ABOX(8)=5
ISN 0113 ABOX(9)=6
ISN 0114 ABOX(IO)=7

C
ISN 0115

INITIALIZE XFAC TABLES
NXBUS=IO Lt

ISN 0}16 NXFAC=9
ISN 0117 OR II I=I,9
ISN 0118 II XFSLOT(I,2)=I
ISN 0119 XFSLOT(5,3)=I
ISN 0120 DO 12 I=3,9
ISN 0121 12 XFSLOT(6,1)=I
ISN 0122 XFDLY(I}=I
ISN 0123 XFOLY{2)=I
ISN 0124 XFDLY(3)=I
ISN 0125 XFDLY(4)=I
ISN 0126 XFDLY{ 5|:4
ISN 0127 XFDLY(6)=8
ISN 0128 XFDLY(7)=I
ISN 012Q XFDLY(~)=I
ISN 0130 XFDLY(Q)=I I

IISN 0131 XFOBUS(1)=5
ISN 0[32 XFOBUS(2)=&
ISN 0133 XFOBUS(3)=I
ISN 0134 XFOBUS(4)=3
ISN 0135 XFOBUSIS)=2
ISN 0136 XFOBUS(6)=2
ISN 0137 XFOBUSI7)=7
ISN 0138 XF~US(8)=IO
ISN 0139 XFOBUS(~|=8
ISN 0140 XBOX(L)=[
ISN 0141 XBOX(2}=2
ISN 0142 XBOX(3)=3
ISN 0143 XBOX(4)=4
ISN 0144 XBOX(5)=5
ISN 0145 XBOX (6)=5
ISN 0146 XB~X(7)=6
ISN 0147 ×B~X(SI=7
ISN 0148 X~OX(9)=8
IS~! 0149 NAFAC=II --
ISN 0150 NABUS=7
ISN 0151 AFDLY(II)=I
ISN 0152 AFIBUS(LI)=I
ISN 0153 AFO~US(II)=7
ISN 0154 ABOX(II|=8
ISN 0155 AFSLOT(II,3)=I
ISN 0156 0(39,1)=I

~2 ISN 0157 D(39,2)=1
II

10

9

i i i

~......, nwoy

,1

3

2

PAGE 005 c I :.: -/#:-.-

Z

6

Ol
.;

tt
gl

ISN 0158
I[SN 015q

[SN 0].60
|SN 0161
[SN 0162
|SN 0],63
[SN 0].64
ISN 0165

O(39,[1)=1 i
0(39.|3)=|
0(39,].7)=1
0[39,30)=0
D(39,32)=l
0(39,66)=].
RETURN
END

.... !_ ¯ ~-_:(
i ,

i

!

....... _~
I L coowoyi

DATE YS/360 FORTRAN H DATE 67. 191103.47.L~8

ISN 0003
ISN O00/,

IPPLICIT I NTEC, ER*2 (A-Z)
CUMgON TI~E, IPARI, IPAR2, IPAR3,

A AI,NPT, NAtsLIF) ABUSI50) , XINPT, NXBUF,
B X6US(5u), I F~DD, IFOST) IFRTN) BRXP)
C ~.~RAP, Ek(8) , 8E18), ETI8), N~BUF,
D AHdL[)T, XHI.!L. DT, AFRCT) XFRCT) u4L}SC,
E ~NOP, XEP, ALP, PHIIIO0), PRINT,
F F STAOI), r~t ,D,’.IT, NI)P SC.) NOBUS, N.’~OS P)
G F Xi)SP

ISn U305 Cl’;a ’,GNIRLS/ FIRST, NAREGS, NXREGS, N,%:’;US,
A ~ X4US, SLATS, &CON) XCON) AEMF)

X E,’~)", ?iX~:, AFULLIIZ), XFULLIIZ), AGOIL2))
i.

C XG(;(I2} , ,~a~;C;, NXGO, NATEST, NXTEST)
0 F’AFAC, NXFAC) ABUSYZ, ABUSYI200) , X ~USYZ,
E XBiJSY(ZO0)) AbUFF{ 12, [00) ,X6UFF(12, lO0) ~ASOR (12,200) ,
F XS.-!R(12)200)) AL;EST (12,200) ,XqEST112,200)) AFAC(12,IS),
o XFAC(12,15), AFACSC(4,15,ZO),AkET, XFACSC(4,IS,20),XRET,
H Ac, UsSC (4, id,20) ,AI B[<SY(tO)) X~USSCI~*, 10,20 I ,XIBBSY(10) ,XFI~3US115) ,
l AL!bUS(I2,I~),Xti!’US(12,10I)APSLt)I(IS,20),XFSLOTIIS,20) ,AFIBUSIIS),
J AF.]LY (L5)) XPLiLY(lb.)) AEL)~LJS(15)) XFOSUS(I5) , NSLFiF,
~<.Ar’..IPSZ, A~UPS(200), Xo, UPS(200), A~UFUL(200)) Xd)UFULI2OO),
L ~(1~, 1~), SDbAI3Z,2), I’~OBUF , ~OTEST, N .)OC’,
M ~INPT) QCt}N) QEMP, MBUSY) MFREE)
I~, LUAU, ~EMDLY, MEMORY(t6) , NBOX) E~V,
U ~,XT IMk , O~Jl LVL, IQ (4, 1.1")I , RTt,), LONG~R,
P .~)- (fi) , ST(8|, SKXP, SKAP, NSGUF,
~., AP,~.SS (ZU’) } , X!>gSS(200) , UUT(2), JOB(6), SST~P,
t-, , ~,:LNT(lo)) A[SHX(15), AdX~SY(IO), XBC)X(15), X~.XLtSY(tO)

IS[’)i)t)O C~ "i(r’J/’~L~’/ LAST
IS.’, oJO? Ir [EU~F PUT
I St,! O.)d8) I :dEleS I:}r,~ S(!kGS~ (200)) I)ESf3SY (2f)O)
IL~t~ 0009 ;-:_PAL ’!E.~CL’~,t~XTIr. k
Igr: O{11) .<£.~L II’!L
IS.,a 0311 C~t_t. CAt.ISI-(AC,/,J,TI,4E+I.O)O,O,O)
| 3, ~;012 C/’LL CALLS;" (AE/!P,TI~"[~+t).7,0,O,))

F

IS:. (.>’)I~ ’,.ALL CAUSL-IA) df,’..I:"~+u.8,O,)),.))
[SN ,JOt/+ .,~.L::~.)
ISh 0~}15 :~l-t ~<~=0

1Sr.~ 0017 t /\L,(iiI)---,)

L, IF: SKIP IAKEN,NOP ALL STARRED UPS UP 1(1 IST E’<ffC SKIP- -
Ib;,; 0016)U ~;,) I=I,NA)L, OF
IS;,J 0019 IF(ABUFF(1) L3).EtJ.O} GO TO 79
ISN ’JOZi iF(ABUFE(I, 9).E~4.01 GO TO .94
ISh (,)023 !F(ABUFF(I,I[).£O.0) GO TC 84

)2 ISH 0025 19 CONTINUE
~ ISP) 0026 IF(AbOF:F(I,LI).E~.O) GC TO 80
10 t~ii 0928 Ir (AbUFF(I)9).~Q.O) O0 TO 80

:::J~ ,;:v~

9

9__G5
6
5
4

3
2

1SN 0030
ISN 0031
I S/’~ 0032.
ISN 0033
I SN 0034
IS~’ 0035

00 81K=I,NAREGS
ASOR(I,K)=O

8I ADEST(I,K)=O
00 82 K=I,NAFAC
AEAC(I,K)=O

82 AOBUS(I,K)=O
ISN 0036 ABUFF(It2)=O
ISN 0037 DO 83 K=9,}5
ISN 0038 83 ABUFF(I,K)=O
ISN 0039 80 CCNTINUE
IS~ U040 84 CO,~I INUE

C
C THIS EVtNT SCANS A6UFF FOR INST WHICH CAN GO
C SCAN FOR NAGO OUT I]F NATEST

IS~ 0041 O0 10 RFG=ItNARKGS
IS~ U042 SORBSY(REG)=O
ISN 0043 10 DESCSY(REGI=A~USY(REG)
ISN 0044 OU lO0 INS=I,NAT~ST
ISN 0045 IE(AFULL(INS).EQ.O) GO TO I00
ISP~ 0041 IF(INS.EQ.I) GO TO 21
IS~ 0049 OU 11REG=I,NAREGS
l~i~, 0050 SCKBSYIREG)=SURBSY(REGI+ASOR(INS-I,REGI
IS~ OObL Ii !)cSBSY(REO)=DE~bSYIREG)÷AOEST(INS-I,REG)

¯ IS~; L)O~2 INSMI:I~S-I
15~ 005~ D(! ?0 l=l,l~il...

C PREV EXIT I~TLKS ALL CODE BELOW
ISN 0054 IF(ABUFF(I,I4).EQ.I) GO TO I00

C P~EV SKIP INTLKS ALL STARRED COOE BELOW
C AND ALL SKIPS BELOW

IS~ 005~ IF(ABUFF(I,13).~.O) GO TO 20
IS~ 0058 IF((ABUFF(INS,I3I.EQ.L).OR.IA~UFE(INS,9).EO.I)) GO TO IO0
ISN OOoO 20 Cui~l INUE
IS~J O08L Zl CUi~TINU~

C IF EXIT,INTLK AGAINST ER
IS~’i 0i)6~ IF(ABUFF(INS,14).NE.I) GO TO 28
ISi~ 00o4 IF|ER(BRAP).N~.I) GO TO 100

C EXIT PA~T OF (,P GOES, MARK b(] EXIT.
IS,i 0065 ALOFF(I~,iS,15)=I
IS~c 0081 2>3 C~~[iNU’J

IS", 0.)~,9 IF({AS[~IK([FS,"EG).E~}-I)-AND.(OESCSY(P.cG).NE.O)) GO TO TO0
I~N UOTJ. IF((ADF~T(INS,REb).I~:~.II.ANU.(SORBSY(REG).NE.O)) GO TO 100
ISN 0,373 Ir (~LG.EQ.89) GO T{] 22
ISN U015 IF((AOEST(INS,R~G).EQ.II.ANU.(DESCSY(REG).NE.O)) GO TO IO0
ISN 0077 22 CLH’~TI’,IUE

C FIND FAC USED
ISN 0078 OL, 25 FAC=I,NAFAC
IS~ 0079 II (AFAC(INS,FAC).NE.O) GO TO 26
ISFi 0081 25 CONTINUE

11

) lo
9

8

) 7
6

5

)

m z" I
/,C_ b b

3

2

NO FAC USED. ISSUE OP

¸:

ISN 0082
ISN 0083

FAC=O
26 CONTINUE

SPEC=O
TEST FOR SPECIAL OPS HERE

C
C

IF STORE A, TEST AVAIL OF INBUS (STORE BUS)
IF AVAIL, SET BUSY. IF NOT~ GO TO I00

ISN O085
ISN 0087

IF(ADESTIINS,89).NE.I) GO TO 27
SPEC=I

PREV NOGO STORE INTLKS
IFIINS.EQ.I) GO TO 18

ISN 0090
ISN 0091

DO 16 I:I,INSMI
IF((AOESTII,89).EQ.I).AND.(AGO(1).EQ.O)) GO TO I00

ISN 0093 Io CONTINUE
ISN 009~ IB CONTINUE
I S~; 0095 IF(AIBBSY(3).~O.I) GO TO 17
ISN 0997 AIdBSY(3)=I : ii=;
ISN 0098 STORE=I
ISN 0099 GO TO 2r
ISN 0100 17 IFISTORE.NE.1) GO TO I00
ISN 0t02 STORE=2
ISN 0103 27 CONTINUE

C IF SKIP,INTLK AGAINST PREV NOGO STARRED OPS,SHT RESOLVED.
ISN 010% IF(ASUFF(]NS,13).NE.t) GO TO 132
ISN 010~ IF(Sk(SKAP).NE.1) GG TO I00
ISN 010~ IF(INS.EQ.I) GO TO 131
ISN 0110 OU 130 I=I,INSMI
ISN 0111 IF(IABUFFII,9).EQ.I).AND.(AGO(II.NE.I)) GO TO I00
ISN 0113 130 CONTINUE
ISN 0114 131 SPEC=I
ISN 0115 132 CONTINUE

C
C IF NORMAL OR SPEC OP AND NGO =NAGO, DO NOT ISSUE
C IF REPLACE UR NDP, CAN ISSUE ANYWAY.

ISN 0110 [F(((FAC.NE.O).OR.(SPEC.NE.O)).ANu. INGO.E~.NAGO)) GO TO I00
C IF NL) FACS USED GO DIRECTLY TO 95

ISN 0113 IF(FAC.EQ.O) GU TO 95
C IF MULT IOEh. T FAC, GO TO SPEC HANDLING

IS,~ 0120 IF(AFAC(INs,FAC).GT.t) GO TO 49
C CHECK INbUS,EAC SLOT,OUTbUS INTLKS

IS~J 0122 I~:f3US=AF 15US(YAC)
Is~ 0125 IF(:~tBBSY(I~JBUS).~.t} GO Tu tO0
ISi~ O125 BOX=ABOX(FAC)
ISN 0125 IF(ABX~SY(BCX).E.J.[) GO TO tO0
ISN 0128 DO 30 T=I,NSLOT
ISN 0129 IF{IAFSLOT(FAC,T).EO.t).AND.IAFACSC(t,FAC,T).EQ.1)) GO TO 100
ISN 0131 30 CuN[INUE
ISN 0132 OBUS=AFO6US(F~CI
ISN 0133 D~LAY=AFDLYIFAC)
ISN 013% IF((AOBUS(INS,OBUS).NE.O).AND.(ABUSSC(I,OBUS,DELAY).NE.O))

~2 X GO TO TOO
I)

9 1o
9

8

6

5

-Z_G-7

i L. Conwov i
[Archivesj

3

2

PAGE 004
ISN 0136 IF({AOBUSIINS,OBUS+I).NE.O).AND.IABUSSC|I,0BUS+IyDELAY).NE.O).AND.

X ((OBUS+I).LE.NA~US)) GO TO 100
C SUCCESS. MARK GO AND SET SHIFT CELLS 9

ISN 0138 31 CONTINUE z
ISN 0139 AIBBSY(INBUS)=I 8
ISN 0140 ABXBSY(BOX)=I 6
ISN 0141
ISN 0142

ABUFFI=ABUFF(INS,I}
DO 32 T=I,NSLOT

ISN 0143 IF(AFSLOT(FACtT}.EO.O) GO TO 32
ISN 0145 AFACSC(L,FAC,T)=I
ISN 0146 AFACSC(2,FACyT|=A~UFFI
ISN 0147 32 CONTINUE
ISN 0148 ABUSSC(I,OBUS,DELAY)=AOBUSIINS,OBUS}

/ ISN 0149 A~USSC(2,uBUS,OELAY):ABUFF(INS,I)
IS~ 0150 ABUSSC(3,0BUS,DELAY)=ABUFFIINS,2)
ISN 0151 IF(AOBUS(INS,L}BUS+I).EQ.O) GO TO 95
ISN 0153 IF((OBUS+I).GT.NABUS) GO TO 95
ISN 0155 A~USSC(I,DBUS+ItDELAY)=AOBUS(INStOBUS+I)
ISN 0156 ABUSSC(2,0BUS+I,UELAY):ABUFF(INS,I)
ISN 0157 ABUSSC(3,DBUS+I~DELAY)=ABUFF(INS,2)
ISN 0158 GI] TO 95

C SPEC RL)UTINE TO HANDLE MULT IDENT FAC INTLK
ISN 0159 49 CONTINUE
ISN 0160 INoOS=AFIbUS(FAC}
ISN 0161 IF(AIB~SY(INBUS).E~J.I} GO TO 60
ISN 0163 ~OX=AB~X(FAC)
ISN 016~ IF(ABXBSY(BOXI.Eq. II GO TO 60
ISN 0166 L)O 50 T=I,NSLOT
ISN 0167 IF((AFSLi}T(FAC,T).EQ.L).ANO.(AFACSC(I,FAC,T).EO.I)) GO TO 60
ISN 0169 50 CUNrlNUE
ISN 0170 OBUS=AFOBUSIFAC)
ISN O17l DFLAY=AEDLY(FAC}
ISN 0172 IF((ACI~US(INS,O~USI.NE.OI.AND.(ABUSSC(1,OBUStDELAY).NE.0))

X Gi} TO 60
C SUCCESS

ISN 017~ DO 51BUS=I,NASUS
ISN 0175 51 IF(~US.,vE.uBUS} AUBUS(INS,BUS)=O
ISN 0177 GU TO 31
ISN 017~ 60 Ct~NTINUE
ISN 0179 FAc=FAC+I
ISN O1BO IF((FAC.GT.NAFAC).OR.(AFAC(INSpFAC).LE.I}} GO Tfz lOO
ISa 01£2 GO IO 4’)
ISN 0133 95 CONTINUE
ISN 0184 AUU(INS}=I

C IF OP UStS NO FACILITIES~ AND IS NOT SPECIAL 3P THEN IT
C IS A REPLACE OP, AND GOES WITHOUT INCREMENTING NGO.

ISN 0185 IF((FAC.NE.0).OR.(SPEC.NE.O)) NGO=NGO+I
ISN 0187 100 CONTINUE

C
12 C
II

I0

9

Z6 S"
7

il Qonwav i
: I Archives"
3

2

EXIT EXECUTION
CHECK FOR NOGO EXITS TO SET AHOLDT

!

-a:Z .Z!~L:.

:i!i~

ISN 0188 AHOLDT=O)
ISN 0189 DO 200 I=ItNA6UF
ISN 0190 IFIIABUFF{I,14).EQ.I).AND.JABUFFII,15).NE.I)I AHOLDT=I 9

ISN 0192 200 CONTINUE z

C CHECK FOR GO EXIT,ET s

ISN 0193 AFRCT=O 6

ISN 0194
1SN 0195

00 201 I=I,NABUF
IF(ASUFFII,15).NE.I) GO TO 201
IF(ABUFF(I,t4).NE.I) GO TO 201
ABUFF{ 1,14)=0

ISN 02O0
ISN 0201
ISN O203
ISN 0204

201

ABUFF{I,15)=O
IF{ABUFFII,IO).EQ.I) GU TO 202
CONTINUE
GO TO 300

C FOUNO GO EXIT,ET. NOP ANO MARK GO ALL CODE BENEATH IT.
) C ALSC SET AFRCT.

ISN 0205 202 AFRCT=I
ISN 0206 IF(I.EQ.NABUF} GO TO 300
ISN 0208 l=I+l
ISN 0209 00 203 J=I,NASUF
ISN 0210 AGO(J)=I
IS~ 0211 O0 204 K=I,NAREGS
ISN 0212 ASCK(J,K)=O
IS~ 0213 204 ADEST(J,K)=O

) ISN 02~4 I)LI 205 K=I,IO
ISN 0215 205 A[~gUS(J,K)=O
ISN 0216 ABUFF{I,2)=O
ISN 0217 DO 206 K=9,15
ISN 0218 206 ASUFF(J,K)=O
ISJ~ 0219 OU 207 K=I,NAFAC

} ISN 0220 AFAC(J,K)=O
[S~ 0221 207 C[~NIINUE
[St,~ 0222 203 CONTINUE

) ISb~ 0223 300 CCNTINUE
C

ISN 0224 00 ~5 I=I,NA6UF
C IF SKIP NOT TAKEN,REMOVE FLAGS FROM ALL OPS THRU IST SKIP

ISi~ 022.5 I~(,%oUFFII,II).EQ.O) A~UFF(I,9)=O
IS1 022r IF(ABUFF(I,I3).EJ.I) GO TO 86
IS.N 022’) 55 Ct NII.~&J~-
IStv 0230 85 Cu~l INUE

C
ISN 0231 RETURN
ISa 0232 ENO

)
12
II
IO
9

I L.’Iconwoy i
~ Archives

IFVFI 5 DFC 66

COMP!LER

ISN 0002
ISN 0003 IMPLICIT INTEGER*2(A-Z) s
ISN 0004 COMMON TIME, IPARI, IPAR2,]PAR3, 6

A AINPT, NABUF, ABUS(50), XINPT, NXBUF,
B XBUS(50), IFADD, IFDST, IFRTN, BRXP,
C BRAP, ER(8), BEI8), ET(8), N~BUF,
D AHIILOT, XHOLDT, AFRCT, XFRCT, BOSC,
E BNOPt XEP, AEP~ PHI(IOO), PRINT,
F FSTADD, NODOT, NOPSC, NDBUS, NADSP,
G NXDSP

I S I’,; 0005 C(-I,~4MON/R LS/ FIRST, NAREGS, NXREGS~ NABUS,
A NXi~US, STATS, ACON, XCON, AEMP,
B XE~P, MXU, AFULL(12), XFULL(I2), AGO(12),

i

C XGI)(12) , NAGO, NXGO, NATEST, NXTEST,
D NAFAC, NXFAC, A6USYZ~ ABUSY(200), XBUSYZ,
E XBUSY(200)~ ABUFF(IZ,IOO),XBUFF(12,1OOI,ASOR(12,200),
F XSOR(12,2OO),ADEST(12,2OO),XDEST(12,200)~ AFAC(12pI5}~
G XFAC(IZ,15), AFACSC(4,15,20),ARET, XFACSC{4,15,20},XRET,
H ABUSSC(4,1O,ZO),AI6&SY(IO),XBUSSC(4,10,20),XIBBSYItO),XFIBUS(15),
I AOSUS(I2,IO),X{~SUS(12,10),AFSLUTIIS,20),XFSLOT(IS,2OI,AFIBUS(15),
d AFULY(t5), XFOLY(15), AFOBUSIIS), XFOBUS(15), NSLOT,
K AbUPSZ, ABUPS(ZO0), XBUPS(200), ABUFUL(200), XBUFULIZO0),
L O(t6,I~), SD~A(32~2), NQBUF, NQTEST, NQGO,
M OINPT, QCON, OEMP, MBUSY, MFREE,
N LOAD, NEMOLY, MEMORYI[~), NBOX~ EAV,
0 MXTIME, OUTLVL, 10(4,16), RTN, LONGBR,
P SR(8), ST(S), SKXP, SKAP, NSBUF,

APASSIZO0), XPASS(200), OUT(Z), JOB|6), SSTOP~
R ;4E~CNT(I6), AbHX(15), ABX~SY(IO), XBOX(15), XBXBSYIIOI

IS:q 0006 CC~ON/~LS/ LAST
ISN 0007 INTEGER [;UT J
ISN U00~ C~M~QN/IAGS/O(250, 70) I
ISN 0009 REAL ~E4DLY,MXTI~E [
ISN 0010
IS#~ OOl[Dt 100 INS=I,NABUF

....... =-~:c

O

0

ISF’~ 0012 5 IF (AGO(INS).L~J.O) GO TO 100
IS" :)O14 If (~.FOLI_(INS).E(v.O) Gt] TO 100

C I SSUE Iris
C TEST FOF’ SPECIAL LiPS HERE
C IF STCRE A, SHIP DATA TU BUFFER OR ~ DiP ON ~3UFFER STATE

isr,! o016 IF(AOEST(INS,SV).~,E.I) GO TO 7
ISN 0018 IFISO~AIt,2).~O.I) GO TO 2

C NU STA WAITING. SET DATA IN SDBA
ISN 0020 oCJ 3 I=I,32
ISN OOdl IF(SDBA(I,I).E~.I) GO TO 3
ISN 0023 SDBA(I,I)=I

~2 ISN 0024 GO TO 7
11

O l0

ISN 0025 3 CONTINUE
ISN 0026 A=I

9

7_-~o
7 -- II ii

I L. Conwav]

I Archives"4

3

2

pAGt O~~
C

ISN 0027 B=20000
ISN 0028 C=I04
ISN 0029 CALL TROUBL(A,8,C) 9

ISN 0030 GO TO 7 z

C STA WAITING. DATA TO Q, SHIFT SDBA B

ISN 0031 2 CONTINUE 6

ISN 0032 DO 4 I=L,31
ISt~ 0033 SDBA(I,I)=SOBA(I+1,1}
ISN 0034 4 SOBA(I,2)=SDBAII+I,2)
ISN 0035 SDBA(32,I)=O
ISN 0036 S06A(32,2)=0
ISN 0037 00 50 II=I,NOBUF
IS~ 0038 IFI,QIII,3).NE.I) GO TO 50
IS~ 0040 IF(OIII,4).NL.I) GO TO 50
ISN 0,342 IE(~IlI,9).EQ.II GO TO 50
ISN 004~ O| II,9)=1
ISN 0045 GO TO 7
ISN 0046 50 CONTINUE
ISN 0047 A=I
ISN 0048 B=20000
ISN 0049 C=103
ISN 0050 CALL TkGUBL(A,~,C)
IS,~ 0051 7 C(~N]INUE

C ISSU~ SKIP-RESET SR, INCR SKIP POINTER
IS~ 0052 IF(ABUFF(INS,I3I.NE.1) GO TO 60
IS~ 0054 ST(SKAP)=O
ISN 0055 SRISKAP)=O
ISN O05b SKAP=SKAP+I
ISr~ 0057 IE(SKAP.GT.NSBUF) SKAP:I
ISN 0059 oO CL;NTINUE

C
ISN 00o0 OP = ABUFF(INS,2)
ISN 00o] RE OL=O(~;P,33)

C FIRST SET BOSY VECTOR
ISN 0062 UU 10 REG=I,NAREGS

C IS REG A DEST
ISN 00o3 IF(ADEST(INS,&EG).NE.I) GO TO I0

C IGNORE STORAGE AS UEST
ISN 0065 II:(i;~G.EO.89} GO TO tO

C [)C:E~, AfEu HAVE AN ABOREG
ISN 0067 IF(A~IJP::,(F~G).N[~.I) CO TO q

C CAN THIS C~P DO BACK-UP TO FRONT MOVE.
C I.E.,IS THIS A REPLACE OR A TO X MOVE OP.

ISN O06v IF(REPI.~J.O) GLI TO 9
C IS A6UREG FULL

ISN O01I IF(AbUFUL(RI-GI.NL.II GO TO 99
ISN 0073 ABUFUL(REG)=O
ISN 0074 XbUSY(REG):O
I SN 0075 GQ TO 10

~2 ISN 0076 99 APASS(REGI=ABUFF(INS,I)
11

M
i ~ :,-!C,

.~ lO

I L Conway
| Archives i

7

6

4

3

2

..... :-:x:

PAGE 003
ISN 0077 9 ABUSY(REG)=ABUFF(INSvl)
ISN 0078 I0 CONTINUE

C REMOVE INS FROM BUFF
ISN 0079 AINPI:AINPT-I
ISN 0080 M=NABUF-I
ISN 0081 IF(INS.EQ.NABUF) GO TO 31
ISN 0083 DO 30 I=INStM
ISN 0084 AGO(1)=AGO(I+I)
ISN 0085 AFULL(I)=AFULL(I+I}
ISN 0086 DO 25 J=1,25
ISN 008? 25 ABUFFII,J)=ABUFF(I+I,J)
ISN 0088 00 26 J=I,NAREGS
IS~J 0089 ASL]R(I,J)=ASCR(I+itJ)
ISM 0090 2o ADESI{I,J)=ADEST(I+I,J)

DCi 27 F~C=I,NAFAC
AFAC(I,FAC}=AFAC(I+I,FAC)

ISN 0093 00 28 BUS=I,NABUS
ISN 0094 28 AOBUS(I,BUS)=AOBUS(I+I,BUS)
ISN 0095 30 CONTINUE
ISN 0096 31 CONTINUE
IS~ 0097 AGO(NABUF)=O
ISh; 0098 AFULL(NABUF)=O
ISN 0099 011 125 J:I,25
ISN 0100 125 AbUFF(NABUF,J}=O
15~’ 0101 DU 126 J=I,NAREGS
IS~: OIU2 ASOR(NASUF,J)=O
ISN 0103 126 AOEST(NABUF,J)=O
ISN 0104 DO 127 FAC=I,NAFAC
ISN 0105 127 AFAC(NABU~,FAC)=O
ISN 0106 DO 128 BUS=I,NABUS
ISN 0107 1z8 AUBUS(NABUF,BUS)=O
ISN 0108 OU IO 5
ISN 0109 100 CC:NTINIJE
ISN 0110 R~:TURN
[SN 0111 END

12

I0

9

7----72-
7 -- - ii ,

: ,,. i

2

.... /

¯ . < :-Z_E~-cT

)

COMPILER OPTIONS - NAME= MAIN,OPT=OZtLINECNT=5OtSOURCEtEBCDICtNOLISTtDECKtLOAD,MAP,NOEDIT,NDID :~.~ ~::;~

) ISN 0002 SUBROUTINE XARET
ISN 0003 IMPLICIT INTEGER*2|A-Z)
ISN 0004 COMMON TIMEp IPARIt IPAR2~ IPAR3,

A AINPII NABUFt ABUSISOIt XINPTt NXBUFt ’\
B XBUSISO), IFADD, IFDST, IFRTN, BRXP,
C BRAP, ER(8), BE(BI~ ET{8}~ NBBUF~
O AHOLOI, XHOLDT, AFRCT, XFRCT, BOSCv
E BNOP, XEP, AEPt PHI(IOO|, PRINT,
F FSTADDt NODOT, NOPSC, NDBUSe NADSP~
G NXDSP

ISN 0005 COMMON/RLS/ FIRST, NAREGSt NXREGS, NABUS,
A NXBUS, STATS, ACON~ XCON~ AEMP,
B XEMP, MXO. AFULL[12)t XFULL(12), AGO(12),
C XGO(12|, NAGO, NXGO, NATEST, NXTESTt ~
O NAFAC! NXFACt ABUSYZ, ABUSY|200), XBUSYZ,
E XBUSYK2OO)t ABUFF(12,100)tXBUFF|12tlOO)wASOR(12,200)t
F XSOR(12,200),ADEST(12,200),XDESTI12,200), AFAC(12,15), ~...--
G XFAC(12,151, AFACSC(~,lS,20),ARET, XFACSC(~,I5,20|~XRET,
H ABUSSCI4,10,20I,AIBBSYIlO),XBUSSC|4,10,20),XIBBSYIIO),XFIBUS(15)~ j
I AOBUS(IZtIO)tXOBUS(12,~O),AFSLOT(15,ZO|IXFSLOTIIS,20)tAFIBUS(15)~

t

J AFDLY|15), XFDLY(15), AFOBUS(15), XFOBUS(15), NSLOT,
K ABUPSZt ABUPS(200)~ XBUPSIZOO)t ABUFULIZOO), XBUFULI200),
L Q(16,16), SOBA[32,2), NQBUF, NQTEST, NQGO,
M QINPTt QCONt QEMP~ MBUSY, MFREE,
N LOAD, MEMDLY~ MEMORY(16), NBOX, EAV,
0 MXIIME, ~ OUTLVL~ IQ|~,16), RTNt" LONGBRt [~:"~
P SR|8|, ST{8), SKXP, SKAP~ NSBUF~
Q APASSiZOOit XPASS(200)~ OUTI2), JOB(6I~ SSTOP,

MEMCNT(16), ABOX[15), ABXBSY(IO)~ XBOX(15)~ XBXBSY(IO)
ISN 0006 COMMON/RLS/ LAST
ISN 0001 INTEGER OUT
ISN O00B REAL MEMOLYtMXTIME " {
ISN 0009 REAL TIME

C USES OBUS SHIFT CELLS TO BUS TO DESTINATIONS I.L~:-~
C PERFORMS ANY EXEC ACTIVITY ASSOC WITH RETURN
C FIRST RESET THE WAITING VECTOR

[SN 0010 DO 10 ~US=I,NABUS
ISN 0011 DESI=ABUSSC(I,BUS~I)

C IF DEST NOT XBU GO HANDLE NORMALLY
ISN 0012 IF(XBUPS(DEST).NE.I) GO TO 9

C DEST IS XBU. SEE IF CDRRESP XREG IS BUSY
C IF SO, RETURN DEST TO IT. ELSE SET XBU BUSY.

ISN 001~ IF(XPASS(DEST).NE.O) GO TO B
ISN 0016 XBUFULIDESI)=I
ISN oo17 GO TO ZO

i~ISN 0018 8 XBUSY|DEST)=O -
ISN 0019 XPASS(OEST)=O
ISN 0020 9 ABUSY[O~ST)=O ~::~-’~
ISN 0021 I0 CONIINUE i

......... ~ , " - i "

L. Conway

C SHIFTS THE SHIFT CELLS
ISN 0022 DO 99 I=1,10
ISN 0023 ABXBSY(I)=O
ISN oo2~ ¯~ 99 ~{i]~~
XSN 0025
ISN 0026
ISN 0027
ISN 0028
ISN 0029
[SN 0O30
ISN 003t
ISN 0032
ISN 0033
ISN 0034
ISN 0035
ISN 0036
ISN 0031
ISN 0(;38
[SN 0039
ISN 0040
ISN O04L
ISN 0042
ISN 0043
ISN 0044
ISN 0045

100

I01

I02

I (;3

SLOIMI=NSLOI-I:
DO lO[J=ltXO
DO I00 SLOT=ItSLOTM[
ABUSSC(ItJPSLOT}=ABUSSC(ItJISLOT+I)
ABUSSC(2,J,SLOTI=ABUSSC(2~J~SLOT+I}
ABUSSCI3oJtSLOT}=ABUSSC|3~J~SLOT~I)
CONTINUE
AOUSSCII,JJNSLOT)=O
ABUSSCI2,J~NSL(;T)=O
ABUSSC|3eJ,NSLOT)=O
CONIINUE
DO I03 J=I,NAFAC
00 102 SLOT=I~SLOTMI
AFACSCII+J~SLOTJ=AFACSCII~J~SLOT+I)
AFACSCI2~JtSLOT)=AFACSC(2~J~SLOT÷I)
CONTINUE
AFACSC(I,J,NSLOTI=O
AFACSC(Z,J~NSLOT)=O
CONIINUE
REIURN
END

0

~ i~~

~ L. Conwav1
Archlves

i ¯

ISN 0003 IMPLICIT INTEGER~ZIA-ZI 9

ISN 0004 COMMON TIME~ IPARIt IPAR2t IPAR3t z
A AINPT~ NABUF~ ABUS(50)t XINPT~ NXBUF~ 8

B XBUS(50}, "IFADDt IFDST~ IFRTN, BRXP~ 6

C BRAP~ ER(8}e BE(8)~ ET(B)~ NBBUF~
D AHOLOT~ XHOLDT~ AFRCT~ XFRCT~ BOSC~

Ot

E BNOPt XEPt AEPt PHI(IO0)t PRINTt
F FSTADDt NODOTt NOPSCy NDBUS~ NADSP,

ISN 0005
G NXDSP

COMMONIRLS/ FIRST~ NAREGSe NXREGS~ NABUS~
A NXBUS~ STATS~ ACON~ XCON~ AEMP~
B XEMP~ MXO~ AFULL(12)~ XFULL(12)~ AGO(12)~
C XGO(12)~ NAGU~ NXGO, NATEST~ NXTEST,
D NAFAC~ NXFAC~ ABUSYZ~ ABUSY{200)~ XBUSYZ~
E XBUSY(200), ABUFF(12~IOO}~XBUFF{12~IOO)~ASOR(12~200}~
F XSOR(12,2OOI,ADEST{I2~2OO),XDEST(12~200), AFAC(I2,15I~
G XFAC{I2,15)~ AFACSC(4,15~20),ARET~ XFACSC(~lS~20},XRET~
H ABUSSC(~,LO~ZO},AIBBSY(IOI,XBUSSCI4~IO~20)~XIBBSY(IO|,XFIBUS{15)~
I AOBUS|I2~IO)~XOBUS(I2~IO)~AFSLOT(15,20)~XFSLOT(15~20),AFIBUS(15)~
J AFDLY(15)~ XFDLY(15)~ AFOBUS(15}~ XFOBUS(15|~ NSLOT~
K ABUPSZ, ABUPS(200)~ XBUPS(200)~ ABUFUL(200I~ XBUFUL(200)~
L QII6~I6), SDBA(32~2), NQBUF~ NQTEST~ NQGO~
M QINPT~ QCON~ QEMP, MBUSY, MFREE~
N LOAD~ MEMDLY~ MEMORY{16), NBOX~ EAV~
0 MXTIME, OUILVL, IQ(~16)~ RTN~ LONGBR~
P SR(B)~ ST(8), SKXP~ SKAPe NSBUF~
Q APASS{200), XPASSI200}~ 0UT|2)~ JOB[61~ SSTOP~
R MEMCNT(16I~ ABOX(IS)~ ABXBSY(IOI~ XBOX(15)~ XBXBSY(IO)

ISN 0006 COMMON/RLS/ LAST
ISN 0001 INTEGER GUT
ISN 0008 CUMMON/TAGSIO(256~TG}
ISN 0009 REAL MEMDLY~MXTIME
ISN 0010 REAL TIME

C

ISN 0011 ENTRY ~USTOA
C MOVE OP FROM ABUS TO ABUFF(AINPT)

ISN 0012 DO LO I=1,25
ISN 0013 IO ABUFFIAINPT~II=ABUS(1)
ISN 001~ AFULLIAINPT)=I

C PERFORM COMPLETE OP DECODE HERE
C FIRST DECODE SOURCE-DEST INTERLOCK TAGS

ISN 0015 I=AINPT
ISN 0016 OP=ABUFF(I~2}
ISN 0017 II=ABUFFII~3}
ISN 0018 IJ=ABUFF(I~4)

~i ISN 0019 IK=ABUFFII ~5)
11

10

9

Z̄ "z S

6

5

~ 4

3

2

) PAGE 002 ~
C TEST VALID OP TAG TO SEE IF OP VALID ~.~

¯ ISN 0020 IFiD(OP,,30).EQ.OI GO TO l1
C INVALID OP. ISSUE ERROR MESSAGEt INCR AINPTt
C AND RETURN THUS MAKING OP INTO NOP.

ISN 0022 WRITE(6,998)
ISN 0023 WRITE(6t999) OP,ABUS(I)
ISN 0024 WRITE(6,998)
ISN 0025 AINPT=AINPT+I
ISN 0026 RETURN
ISN 0027 LZ CONTINUE

C
C SET A(I) SOURCE

iSN 0028 IF(U(OPt 4).EQ. II ASOR(ItIIeX)=I
C
C SET A(I) DEST

ISN 0030 IF(D(OP, 5).EQ.I)ADEST(I,II+X)=[

C SET A(I÷X) SOURCE
ISN 0032 IF(D(OP, 6).EQ.I) ASOR(I,MOD(II÷I~32)+I)=£

C
C SET A(I+I) DES[

ISN 0034 IF(O(OP, 7).EQ.1)ADEST(I,MOD(II+l,32)÷l)=I
C
C SET A(J) SOURCE

ISN O03b [F(D(OP, 8).EQ.1) ASOR(I,IJ÷I)=I
C
C SET A(J) DEST

ISN 0038 IF(D(OP, 9).EQ.X)AOEST(I,IJ÷L)=I
C
C SET A(J+I) SOURCE

ISN 0040 IF(D(OP, IO).EQ.I) ASUR(I,MOD(IJ+Lt32)+II=l
C
C SET A(K) SOURCE

ISN 0042 IF(DfOP, II).EQ.I) ASOR(I,IK÷I)=I
C
C SET A(K+I) SOURCE

ISN 0044 IF(D(OP,I2).EQ.I) ASOR(I,MOD(IK*It32)÷l)=I
C

m

¯ !L.: } /.~
C SET XBII) DEST ~;L::v:.:::~!

ISN O04b IFIDIOP,£3|.EQ.I) ADEST(I,II+~3)=I ~"-=-"

C SET XB(J) DEST
ISN 0048 IF(D(OP,14).EQ.I~ ADEST(I,IJ+33)=I i

C .i
C SET CB(I) OEST

ISN 0050 IFID(OP,15I.EQ.i) ADEST(ItII+65)=t i

C SET STORAGE DEST !
ISN 0052 IF(D(OP,28).EQ.II ADEST(I~89)=I

C
C REMOVE ANY SOURCE-DEST TAGS ON A(OI~XBU(O) :~=-’~"

11 .-

10

9

7

5

4

3

2

:i/ ¯

,¯ c¸

¯ ,~: ~i;i~

¯ ~, ~- :~’-~.

PAGE 003
ISN 0054 ASORiItl)=O
ISN 0055 ADESTiI,I)=O �

ISN 0056 ASOR(I,33)=O v

ISN 0057 ADESI|I,33)=O
C SET FACILITY USE TAGS, BUS DEST TAGS 9

ISN 0058 DO 20 FAC=I,NAFAC L

ISN 0059 AFACIItFAC)=D(OP,FAC+55) e

ISN 0060 IFiAFAC(I,FACI.EQ.O) GO TO 20 6

ISN 0062 OBUS=AFOBUS(FACI
ISN 0063 DO 25 DEST=ItNAREGS
ISN 0064 IF(ADEST(I,DEST).NE.O) GO TO 26
ISN 0066 25 CONTINUE
ISN 0067 GO TO 20
ISN 0068 26 AOBUS(I,OBUS)=DEST

i~ i!~-i~!i~¸

ISN 0069
CHECK FOR DOUBLE DEST. IF SO, PLACE ON ADJ. BUS

DESTPI=DEST+I
ISN 0070
ISN 0072
ISN 0073
ISN 0075 27

IF(DESTPI.GT.NAREGS) GO TO 20
DO 27 DEST2=DESTPI,NAREGS
IF(ADEST(I,DEST2).NE.O) GO TO 28
CONTINUE

ISN 0076
ISN 0077
ISN 0078

GO TO 20
28 AOBUS|I,OBUS+I)=DEST2
20 CONTINUE

INCREMENT AINPT
ISN 0079
ISN 0080

AINPT=AINPT+I
RETURN

)

)

)

)

)

ISN 0081

ISN 0082
ISN O083
ISN 0084

ISN 0085
ISN 0086
ISN 0087
ISN 0088
ISN 0089

llO

ENTRY BUSIOX
MOVE OP FROM XBUS TO XBUFF(XINPT)

00 II0 I=I,25
XBUFF(XINPT,II=XBUS{II
XFULL(XINPT)=I

PERFORM COMPLETE OP DECODE HERE
FIRST DECODE SOURCE-DES/ INTERLOCK TAGS

I:XINPI
OP=XBUFF(I,2)
II=XBUFF(I~3)
IJ=XBUFF(I,4)
IK=XBUFF(I,5)

TEST VALID OP TAG TO SEE IF OP VALID
ISN 0090 IF(O(OP,30).EQ.O) GO TO I[1

INVALID UP. ISSUE ERROR MESSAGE~ INCR XINPI,

ISN 0092
AND RETURN THUS MAKING OP INTO NDP.

WRITE(6~998)
ISN 0093
ISN 0094

WRITE(6,999) OP~XBUS(1)
WRITE(6~998)

ISN
ISN

0095
0096

XINPI=XINPI+I
RETURN

12

11

10

Z--; 7

3

2

C SET x(I) SOURCE v
ISN 0098 IF|D(OP,I6).EQ.I| XSOR|ItII+33)=I

C 9
C SET X(I} DEST z

ISN 0100 lFIDIOP~IT).EQ.I)XDESTII~II÷33)=I e
C 6
C SET X(I+ll SOURCE

ISN 0102 IF(D(DP,18).EQ.I) XSOR(ItMOD(II+It32)+331=I
C
C SET X(I÷II DEST

ISN 0104 IF(DIOP,19).EQ.I)XDEST(I~MOD(IIeI~32)÷33)=I
C
C SET XIJ) SOURCE

ISN 0106 IF(DIOP,20).EQ.I) XSORII,IJ÷331=I
C
C SET X(J) DEST

,<,

ISN 0108 IFIOIOP,21).EQ.I)XDESTII,IJ÷331=I

SET XIK) SOURCE
ISN OllO IFID(OP,22).EQ.I) XSORII,IK+33)=I

C
C SET AB(I) DEST0

0

@

0

0

ISN 0112 IF(D(OP,23).EQ.I)XDEST(I~II÷[)=I
C
C SET C(I} SOURCE

ISN 0114 IF|DIOP,24).EQ.I) XSOR(I~II÷65):I
C
C SET CII) DEST

ISN 0116 IF(D(OPtZS).EQ.I)XDEST|I,II+65)=I
C
C SET C(J) SOURCE

ISN 0118 IFJD(OP,26).EQ.I) XSORli,IJ÷65)=l
C
C SET C(K) SOURCE I

ISN 0120 IF(D(OP,34).EQ.I) XSOR|I,IK+65):I

I

!
SET STORAGE SOURCE

ISN 0122 IF(D(OPe2T).EQ.I) XSOR(I,89I=I
C
C SET STORAGE DEST

ISN 0124 IF(DIOP,28).EQ.1}XDESTIIe891=I i
C REMOVE ANY SDURCE-DEST TAGS ON X(OI,ABU(O)

ISN 0126 XSORII,I|=O i
ISN OI2T XDEST(I,I)=O i
ISN 0128 XSOR~I,33)=O
ISN 0129 XDEST{I,33)=O

.SPECIAL DECODE FOR BRANCH OPS
PLACE NO FACILITY IF K FIELD = O FOR BRANCH OP

I0

"7. S

3

2

ISN 0130

ISN 0132
ISN 0133
ISN 0134
ISN 0136
ISN 0137
ISN 0138
ISN 0140

PAG~ 005
IF{|XBUFFKItI2).EQ.I).AND.|IK.EQ.O}) GO TO I2I

SET FACILITY USE TAGS, BUS DEST TAGS
DO L20 FAC=I,NXFAC
XFACII~FAC)=D(OP,FAC+40)
IF(XFAC(I,FAC).EQ.OI GO TO 120
OBUS=XFOBUS{FAC)
DO 125 DEST=I,NXREGS
IFIXDESTiI,OESTI.NE.O) GO TO 126

ISN 0141
125 CONTINUE

GO TO 120
ISN 0142 126

ISN 0143
ISN 0144
ISN 0146
ISN 0147
ISN 0149 127

XOBUS(I,OBUS}=DEST
C CHECK FOR DOUBLE DEST. IF SO~ PLACE ON ADJ BUS

OESTPI=DEST+I
IFIDESTPI.GT.NXREGS) GO TO 120
DO I27 DEST2=DESTPI,NXREGS
IF[XDESTII,DEST2).NE.O) GO TO 128
CONTINUE

ISN 0150 GO TO 120

F " -

’ . G

XOBUSII,OBUS+I)=DEST2ISN 0151 128
ISN 0152 120 CONTINUE
ISN 0153 121 CONTINUE

C INCREMENT XINPT
ISN 0154 XINPT=XINPT+I
ISN 0155 RETURN
ISN 0156 998 FORMAT(IH)
ISN 0157 999 FORMAI(21H ERROR - - - OP TYPE ,I3,14H, INSTRUCTION ,AI,

x 53H~ IS NOT HANDLED BY THE SIMULATOR) ’
ISN 0158 END

N
I1

] ~o
9

8

) ,
6

5

4
3

2

}

?

)

?

)

)

)

}

}

)

}

)

J

}

]l

}

}

)

LEVEL 2 FEB 67 051360 PURTRAN H DATE 67.265119.31.21

COMPILER OPTIONS - NAME= MAIN~OPT=O2,LINECNT=50,SOURCE,EBCDIC,NOLIST,DECK,LOAD,MAP,NOEDITtNOID

ISN 0006
I~N uouf
ISN 0008
tbN uOu~

REAL MEMDLY,MXTIME
HEAL liME

ISN OOIO
ISN 0011

DIMENSION AREPTIIOI,XREPT(IO)
INIEGER*2 ENORuN

READ PARAM CARD FOR JOB

W NABUF,NATEST,NAGO,NXBUF,NXTEST,NXGO~
X N~UP~N~/~bltN~U~N~UA~N~bUP,NbbUP~NOUuI,NuHSC~NUBU~,NAUbH~Nxu~F,

Y MXTIME~MEMDLY,OUTLVL,FSTADD

12

11

10

9

8

7

6

ISN 0015
ISN 00io
ISN 0017
ISN U018
ISN 0019 ’7~0

co0 oY I
IArchives I

PAiNT=OOTkVL
ENORUN=O

NK|I~

WRITE(6~202)
WRIiE{O,200)
WRITEI6,300)
Wki]Ei6,200i
WRITE|6~2OO)
wRiTE(o,~O0)

5

’4

/:.L .::÷L.-

f

&¢ii:~

: TT:

_ _ _

PAGE 002 9
) WRITE(6~, 201) z

mCALL TMTU(OUT[1)) e
WRITEI6t3333) OUT(I) vOUT(2) 6

)

)

)

)

)

)

)

)

)
12

11

9

8

) ;,
6

4
3

2

ISN 0021
ISN 0022
ISN 0023
ISN 0024
ISN 0025
ISN 0026
ISN 0027
ISN 0028
ISN 0029
ISN 0030
ISN 0031
ISN 0032
ISN 0033
ISN 0034
ISN 0035
I~N 0036
ISN 0037
ISN 003B
ISN 0039
ISN 0040
ISN 004I
ISN 004Z
ISN 0043
ISN 00~4
ISN 0045
ISN 0046
ISN 0047
ISN 00�8

ISN 0049
ISN 0050
ISN 0051
ISN 0052
ISN 005]
[SN 0054
ISN 0055
ISN 0056
ISN 005T
ISN 0058
[SN 006~

ISN 0060

ISN 0061
I~N 006~

ISN 0063
I~N UU~

ISN 0065
ISN UUbb
ISN 0067
I~N OOb~

WRITEI6~200)
WRITE(6,200)
WRITE(6~500)
WRITE(6~200)
WRITEI6~600)
WRITEI6e201)
WRITE(6~700)
WRITE(6~201)
WRITE(6,800)
WRITE(6,201)

NABUF~NXBUF~NQBUF

NATEST~NXTEST~NQTEST

NAGO~NXGO~NQGO

WRITE[6~900) MEMDLY
WRITEI6~201)
WRIIEIb~901;
WRITE|6~201)
WRITEI6~glOI
WRITE(6~201)

NBUX

NBBUF~NSBUF~NODOT

WRITE(6~g20| NOPSC
WRITE(6,20I)
WRITE(6~930) NDBUS
WRITEI6,201)
WRITE16~9401NADSP~NXDSP
WRITE(6,200)
WRITEI6,200;
WRITE(6,1000)
WRIIEIb)ZOI|

CALC REP TIMES
DO 20 I=I~NAFAC
AREPT(I)=O

2O
DO ZO J=I~NSLDI
AREPTII)=AREPT(I)+AFSLOT(I,J)
WRIIEIb~IOOI)|AREPII|II~I=I~NAFA~I
WRITEIbtlOO2)(AFOLY(I)tI=I~NAFAC)
WRI~Ei6,IOO3I{AFIBUS(1),I=I~NAFACl
WRITEI6, IOOS)IABOX(I|~I=I~NAFAC|
WRIIE(6,1OO4I[AFDBUSIII~I=I~NAFACl
WRITE(6,200|

....... 4-

PAGE 003
ISN 0069
ISN OOrO
ISN 0071
I SN O07Z
ISN OOT3
ISN OOf4
I SN 0075
ISN 00q6
I SN 0077
I~N UOft~

ISN 0079
15N 0080

15N OOB]L
ISN 0082
iSN 008}

lbN UUB@

)
I~N UUB~

zSN oo~b
ISN 0087
l 5N UOB8

15N OOB?
I SN 0090
iSN o o,-, ~.

UUgZ

ISN UU~
ISN 009#

) |bN UU~
ISN 0096
IbN UU~)I

..~ I SN 0098

I SN 009q

~) ISN OLO0

.~)

WRITEI6t202)
LALL UNKULL s
RETURN 6

[0 CUNilNU~ ol
ENDRUN=I {L
REIURN

100 FORMATI6AIt2X~t712~I7X~F7.I~IX,F#.t~tXI2~lXI5)
101PUKRAI(IHJ~bAt}

200 FORMAT(1H0)
z0t PUKNAI(IH)
202

! !; T-.!~-

! }::i?~"

]:. :-~d’

"i4

l ;

t:i:;~=.

i12

.,~- 10

9

° i i_i con,,,ov I
, | Archives, i
3

2 /

LEVEL 5 DEC 66 DATE YS/360 FORTRAN H DATE 67.144109o18o12 c

COMPILER OPTIONS - NAME= MAIN,OPT=O2,LINECNT=50,SOURCE,EBCDIC.NOLXSTtDECKtLDAO~MAPtNOED|T~NOID

ISN 0002 SUBROUTINE XQCON
ISN 0003 IMPLICIT INTEGER~2(A-Z} 8
ISN 0004 COMMON TIME, IPARI, IPAR2, IPAR3~ 6

A AINPT, NABUF, ABUS(50), XINPT, NXBUF,
B XBUS(50)T IFADD~ IFDST~ IFRTN~ BRXP~
C BRAP, ER(8), BE(8), ET(8), NBBUF,
D AHOLDT~ XHGLDT~ AFRCT, XFRCT~ BOSC,
E BNUP, XEP, AEP~ PHI(IOO)t PRINT,
F FSTADD~ NODOT~ NOPSC~ NDBUSt NADSP,
G NXOSP

ISN 0005 COMMON/RLS/ FIRST, NAREGS~ NXREGS, NABUS~
A NXBUS, STATS, ACON, XCON, AEMP,
B XEMP, MXO, AFULL(12)~ XFULLI12)t AGO(I2),
C XGO{12), NAGO, NXGO, NATEST, NXTEST,
D NAFAC~ NXFACt ABUSYZ~ ABUSY(200}~ XBUSYZt
E XBUSY{2OO}t ABUFF(12,100),XBUFE(I2,1OO)~ASOR{12~200),
F XSOR(12,200),ADEST(12,200),XDEST(12,200)~ AFAC(12,15),
G XFAC(12,15), AFACSC(4,15,20),ARET, XFACSC(4,15,20),XRET,
H ABUSSC(4,10,20)~AIBBSY(IO),XBUSSC(4,IO,20),XIBBSY(IO),XFIBUS(15),
I AOBUS(12ylO),X0BUS(12,10),AFSLOT(15,20),XFSLOT(15,20),AFIBUS(15),
J AFDLY(15~, XFOLY(15), AFOBUS(15), XFDBUS(15), NSLOT,
K ABUPSZ, ABUPS(200), XBUPS(200), ABUFUL(2OO), XBUFUL(2OO),
L Q(16~16), SDBA(32,2)~ NQBUF~ NQTEST, NQGO,
M QINPT, QCON, QEMP, MBUSY, MFREE,
N LOAD, MEMOLYt MEMORY|I6), NBOX, EAV,
0 MXTIME, OUTLVL, IQ{4,I6), RTN, LONGBR,
P SR(8)~ ST(8}, SKXP, SKAPt NSBUF,
Q APASS(200), XPASS(200), OUT(2), JOB|b), SSTOP~
R MEMCNT(16)t ABOX(15), ABXBSY(IO)~ X80X(15), XBXBSY(IO)

ISN 0006 COMMON/RLS/ LAST
ISN 0007 INTEGER OUT
ISN 0008 REAL MEMDLY~MXTIME
ISN 0009 REAL TIME

C ALGORITHM...LOADS CUT OF ORDER WITH BOM INTLK.
C STORES IN ORDER.

ISN OOIO CALL CAUSE{QCON,TIME+I.O,O,O,O)
ISN OOIl CALL CAUSE(QE~P,TIME+O.8,0,O,O)
ISN 0012 NGO=O
ISN 0013 00 I I=I,NQBUF
ISN 0014 I Q(I,16)=0
ISN 0015 D0 I00 INS=I,NqTEST
ISN 0016
ISN 0018

IF(Q(INS,8).EQ.O) GO TO 100
IF(INS.EQ.I) GO TO II

ISN 0020 INSMI=INS-I
ISN 0021 00 I0 I=I,INSMI

C IF PREV GO INS TO SAME BOM~ NOGO
~ ISN 0022 IF((Q(I,6).EQ.Q(INS,~)).AND°|Q(I,16).EQ.I)) GO TO I00
I~ C IF PREV INS TO SAME WORD, NOGO
~o ISN 0024 IF(Q{I,I).EQ.Q|INS~7)) GO TO I00

PAGE 002

ISN 0026
IF STORE AND PREV NOGO STORE, NOGO

IF(QIINS,3}.NE.I) GO TO I0
ISN 0028
ISN 0030

IFi[Q{I,3}.EQ.1).AND.[Q{I,16).EQ.O)} GO TO IO0
10 CONTINUE

ISN 0031
C IF STORE AND DATA NOT AVAIL, NOGO

II IF[(Q(INS,3).EQ.I).AND.[Q(INS,Q).EQ.O)) GO TO I00

ISN 0033
C MARK GO

QIINS,16)=I
SN 0034
SN 0035

NGO:NGO+I
IFINGO.GT.NQGO} GO TO I01

ISN 0037
ISN 0038

I00 CONTINUE
i01 CONTINUE

SN 003g
TEST INS FETCH REQ FOR ISSUANCE

DO 200 II=l,4
1SN 0040 IF(IQ(II,I).EQ.O)GO TO 200

COMPARE BOM REQD AGAINST GO DATA REQSTS
ISN 0042
ISN 0043

DO 150 ID=I,NQBUF
IF[{IQ(II,6).EQ. Q|ID,6)}.AND.(Q[ID,16).EQ.1)} GO TO 200

I SN 0045 150 CONTINUE
C MARK INS FETCH REQ GO

ISN 0046
ISN 0047

IQ{II,16}=I
200 CONTINUE

ISN 0048
ISN 004~

RE TURN
END

)

}

}

11

H

Archives i

7

6

4

COMPILER OPTIONS - NAME= MAINtOPT=O2~LINECNT=5OtSOURCE~EBCDICeNOLIST~DECK,LOADtMAPtNOEDITeNOID

ISN 0002 SUBROUTINE XQEMP

B XBUS(5OIt IFADDt IFDST, IFRTN~ 8RXPt
C 8RAP, ER(8I~ BE(8)~ ET(8)~ NBBUFt
D AHOLDTt XHDLDTt AFRCTt XFRCTt BOSCt

ISN 0006
ISN 0007
ISN 0008
ISN 0009

) ISN 0010
ISN O01I

C
) C

C
ISN 0012

} ISN 0013
ISN 0015

C
ISN oo17
ISN 0018
ISNOOI9
ISNOO20
ISN 0021
ISN 0022
ISN 0023

COMMON/RLS/ LAST
INTEGER OUT

REAL TIME
DIMENSION CODE(12|
DATA CUDE/IHI,IH2elH3~IH~elHS~IHb~IH7~IH8~IHg~IHA, IHB~IHC/

ISSUE GO DATA’RED
DO I00 INS=I,NQBUF

5 IF(Q(INS,16).EQ.O) GO TO lO0
IFiQ(INS,8).EQ.O) GO TO IO0

ISSUE INS TO MEMORY
BQM=Q[INS,6)

L=Q[INS,I]
MEMCNTIBON)=MEMCNT(BOM)eI
CALL CAUSEIMBUSY~TIME+MEMDLY-3.0~BOM~L~O)

, , , , , iii i !i i!iii iliiii iiiii !ii!iiiiiiili,iiiiii i !’!iiill¸¸i i !ili iiiiiii!il,¸

F XSORiIZt2OO),ADEST(12~ZOO)tXDESTI12t200)~ AFAC(I2~IS]t
G XFAC(I2,15) t AFACSC(6~I5~ZO)tARET~ XFACSC|6~I5~20)~XRET~

)
~

H ABUSSC[4,XO,ZO)~AIBBSY(IO)~XBUSSCI~IO~20|tXIBBSYIIO)~XFIBUS(I5)~ 1~Ci~I~~

.................... :~ i/~ AOBu~(£2~ ~0) ~’XO’~2~;~X ~:~kFs~ Ot~i~; 20); xF s~OT | z ~ ~ 20 ~; AF I BU S | I s) ¯ I "
i " ~, ~ J AFDLY(IS)t XPOLY[15)e~ AFOBUS(15I~ XFOBUS|I5), NSLOT~ " . , ~;~| ~-

)
~

K ABUPSZ, ABUPS(200I~~ XBUPSI200), ABUFUL(200), XBUFULi200), ¯ , ~:?,, :’. : \!Fc: i~i~;~![~i~:
L Q(Ib,16), SDBA{32t2)t NQBUF, NQTEST, NQGOx ~
M QINPT, QCON, QEMP, MBUSY, MFREE,
N LOAD~ MEMDLY, MEMORY(I6)t NBQX~ EAVt

P SR(8)~ ST(8)t SKXP~ SKAP, NSBUF~
) Q APASS(200)~ ~ XPASSIZOO}e’ OUTI2)~ JOB{6l~ SSTOP~

R MEMCNT(I6). ABOXIISI~ ABXBSY(IOIt XBOX(I5)~ XBXBSY(IO)

ISN 0025
C

C

IF LOAD~ CAUSE DEST LOAD IN HEMOLY CYCLES
IFIQIINSt2}oEQ.IJCALL CAUSE|LOADeTIME÷HEHDLY-I°OtDEST~AtX)

REMOVE INS FROM QUEUE

0

0

0

0

0

0

0

@

0

0

0

0

ISN 0031 00 30 I=INS,M :: ""!.S"-"’:
ISN 0032 DO 30 a=t,t6 ~
ISN 0033 Q(I,J}=Q(I÷I~J| ;’~ ~"

............. ~: ~ ,~ ,~>.:-.;~

ISN
ISN 0036 DO 32 J=lt 16 " i:’’~y’~

ISN 0037 Q(NGBUF, J}=O i L
ISN 0038 32 CONTINUE i ~:--~C
ISN 0039 GO TO 5 i~- _~.~.

0 FIRST TEST IF IQ EMPTY
ISN 0060 O0 250 II:l,4
ISN 006I IF(IQ(II,IJ.NE.O) GO TO 400

.ISN 0063 250 CONTINUE0

0

0

C ISSUE GO INS FETCH REQ TEST
ISN 0041 DO 200 II=l,6 /

ISN 004.2 IFiI~(II,I}oEQ.O) GO TO 200
iSN 0064 :fF(I O} TO:ZOO

.... ISSUE REQ
ISN 00’~6 ~OM=IQ[II*6I
ISN 0041 OESI=I~(II,15)
ISN 0048 L=IQ(II,l)
ISN 0049 MEMCNT {BOM)=MEMCNTiBOMI÷I
Z SN 0050
ISN 0051 BOM, O~O|

....... C ZERO POSN IN IQ -
ISN 0052 OO 150 I=I,I6
ISN 0053 150 IQtII,II=O

C IF LAST OF 4 INS FETCH REQSTS, CAUSE RTN

~s. 0o5~ 16OIQ~I,,,.N~.O,~o TO ~00
ISN 0051 CONTINUE .~:~}i-~’~=~

ISN 0058 CALL CAUSEIRTNtTIME+MEMDLY-I°O~DEST,OtO) -~--~-’-- ~
ISN 0059 200 CONIINUE ~

C
............ i

!.... FIL~ IQ IF EMP. AND INS ~E~ P~ESEM, 0. I.TE~FACE

ISN 0066 BOM=MOD (IFAOD~ NBOX) ÷I

0
LI Conway ~

0 | Archives j

ISN 0068 o IQIIItl}=CODEIIFDST)

ISN 0069 ~ ~QIII,6)=BOM+II-X

ISN 0070 % IQKIItTI=IFAOD

! ! SN 0072 iiiiiii!ii~i! i ~!!!II~ !i!iiiiiiiii!!!ii!!: i!ii!il i i!i ! i !!!iii! !i !i ii!;iiii!i!!! ~iiiI~

i; !i iiiCi:i ZERO iINTERFACE :ii~i;i ~ii!~~
~!!~ii:! iiii

ISN 0073 [FADD=O

ISN 007~ IFDST=O

i) ISN O075 400 CONTINUE

......... I SN0076’
ISN 0077 END

~i~

~iii!!~7!!i~!~i ~!ii~iiii/~ / !!~i~’ili ?¸ ! iii,
] Co oy !
| Atchives i

-

" ’ ~ I ~’~ ~e,~ -~+S~" 0"~"~I

...:~ ~-_... ~ - : --~=.--:-~:----.-~-. ~,~--~.-,- ---: =~I~ r - 11~ ;- ~ -N

.

t

+ ¯ r ¯

COMPILER OPTIONS - NAME= MAIN,OPT=O2,LINECNT=50,SOURCE,EBCDIC,NOLIST,DECK,LOAD,MAP,NOEDIT,NOID ~;:{~{:~

ISN 0002 SUBROUTINE SRQ
ISNO003 ~ T-IMPL~[~I~TS~N~G~R~2IA-Z|

ISN OOO~

ISN 0005

ISN O00b
ISN O001
ISN 0008
ISN 0009

ISN 0010
ISN 0011
ISN 0012
ISN 0013
ISN 0014

ISN 0015
ISN O01&
ISN 0017
ISN 0018
ISN 0019

ISN
ISN
ISN

COMMON TIRE,
A AINPI~ " NABUF~
B XBUS(50), IFADD,
C BRAP, ERI8),
D AHOLOT, XHOLDT~
E 8NOP~ XEP,
F FSTADD, NODOT,
G NXDSP

COMMON/RLS/ FIRST,
A NXBUS, STATS,
B XEMP, MXO,
C XGOII2), NAGO,
O NAFAC, NXFAC,

IPARI, IPAR2~ IPAR3,
ABUS(50), XINPT~ NXBUF,
IFDST, IFRTN, BRXP,
BE(8), ET(8), NBBUF,
AFRCT, XFRCT, BOSC,
AEP, PHIIIO0), PRINT,
NOPSC~ NDBUS, NADSP,

NAREGS~ NXREGS, NABUS,
ACON, XCON, AEMP,
AFULL|I2), XFULL(I2)~ AGO(12),
NXGOt NATEST~ NXTEST~
ABUSYZ, ABUSY(200), XBUSYZ,

E XBUSY(2OO)’ ABUFFII2~lOO)~XBUFFAI2~lOO|tASOR|I2,200)t
F XSO~IIZ,200),ADEST(12,200),XDEST(12,200), AFAC(12,15),
G XFACIL2,15), AFACSC(4,15,2OI,ARET, XFACSC(4,15,20),XRET,
H ABUSSCI4,IO,ZO)tAIBBSY(IO),XBUSSC(~,IO,20),XIBBSY(IO),XFIBUS(15),
I AOBUS(lZ,IOItXOBUSI12,IOI,AFSLOTIIS,ZOI,XFSLOTI15,ZOI,AFIBUS(15),
J AFOLYilS), XFDLY(15), AFOBUSlI5), XFOBUS{15|, NSLOT,
K ABUPSZ, ABUPSK200), XBUPS(200), ABUFUL(200), XBUFULf200|,
L ~(lb,ib), SDBA(32,2), NQBUF, NQTEST, NQGO,
M QINPI, QCON, QEMP, MBUSY, MFREE,
N LOAD, MEMDLY, MEMORY(I6), NBOX~ EAVt
0 MXTIHE, OUTLVL,
P SRI8), STIB),
Q APASSi20O), XPASS(2OO),
R MEMCNT(Ib), ABOX(15),

COMMON/RLS/ LAST
INTEGER OUT
REAL HEMDLY,MXTIME
REAL TIME

ENTRY XMBUSY
BOM=IPARI
L=IPAR2
MEMORYIBOM)=L
RETURN

IQI~,16), RTN, LONGBR,
SKXP, SKAP= NSBUF,
OUT(2I, JOBl6), SSTOP,
ABXBSY(IO), XBOX([5), XBXBSY([O)

C
ENTRY XMFREE
BOM= IPARI
MEMCNI (BOM)=MEMCNI (BOM)-[

.............. MEMORY (BOM)-O
RETURN

C

0020 ENTRY XLOAD
002 1 DEST=IPARI
0022 IFIABUPSIDESI).NE.II GO TO 9

k "" f. ,...0~ W~y

,, ,ArChtves,

i;iiiiii; i! / iii!i~iii!iii!!i, i!ii !i!~ii!i!i i¸!¸8 ~i
ISN 0026 ~BUFUL {DEST) =I
ISN 0027 RETURN
ISN 0028 8 ABUSY(DEST)=O

..................... ~ - ~, I~AS~g | OE~T~O~.- ;;
ISN 0030 9 XBUSY|0EST).=0
ZSN oo3t

C
ISN 0032 ENTRY XRTN
ISN 0033 DEST:I PARI
I SN 00)4 iFRTN~OEST
ISN 0035 RETURN

C
I SN 0036 ENTRY XEAV
ISN 0037 O0 I0 I=I,NQBUF
ISN 0038 IF{Q(I,B).EQ.I) GO TO 10

ISN 0041 RETURN
ISN 0042 10 CONTINUE
ISN 0043 A=I
ISN 0044 B=20000
ISN 0045 C=IOI
ISN 0046 CALL TROUBL(At6,C|
ISN 0047 RETURN

c
ISN 0048 END

...... ,~ ~ !i~i~!!~,,i~i~i~ili ~,~i!~i~i~ iii~,¸

..... : ,: ¸i¸¸¸¸¸¸¸¸¸¸¸¸7¸

ii; i ii ! i i¸¸ i iii il

) LEVEL 5 DEC 6b " DATE YS/360 FORTRAN N , DATE 6T.ZZT/LS.09.4~.

COMPILER OPTIONS- NAME= MAIN.OPT=OO.LINECNT=50.SOURCE.EBCDIC.NOLIST.DECKoLOAD.MAP.NOEDIT.NOID ¢

ISN 0002 SUBROUTINE XSTATS ~ ’"
- " ISN 0003 IMPLICIT INTEGER~X(A-Z}

ISN 000~ COMMON TIME~ e IPARX, IPAR2~ IPAR3~
A AINPT~ NABUF, ABUS(50}~ XINPT, NXBUF, s

B XBUS(50)~ , IFADD, IFOST, IFRTN~ BRXP~ 6

C BRAP~ ER(B), BE(8}, ET(8I~ NBBUF, o[!" "

D AHDLDT, XHOLDTe AFRCT~ XFRCT~ BOSC~ t¢i’:~:T~

E BNOP~ XEP, AEP~ PHI(IO0), PRINT, ZLi

F FSTADD~ NODOT, NOPSC, NDBUS, NADSP, ~i!~

G NXDSP
ISN 0005 COMMONIRLSI FIRSTe NAREGS~ NXREGSe NABUSt i

A NXBUS, STATS~ ACON~ XCON~ AEMP, !: ~!~
B XEMP, MXO, AFULL[I2), XFULL(12)~ AGOII2)~
C XGO{12)~ NAGO~ NXGO~ NATEST~ NXTEST, i -
D NAFAC~ NXFAC~ ABUSYZ~ ABUSY{200), XBUSYZ, ~;11
E XBUSY(200I~ ABUFF(12~IOO),XBUFF(12,100),ASOR(12~200|,
F XSOR|I2~2OOI~ADEST{12~2OO)~XDEST|I2~200I~ AFAC(12,15)~
G XFAC{12~ISl~ AFACSC(4tI5~20)~ARET~ XFACSCI~LS~2OI~XRET~
H ABUSSC|4~IOt20),AIBBSY(IO),XBUSSC(6,10~20},XIBBSYiIO),XFIBUS(15),
I AOBUS(12,IO),XOBUS(12,10),AFSLOT(I5,20),XFSLOT(15,20},AFIBUS(15},
J AFDLY(15), XFDLY(I5), AFOBUS(ISI~ XFOBUSII5|, NSLOT,
K ABUPSZ, ABUPS(200}~ XBUPS(200)~ ABUFUL(200), XBUFUL(200)~
L ~(Ib,lb), SDBA(32,2|, NQBUF, NQTEST~ NQGO,
M QINPT, QCON, QEMP~ MBUSY, MFREE,
N LOAD, MEMDLY, MEMORY{Ib)~ NBOX, EAV,
0 MXTIME~ OUTLVL~ IQ(4~16}, RTN~ LONGBR,
P SR{B|, ST(B), SKXP, SKAP, NSBUF,
Q APASS(200), XPASS{200|, OUT(2}~ JOB(6), SSTOP,
R MEMCNT{t6), ABOX(15), ABXBSY{IO), XBOX(15), XBXBSY{IO)

ISN 0006 CDMMON/RLS/ LAST
ISN 0007 INTEGER OUT
ISN 0008 REAL MEMCLY~MXTIME
ISN 0009 REAL TIME
ISN 0010 iNTEGER INDEX
~SN OOtl COMMON/OBUF/SPHIiBO,IOOi,SABUFFII2,1OOi,SXBUFF|I2,1001,

A SAREGi32,100)~SXREGi32~IOOi,SABREGi32~IOO),SCBIT{24,100),
B SCBBIT{24,100),SAFAC{15,100},SXFAC(15,100},SO|I6,100),
C SMEM(Ib~IOO),SIQ{4~IOO),SB(34~IO0},SS(IO~IO0)

ISN 0012 OIMENSION BB[2)
ISN 0013 EQUIVALENCE{BB(II~SPHL(I,I}) i

ISN 0014 DIMENSION XMN(IO),AMN(IO)
ISN 0015 DIMENSION BSYM|bBI,SSYM(20) !
ISN 0016 DATA SSYMI~OHSR ISR 2SR 3SR 4SR 5SR bSR 7SR BSKXPSKAP/
ISN 0017 DATA BSYM/136HER IER 2ER 3ER ~ER 5ER 6ER 7ER 8BE IBE 2BE 3BE ~BE 5

ABE 6BE 7BE BET IET 2ET 3ET 4ET SET bET 7ET 8BRXPBRAPXHLTAHLTXFCTAF
BCTXEP AEP BOSCBNOP/

ISN O01B OATA XMN/2OHEAEAL S M O XAC SP /
ISN 0019 DATA AMN/2OHFAFAFMFDIAIMIDC L S /

~2 ISN 0020 DATA BLNKI2H I

"z_ 3

4

3

2

PAGE 002
C OUTPUT LEVELS AS FOLLOWS
C OUTLVL=O FULL DEBUG INCLUDED �

C OUTLVL=I CYC/CYC INCLUDED
C OUTLVL=2 FULL 100 CYC INCLUDED
C OUTLVL=3 MIN 100 CYC INCLUDED 9

C FIRST TIME THRU~ BLANK THE OUTPUT ARRAYS z

ISN 0021 ABNORM=O
ISN 0022 IFiTIME.GI.O.O) GO TO 60
ISN 0024 DO 50 INDEX=I~35800
ISN 0025 50 BB(INDEXI=BLNK
ISN 0026
ISN 0027

60 CONTINUE
CALL CAUSE(STATS,TIME+I.OeOyOtO)

C
C PLACE PER CYCLE OUTPUT HERE
C
C OUTPUT PER CYCLE IF OUTLVL LE 1

ISN 0028 IF(OUTLVL.GT.I) GO TO 100
ISN 0030 WRITE(6~IOOO)TIME
ISN 0031 I00 CONTINUE
ISN 0032 ITIME=TIME
ISN 0033 JT=MOD(IIIMEtIOOI+I
ISN 0034 IF(JT.NE.I| GO TO 2050
ISN 0036 IFITIME.EQ.O.O) GO TO 2050

C
C OUTPUT I00 CYCLE OUTPUT
C

ISN 0038 2500 CDNTINUE
ISN 0039 [TIME=TIME
ISN 0040 BTIME=ITIME-MOD(ITIMEtlOOJ
ISN 0041 IF(MOD(ITIME,IOO).EQ.O) BTIME=ITIME-IO0
ISN 0043
ISN 0044

FTIME=ITIME-I
CALL TMTU(OUT(I))

ISN 0045
ISN 0046
ISN 0047

ISN 0049
ISN 0050
ISN 0051
ISN 0052

WRITE(6,2610) BTIME,FTIMEp{JOB(I),I=I~6),OUT(1),OUT(2)
WRITE(6,2611}
IF(OUTLVL.EQ.3) GO TO 888

OUTPUT DISP REG AND PHI
WRITE(6,2630}
WRITE(6,2640|(SPHI(I,T}~T=ItlO0}
WRITE(6,2641)|SPHI(2,T),T=I,IO0)
DO 90 I=I,8

! i: %1~i

ISN 0053
ISN 0054

J=l+2
90 wRITE(6,2622)I~(SPHI{J~T)yT=I~IOO)yI

ISN 0055
ISN 0056

WRITE(6,2b30)
wRITE(6~26~3|(SPHI(II~I)~T=I~IO0)

ISN 0057
ISN 0058

WRITE(6,2641)(SPHI(I2~T}~T=I~IO0}
0~ 91 I=I~8

ISN 0059
ISN 0060

J=[+I2
91 WRITE(6,2622)I~(SPHI(J~T)~T=I~IO0)~I

ISN
ISN

0061
0062

WRITE(6,2630)
WRITE(b,26441(SPHI{21~I)~T=I~IO0)

IT

O 1o

-Z~4q

I ~c~nwnV !

3

2

ISN 0069 WRITEib,2641){SPHI{32,TI,T=I,lO0) e ~
ISN 0070 DO 93 I=1,8 6

ISN 0071 J= 1+32 ot -:’"

ISN 0072 93 WRITE(b,2622)I,ISPHI(J,T),T=ItlOOI,I L~

ISN 0073 WRITE(6,26301
~i:i~’~i~CISN 0074 WRITE(b,2646)ISPHI(41,II,I=I,IO01

ISN 0075 DO 94 I=42,80
ISN 0076 94 WRITE[6,26421(SPHI(I,T;,I=[,[O0) i :: !;

ISN 0077 888 CONTINUE
C OUTPUT BRANCH CONTROLS

ISN 0078 WRITE(6,26BO)
ISN 0079 I=I
ISN 0080 WRITE(6,263/)BSYM{I)tBSYM|2~,(SB(I,T),T=I,100; ~::~:~==-~
ISN 0081 DO 104 J=1,I7,8
ISN 0082 DO 104 K=I,NBBUF
ISN 008~ I=J+K-I
ISN 0084
ISN 0086

IF(I.EQ.I) GO TO 104
WRITE(6,2638)BSYM(2*I-1;,BSYM[2~I),(SB(I,T),T=I,IO0;

ISN 0087 104 CONTINUE
ISN 0088 DO 103 1=25,34
ISN 0089 103

C
ISN 0090
ISN 009I

WRITE(b,2638)BSYM(2~I-I),BSYM(2~I)~(SB(I,T),T=I,lO0)
OUTPUT SKIP CONTROLS

WRITE(6,2630)
WRITE(b,2647}SSYM(1),SSYM(2},(SS(l~I)~T=I,IO01

ISN 0092
ISN 0093

DO 102 K=2,NSBUF
102 wRITE(6,2648)SSYM(2~K-I),SSYM(2~K),(SS(K,T),T=I,100)

ISN 0094
ISN 0095

DD 101K=9,10
I01 WRITE(b,2648)SSYM(2~K-I),SSYM(2~K),(SS(K~T|~I=I,IO01

C OUTPUT ABUFF
ISN 0096 WRITE(6,2630)
ISN 0097 I=I
ISN 0098 WRITE(6,2623)I,{SABUFF{I,T),T=I,lO01~I
ISN 0099 .DO II0 I=2,NABUF
ISN 0100 llO WRITE(6,2622 I,(SABUFF(I,T),T=I,IOOI,I

C UUIPUI XBUFF
ISN 0101 ~RITEI6,2630
ISN 0102 I=l
ISN 0103 WRIIE(6,2624 I,(SXBUFF(I,T),T=I,IO0),I
ISN 0104 DD III I=2,NXBUF !
ISN 0105 III WRITE(6,2622 I,(SXBUFF(I,T),T=I,IO0),I

C OUTPUT A FACILITIES
ISN OlOb WRITE(6,2630
ISN 0107 I=l
ISN 0108 WRIIE(b,2631AMN(1),I,(SAFAC(I,T),T=I~IO0),I

12

11

10

9

i I
6 L. Conway

,, , Arc hives

ISN 0109
ISN 0110

DO 108 [=2tNAFAC
lOB WRITEI6,2635)AMNIIItltISAFACII~T)~T=I,IO0|,I c

ISN 0111
C OUTPUT X FACILITIES

WRITE(6,2630)
ISN 0112
ISN 0113

I=I
WRITE [6,2632) XMN{ I | ¯ I t (SXFAC(I ,T) tT=l,lO0 | t I

ISN 0114
ISN 0115

00 109 I=2,NXFAC 8

109 WRITEI6,2635)XMN(IJtI~(SXFAC(I,T),T=I,IO0)~I 6

ISN 0116
C OUTPUT Q BUSY

WRITE(by2630)

01. i

ISN
ISN

0117
0119

IF(OUTLVL.EQ.3| GO TO 889
I=I

ISN
ISN
ISN

0120
0121
0122

WRITE(6,2633)I,(SQII,T),T=I,IO0),I
DO 106 I=2~NQBUF

106 WRIIE(6,2622} I,(SQ(I,T),T=I,IO0),I

ISN OIZ3
C OUTPUT IQ BUSY

WRITEIB,2b30) i

ISN 0124 I=l
ISN
ISN
ISN

0125
012b
0127

WRITE(b,263b)I,(SIQII,Tl~T=I,IO0)~I
DO 105 I=2,4

105 WRITE(b,2622)I,ISIQ(I,T),T=I,IO0)~I
OUTPUT MEM BUSY

ISN 0128
ISN 0129

WRITE(b,2030)
I=I

ISN 0130
ISN 0131

WRITE(6,2634)I,(SMEM(I,T),T=1,IO0|,I
00 107 I=2~NBOX

ISN 0132 I07 WRITE(b,2622) I,(SMEM(I~T|~T=I,IO0),I
C OUTPUT AREGS BUSY

ISN 0133
ISN 0134

WRITE(b,Zb30)
J=O

ISN 0135
ISN 0136

I=I
wRITE(b,2b25)J,(SAREG(I,T)~T=I,IOO),J

ISN 0137
ISN 0138

DU I12 I=2,32
J=l-I

ISN 0139 112 WRITE(b,2622)J,{ SAREGII,T),T=I~IOO),J
C OUTPUT ABU REGS BUSY

ISN 0140
ISN 0141

HRITE(6,2630}
J=O

ISN 0142
ISN 0143

I=I
WRITE(6~2626)J,ISABREG(I~I),T=I,IOO)~J

ISN 0144
ISN 0145

00 113 I=2,32
J=l-I

ISN O14b 113 WRITE(6,2622)J,(SABREG(I,T),T=I,IOO),J
C OUTPUT XREGS BUSY

ISN 0147
ISN 014~

NRITE(b,2b30|
J=O

ISN 0149
ISN 0150

I=I
WRITEIb,Zb2/)J, (SXREGi I, T } ,T=I, I00) ,J

ISN
ISN

0151
0152

00 114 I=2,32
J=l-I

@
12

11

10

3

2

PAGE 005
ISN 0153 114 WRITE(6,2622|Jt[SXREGKItT)yT=ITIOO)~J

C OUTPUT C BITS BUSY
ISN 0154 WRITE(6,2630)
ISN 0155 J=O
ISN 0156 I=I
ISN 0157 WRIIE(6~262B}Jt(SCBIT(ItT),T=I,IO0),J
ISN 0158 DO 115 I=2,24
ISN 0159 J=I-1
ISN 0160 I15 WRITEi6,2622)J,(SCBITII,T)tT=I, IOO),J

C OUTPUT CBU BITS BUSY
ISN 0161 WRITE(6,2b30)
ISN 0162 J=O

®

ISN 0163
ISN 0164
ISN 0165
ISN OIbb
ISN 0167 116

C
ISN 0168
ISN 0169
ISN 0170
ISN 0171

889

2550

I=l
WRITE(Ct2629)J, (SCBBIT(I,T),T=I, I00) ,J
DO 116 I=2,24
J=I-I
WRITE (6,2b22}J, (SCBBIT[I,T) ,T=I, I00) ,J

WRITE(6,2630)
CONTINUE
DO 2550 INDEX=I~35800
BB(INDEXI=BLNK N

i .

C-

ISN 0172
ISN 017~

IF ABNORMAL TERMINATIDN~I.E. ENTERED AT FINIS,
WRITE OUT OBUF, CALL TROUBL, THEN STOP.

IF(ABNORM.EQ.O) GO TO 7777
A=I

[

0

0

0

0

ISN 0175 8=20000
ISN 0176 C=7777
ISN 0177 CALL TROUBL(A~B,C)
ISN 0178 STOP

C
ISN 0179 ENTRY FINIS
ISN 0180 ABNURM=I
ISN O18L GO TO 2500
ISN 0182 7777

C

ISN 0183

CONTINUE
FILL CYCLE POSITICN IN I00 CYCLE BUFFER

IF(SSTOP.EQ.I) RETURN , [-:

ISN 0185 2050 CONTINUE
ISN 018~ CYCLE=JT
ISN 0187 CALL STOBUF(CYCLE)

TEST FOR STOP CONDITION
ISN 0188
ISN 0190

IF(PHI(IOO).E~.O) RETURN
DO 200 I=I,NABUF

ISN 0191
ISN 0193

IF(ABUFF(I,I).NE.O| RETURN
200 CONTINUE

ISN 019~
ISN 0195

DO 201 I=I,NXBUF
IF(XBUFF(I,I}.NE.O} RETURN

O
12

I1

0 ~o

Zo 7
[-C, co woy I

AFchlves,4
, ..--c-

0 PAGE 006
ISN 0197 201 CONTINUE
ISN 0198 DO 206 I=I~NQBUF
ISN 0199 IF|Q|I,I|.NE.O) RETURN
ISN 0201 206 CONIINUE
ISN 0202 DO 201 I=I,NBOX
ISN 0203 IF(MEMCNT(II.NE.O) REIURN
ISN 0205 IF|MEMORY(I|.NE.O) RETURN
ISN 0207 207 CONTINUE
ISN 0208 DO 208 I=I,NAREGS
ISN 0209 IF|ABUSY(1).NE.O) RETURN
ISN 0211 208 CONTINUE
ISN 0212 DO 209 N=I~NXREGS
ISN 0213 IF|XBUSY(II.NE.OI RETURN
ISN 0215 209 CONTINUE

¯ <

ISN 0216 DO 202 I=I~NAFAC
ISN 0217 DO 202 J=I,NSLOT
ISN 0218 IF(AFACSC(2~I,J|.NE°O) RETURN

r

ISN 0220 202 CONIINUE
ISN 0221 DO 203 I=IeNXFAC i : i~’!,~:~

ISN 0222 DO 203 J=I,NSLOT
ISN 0223 IF(XFACSC(2,I,J).NE.O) RETURN
ISN 0225 203 CONTINUE
ISN 0226 DO 204 I=I,NABUS
ISN 0227 DO 20# J=I,NSLOT
ISN 0228 IF(ABUSSC(2,I,J).NE.OI RETURN
ISN 02JO 204 CONTINUE
ISN 0231 DO 205 I=I,NXBUS
ISN 0232 00 205 J=I~NSLOT
ISN 0233 IF(XBUSSC(2,I,J).NE.O) RETURN
ISN 0235 205 CONTINUE

ISN 02~6
STOP CONDITION TRUE. TERMINATE RUN.

SSTOP=I
ISN 0237 GO TO 2500
ISN 0238 I000 FORMAT(6H TIME:,F6.2I
ISN 0239 2610 FORMAT(IHI,17X,IbHSIMULATED TIME :,15,3H TD,15,1OX,

A I~HINPUT PROGRAM = ,6AI~IOX~
B IbHREAL TIME/DATE =,2(IXZ8))

ISN 02~0 2611 FORMAI(IH I
ISN 0241 2622 FORMATI18H ~[2,1X,IOOAI~I2)
ISN 02~2 262~ FORMAT(I8H A BUFFER ~I2,1X,IOOAI~I2)
ISN 02~3 2624 FURMAT(18H X BUFFER ,12,1X,IOOAI~I2I
ISN 0244 2625 FORMATIIBH A REGS BUSY ~I2~IX~IOOAI~I2)
ISN 02~5 2626 FORMATIIBH ABU REGS BUSY ~I2,1X,IOOAI,12)
ISN 0246 2627 FORMATIIBH X KEGS BUSY ,I2,1X,IOOAI~I2)
ISN 0247 2628 FORMAT(18H C BITS BUSY ,12~IX~IOOAI~I2)
ISN 0248 2029 F~RMAT([BH CBU’BIIS BUSY ,I2, IX,IOOAI,I2)
ISN 0249 2630 FDRMATI21X,IOIHO -v-------I + 2 + 3 ÷ 4 -F-----5

X ÷ 6 ÷ 7 + 8----+----9 ÷ O)
ISN 0250 263I
ISN 025I 2632

FORMAT(15H A FACILITIES
FORMAT(15H X FACILITIES

,A2,1XI2,1X,IOOAI,12)
~A2,1XI2,1X~IOOAI,121

12

11

10

3

2

’I ii llIlll’l i III ii i, iiii

PAGE 007
0252 2633 F~RMAT[18H MEMORY QUEUE |0| ~I2~IX~IOOAI~I2)
0253 263~ FORMAT|IBH MEMORY ~I2~IX.IOOAI~I2) �

0

0

ISN 025~ 2635 FORMAT{15H
ISN 0255 2636 FURMATi18H
|SN 0256 265T FORMAT{16H
ISN 0257 2638 FORMAT{I6H
ISN 0258 26~0 FORMAT|20H
ISN 0259 26~I FORMATi20H
ISN 0260 2642 FORMAT|20H
ISN 0261 2643 FORMAT(20H

~A2~IXI2,1X~IOOAI,12)
MEMORY QUEUE {I| ,12~IX~IOOAI,12)
BRANCH CONTROL-~2A2tIX,IOOAI~2H +)

~2A2~IX~IOOAI~2H +I
DSPXI IB~IX~IOOAI~2H +I

DO,IX,IOOAI,2H ÷)
÷~IX,IOOAI,2H ÷)

DSPX2 IB,IX~IOOAI~2H ÷)
ISN 0262 2644 FORMAT(20H DSPAI
ISN 0263 2645 FORMAT(20H DSPA2 IB.IX,IOOAI~2H +)
ISN 026~ 2646
ISN 0265 2647
ISN 0266 2648

FORMAT(20H PHI ÷~IX,IOOAI~2H ÷1
FORMATII6H SKIP CONTROL- -~2A2,1X,IOOAL,2H ÷)
FORMAI(16H ~2AZ~IX,LOOAI~2H +)

ISN 0267 END

i
i~¯ ~.:~.

12

11

10

Z9£

Archlves 1

..............
LEVEL 5 DEC 66

" COMPILER OPTIONS - NAME=

DATE YS/360 FORTRAN H DATE b7.140]00.03.55

MAIN,OPT=O2,LINECNT=50,SOURCE,EBCDIC~NOLIST,DECK~LOADtMAP,NOEDIT,NOID

ISN 0002 SUBROUTINE STOBUFICYCLE)
) _ _ ISN 0003 IMPLIC+~INTEGERtZ[AZZ.)

ISN 0004 COMMON TIME, IPARI, IPAR2, IPAR3,
A AINPT, NABUF, ABUS(50), XINPT, NXBUF,
B XBUS(SQ), IFADD, IFDST, IFRTN,
C BRAP, ER[8), BE(8), ET(8), NBBUF,

-)

)

)

)

)

)

)

)

)

}

}

ISN 0005

O AHOLDT, XHOLDT, AFRCT, XFRCT, BOSC, ;t :~i!ili!~
E BNOP, XEP, AEP, PHI(LO0), PRINT,
F F+STADD, NODOY~ NOPSC, NDBUS, NADSP, ! :~ i
G NXDSP

COMMON/RLS/ FIRST, NAREGS, NXREGS, NABUS, ::’:
A NXBUS, STATS, ACON, XCUN, AEMP,
B XEMP, MXO, AFULL(I2)~ XFULL(12}, AGCII2),
C XGO[12), NAGO, NXGO, NATEST~ NXTEST, ,::~
D NAFAC, NXFAC, - ABUSYZ, -- ABUSY(200), xBusYz, ~;~
E XBUSY(200), ABUFF[12,IOO),XBUFF(L2,100}eASOR(12,200|,
F XSOR|I2t2OO)~ADEST-(i2,2OO)~XDEST(=I2~2OOF~AFAC{12~IS)
G XFAC(12,15}, AFACSCI~tI5,2OI~ARET, XFACSC(4,IS,20)tXRET,

.......... H-ABOSSC(~,IO,20~I-B~(=IO),XBUSSC(4,10~20),XIBBSY(lO),XFIBUS(15),
I AOBU$(12,1O),XOBUSI12,10),AFSLOT(15.20),XFSLOT(15,20),AFIBUS(15), . +
J AFDLY[15), XFDLY|15), AFOBUS(t5), XFOBUS([5), NSLOT,
K ABUPSZ, ABUPS(200), XBUPS(200), ABUFUL(200), XBUFUL(200),
L Q(16~16), SDBA(~2~2)~ ’NQBUF, + NQTEST~ NQGO,
M QINPT, QCON, GEMP, MBUSY~ MFREE,
N LOAD, MEMDLY, MEMORY(I6), NBOX, EAV,
0 MXTIME, __ + OUTLyL,_ IQI+,L6P~ ~T.N+ LONG~+R~
P SR(B}, STlB), SKXP~ SKAP, NSBUF~
Q APASS(200), XPASS(200)~ OUT(2), JOB(6)~ SSTOP,

MEMCNT[16i,- ABOX[15), ABXBSY(io). XBOX(15), XBXBSY|IO) +
ISN 000o COMMON/RLS/ LAST
ISN 0007 INTEGER OUT
ISN OOO8 REAL MEMDLYtMXTIME
isN O00g REAL TIME
ISN 0010 COMMON/OBUF/SPHI(80,IOO),SABUFF(12,1OO),SXBUFF(I2,100), I

.... A SAREG(~2,IOO),SXREG(~2,10OJ+,SABRE6-(~2,100).SCBIT|24,100}, [:!+ ~

C SMEM(IO,IOO),SIQI4,IOO},SB(3+,IO0),SSIIO,IO0} +
ISN 0011 INTEGER+2 CYCLE +.I

C FILLS CYCLE POSITIO~ IN OGTPUT BUFFER i
ISN 0012 JT=CYCLE ... IC

C FILL DISP REG,PHI, OUTPUT BUFFER i
" ISN+Obi3 DO 5- I~i,80 !

ISN 0014 . 5 SPHIII,JT)=pH!.[I_) ..
C FILL BRANCH CONTROL OUTPUT BUFFER

ISN 0015 00 6 I=I,8 ’~=~=+
ISN 0016+ sB(I,JT}~O

~_ ISN 0017 SBII+B,JT)=O ~--=
, ISN 0018 SB(I+I6,JT)=O

,~L, Conway. ~
, ArcP’,lves |

PAGE 002

....... ISNO019 IFiER(I}.NE.O) SBII,JT}=(ERII}+240)~256
ISN 002I IF(BEII}.NE.O) SB(I÷8,JT)=iBEII}+240)~256
ISN 0023 IF(ET(I}.NE.O) S8(I+I6,JT)=(ET(I}+240)~256

6

ISN 0025 6 CONTINUE
Q _ ISN 0026 _DO 3 I=25,34

0

©

0

0

0

0

0

0

0

0

0

0

0

0

0

ISN 0027 3 SB(I,JT)=O
ISN 0028 IF{ BRXp.NE.O) SB|25;._JT)=(BRXp+240I~25_6 ... 9-
ISN 0030 IFI BRAP.NE.O) SB(26 JT)=IBRAP÷240)#256 o~; -.:"

_ ISN 0032 I F | X H OL D T_- NEm_O_}_.SB.(27 ._,.JT.)_= (X H OLDT~2~O } "’256 ... ~
ISN 0034 IF(AHOLDT°NE.O} $6(28 JT)=(AHOLDTe240)w~256 ~ :-
ISN 0036 IF(XFRCT .NE.O) $8{29 JT}=IXFRCT+240}~256 ,:;:’~’
ISN 0038 IF{AFRCT .NE.O) SBI30~JTI=lAFRCT+240)~256
ISN 0040 IF(XEP .NE.O) SB(3I .JT)=(XEP+240)~256
ISN 0042 IF{ AEP .NE.O) SB{32. JT)=|AEP+240)~2~56 : ":
ISN 0044 IF{ BOSC°NE.O} SB(33.JT)=(BOSC+240)~256

C FILL SKIP CONTROL OUTPUT BUFFER
ISN 0048 DO 4 I=I’8 "
ISN 004g SSII,JT)=O
ISN 0050 IF (SR (I } .NE.O)- sS (i~IT-)- (SR(i)÷240 } ~256
ISN 0052 4. CONTINUE
ISN 005] " - SS-ig,,JT)-=() .. "
ISN 0054 SS(IO~,JT)=O
ISN 0055 IF{SKXP.NE.O) SS(9~JT)=|SKXP+240)#256
ISN 0057 IF(SKAP.NE.O) SS(lO~JT)=(SKAP÷240}~256

C FILL ABUFF OUTPUT BUFFER

. ISN_.OO5(~ DO. 10 !=I~NABgF ... ,,,
ISN 0060 tO SABUFF(I,JT)=ABUFF|I~I}

C FILL XBUFF OUTPUT BUFFER
ISN 0061 DO Ii I=I,NxBuF
ISN 0062 II SXBUFF(I~JT)=XBUFF{I,I}

- C FILL A AND X FACILITY OUTPUT BUFFER
ISN 0063 DO 9 I-1,NXFAC ...
ISN 0064
ISN 0065
ISN 00~6
ISN O087

ISN 0068
ISN 0069
ISN OOlO

ISN 0071
ISN 0072

ISN 0073
ISN 007~
ISN 0075
ISN 0076
ISN 0077

19

SXFAC(I~JT)=XFACSC(2~I~I)
DO 19 I=t~NAFAC
SAFACII~JT}=AFACSC{2,1~II
CONTINUE

FILL Q AND MEM OUTPUT BUFFER i~L

SQII,JT)=Q{I~I} $~ "
8 SMEM(I,JT)=MEMORY(1) -I

FILL Iq OUTPUT BUFFER {
DO 7 I=1,4 I

7 SIQ(I~JT)=IQII~I) Ii
FILL REG BUSY OUTPUT BUFFERS I

.. IDO 12 I=I,32
SAREGII,JTI=AB~SYll)

SABREGIi,JT}=XBUSYII)
SXREGII~JT}:XBUSYII÷32} "

t2 CONTINUE

............................ i

PAGE 003
C FILL COMPARE BIT BUSY OUTPUT BUFFERS

i~ - - ISN 0078-- - DO 13 I:I,24
ISN 0079 SCBIT(I,JT)=XBUSY{I+64)

..... iSNO080 SCBB/T(I,JT)=ABUSY(I÷64)

~ ISN OOBT 13 CONTINUE
ISN 0082 RETURN
ISN 0083 END

P

9

L

g

6

ot +
tt+. +

2+ ¯ !!’ ~i:~::.~¸

i ¯

Q

O

0

@

9

; i-[; co°w+ 1
i

2

LEVEL 10 APR, 67 0S/360 FORTRAN H DATE 67,307/L8.23,5[c

COMPILER OPTIONS - NAME= MAIN,OPT=O2,LINECNT=50,SOURCE,EBCDIC,NOLIST,DECK,LOAD~MAP~NOEDIT,NOID

ISN 0002 SUBROUTINE XXCON z

)
B XBUS(50),
C BRAP,

) D AHOLDT,
E BNOP~
F FSTADD,
G NXDSP

ISN 0005 COMMON/~LS/

[SN 0003 IMPLICIT INTEGER~2(A-ZI 8

ISN 0004" COMMON lIME, IPARI, IPAR2~ IPAR3, __~
... OL ’~ ~ YA AINPT, NABUF, ABUSI50) p XINPT. NXBUF, ::::~+÷

IFADD, IFDST~ IFRTN, BRXP, ~L~ "
... L-

XHf)LDT, . AFRCT, _ . XFRCT, B_OSC,
XEP, AEP~ PH].(IO0), PRINTv i . :!
NODOT, NOPSC, NOBUS~ NADSPt i

F [RST, NAREGS, NXREGS, NABUS,
A NXBUS, STATS, ACON, XCON, AEMP,

XE~P, MXOL A(ULLJ-12)~ ---XFULLIL2) ~90!32)~ ’ il-:i!iXGO(12), NAGO, NXGOt NATESTt NXTEST~
NAFAC, NXFAC, ABUSYZ, ___ AB U_ S Y(20 O) .L__XBt) S YZ~
XBUSY(200), ABUFFI[2,1OO),XBUFF(12~IOO)~ASORII2,2001~
XSOR(L2,2OO),ADESTII2~2OOI,XDEST(12,200)~ AFACIL2,15)~
XFAC(12,15), AFACSCI4,15,2OI~ARET, XFACSCI4,15,20),XRET~

H AGUSSC (G, LO, 20), AL~BSy_(tO) ,XBUSSCI 4,19.t20), XIBBSY(IO | ,XFI Bus (15) [
I AOBUS(12,1OI,XOBUSIIZ,IO),AFSLOTIIB,20),XFSLOT(15,20),AFIBUSIIS), IJ AFDLY(15), XFDLY(15), AFOBUS(15), XFOBUS(15), NSLOT, I

L Q(16,16), SDBA{32,2), NQBUF, NQTEST, NQGO, [:./;
o-T-c¢/T TC-~T----~¢, -~~ ~

MEMDLY, MEMORY(16), NBOX~ EAV. [~:
...[~/:~

LOAD,
~XTIME, OUTLVL, IO(4.1O), RTN, LONGBR,
SR(~) ST(B} S KXP SKAP~ NSBUF
APASS(200), XPASS(2OO)~ OUT(2), JOB(6), SSTOP~
ME~CNT(16), ABOX(I5), ABXBSY(IO), XBOX{15), X~XBSY(IO)

................. r

ISN 3005 COM’-ION/RLS/ LAST
ISN 0007 INTEGER OUT ... i

ISN 0008 DIMENSION SCIRBSYI2OOI,DESBSYI20C)
ISN O00g REAL ME MDLYt~XTIME

) [SN 0C19 REAL TIME
ISN 0011. CALL CAUSEIXCON,TIME+I.0,0,Oz0) ...
ISN 3012 CALL CAUSE(XEMP,TI’~OL .3,0,0,0)

} j_=S_N =%313 CALL C AUSE(XRET,TIME÷OtO,0,O,O)
[SN OOt~ NO’O=0

..... I s~,~,o L5 _ __ o G£!: o
) ISN 0015 DO I I=I,NXBUF

ISN 0017 t <GO(1)=O

..............

....
i

...... I

ISN 0018
ISN 0029
[SN 0021
ISN 0023

~2 ISN 0024
~1 ISN 0025 2 XDEST(I,K)=O
~o ISN 0028 DO 3 K=I,NXFAC

IF BNOP STATE, NOP ALL BOS OPS
IF(BNOP.NE.I) GO_To 5 ..
DO 4 I=I,NXBUF
IF(XSUFF(I,12).NE.I) GO TO 4 .. ~,
DO 2 K=I,NXREGS~
XSORII,K)=O

9

$oZ

5

4

ISN 0029 XBUFF(I,2I=O
ISN 0030 XBUFFII,12)=O
ISN 0031 4 CONTINUE
ISN C032 5 CONTINUE

C
C- IF SKIP TAKEN,NOP ALL STARRED OPS UP TO IST EXEC SKIP - -

ISN 0033
ISN 0034
ISN 9036
ISN O038
ISN 0040
ISN 0041
ISN 0043

Dr3 80 I=I,NXBUF ~ : ¯
IF(XBUFEII,I3I,EQ.O) GO T0_79 ...
IF(XBUFFI I, 9).EQ.~I GO TO 84 [
IF(XBUFF(I,I1).EQ.O) GO TO 84

79 CONTINUE ~
IF(X;~UFF(I,1I).EO.O) GH TO 80
IF(X~JUFF(I,9).E4.C) GO TO 80 -

ISN 9045
ISN 0046
ISN 0047

ISN 0048

D[J 81 K=I,NXREGS
XSORII,K)=O ;.~,.~

81XDEST(I,K)=9
APPROX WAY TO HANDLE SKIPPED BRANCHES
LET GO AS UNSUCC BRANCH - NO SID INTLKS ,-.:~

IE{X~UFF(I,12).NE.I) GO TO 108t i :-

ISN 005,3
ISN 005t
ISN 0052
ISN 005:{
ISN {3054

XBUFF(I,IC):O i
G,]- T(i-~ ~0 I

t081 CONTINUE
D(] 82 K-=-~i,N~KI=AC [
XFAC(I,K)=O [_:i

82 xoBus(fTR,]-o
X~UFF(I ~2)=0

ISN 0055
I SN 0056
IS~’J 0057 D/ 83 K=q,I5
ISN }053 83 XBIJFF(l,Kl=O I

......... I~S-,’~--~)05q---- 80 C!]NI-IHU~

i [i i _] L___.’ / i i _: ~/.]__ i] i__/ i_ ---- IISN 0059 84 Cc}’~JTINtJF .. .

L) C THIS EVENT SCANS XRUFF FOR INST WHICH CAN GO
C SCfk~ I~OR NXGO OiJ-i’--{JF-NXTEST i

ISi’,I 0061 DO IO REO=I,NXREGS
i- --I-S~O-62 S)RP, SY(RFG)=O

ISN 0063 tO hESk~SY(~EGI=XBUSYIREG) ~..-.-::.
.. ;: :-" 3"L"

IS"! 0064 r)i~ lff9 INS=I~NXTEST
ISN ~ 5~,_,6: IFIKFULL(INS).E~.OI GJ TO IC, O
IS;",’ 0067 IF(INS.~f~.I)-C~U TQ 2_1
ISN 0069 O() 11 .<EG=I,NXKEG, S

.~ ISN 05:7~# S(]Ri~sY-(REG)=StiRLisY{P,~G)+xS£)Ri INS-I,REG)
ISN 0071 Ll i)ES~,SY(~tEG)=DESBSY(REG)÷XDESTI INS-1,REG)
ISN 0972 INS,*~t= INS-I
ISN 0073 i)fl 20 I=I,INS~4L

C PREV EXIT INTLKS ALL COL)E BELOW
ISN 0074 IF{XBUFF(I,14I.EQ.I) GO TO 100

C
C12

II

9

8

~
6

5

3

2

PREV SKIP INTLKS ALL STARRED CODE BELOW
_ANO__ALL SKIPS BELOW

PAGE 003 c

ISN 00?6 IFIXBUFF(ItI3).EQ.O) GO TO 20
ISN 0078 IFi|XBUFF(INS,13I.EQ.I).OR.IXBUFF{INS,9).EQ.I)) GO TO I00
ISN 0080 20 CONTINUE 9

ISN 0081 21 CONTINUE z

C IF EXIT, INTLK AGAINST PREV BRANCHES AND ER B

ISN 0082 IF|XBUFF(INS,14).NE.I) GO TO 28 6

ISN 0084
ISN 0086
ISN 0088
ISN 0089
ISN 0091

IF{ER{BRXP).NE.I) GO TO I00"
IFIINS.EQ.I) GO TO 129
DO 128 I=lvINSMI
IF(XBUFF(I,12|.EQLI} GOTO I00

128 CONTINUE
C EXIT PART OF OP GOES, MARK GO EXIT.

129 CDNTINUE
XBUFF{INS,15)=I

ISN 0092
ISN 0093
ISN 0094 28 CONTINUE
ISN 0095 DO 22 REG=I,NXREGS
ISN 0096
ISN 0098

IFI(XSORIINS,REGI.EQ.I).AND.{DESBSY(REG).NE.O)| GO TO I00
IFI(XDESTIINSvREG).EQ.I).AND.(DESBSYIREGI.NE.O)) GO TO 100

ISN 0100 IF(IXDESTIINS,REG).EQ.II.AND.(SORBSY{REG).NE.O)) GO TO IO0
ISN 0102 22 CONTINUE

C FIND FAC USED
ISN 0103 DO 25 FAC=I~NXFAC
ISN 0104 IF(XFAC(INS,FAC).NE.O) GO TO 26
ISN 0106 25

C
3107

ISN 0108 26 CONTINUE
C TEST FOR SPECIAL OPS HERE

CONTINUE
NO FAC USED. ISSUE OP ..

ISN FAC=O

ISN 0109 SPEC=O
C IF LIS TEST AVAIL OF QUEUE

ISN 0110 IF((XSORIINS~89).~E~I).AND.(XDEST(INSt89).NE.I]) GO TO 21
ISN 0112 SPEC=I
ISN 0113 qPT=QINPT+QGO
ISN 0114 IFIOPT.GT.NQ~UF) GO TO 100 [
ISN 0116 27 CONTINUE I

C IF BRANCH,INTLK AGAINST PREV BRANCHES AND EHT AVAIL ~::.
ISN 011/ IF|X~UFF(INS,I2I.NE.I) GO TO 29
ISN 3119 IF(ER(BRXP).EQ.I) GO TO I00

C IF SHORT BRANCH,TEST LDNGBR INTLK
ISN OlZI IF((XBUFFIINS,5}.EO.O).ANO.ILONGBR.NE.O)) GO TO I00
ISN !)123 IF(INS.EQ.I) GO TO 231
ISN 0125 DO 230 I=L,INSMI
ISN 0126 IF(XBUFF(I,12).EQ.I) GO TO I00
ISN 0128 230 CONTINUE
ISN 0129 231 SPEC=I
ISN 0130 29 CDNTINUE

C IF SKIP,INTLK AGAINST PREV NOGO STARRED OPS,SHT AVAILABLE
ISN 0L31 IF(XBUFF(INS,13I.NE.L) GO TO 132
ISN 0133 IF(SR{SKXP).EQ.I) GD TO 100

~2 ISN 0135 IFIINS.EQ.1) GO TO I31
II

1o

I i¯ ’i!8
| L. Conway !

5

0 4
3

- 2

PAGE 004 ¢
ISN 0137 DO 130 I=I,INSMI
ISN 0138 IF((XBUFF(I,9}.EQ.I).AND.{XGO(I).NE.I)) GO TO IO0
ISN 0140 130 CONTINUE 9
ISN 0141 131SPEC=I z
ISN 0142 132 CONTINUE e

C ’ 6

C IF NORMAL OR SPEC OP AND NGO =NXGO, DO NOT ISSUE
C IF REPLACE OR NDP, CAN ISSUE ANYWAY.

IF{((FAC.NE.O).OR.ISPEC.NE.O)}.AND.(NGO.EQ.NXGO)) GO TO IO0

Ot

ISN 0143
C IF NO FACS USED GO DIRECTLY TO 95

ISN 0145 IF{FAC.EQ.O) GO TO 95
C IF MULT IDENT FAC, GO TO SPEC HANDLING

ISN 0147 IF(XFAC(INS,FAC).GT.I) GO TO 49
C CHECK INBUS,FAC SLOT,OUTBUS INTLKS
C NO INBUS CONFLICTS IN X

ISN 0149 ~OX=XBOX(FAC)
ISN 0150 IFIXBXBSY(BOX).EQ.I) GO TO IO0
ISN 0152 DO 30 T=I,NSLOT
ISN 0153 IF((XFSLOT{FAC,T).EQ.I).AND.(XFACSC(I,FAC,T|.EQ.I)) GO TO 100
ISN 0155 30 CONTINUE
ISN 0156 DBUS=XFOBUS(FAC)
ISN 0157 DELAY=XFOLY(FAC)
ISN 0158 IFI(XOBUSIINS,O~US).NE.O).AND.IXBUSSCII,OBUS,DELAYI.NE.O))

X GO TO 100

i
ISN 0160 IF((XOBUS(INS,OSUS+II.NE.O).ANO.(XBUSSC(I,OBUS+I,DELAY).NE.O).ANO.

X ((OBUS÷I).LE.NXBUS}) GO TO I00
C SUCCESS. MARK GO AND SET SHIFT CELLS

ISN 0162 31 CONTINUE
ISN 0163 XIBSSYIINBUS)=I
ISN 0164 XBXBSYISOXI=I
ISN 0165 XBUFFI=XBUFF(INS,I)
ISN 0166 DO 32 T=I,NSLOT
ISN 0167
ISN 0169

IF(XFSLOT|FAC,T).EQ.O) GO TO 32
XFACSC(I,FAC,T}=!

ISN 0170 XFACSC(Z,FAC,T)=XBUFFI
ISN 0171 32 CONTINUE
ISN 0172
ISN 0173

XBUSSCII,0BUS,DELAY)=XOBUS(INS,OBUS)
XBUSSC(2,0BUS,DELAY).=XBUFF(INS,I)

ISN 0176
ISN 0175
ISN 0177
ISN 0179
ISN 0180
ISN 0181

XBUSSC(3,0BUS,DELAY)=XBUFF(INS,2}
IF(XOBUS(INS,OBUS+I).EQ.O) GO TO 95
IF((OBUS+I).GT.NXBUS) GO TO 95
XBUSSC{I,OBUS+I,DELAY)=XOBUS(INS,DBUS+I)
XBUSSC(2,DBUS+I,DELAY)=XBUFF{INS,I)
XBUSSC(3,0bUS+I,DELAY)=XBUFF(INS,2)

ISN 0182

ISN 0183

GO TO g5
C SPEC ROUTINE TO HANDLE MULT IDENT FAC INTLK

49 CONTINUE
C NO INBUS CONFLICTS IN X

ISN 0184 BOX=XBOX|FAC)
~2 ISN 0185 IF(XBXBSY(BOX).EQ.I) GO TO 60

. .+ _.

1!

10

:i ~:L

.5

2

PAGE 005
ISN 0187
ISN 0188

DO 50 T=I,NSLOT
IF((XFSLOT(FAC,TI.EQ.I).ANO.(XFACSC(I,FACvT).EQ.L)! GO TO 60

ISN 0190 50 CONTINUE
ISN 0191 OBUS=XFOBUS(FAC)
ISN 0192

ISN 0193

DELAY=XFDLY(FAC|

IF({XOBUS(INSyOBUS).NE.O).AND.(XBUSSCII,OBUStDELAYI.NE.O))

ISN 0195

X GO TO 60
C SUCCESS

DO 51 BUS=ItNXBUS
ISN 0196 51
ISN 0198
ISN 0199 60
ISN 0200 FAC=FAC*I

IF(BUS.NE.OBUS) XOBUS{[NStBUS)~O
GO TO 31
CONTINUE

ISN 0201 IF((FAC.GT.NXFAC).OR.{XFAC(INS,FAC).LE.I)| GO TO LO0
ISN 0203 GO TO 49
ISN 0204 95 CONTINUE
ISN 0205 XGO(INS)=I
ISN 0206 IFI(XSOR(INS,BgI.EQ.1).OR.(XDEST(INS,B9).EQ.II) QGO=QGO+I

IF OP USES NO FACILITIES, AND IS NOT SPECIAL OP THEN IT
IS A REPLACE DP, AND GOES WITHOUT INCREMENTING NGO.

ISN 0208 IF|(FAC.NE.O).OR.(SPEC.NE.O)) NGO=NGO÷I
ISN 0210 100 CONTINUE

EXIT EXECUTION
CHECK FOR NOGO EXITS TO SET XHOLDT

ISN 0211 XHOLDT=O
ISN 0212 DO 200 I=I,NXBUF
ISN 0213 IFI(XBUFF(I,I4).EO.I).AND.(XBUFF(I,15).NE.I)) XHOLDT=I
ISN 0215 200 CONTINUE

C CHECK FOR GO EXIT,ET
ISN 0216 XFRCT=O
ISN 0217 00 20L I=I,NXBU@
ISN 0218 IF(XBUFF(I,15).NE.I) GO TO 201
ISN 0220 IFIXBUFFII,I4).NE.L) GO TO 201

O ISN 0222 XBUFFII,14)=O
ISN 0223 XBUFF(I,15)=O
ISN 0224 IF(XBUFF(I,IO).EQ.II GO TO 202
ISN 0226 201 CONTINUE
ISN 0227 GO TO 300

C FOUND GO EXIT,ET. NOP AND MARK GO ALL CODE BENEATH IT.
C ALSO SET XFRCT.

232
O

0

0

ISN 022~
ISN 0229
ISN 0231
ISN 0232

XFRCT=I
F ([._~.Nx~9~) GO _TA_~9o ...

I=I+]
DO 203 J=I,NXBUF

ISN 0233 XGO{I)=I
ISN 0234 00 204 K=I,NXREGS
ISN 0235 XSOR(J,K)=O
ISN 0236 204 XOESTIJ,K)=O
ISN 0237 DO 205 K=I,IO

rS~
12 ISN 0238 205 XOBUSIJ,K)=O
11
IO
9

j

IL. Conway !

.... Archives j

7
b

4
3
2

PAGE 006 �

ISN 0239 XBUFF(I,2)=O v

ISN 0240 DO 206 K=9, I5
ISN 024I 206 XBUFF(J,K)=O o

ISN 0242 DO 207 K=I,NXFAC z

ISN 0243 XFAC[J,KI=O 8

ISN 0244 207 CONTINUE 6

ISN 0245 203 CONTINUE
ISN 0246 300 CONTINUE

CALL BOSEX TO SAVE .I BOS CONTROL TRIGGER VALUES.
I SN 024/ CALL BOSEX

IF SKIP NOT TAKEN,REMOVE FLAGS FROM ALL OPS THRU IST SKIP
ISN
ISN

0248
0249

ISN 0251

DO 85 I=I,NXBUF
IF(XBUFF(I,II).EQ.O) XBUFF[I,9)=O
IF[XBUFFII,13).EO.I) GO TO 86

-. :2

ISN 0253 85 CONTINUE
ISN 0254 86 CONTINUE

C-
ISN 0255 RETURN
ISN 0256 END

I

12

11

~0

I
’ L. Conway i

Archives

O 7

5

3

2

rEVEl 5 DEC 66 DATE YS/360 FORTRAN H DATE 67.19T/03.52.3[

CNMPII FR nPTI(]N£ -- NAMF= MAIN,~PT=O?.I INFCNT=5~.£nlJR~F.FRC~I~.NNI I£T.~F~K~I nAn~M&P~N~F~IT~NOIN

ISN 0002 SUBROUT[NE XXEMP
ISN 0003 IMPLICIT INTEGER*ZIA-Z) 8

ISN 0004 COMMON TIME, IPARI, IPAR2, IPAR3, 6

A AINPT~ NABUF, ABUSI5O)~ XINPT, NXBUF, oL

B XBUS(50), IFADD, IFDST, IFRTN, BRXP, iL

C BRAP, ER(BI, BET8), ET(8), NBBUF,
D AHOLOT, XHOLOT, AFRCT, XFRCT, BOSC,
E BNOP, XEP, AEP, PHI(TO0), PRINT,
F FSTADD, NO!)OT, NOPSC, NDBUS, NADSP,
G hXDSP

ISN 0005 C(!MMONIRLS/ FIRST, NAREGS, NXREGS, NABUS,
A ,N X~U S, STATS, ACON, XC{]N, AEMP,
B XE,~P, ~X;), AFULL(I2), XFULL(12), AGO(12),

O

3

O

O

O

O

C XO!liI2), NAGO, NXGO, NATEST, NXTESTt
D NAFAC, NXFAC, ABUSYZ, ABUSY(200), XBUSYZ,
E xBUSY(200), ABUFF(12,1OOI,XBUFF(12,IOO),ASOR(12,200),
F XSQR(12,200),ADEST(IZ,200),XDEST(12,200), AFAC(I2,15),
G XFAC(12,15), AFACSC(~,I5,20),ARET, XFACSC(4,15,20),XRET,
H A~SSC(#,IO,20),AI~BSY(IO),XBUSSC(4,10,ZO),XIB6SY(IO),XFI6US(15),
I A(13US(I2,IO),XO~DS(12,IO),AFSLOT(15,20),XFSLOT(I5,20),AFIBUS(15),
J A~OLY(LS), XF~LY(15), AFO~US(LS), XFOBUS(15)~ NSLOT,
K A~iJPSZ, ABUPSI200), XBUPS(200), ABUFUL(200I, XBUFUL(200),
L ~(£~,I~), SD~A(32,2), NQBUF, NQTEST, N~GO,
M ~INPT, QCON, QEMP, MBUSY~ MFREE,
m LOA~, MEMDLY, MEMORY(lb), NBOX, EAV,
0 MXTIME, OUTLVL, IQI4,I6), RTN, LONGBR,
P SR(SI, ST(ST, SKXP, SKAP, NSBUF~
q AP~bSIZO0), XPASS(200), DUT(2), J06(6), SST~P,

~;~CNT(Io), A6(IX(15), ABXBSY(IO), XBUX(15), XdXBSY(IO)
IS~ 000~ CU~-~:4ON/~L31 LAST
ISN 0007 INTEGER GUT
IS~i 0008 CO~ONITAGS/DI25b,70)
ISN 0009 REAL ~ENCLY,MXIIME
ISN OOlO RL~L TIME

,!

ISN 00[[0[; t00 INS=I,NXSUF
ISf< ()0IZ 5 IFiXG,?,(I.~S).E4.C) GO TO [00
IS,’, L}OI’* [I-(XFLI[L(INS).EO.0) GO TO lO0

C ISSUE INS
C TEST FC)K SPECIAL OPS HLRE
C IF L/S SHIP TO QUEUE

ISN OOtb IF((XSCR(INS,39}.r~E.I).AND.(XDEST(INS,B9).NE.1}) GO TO 7
ISN 0018 CALL CAUSE{EAV,TIME+I.0,O,O~O)
ISt,~ OOt9 I~=~QINP r

12

ISN 0020 ~INPT=GINPT÷I
C SET ~ LETTER

ISN 002l ~(IN,I)=XBUFF(INS,t)
C SET Q A

II

to

ISN 00Z2 Q(IN,4)=X6UFF(INS,7)
C SET Q X

o?
t ii

I L. Conway I

Archives~

O 7

5

O ,
3

2

ISN 0023 IFIQ(IN,4).NE. II QIIN)5)=I v

C SET Q EFF ADD
ISN 0025 ~(IN,T)=XBUFF(INS,6) 9

C SET Q BOM z

ISN 0026 Q{ IN,8}=MUD(QIIN,7),NBOX)+I s

C SET Q LOAD 6
ISN 002l IFIXSOR(INS,89).EQ,II Q(IN)2)={ ol

C SET Q STORE Ll
ISN 0029 IF(XDEST(INS)B9}.EQ.II QIIN,3)=I

C SET Q DATA VALID FOR X STORE
ISN 003[IF{(~(IN,5).EQ.1I.AND.|QIINt3).EO.I)] Q(IN,9)=I
ISN 0033 IF(q(IN,2).NE.I) Oil TO 88

C SET Q DEST FUR LOADS
ISN 0035 0~ 8 REG=I,NXREGS
ISN U03o IF(XOEST(INS,REG).NE.O) Q(IN,15)=REG
IS~, 0038 8 Cu,~TINUE
ISN 0039 88 CONTINUE

C IF STORE A. G~T DATA OR SET WAIT
ISN 0040 IF((Q|IN,3).NE.II.OR.(Q|IN,4).NE.t}) GO TO l
ISN 0042 IF(SDBA(I,I).NE.I| GO TO 6

C DATA AVAIL
ISh 0044 0(I\I,9)=I
IS~4 0045 ub 50 I=i,31
I SN 004o S,OL~q(I , t)=SDE’,A(I+].) 1)
IS)q 0041 50 S(tIA(I,Z)=SOBA(I*1,2)
IS)’~ U04d SuL’~:~(32,1)=O
ISN 0049 SDBA(32,2) =0
ISN 0050 GLJ TO 7
ISN UOSL 6 CCNIINUE

C DATA Nt]T AVAIL. SET FIRST FREE WAIT BIT
ISN 0052 D{ ~ I=1,31
ISN 0053 I~(Su~A(I,2).~,.).I) 00 TO 4
ISN 0055 St, L~;~ (I, --’)= i
ISN 0050 Go TO 7
ISN U051 4 CL;,X. TINUE
ISN o058 ;,,=I
ISN 0059 6:20000
ISN u060 C= 1.)2
ISN 006[CJ~LL TRC}Ot~L(A,i{)C)
IS,’4 006Z 7 C~ ~rlhL;t

C ISSUE b~M~Ch OP
IS/~ 0063 IFIXOUFF(INS,12).N~.I) GO TO 200

C IF LU’4G DI~,ANCH) SET LUNOBR=[TO INTLK SHORT 8P, ANCH NXTCYC
ISN 00o5 L i..’, N G ,5){ = 0
ISN OOc, o IF((Xi~UFF(INS,5}.NE.O).AND. IXBUFFIINS,2).NE.I38)) LONGSR=[

C IF SuCC LONG BRANCH, SET LONGBR=2
ISN 0063 IF ({ LEJNG6R. E~.3.1) .AND. { XBUFF (INS, tO) .t::O. I)) LONGBR=2
ISr,, 0070 200 C{JNTINUE

C ISSUE SKIP-INCR SKIP POINTER, SET SR
12 ISN 0071 IF(XBUFF(INS,13).NE.I) GO TO 60
11

10

9

"Z~O

)

)

)

)

)

)

)

I)

7
6
5

4

’~ii F ,:~.’:i c

PAGE 003 t

ISN 0073 SR(SKXP)=I
ISN 0074 SKXP=SKXP+I
ISN 0075 IF(SKXP.GT.NSBUF) SKXP=I 9

ISN 0077 60 CONTINUE z

C
s

ISN 0078 OP = XBUFF(INS~2) 6

ISN 0079 REPL=D(OP,32)
FIRST SET BUSY VECTOR

ISN 0080

ISN 0081

DO I0 REG=I,NXREGS
IS REG A DEST

IHIXOEST(INStREG).NE.I) GO TO 10
IGNORE STORAGE AS DEST

ISN 0083 IF IREG.EQ.89) GO TO I0
DOES XREG HAVE AN XBUREG

ISN 0085 IFiXSUPSiREG).NE.I) GO TO 9
CAN THIS OP DO BACK-UP TO FRONT MOVE.

ISN 0087
I.E.,IS THIS A TO X MOVE OR A COMPARE OP.

IF{REPL.EQ°O) GO TO 9

ISN 0089
IS XBUREG FULL

IF(XBUFUL(REGI.NE.I) GO TO 99
ISN 0091
ISN 0092

XBUFULIREG}=O
A6USY(REG)=O

ISH 0093
ISN 0094

GC TO i0
99 XPASS(REG)=XBUFF(INS~I)

ISN 0095
ISh 0096

9 XBUSY(REG)=XBUFF(INS,I)
10 CUi’~[INUE

ISN 0091
REMOVE INS FROM BUFF

XINPT=XINPT-I
ISN o093
ISN 0099

M=NXBUF-1
IF(INS.EIJ.NXBUF) GO TO 31

ISN OlOI
IS~ 0102

0[] 30 I=INS,M
x60(I)=XGO(I+I)

ISN 0103
ISN {}104
ISN 0IO5

XFULL(I}=XFULL(I+I)
Ou 25 J=ly25

25 XBUFF{I,J)=XBUFF(I+I,J)
ISN 010{}
ISN 0101

DO 26 J=I,NX~EGS
XSOR(I,J)=XSUR(I+I,J) ½

ISrl 0108 25 XDEST(I,JI=XDEST(I+ItJ)
ISN 0109
ISN 0110

0[, 27 FAC=I,NXFAC
27 ×EACLI,FACI=XFAC(I+I,FAC)

iSH Otll
ISN 0112

DO 28 BUS=I,NXBUS
28 XOoUS(I,BuS)=XOBUS(I+I,BUS)
30 CONTINUE
31 CGNTINUE

ISN 0115
ISN 0116

XGC(NXBUF)=O
RFULL(NXBUF)=O

ISN
I Sty;

ISN

0117
OiL8
Oil9

OU I25 J=1,25
125 XBUEE(NXBUF~J)=O

DO 126 J=I,NXREGS /12 IS~ 0120 XSORINXBUF,J)=O
11
1o

I 7

--- ii

Archtve_sj

7
6

O 4
3
2

ISN 012£
ISN 0122

126 XDEST(NXBUFt J)=O
00 127 FAC:ItNXFAC

ISN 0123 127 XFAC(NXBUF,FAC)=O
ISN 0124 DO 128 BUS=I,NXBUS
ISN 0125 128 XOBUS(NXBUF~BUS)=O
ISN 0126 GO TO 5
ISN 0127 i00 CONTINUE
ISN 0[28 RETURN
ISN 0129 END

11

9

8

6

5

3

2

PAGF oo4

LEVEL 5 DEC 66 DATE YS/360 FORTRAN H DATE 67.177/10.06.47
£

COMPILER OPTIONS - NAME= MAIN,OPT=O2,LINECNT:50, SOURCE,EBCDIC,NOLIST,OECK,LOAD,MAP,NOEDIT,NOID

ISN 000Z SUBROUTINL XXRET
....... LSN_DOQ3_~ MI~£LLC]I_L~I_EGLE~21A~Z]~___

ISN 0004 COMMON TIME~ IPARI~ IPAR2t IPAR3y
A AINPTI__ NA~JF_L__ ~S.(.~QL__~I~IJ~ ~i

6 X6US(50), I~AODv IFOSI~ IFRTN, BRXPT
C dRAP. ~R(6). BF(8). FT(~). N~RIIF.
D AHOLDT, XHOLDTt AFRCT~ XFRCT~ 6C}SCt

~N~CLPL]LP, AEP. PHIIIOO), PRINT.
F ESTADD, NOOOT, NOPSCt NDBUS, NADSPv

C(}MMJN/RL31 EIRST~ NAREGS~ NXREGS, NA~US, "- ~;ISN 0005

XECaP, MXQ, AFULL|IZ) ~ XFULLIIZ), AGOI}2),
..... ~__ XGO| [A.), _.N&G.O,_~, ~AIESI,,_ ~T_EST~ ; ’.G~

D NAFAC~ NXFAC, AbUSYZ, AbUSYIZO0) , X6USYZ,
.................................. L_x~usYL~70o }_LABktF E CL2,~.I £}~}, XdUFF (12j 100 } ¯ ASOR ([~_~_2_[~QJ_,

F XSORIX/,2UO),ADEST(LZ~ZOO)~XDEST(12,200) ~ AEAC{12~15)
.............................. ~tz AC (12, l 5 } , ~AjF~.S_I.,=Sj~_Lzi_, 15.20) . AR F T. XF- Af;.qC (4 ~ I 5 ~, 2(}) : XRF-_I~

H ~OSSC(4, IU,20),AI~SY(LO)~XbUSSC(6,IO,2OI,XIBbSY{ IO),XFI~US(I5),
......... i ~OODSI]~L~Lu~_~X~_bSJLIZ~LO~_,AESLL)T(15._2_0_LtXESL0~I_L%,2’JI.AE_I~3dS(l_5) ~

J AF.JLY([5) ~ XbOLY(15)~ AFUUUSIIS)~ XFOGUS(15}, NSLI;T~

L ~(t~]O), SCbA(32,2} ~ N~SUF ,, NQTES[, NOGC,
M (#INPT~ JC~N~ ~FMP. MBUSY. MFRI- F,
N LOAD, ME,’aOLY ~ MEMOi’~Y (16 I ~ N6OX~ EAV~

F" S~(~) , 5T(~) , SKXP~ SKAP~ NS6UE,

>:~,4CNT(t6), AbOXiIS), AbXBSYi lO}, XaUXI[5), X~XbSY(LO)
.......... I .~ U~_~_ ~:~_~__~I

ISN 0007 /,~.TdGER CUT [

ISN 0009 KLAL II’~E
C ~ (}~~~b~_~A_.~_~ r:: ~-.:.

- - ~-~!C:/~~-- -C ~tF~F()RMS ANY EXEC ACTIVIIY ASSOC WIrli RETURN
...............................

OOlo Ot IO BiJS=I,NX~US
~

_ L (., l _C\N L, ,,.t5. L/_S_ f" ’~ S ~S
iSN 0Oil Ir ((dUS.ECJ.bI.O.~.I~US.EO.GI i GL) r(It)
ISN 001~ OC.5.[=XbOSS_L._(IL~StI) ..

- - - C IF L)LSI Nt TABU GO HM, iDLL NLIkMALLY
............ L’~L .J)_gJ..~. L¢_ ~Lw_]L~ I~ ,_I~L__G C__ T 0 ’~

C ~;Ebl IS ~bu. SLE IF CIDRkESP AREG IS 6USY
........................ C iF ~_~LLj~LI~_~N_OE-ST~O_ IT. EESE SET ABU BUSY

ISN 00/6]F(APASS(OESII.I,~L.O) GO TO 8
[SN 0018 AoUFUL|DESI)=£
ISN 0019 Go TO 10

~]~_N 0020 ~ AbUSY(D~ST)=O
~; ISN 0021 APASS(DLST)=O
~o

9

__ -3 !3
) ’ I L. Conway i

I J

:<=.

I " -’:’C"

4

3

2

PAGE 002

0

0

0

©

@

0

0

C CHECK FOR MCVE OF EHT POSITION
_ _I£SILQDZzl ~{I~EII,h~LF__._LI._UILICIXFP.NF. I)) GD TO 200

C MOVE BRXP
..... ISR__Of126_ ~t~RXP -2B~XP_~I

ISN 002-/ IF{~3RXP.GT.NB,.}UF} BRXP=I
. ISI~ {.} 0_29 2CLCt_C L~NJ2 IJ:~ tIE_

ISN 0030 IF({OLRA.NE.I).(2R. IOAEP.NE, I}) GU TO 201
. _ {~ _ b~UXF i.~ R A P

ISN 0032 BEitsRAP)=O
._ I_ ~d~i_ 0_0_3_3~ 2. ~I.zaR.&P_I =AI

ISN U034 ~I (BrAP)=O

ISN 0035 IFIbRAP.GT.N~,bUF} ~AP=I
. _ I SN__OO38 2.0J._ t.{jN_.LIC~.UE

C
.................... L_ L b.E£~_k.t28, ~k_LIIRIk_ME~___

ISN 0039 ir((O~NUP.E,,}.L).Ai~O. (L]XEP.EQ.[)) 8NI]P=O

.......... = a~:.-:

.............. j

C H

C HAIN BN¢I¢Cm ~XECUIICh~ ROUTINE
ISN OOgt Ii-(CXBi)S~rtF~I] 6u_]!~250 ...
IS~ 0043 It {BoSSUfi. C~J.i} GO T{3 24,0

....... 1~_~_0~_ l£(£esjzt}_.~L,_kt~_~ Tt~ 250
ISN 004-/ IF{t}BOSC.EQ.I) GO TO 290

0 Ls~_ooz,9 . i~ ~t L}~K2X_P_} ~ 1. ..
ISN 0050 ET (08P, XP }=0

__ . ISN 0051 GL. TO 2_90 ...
U ISN 005g 230 CCNIINUt2

, - 1} -. _ 12~ _0£B}3. LLL_I JDI~. _L~_I.
ISb! 00~/� hl (Oo~XP)=O

{~ ISR _0D.55 gG_ [0_ 2~0 ...
ISN 0050 2~,(} Cu,’~I INUE
ISN 005i’ El-’ (U~RXP)= 1
ISN 0058 eI(OBrXP}:l

. _ _I_M~. U115~1 3D,[.LP_=L .__ [~T.-’~--
ISN 0060 GI lb g’]0
IS~ 0001 2bU Ci~NI I~’~U~ I
ISba 0062 1, (t;,3CX .t’~ .I}(.;U TP 290
I251~.0004 I{- {jX~.P .i~,k~ti.GU T[~ P.90 ...
IS~ 0065 Ii-(;J~)}SC.t:{~.lJGI.: TO 290

ISI~ 0069 d,L {UDRXP)=0
. ISN 0070 29(} CUi’~[IN.U~ ...

{,

............ C _SH!_~ I-HIz_~SHIET C~LLS
ISN 0071 00 99 l=I,lO

!_i ...
1i

3

?

PAGE
.... Ij.S_~OZ2 xBXSSY { I)=0

ISN 0013 99 XIBSSYil):O
..... LS3~I ~)_7~ ~J.£L[J~_I = N S L 0 T - 1

ISN 0015 DD I01 J=ItlO
...... LSN__O_07_6__ _ __~)0 SLOT=I~LOTMI

ISN 0077 XBUSSC(I,J,SLOI):XBUSSCII,J,SLOT+})
I SN 0078 Xb US SC (2j~LL~_LOTJ =_X BUS S£.IL2~ JdL~_L OT +_!I
ISN 0079 XbUSSC (3, J, SLOT) =XBUSSC { 3, J,SLOT+ I)
ISN 0080 lOU CuNrINUE
ISN 0081 XbUSSC{ I,J,NSLUT |=0

..... i NS~O08~ XdU~ SC { 2, J T NSLOT | =U
ISN 0083 X~USSC(3,J,NSLOT)=O
ISN 0084 I01 ~LNTINU~ ..
ISN 0085 Dri 103 J=I,NXFAC

........... I S N 0_0_8_6_ 0~_ _Lt)I_~_LO__T = LLS_L LiT M l
ISN 0087 XFACSC { I t J, ~LOT) =XFACSC (I t J, SLCT+ I.)

__ J 5 N_.O_ OO 8 X_~ a,. SC (?~J, S L UTJ -~3C~_A~$C_(gJ_JJ_$LO_.I_+_LI
ISN 00~9 102 CONIINUE
ISN 0090 XFACSC(I JtJ~NSLOT)=O

..... i-s~- o-O ~-iX~ A(~-C(2 ,J, nSLOT):o
.......... l_~ N _ ~9.2~ LO 3~LLN [].~ U~.

I SN 0093 ,°.E [URN
C_ -L i~;g]-~,Y T.u 5_EX l’Rlb6_t:R_ S LLS~::O I/LL~RA_J’,LCU_~:K.ECLITAI~_.N~=~--___-

fS~0094 L:~’~rKY BdS<X

003
£

................ L _ __ P Ri:S~_~’y_~_.5_~, I VALUE_S__OF_V~P, I OOS P,O.~,_u_NrgOL TR IG~E_.R_S

LSN 0095 [}LKX=~R(SRXP} i::
_ ISN OJ_~L~____ uI~i,~A=I;K(O,~aP)

[SN O0’~Z O[3E,’K=BE (BRXP }
...... I SN_ o0~ 8 O al~’&-i:Lr._(hR_A~R }

ISN 009q UbTX=E/(B~<XP)
..... ISN uluo I~IA=ET{ oRAP)

--i5 n otol- " t Z’, xP: b;(/7 ..
.......... I~N~ l ~2 K~ ~y_~_a.gI~

ISr~ 01.03 ~Xt~P=XEP
...... ~LS_N 01.04 (-"&E P = ~ [- P

©

0

0

0

ISN 0105 { Ic, N,J P= ~,,’IUP
C l:S TA~L ISH AND SAVE TRUb ~OSC C()NDITION

ISN O103 Lt;0:~C=0
IS,’,L UlO9 D~; 500 _I-I,NX~Uk
ISN Ot£O Lt:((XL~UF~-(I,I_2J.Et~.I).AND.(X.Gd(L).E~,~.O}) CdL~S=L

ISN ul. 12 . Ii--(X.’,3Df-Flltl4},_iNL_--l)_O0 T_O__39.P_ ... :
ISN 0114 it (L. ouS.EQol) Cbl)SC=l r

.......... 1S _N_.. O_LL_~ C_L~I_ I = l
ISN 0117 GO lf} 301

...... !.~N Olld 300 C~_N.[INUE

..... I~N 0120
ISN Oil9 301 CUNIiNUE

UBOSC=O
IF|(CEXIT.EQ.OI.AND.I(BOSC.EQ.I}.OR.ICBOS.EQ.I}}) OBOSC=I

II

I 0

~| ~Fc%TTg~_j
-)-

2

I SN 0002
I SN 0003 ""

SUBROUTINE TSTEPIIEVENT)
IMPLICIT INTEGERm2(A-Z)

A CTIME(200), NEVENT(200)~ KOLi(200), KOL2(2001~
ISN 0007 REAL CTIME i
ISN 0008 INIEGER*2 IEVENT

KDL3(200)

ISN 0009 iD=ITL
ISN OClO ITL=LINK{IO)
ISN 0011 LINK(ID)=ISL

ISN 0015 IPAR2=KOL2(10)
[SN 0016 IPAR3=KOL3(IU)

i} ISN O011 IEVENT=NI-VENT(IO)
tSN 0018 RETURN:~ o ;
t~SN 0019 E~O

.... : c’;

’i!ii !i~i!i¸!IIIII iiii!i! i!~ii~i !iii~ ! ~!ii!~iiiii~iii!!i~?

D

Q~

~, iii~i~ !i!i iiiiiiii~ii~i~(~ili/~ii!~ i ii~iiiiii i~i i~!!!i!!~iii~i,~i~,~i~iiii!i~ill ~!!~!!i!i,i~i!;ili!~ i,~!’ ~ii iiiiii~! ~!i~i i,i, ii~ ~i~ii ,:!; ,ii!ii~ili~,~ii~,i~i¸~) ~ !!i i:~,i~,i¸ i il ~’iii iiiiii~, ~,i iiii~i!~ii~ il/~,~iii!i’ ii hi~!~ ii~! ~!~i !il i~ ii i~i~iiiiiii~i¸ ~:~/!~ji~il !i~ii~!!!!iiiiii !i:ii!~ii~ii~!~i:~’~ i ii!ii ii~ii! i!~ii~!iill i i i~

©

|SN 0002
ISNO003
ISN 0006

ISN 0005

SUBROUTINE TKOUBL(START,LSTOPeCODE)
IMPLICIT INTEGER*2(A-Z)
COMMON TIME~ IPARI, IPAR2~ IPAR3~

A AINPI, NABUF~ ABUS(50I, XINPT~ NXBUF,
B XBUS(50), IFADO, IFDST, IFRTN, BRXP,
C BRAP, ERiB), BEiB), ET(8), NBBUF,
0 AHOLDT, XHOLDT, AFRCT~ XFRCT, BOSC,
E BNOP, XEP, AEP, PHI(tO0), PRINT,
F FSIADD, NODOT, NOPSC, NOBUS, NAOSP,
G NXDSP

COMMONIRLS/ FIRST, NAREGS, NXREGS, NABUS,
A NXBUS, STAIS, ACON, XCON, AEMP,
B XEMP, MXO, AFULL(X2), XFULL(I2), AGO(12),
C XGO(12), NAGO, NXGO, NATEST, NXTEST~
O NAFAC, NXFAC, ABUSYZ, ABUSY(200), XBUSYZ,
E XBUSY[200), ABUFFIXZ,IOOI,XBUFFiI2~IOOI,AS~(12,200I,
F XSUR(12,2OO),ADEST(12,2OO),XDEST(12~200), AFAC(12,15),
G XFAC(12,15}, AFACSC(4,15,20)~ARET, XFACSC(~,IS,2OI,XRET,
H ABUSSC(~,IO,20|,AIBBSY(IO),XBUSSC(4,IO,20),XIBBSY(IO),XFIBUS(15),
I AOBUS(12,10),XOBUS(I2,10),AFSLOT(15,2OI,XFSLOT(IS,20),AFIBUS(I5),
J AFOLYiI5), XFOLY(15),
K ABUPSZ, ABUPS(200),
L O(Lb, iO), SDBA(32,2),
M QINPT, QCUN,
N LOAD, MEMOLY,
0 MXTIME, OUTLVL,
P SRIB), STIB},
O APASS|200), XPASS(200|,
R MEMCNIilb), ABUX(15),

ISN 0006 COHMON/RLS/ LAST
ISN 0007 INIEGER OUT
ISN 0008 REAL MEMOLY,MXTIME
ISN 0009 REAL TIME
ISN 0010 INTEGER*2 START,LSTOP~CODE
ISN O01I INTEGER L
ISN 001A DIMENSION SAV(2}
ISN 0013 E~UIVALE~CE(SAV(1),FIRS1)
ISN 0014 LCOOE=CODE
ISN 0015 END=LSIOP
ISN 0016 WRITE[~,IOO)TIME
ISN 001/ WRIIE(6,101} LCOOE
ISN 0018 CALL TMTU(OUT(I))
ISN 0019 WRIIE|6,3333) OUT(I|,OUI(2}
ISN 0020 IF(END.EQ.I) RETURN
ISN 0022 END=END-7
ISN 0023 DO 529 K=START,END,8
ISN 0024 K9=K+7
ISN 0025 DO 528 M=K,K9
ISN 002b IFISAV(M).NE.O) GO IO 527

i ii i

I ’, Conwav

AFOBUSiIS), XFOBUS(15), NSLOT,
XBUPSi200), ABUFUL(200|, XBUFUL(200),
NQBUF, NQTEST, NQGO,
QEMP, MBUSY, MFREE,
MEMORY(Z6), NBOX, EAV,
10{4,16), RTN~ LONGBR,
SKIP, SKAP, NSBUF,
OUT{2), JOBIb), SSTOP,
ABXBSY(IO), XBOX(151, XBXBSYIIO) .

~k

/G

1

["

ISN 0028
ISN 0029
ISN 0030
ISN 0031
ISN 0032
ISN 0033
ISN 0034
ISN 0035
ISN 0036
ISN 0037
ISN 0038
ISN 0039

528 CONTINUE
GO TO 529

527 CONTINUE
L=K
WRIIE(6~550}L~iSAV(J)sJ=KtK9I

529 CONIINUE
RETURN

100 FORMATITH TIME =wF8.2)
IO£ FGRMAI(7H CODE =,18)
550 FORMATKIX 16, Bl2X [8s 4X I)

3333 FORMAIIIgH TIME/DATE OF RUN =~2IIXZ8)|
END

PAGE OOZ

. . +. -

t
i

IL. co wo,,,I

.... ""’~T

I

¯ _, . ,4 ¯

ISN 0002 SUBROUTINE CAUSEIIEV~T~IPI~IPZ~IP3}
ISN 0003 IMPLICIT INTEGER#2(A-Z}

I SN ~006
C
C

~.. .,i~.

~SN 000i~<~ ~, C

:}SN 0008
C

I SN 0009
I SN O010
ISN ¯O0t~
ISN¯ O0 [3
tSN 00L4~
ISN 0015

C
I SN 0016
ISN 0018
|SN 0019
ISN 0020
ISN 0021
ISN 0022
ISN 0023
I SN 002~+

INTEGER~2 IEV,IPI, IP2~ IP3
CAUSE ENTERS EVENTS ONTO CALENDAR
ITL IS LOCATION OF FIRST EVENT IN CALENDAR

AVA IlL¯ R~ ~" IN" GALEND~R.~. ,~’~

LOOP ONTIL GIVEN TIME IS LESS THAN NEXT ENTRY IN CALENDAR
10 LAST=NEXI

NEXT=L INK(NEXT)
20:- I~(T.GT,~,~}NE~NEXT} }GO TO I0

ID=I SL~’~
I,SL=L INK i’IS{)
LINK(I U) =NEXT

SEE IF THIS EVENT WILL BE THE FIRST IN THE LIST
IF(NEXT.EQ.ITL) GO TO 40
LINK(lLASI }= I 0

30~ CTIME{ ID)~I
NE V E NT I’ID;i~ I EV
KOLI(ID}=IP]
KOL2{ ID}=IP2
KOLB(ID)=IP3
RETURN

ISN 0025 ,~.0 ITL=ID ~
tSN 0026 GO TO 30
ISN 0027 END

I

C S- i i~, P M ’- S I ~,4 U L A T~’P-R-O-G l{ A M

~ INPUT PROGRAM FOR THIS RUN = NM-MS

TII.;E/DATE OF RUN ,, = 5A63CE76 006727IF

--3"4-A--r--H-I.-Q-,’ .E’--P-A-~~---F--OR TH I S--PT-OT~

i

)MAX A FJPS ISS/CYCLE = OMAX X OPS ISS/CYCLE = MAX O OPS ISSICYCLE = 2

~MINI:~,U~ Q-HEM DELAY = 5.0

~)_NUM~ER OF BO~.~.S = B ~ -/: ."

~._~_ BER BRANCH REGS = 3 @NUY.,F.~ER OF SKIP REGS = 4- (~SIZE OF O0 TABLE = 6

NUF;.,3EP, OF PSC REGS = -18--.

U’,L.3ER DISP BUSES = I

~MAX ~ O~S OSPICYCLE

=~__ (~)MAX X OPS DSP/CYCLE =’X~Z._

/

-A-~xcn:m-~_~ - - -~-~--~.~
1

DELAY TIME = 3
--INBOS = ~
.BOX = I
-~OT~O~ = 2---

F M -F--D ’ I A I~--I-O--------C---

----’~z:"k-~---£-:-2 .:-o---~:--
3=- -I..... I--~2 2-~-1---

7.- -3---------2 Z-i.-~ " C~

T-E---S----~-

£----1-:- ---I

2- ---3 1

l----3--~Z

X FACILITIES - - EAI EA2
-,~EP -’I" IME = I----I-----
DELAY TI" :’~E = I I

- B" = I-----2
f-~ 3US . = -5 6

L S M D XA C SP
I---I’--:-=--2 -8-------T~T---r
I i ~ 8 I I I
~ ------~-~-z~--- ~-3--i~---s---~--s--- ~,___~

3 2 2 7]:0 8

i k. ConwayI
°

IBM CONFIDENTIAL ’ 2-5

Fiqure 2-3. The Parameter Card Format

PARAMETER MIN TYP MAX COLS

(~- ;I (~BNAME

(~ NABUF

(~ NATEST

(~ NAG~

~) NXBUF

(~ NXTEST

(~) NXG~

(~) NQBUF

NQTEST

(~) NQG@

~) NB(~X

(~ NBBUF

(~) NSBUF

(~) N@D@T

~) N~PSC

NDBUS

~’ NADSP

~ NXDSP

~) MX-TIME

MEMDLY

@UTLVL

FSTADD

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

2.0

0

0

8

8

3

3

3

3

8

8

2

8

3

4

6

8

2

4

3

300. 0

5.0

1

0

12

NABUF

3

12

NXBUF

3

16

16

NB~X

16

8

8

16

8

2

NABUF

NXBUF

3

1-6

9-10

11-12

13-14

15-16

17-18

19-20

.21-22

23-24

25-26

27-28

29-30

31-32

33-34

35-36

37-38

39-40

41-42

60- 66 (FT. 1)

68-71 (F4. 1)

73-74

76-80

" , . : *."~ °-

.

°

- ACS-I ;~PM--_S I MULATI ON

f-

INPUT PROGRAM FOR THIS KUN = MM-MS

TIV, E/DATE OF RUN = 5A63CE76 6067271F

--!~-A-CH I NE P-A-~E T �~--S’--F~J-~,.--TH--FS RUN

!

NUMBER OF A BUFFERS = ~L. NU.MBER OF X BUFFERS =X2..

NUMBER A OPS TESTED = ~, b NUi4-°,ER X GPS TESTED =~]~7.

I

NUM3ER OF Q BUFFERS = 8

NUMBER Q OPS TESTED = 8

MAX A.OPS ISS/CYCLE =~.’_~ MAX X OPS ISS/CYCLE MAX Q OPS ISS/CYCLE = 2

~"Hi’ Q-MEM DELAY.= 5.0MINI,,,_, ",

NUMBER OF BOttS = 8 .-:]L "

N"v.,BER BRANCH REGS = 3 NU~,r)ER OF SKIP REGS = 4 SIZE OF DO TABLE = 6

NUMBER OF PS’C~’=r,,_GS =-8-L-

NU~BER DISP BUSES

MAX A OPS DSP/CYCLE =% MAX X OPS DSP/CYCLE =N

imm IIII

-~E~--T-~m =. -~
% ~----~ ---~-~---~------~ ~-O~-~--OELAY T|,~E : 3 .~ ’~ "~’b 2 5 15].

-I-NBt)S- = 2~ 3 I L ’2 2 I----

L S

I---I---~--I

2 3-----I

I 3 ---7

X FACILITIES - - EAI
.~-E’-P--T I" ~E = I --
OEL~Y TI~.!E = I
BOX- = I
O US ¯ = -5

I I

EA2 L S M D XA C SP
I I--F--’--2--- 8 I--I- I
I I I 4 8 I I I
z--- 3------~B=--~-~---~--s- ~--~---~--s--<~,~
6 l 3 2 2 7 t0 8

_~’Z%

.......... I Pll
o ¯

LEVEL 14 (I JUN 67) OS/3GO FORT~AN’~ DATE 68.089/09. I8°20 £

;0
COMPILER OPTIONS - NAME= MAIN,OPT=OO,LINECNT=Sb,SOURCE,EBCOIC,NOLIST,DECK,LOAD,MAP,NOEDITtIDeNOXREF

ISN 0002 SUBROUTINE INIT 9

ISN 0003 IMPLICIT INTEGER*2IA-ZI z i
ISN 0004 DIMENSION COM(300)
ISN 0005 DIMENSION SAV(20000) 6

) ISN 00~ COMMON TIME, IPARI, IPAR2. IPAR3,
A AINPT, NABUF, A6US(50), XINPT, NXBUF, tL

B XBUS(50}, IFAOD, IFDST, IFRTN. BRXP, ~

C 6RAP, ER(8}, BE{8}, ET(8}, NBBUF, ~:)

E BNOP, XEP~ AEP~ PHII[O0)~ PRINT~ I I(
~) F-FSTAOD,- "-Nb6Ot, NoPSC, ~6OS; NAOS#; Z]~ ¯ ¯ .:i-~f=’T.-’)¯ o Nx sP EXh 4PLE o r- Int
= isN-00oi ~Md~/~L~/-- F[RST.- - NAREGs. N~GS~--N~ | ..
] A NXBUS, STATS~ ACON~ XCON~ AEMP~ |~.)

B-XEMP. MX0, AFULL(IZ)’ XFULL(12). " AGO(12)~ ~ =- A -~- " ~ . ~--~[
c xoo~2~, NAOO, . NXO0, NATEST, NXTEST, I~IG ~IFIC~T(01@} I-ur

) D NAFAC. - NXFAC~ ABUSYZ; ABOSV(200)~ XBUSYZ,
w --~

F XSORII2~200),ADESTIIZ~200)~XDESTI[2,200}~ AFACIIZ,ISI~ Immm~A =m,m~.~

) o X,A SC,..I .20,.XRET, t 0
H ABUSSC(k,lO,20),AIBBSYIIOI,XBUSSCIk, tO,ZOI.XIBBSYItOI,XFIBUS{15),
i AOBUSII2,lOI,XOBUSII2,10),AFSLOTI15,20),XFSLOTItS,20},AFIBUS(15),

L Q(16,16}, $08A{32,2), NQBUF, NQTEST. NQGO,
) M QINPT, QCON, QEMP, MBUSY, MFREE, 0~

N LOAD. - MEMOLY, MEMORY(16), NBOX~ EAV, "
O MXTIME, OUTLVL, IQ(~,IT), RTN. LONGBR, --

) P SR(S), ST(8I. SKXP, SKAP, NSBUF, 31~ O!
Q APASS(2CO), XPASS(200), OUT(2), JOBIbI~ SSTOP,

MEMCNT(~6),- ABox(15I’ ABXBSY(IO}’ XBOX{-[5)~ X6XBSYI[O) /
) ISN 0008 COMMON/RLS/ LAST ~ (~

ISN 0009 INTEGER OUT / l
ISN 0010 REAL ME~DLY,MXTIME / I

) ISN 0011 REAL TI~E ~ | C;)

ISN 0012 COMMON ICALNORI ISL, ITL, LINK(200), ~ |
....... A CTIME(200)’ NEVENT(200), KOLIIZO0|, KOL212OO), KOL3(200I /

ISN 0013 REAL CTIME ~ ’
ISN oo1~ REAL X J/~

. ISN 0015 INTEGER I .~’/ /
ISN 0016 COMMON/TAGSIO(256,lOi / I/ ’

) c
c
C ZERO ALL COMMON

!~ ISN 0020 520 CUMII}=O

):? ISN 0022 _ 525 SAV(1)=O i

.~ ISN 0023 526 CONTINUE
C> C o37,.1 c........ ~ IN I r IALIZE THE CALEEN_DAR ..

I L. Conway i ©
_,,.~..~

- : (~

PAGE 002
;0

ISN 0024 DO 92 ITL=2,199
ISN 0025 92 LINKIITL)=ITL+I 9

ISN 0026 ISL=2 L~

ISN 0027 ITL=I 8
6

ISN 0028 X=I.OE30
%.~(~ISN 0029 TIME=O.O

C EL

C ~
0C INITIALIZE THE EVENT NUMBERS

ISN 0030 STATS=I
ISN 003]. MXO=2

......... I SN 0032 A~CON=3 .. 0

I SN 0033 XCON=4
[SN 0034 AEMP=5

(~) ISN 093__5~ X__EMP=__6 ...
ISN 0036 ARET=?
ISN 0037 XRET=8

} ~SN 0038 EAV=9 0
ISN 0039 QCUN=IO
ISN 0040 QEMP=II

)_ ZSN 0041 M~USY=12 0
ISN 0042 MEREE=I3
ISN 0043 LOAD=I4

C

ISN 0045

c ~
C SET UP STARTING EVENTS ~

CALL CAUSE(STATS,TIME+O.O,O,O,O) zi

ISN 0046 CALL CAUSE(ACON,TIME+O.I,O,O~O)
---iSN-O04? CALL CAU%E(XCON,TIME÷O.I,O,O,O) ... O~

x-
ISN 0048 CALL CAUSE(QCON,TIME+O.I,O,O,O)
ISN 0049 CALL CAUSE| MXO ,TIME+0.6,0,O,O)

) c 0
C
C INITIALIZE THE MACHINE PARAMETERS

ISN 0051 BRAP=I
ISN 0052 SKXP=I
ISN 0053 S~AP=I
ISN 0054 NAREGS=90
ISN 0055 NXREGS=90

" IS-N 0056- AINPT=I
ISN 0057 Q[NPT=I

..............................ISN0058 xINPt~L
ISN 0059 0050 I=I,32
ISN 0060 A6UPS{I}=I
ISN 0061 50 XBUPS(II=O

~ ISN 0063 ABUPSIII=O

0

©

~ ISN 0064 51XBUPSII)=I
~o ISN 0065 NSLOT=I5

.................. C iNiTIAlIZE AFAC TABLES
8 ISN 0066 NABUS=6

~ - I~N-0067 NAFAC=iO ... 0

J Archives
0

0

PAGE 003

ISN 0068 DO I0 1:1,I0
ISN 0069 10 AFSLOT(I~3)=I
ISN 0070 DO 9 J=~t9 z ~
ISN 0071 9 AFSLOT{~,J)=I B
ISN 0072 AFSLOT(6~)=I a
ISN 0073 DO 8 J=~,I2 o¢~
ISN 007~ 8 AFSLOT(7,J)=L ~
ISN 0075 AFDLY(1)=3 [~
ISN 0076 AFOLY(2}=4 0
ISN 0077 AFDLY(3)=3
ISN 0078 AFDLY{~)=9
ISN 0079 AFDLY(5)=2 (~
ISN 0080 AFDLY(6)=5
ISN 0081
ISN 0082
ISN 008]
ISN 0084

AFDLY[7)=I5

AFDLY(9)=I
AFDLY(IO)=I

ISN 0085 AFIBUS(I)=2
ISN 0086 AFIBUS(2)=I
ISN 008T AFIBUS{3)=3

) _ ISN 0088 AFIBUS! 4 I=l O
ISN 0089 AFIBUS(5):I
ISN 0090 AFIBUS(6)=2

ISN 0092 AFIBUS(8I=I
ISN 0093 AFIBUS(9):2

) __ ISN O09L AFIBUS(IO}=3 .. ~"
I SN 0095 AFOBUS(1)=2
ISN 0096 AFOBUS(2)=I

) ISN~0Og7-- AFOBUS(3):4 O~

ISN 0098 AFOBUS(~|=3
ISN 0099 AFOBUS(SI=2

) ISN0100_ AFOBUS(6)=4 (~
ISN 0101 AFOBUSI71=~
ISN 0102 AFOBUS(BI:6

)- -I~NOLd3 - -AFOBUSl~}=Z "-
ISN 0104 AFOBUS(IO}=3
ISN 0105 ABOX(I)=I

) ISN 0106 A~OX(2}=2
ISN 01C7 ABOX(3)=3
ISN 0108 AaOX(4|=4
ISN 0109 A~OX(5}=2
ISN 0110 ABOX(6)=4
ISN OLLI ABOX(T)=4
ISN 0112 A~OX(B)=5

0

ISN 0113
ISN 011~

ABOX(9|=6 i" " ’

A~,OX (10 I =7
C INITIALIZE XFAC TABLES

ISN 0115 NXBUS=IO
~ [SN 0116 NXFAC=9

}~oLSN 0~T DO 11 ~=1,9 ©
ISN 0118 II XFSLOT(I,2)=I
ISN 0119 XFSLOT(5,3)=1

),~----~I~-~--OE2~--- O0].2 I=3,9 0
&-~-6

Archives
0

PAGE 006

,0
ISN 0121 12 XFSLOT[6,I)=I

ISN 0122 XFDLY(I)=I
ISN 0123 XFDLY(2|=I
ISN 0124 XFDLY(3}=I
ISN 0125 XFDLY(4}=I
ISN 0126 XFDLY(5)=4
ISN 0127 XFDLY(6)=8

i

8
6

o©
tt

ISN 0128 XFDLY(7}=I
ISN 0129 XFDLY(8)=I
ISN 0130 XFDLY{9)=I
ISN 0131 XFOBUS(I|=5
ISN 0132 XFOBUS(2)=6
ISN 0133 XFOBUS(3)=I
ISN 0134 XFOBUS(4)=3

~L

) ZSN 01~s XFO~US{~}=2 r
ISN 0136 XFOBUS(6)=2

t
ISN o13~ XFOBUS(~=~ ~$~o’1"(3,~_-’1

) ISN 0138 XFOBUS(8)=IO
~b~T ~plO~ |~SN 013~ XFO~US(~=8

~SN 0140 X~OX(t~=t ~-~(~----~q-~

ISN 0142 XSOX(3)=3
| I~ ~&~¢~) �

ISN 0143 X60X(4)=4

ISN 0145 XSOX(b)=5

ISN 0146 XBOX(7)=6
) ISN 0147 XBOX(8)=7

ISN 0148 XBOX(9)=8
ISN 0149 NAFAC=[I

ISN 015I AFDLYI/I)=I
ISN 015Z AFIBUS(lt)=I

) ISN 0153 AFOBUSIII}=7
ISN 015~ A~QX(lI)=8
ISN 0155 AFSLOT(II,3)=I

ISN 0157 D(39,2)=I
ISN 0158 D(3g,II)=I

) ISN U159 D(39,I3)=I
ISN 0160 D(39,17)=I
ISN 016[D[39,30)=0

.... ISN 0162- - 0~ 39,32)~I
ISN 0163 D(39,66)=1
ISN 0164 AFDLY(I)=4
ISN 0165 AFOLY{3):4

.........ISN 0166 ~FD[VF4|£i5
ISN 0167 AFSLOT(3~4)=I
I SN 0168 D-0-7-3=6~I 5

I; ISN 0169 AFSLOT(4,J)=I

.......... ~ &~(J~ =l.

.......... g S = (Ir

~ X ©

0

.................................. O

0

!

.................................. Q

0

...................

©

I SN 0170 AF~i-O-F[I;-,Jl;t- i
ISN 0171 7 CONTINUE 0 I

ISN 0172 ---NS~Z~)T&I-8 _ I

Date:

From (location

r U.~ address):

~ .-~ept.& BldG.:

Telephone Ext.:

November 29, 1967
Advanced Computing Systems
Menlo Park, California
988/031

Subject:

Reference:

To:

Cover Letter for preliminary Distribution of Logical Design Memorandum

Mr. S. F. Anderson Mr. R. J. Robelen
Mr. B. O. Beebe Dr. H. Schorr
Dr. C. V. Freiman Dr. E. H. Sussenguth
Mr. M. E. Homan Mr. W. P. Wissick
Mr. B. J.. Mooney

%

A memorandum describing basic ACS logical design conventions iS
enclosed.

On joining ACS engineering, I found that there was no single convenient
source of this information. Some of the information was not documented
in any available references.

4~

Since most of the designers Use different notations and conventions, it
proved to be a surprisingly time consuming and confusing process to
learn the precise details of this very simple basic material. Many of
the designers related to me that they had had similar initial experiences.

At that time I made some notes for my own personal use. I have since
formed these into a memorandum in the hope that it might prove useful
to other newcomers to ACS engineering. It might also be useful to
members of other ACS departments.

If you have any comments, criticisms, or discover any errors needing
correction, please contact me about them. I will then be able to get
the memorandum into shape so that it might be useful during the coming
expansion of Dept. 988.

¯ Z
L. Conway

LC:aw

November 29, 1967
Advanced Computing Systems
Menlo Park, California
988/031

Subject: ACS Logical Design Conventions: A Guide for the Novice

f

References:

To:

nC:.aw

le

2.

3.

4.

FILE

4

ACS Circuit Manual, February 23, 1967.

ACS Packaqinq Manual, July, 1967.
O

DRKS User’s Manual, R. T. Blosk, December 5,

McCluskey and Bartee, A Survey of Switchinq
Circuit Theory, McGraw-Hill, 1962.

g,

L. Conway

1966.

.... ,%
IL. Conway I

, . Archives

CONTENTS

"’>f..

Introduction

The ACS LoGical Circuits

LoGic Equation Conventions
¯ o

LoGic Circuit Diagram Conventions

Elementary LoGic Design

i-i

2-1

3-1

4-1

5-1

J

J

/%

./

Introduction:

This memorandum describes the various rules and conventions for ---
ACS logical design. The material presented is elementary Innature, but
is basic to all ACS logical design.

A description is given of the logical functions of the ACS circuits available
to the designer and of the various rules governIng the use of these circuits
in logical design. A number of different notations are in current use for
writing the logical equations for these circuits and for drawing the diagrams of
logical circuitry. Some of these different notations are illustrated and
explained. Elementary logical design--the transformation from equations
to circuits--is briefly described.

If we were designing in AND-OR logic with few restrictions, this memorandum
would be unnecessary. However, we are usually designing with NOR-NOR
or NOR-OR logic. The physical properties of the circuits force a number
of restrictions In addition to simple fan-in and fan-out rules. The fact
that designs’eventually input a Design Record Keeping System (DRKS)
has produced additional conventions and design notation.

These factors have led different designers to use different conventions
for writing logical equations and drawing logic circuit diagrams, and
to use different logical design techniques. It is true that at the time
designs are input into DRKS, they all will be described in the same
formal system. However, up to that time most designs will exist in
the form of equations and diagrams in the "shorthand" of the originating
designer. The newcomer may therefore become confused when attempting
to decipher the designs of different engineers until he fully understands
the fundamentals from which their different "shorthand" techniques
originated.

These fundamentals are presented in this memorandum in the hope that
they may assist the newcomer to ACS engineering in his first design
efforts and serve as a reference for those outside of engineering who may
wish to study some particular logical design in detail.

The newcomer should also study the listed references before undertaking
any serious design. This memorandum was formulated from these
references, but does not attempt to cover many important topics contained
in them. Of particular importance is the information on circuit delays
in the ACS Circuit Manual and information on wiring rules in both the

ACS Circuit Manual and the ACS Packaging Manual. The DRKS User’s
Manual specifies the final form in which designs are tO be placed.

J

The ACS Loqical Circuits: -2 - 1

This section describes the logical functions of the circuits and conn~-ctions
available to the ACS logical designer. Truth tables and equations are
given describing the logical functions.. The various conventions, restrictions,
and limitations of each circuit are listed.

The truth tables use 0 and 1 as symbols, and these are related to the
actual physical voltages in the circuits as follows: 1 symbolizes positive
(or ground), and 0 symbolizes negative voltages.

The Current Switch:

X ¯

Y

0
0
1
1

H

0
1
0
1

X Y

1 0
0 1
0~i
0 1

J

Note the significance of the positions in the circuit symbol of the outputs
X and Y. The top output X is the NOR of the inputs, and is often called
the "out of phase" output. The bottom output Y is the OR of the inputs and
is often called the "in phase" output. Note that Y = X.

Fan-in: Current switch inputs are outputs of emitter followers or emitter
follower dot circuits (see description of e.f. dot later in this section).
The maximum number of inputs for a given current switch is a function
of the maximum fan-in of those e.f. dot circuits forming the inputs. This
function is as follows:

%

12
I0
8
6
4
2

0

Max. Current Switch Fan-in

" 4Max. Input e.f. Dot Fan-
[. Conway !

Archives, .2

2-2

For example, if the e.f. dots feeding a current switch had no more ~an
two inputs each, then the current switch would have a maximum fan-in
of 12. However if one of the e.f. dots had a fan-in of five, then the
current switch would have a maximum fan-in of five.

f.

Fan-out: The outputs always pass through emitter followers. The fan-out
is thus determined by the fan-out of the emitter followers. The maximum
fan-out of the emitter follower (emitter follower dot) is 12. See emitter
follower dot description later in this section.

The Orthoqonal Collector Dot:

J

IA

C

X =A-B-C

Orthogor~lity Restriction:

No two inputs may be
0 (neqative)

A B

0 0
0 0
0 1
0 1 1
1 0 0
1 0 1
1 1 .0
1 1 1

(N. A. = not

C X

0 N.A.
1 N.A.
0 N.A.

0
N.A.
0
0
1

allowed)

IL. Co r,w,:,V
Archives .~

°.

2-3

The orthogonal collector dot is the connection of collector outputs of
current switches (the in phase outputs) before passing through an e]sd-itter
follower. This connection performs the AND function--with the important
restriction that no two of the inputs may be simultaneously negative. This
is called the orthogonality restriction. In the above three input case
the restriction requires that: A. B + A. C + B.C = I.

The ultimate physical restriction is somewhat weaker than the stated
logical orthogonality restriction. A maximum time of. 5 ns of non-
orthogonality is allowed, which covers variations in signal delays. See
Reference I, Page 2.

Fan-in: < 5

Fan-out: See fan-out for current switch. Same description applies here.

.)

The Emitter Follower Dot:

X = A+B

I
A

) X

A

0
0
1
1

B X

OIIO1 1
0 1
1 1

The emitter follower dot circuit is the "dotting" or connection of current
switch outputs A and B after their emitter followers. The function performed
is OR with no restrictions except fan-in and fan-out. Note that we might
have a line connected to an e.f. dot which came from an emitter follower
which followed a collector dot.

%

Fan-in: < 5

Fan-out: <12 (try for <8)

IL Conway
,Archives I

2-4

Note" The meaning of "dot" in orthogonal collector dot and emitter_follower
dot is that the inputs are actually wired or connected together. Thus the
O.C. Dot and E.F. Dot are no__.t circuit elements, but are connections of
wires which perform particular logical functions on the signals carried by
those wires due to their locations in the circuitry (see Reference i).

Therefore we cannot think of applying the same input to two separate dots.
For example, the following diagram is incorrect for it shows B as an input
to two separate E.F. Dots, treating these dots as independent circuit
elements and expecting that X = A + B and Y = B + C:

)

B

C

X

Y

J
Since the E.F. Dot is merely a connection of the inputs, the only possible
interpretation of the E.F. Dot of A, B, C is that they are all wired together
as follows:

A

B , I

C

Z = A+B+C

%%S

,Ar,-,b!ves J

.2

_Logic Equation Conventions 8-1

Most beginning logical designers will have had considerable experience in
design using AND, OR, and COMPLEMENT "gates" as circuit elements. It
is natural for the designer to write logical equations for such designs using
AND, OR, and COMPLEMENT logical operators. The primary content of
switching theory consists of operations on logical functions expressed using
these operators.

However in ACS the actuai logic circuit implementation of a design is usually
in NOR-NOR or NOR-OR logic.

It turns out that the usual OR-AND or AND-OR formulations of logic equations
can be easily transformed and converted directly to the corresponding
NOR-NOR or NOR-OR circuitry (see Section 5 for these techniques).

Therefore, for convenience most ACS designers express logical functions
using OR, AND, and COMPLEMENT logical operators. The usual
minimization techniques of switching theory may then be applied to these
formulations before transformation into the final NOR-NOR or NOR-OR
form (the circuit diagram itself).

The following different symbols for the logical operators are currently
in use by different ACS designers:

AND(A, B)" = A-B = AB = AAB

OR(A, B): = A+B = AvB

NOT(A): = A = A’ = -A

These variations in basic operator symbols from one designer to another
should cause the newcomer no con~-usion. ~:

There is one practice, stemming from the ultimate NOR-NOR or NOR-OR
implementation of logical functions, which will definitely cause the newcomer
confusion if it is not fully understood. It is a common practice in ACS to
use two different symbols for complement in the same logic equations. Thus
we may see both A and -A, or perhaps even -A in some equation. The
reason some deslgners use both forms derives from the inversion of variables
when using NOR-OR logic. One symbol is usually reserved for true logical
complements and the other symbol (usually -) is used to mark variables
or expressions which are complemented because they are at an intermediate
point in the logic (see Section 5).

j
3-2

It is easy for the newcomer to think that -A must mean something other
than A, perhaps having something to do with negative voltages. This
happens easily because some designers also mark uncomplemented variables
with + in some ~ases (using the symbol V for OR).

However, remember that -A is equivalent (logically) to A, and that +A
is equivalent (logically) to A. Some designers might argue otherwise,
but that is because they have attached some additional heuristic values
to these different symbols for complement in order to aid their design
efforts. Thus, any difference between -A and A is only a heuristic
difference, not a logical difference.

For example, the following equations all equate X with the same logical
function of A, B, C:

m

X = A-B.C

-X = A.B.C

+X = -(A. B. C)

After gaining some experience with NOR-NOR and NOR-OR circuit
implementations of logical functions, the newcomer may find that it
aids him in his design efforts to use ± symbols in addition to the usual
complement symbol.

It is not necessary.to use these extra symbols and the corresponding
heuristic techniques. They may assist those designers who prefer to
design in an informal manner. One may, alternatively, design in a
formal manner without ever using heuristics. However, all AC S designers
should know about the techniques used by other designers and the resulting

additional notation so that successful communication is possible between
different designers.

IL. Conway
Archives I

Loqic Circuit Diaqram Conventions 4-1

A number of different conventions are in current use for drawing logic
circuitry composed of ACS circuits. Different designers may use
different symbols for the basic circuits. Some designers indicate emitter
followers while others do not.

Two methodsare shown below which serve to illustrate some of the possible
variations in circuit diagram techniques. The two methods differ primarily
in the way in which the orthogonal collector dot is symbolized. When the

O. C.D. is symbolized by a labelled block, it is not necessary to indicate
emitter follower positions. However, if only a simple dot is used to
symbolize O. C. D., then it is necessary to show emitter follower positions
(symbol: 0) in order to avoid confusing O. C.D. with emitter follower dot.

J

Ex. (i)

Method I Method II

Ex. (ii)

]~ L, Conw~ i
. ~ Archives

4-2

Ex. (iii)
A1
A2
A3

B1

B2 - .

D1

D2

E1
¯ E2
E3

_FlA
>--X

B1 ~-~B ~ ’

IB2

D1

°2 , co_

X

3

A

B =

D =

]~, -- _

C =

X =

X =

~-1"-&2" A3

B1 " rB2

Di +D2

E1 + E2 + E3

D-E

A+B+C = A+B+D ¯ E

AI" -&2 " ’A3 + BI" B2+ (DI + D2) " (El + E2 + E3)

In the examples shown above, the basic symbols for the current switch are
all the same. Sometimes, however, designers will place a letter inside the
current switch symbol to indicate the logical function that it performs. This
practice may lead to considerable confusion for the newcomer for two reasons:
(i) different function names are often used for tl~e current switch by _the
same’designer, (ii) the output phase of the switch to which the name refers
is usually assumed to be obvious and is not explicitly indicated. Let us study
these conventions in some detail to avoid confusion.

3

IL. Conway
Archives

A
B ~ Y

For the current switch shown, the output Y equals the OR of the inputs A, B:

Y=A +B

Suppose we complement both sides of the equation to yield:

Y-A-B

We thus find that the complement of Y equals the AND of the complements of
A, B. Now, even though this equation expresses Y as the same function of
A, B, many designers call this the "MINUS AND" function. Thus one may
see different current switches in the same circuit diagram labelled in both of
the following ways:

These circuit symbols both stand for current switches and both perform
exactly the same logical function on their inputs. Some designers choose
to view them differently depending on whether or not complemented variables
appear as inputs. This is another heuristic aid to the designer. Clearly it
is not necessary to view the circuit element in these two different ways. It is
just that some designers find that this technique assists them in their design
efforts. Note that the output phase in the above examples to which the function
name applies is found to be the "in"phase. This is not explicitly indicated,
but is "obvious" because of the known function of the switch. This sort of
duplicate naming can be carried further if desired. For example:

B

,% Here we have named the function as "MINUS AND INVERT." The meaning is
that the output X is the complement of the MINUS AND function. ~ o

I-L, Conway

Archl,ves t

4-4

This duplicate naming of functions may sometimes be applied to the Other
circuit connections. The emitter follower dot performs an OR function and so
may also be thought of as performing the "MINUS AND. " The orthogonal
collector dot performs the AND function and so may be thought of as performing
a "MINUS OR" function.

It is important to note that "MINUS AND" and "MINUS OR" are not equivalent
to the logical functions NAND and NOR. It is unfortunate that the use of
MINUS (-) here conflicts with our previous definition of (-) as equivalent
to complement. One might therefore be led to believe that MINUS AND (-A)
is equivalent to ~ (and thus equivalent to NAND), which it is not.

"MINUS AND" and "MINUS OR" may best be viewed by the beginner as
merely other names for OR and AND, used by some designers for their
heuristic value when circuit input variables are in complemented form.

There is another circuit diagram symbol which the newcomer will occasionally
see and which is bound to confuse him. This is the "wedge" symbol appended
to certain circuit block inputs/outputs. Wedges might be found on a current
switch symbol as follows:

J

These wedges have n._q functional meaning to the logical designer. They do not
change the identity or functi’on of the circuit element. The wedges are normally
produced by the DRKS system and automatically affixed to the circuit blocks
appearing on the DRKS sheets. The wedges appear to be used primarily by
CE’s who service the hardware. Wedges appear mainly on the MACRO circuit
blocks defined and used in DRKS. To quote Reference 3, Section 2.2.8.5:

"Wedges will be printed in the edge of box print position for all input or output
lines that are in the "down" signal condition when the logic block function
is being performed. The designer need not draw these wedges on his diagram.
They will be automatically inserted by DRKS, according to the block definition
in the macro file, when the sheet is printed. "

In other words; given a circuit block performing some logical functio~ as
stated by a logical equation, DRKS affixes wedges to those input and output
lines which must be down (0; negative) when both sides Of the equation
are TRUE (i).

i-L’ Conway

I ,,Archives i

°.

/

4-5

Examples: note that although both examples use the same circuit, the
wedge placement is different. This is because wedge placement deperLds
on the statement of the function of the circuit. If we complement both
sides of the equation defining the circuit, then the wedge placement changes.

(i) Current Switch as an "OR"

A

B

X

Y

Y=A+B

When both sides of the equation are TRUE (i), then Y must equal i,
neither A nor B must equal 0, and since X = ~, then X must equal 0.

(it) Current Switch as a "MINUS AND":

J

A x _ __
Y=A.B

B y

When both sides of the equation are TRUE (I), then Y must equal
O, A must equal O, B must equal O, and since X = ~, then X must
equal i.

Now, even though the wedges have no functional meaning, some designers
may attach them to the circuit blocks in their circuit diagrams. This is
especially true when MACRO circuit blocks are used. A reason for this is
that the wedges can be used as ~a memory aid in locating particular inputs and
outputs on the MACRO blocks which have many input/output lines. But remember
that there is no additional information contained in the wedges. DRKS can
produce them automatically when given the function of the block.

Elementary Loqic Desiqn

5-1

Logic design in ACS, and in any case where implementation wiIl be made
in real circuitry, is essentially an iterative procedure consisting of making
a design, then testing that design against technological restrictions, then
redesigning and retesting until a valid design is found.

First the logical" functions to be implemented in the design are formulated
in a set of logical equations. Then the set of equations is operated upon
to minimize the logic according to some selected criteria such as number of
circuits and/or number of Circuit levels. Note that the minimization may
be performed on the equations (which use AND, OR, NOT operators) even
though the final implementation may be in NOR-NOR, or NOR-OR logic
(see Reference 4, page i01).

Next, the minimized equations are examined to determine if all circuit
restrictions are satisfied. These restrictions, such as fan-in and fan-out,
can be checked while the design is still in the form of logical equations.

If the restrictions are not satisfied, we must iterate by going back and
perhaps reformulating the equations and minimizing again, until equations
are found which satisfy the restrictions.

.)
At this point we can convert the equations directly into a logical circuit
implementation. Descriptions of procedures, both formal and heuristic,
for performing these conversions follow later in this section.

Now, if the design specification is beyond the preliminary stage and unlikely
to be changed, then the circuitry must be checked against all the many and
complex wiring and packaging rules. If the design cannot be wired or
packaged as is, then additions or changes may have to be made, or perhaps
another entire desig~ iteration may be required.

Implementing Logic Equations in ACS Circuitry:

With a little experience a designer can directly sketch out the logic circuitry
to implement some logical function. This is particularly easy to do if AND-

OR or OR-AND logic circuits are used. For these cases the designer can
place the equation for a function in "sum of products" or "product of sums"
form and transform directly to a circuit diagram.

¯

In the ACS technology, however, we have available only a restricted fOrm
of AND circuit (the orthogonal collector dot, inputs must be orthogonal).
Thus OR-AND logic is seldom used. Instead, we normally use NOR-NOR
or NOR-OR logic.

%H%
j L Conw

l

5-2

The beginner should therefore learn the transformations for quicklyand
automatically drawing the circuit diagrams for NOR-NOR and NOR-O~ logic
implementing a logical function. This n~ terial is covered in detail in
Reference 4, pages 94-102. A summary is presented here for reference:

Let us draw the logic circuitry to implement the function

f=(a +b) (b+d)(a +c) =ab +bc +ad

J

Ex. (i): NOR-NOR logic circuit implementation:
(2 circuit levels: current switch to current switch)

Step i: Express function in product of sums form:

f=(a +b)(b +d) (a +c)

Step 2: Let NOR (a, b) = (a + b). Transform the equation to
NOR-NOR form by simply replacing all OR, AND
operators with NOR operators, leaving the variables
in the original order and form:

f = NOR (NOR (a,b), NOR (b, d), NOR (a, c))

Step 3" Draw the logic circuit diagram directly from the
equation in Step 2.

a

b

C

’Clearly we may proceed directly from Step I to Step 3. The NOR-
NOR logic uses the sam____~e connections of circuits to implement a
function as does OR-AND logic. We merely replace all OR and AND
circuits with NOR circuits

~

l-i.. Conway

i Arch!TM I

EX. (ii):

5-3

NOR-OR logic circuit implementation:
(i circuit level: current switch to E. F. Dot)

Step I: Express function in sum of products form:

Step 2:

w

f=ab+bc +ad

Transform the equation to NOR-OR form by
complementing each variable and replacing the
AND operators with NOR operators:

f = NOR (a,b) + NOR (5, c) + NOR (a, d)

Step 3: Draw the logic circuit diagram directly from the
equation in Step 2:

~" ’
I----’---I C) f

L__Jb

l_

Here also we see that it is easy to proceed directly to Step 3
from Step i. The NOR-OR logic uses the same connections of
circuits tb implement a function as does AND-OR logic. We
merely replace the AND circuits with NOR circuits and use
the complementary inputs.

Heu/-istic Design Techniques:

The extensive use of the NOR-OR logic has caused the evolution of many
heuristic design practices, including the use of two different symbols for
complementation and the duplicate naming of the logical function performed
by the current switch. -

To clarify all the points developed in this memorandum concerning heuristic
design techniques, let us implement the same function f of the precedinc~
examples in NOR-OR logic using one of the heuristic techniques rather than
the formal, automatic procedure just described.

,% ul g .

I L. convoy :t

5-4

Suppose we have available as inputs both phases of a, b, c, d, i. e.,
+a, +b, +c, +d and wish to form f = ab + bc + ad.

Using minus (-) inputs we can use "IVJINUS AND INVERT" circuits to
obtain the terms ab, bc, and ad. Then we can use the emitter follower

dot to OR these terms.

-a

-b

-C

-d

I

() f

J Clearly this is the same circuit as that developed in the preceding formal
NOR-OR example. However, here the designer is thinking directly in
terms of pseudo AND-OR logic by renaming the functions of his circuit
elements and making a sequence of appropriate complementations.

The beginner is warned not to attempt to imitate such techniques at first.
The heuristic techniques, used by the novice as though they were formal
methods, will prove far more unwieldy and confusing than the previously
illustrated formal techniques. The novice using these heuristics will put
a great deal of effort into the essentially trivial process of forming circuit
diagrams from logic equations.

When the time comes that the designer has a good "feeling for" NOR-NOR,
NOR-OR logic design, he may then find that some of the existing heuristic
techniques are useful. Experienced ACS designers can sometimes find
"tricky" hnplementations using these techniques which have less delay or

lower circuit count than those derived by formal approaches. This occurs
especis!ly when both the O.C. Dot and E.F. Dot are used in the impl@mentation.

o.,e: October 31, 1967
F,om (,o,,o. Advanced Computing Systems

,us ,~,.s.): Menlo Park, California
., ~m~: 988/031

Te, epho.. Ext.: 252

Reference: 1.

subi.c,: A Proposed ACS Logic Simulation System (LSS)

Specifications for Input and Output of ACS/TALES Simulator,
A. G. Auch, Dept. B24, SDD Poughkeepsie, September 20, 1967.

2. TALES- ACS Simulation Capability, A. G. Auch, Dept. B24,
SDD Poughkeepsie, August 15, 1967.

3. ACS AP #67-115, MPM Timinq Simulation, L. Conway,
August 25, 1967.

4. ACS AP #66-022, ACS Simulation Technique, D. P. Rozenberg,
L. Conway, R. H. Riekert, March 15, 1966.

To: File

L. Conway

hC:aw

,v

3~ 7

It. Con,Na:,;]j

I

CONTENTS

.J

Introduction

The LSS Programs

Possible Procedures for Use

Requirements for Development

Additional Benefits of LSS

i-i

2-1

S-I

4-1

5-i

J L, ~onwayI
| Ar.chlves i

J

Page I-i

Introduction

This memorandum describes a proposed ACS Logic Simulation System(LSS).
This system has been only tentatively defined. The purpose of this memorandum
is to set down the current thinking and stimulate some feedback from
potential users, potential implementers, and other critics on the feasibility
and utility of such a system and on the practical details of its implementation
and use.

The purpose of the proposed LSS is to provide a mechanism for aiding the
debugging of the logical design of the ACS-I. The logical designer may know
that for a given section of logic circuitry a certain set of inputs should produce
a particular set of outputs (for a given initial internal state) according to
the "system level" description of the design which he implemented in the
logic circuitry. The LSS will provide a means of inserting the circuit
inputs into a logic simulator which simulates the action of the circuitry
on these signals and then compares the resulting output with the output
expected by the designer. Any mismatches would indicate a logical
design error in the circuit (see fig. I)

A group in Poughkeepsie can provide ACS with a package of programs capable
of performing the logic simulation. The ACS designer would provide
input to these programs indicating the particular partition of the machine
to be simulated and the input-output lines on the interface of this oartition.
The programs would use this input to extract from the DRKS files the
detailed description of the logic of the partitior~ selected. The designer
would then need to apply a sequence of inputs to the logic simulator corresponding
to a proper sequence of input-output line signals at the interface of the
partition. The programs would simulate the logic operating on the input
signals and mark any mismatches in the logic output and expected OUtlmt.
The designer would then use these mismatches to debug his logic design.

A major obstacle to the practical application of this proposed system is
the difficulty of generating the I/O signals at the partition interface. It
does not appear to be at all practical, or even feasible, for the logic
designers to generate by hand all the correct test patterns necessary to
"moderately" debug all the partitions of the machine.

A method has been proposed to solve this problem by providing a programmed
means of automatically generating these interface I/O signals. A detailed
timing simulator now exists for the MPM (ref. 3). This simulator times
the activity of all MPM hardware, as described at a system level, during
the execution of an input program.

I

Page 1 - 2

Now, suppose we wish to use the LSS to study and debug a particular-
partition of the MPM. We could carefully define the interface of that
partition and rewrite the appropriate sections of the timing simulator
such that (i) the same interface existed in the timer as in the logic circuitry,
(it) the same "system" level description is used in the timer to describe
the partition that was used to formulate the logical design of the partition,
(ill) provide for output to suitable files of the timing simulator interface
signals during each simulated cycle of execution.

The timer thus modified could become a practical source of the I/O

signals needed to drive the LSS. The timer would have to accurately
reflect the MPM only at and within the interface of the partition to be
studied. Any errors in this system description would be discovered
early in the debugging process. After this phase, many selected programs
could be run on the timer to yield as many interface signal sets as are
necessary to debug the logic design of the partition to the required level
(see fig. 2).

The timer could also assist the designer of the partition in his efforts
to find a particular bug when the LSS indicates a mismatch in outputs.
The timing charts produced by the timer will give a concise picture of the
state of the machine at a system level in the region of Lime surrounding
and including the cycle in which the bug occurred. This may help to
determine if the bug is at the level of system specification or logic circuit
implementation. Both the timer and LSS can provide the states of specified
triggers within the partition and a comparison of these can aid the designer
in debugging.

In the following sections of this memorandum some of the details of this
proposed LSS system are described and questions are raised which must be
answered before any serious development of the system can begin.

The main point to keep in mind is that there are two levels of simulation
involved in this scheme -- the detailed simulation of the logic circuitry of
a design and the system level simulation of the same design. This two
level simulation technique for debugging logic circuitry was originally proposed
to ACS in August, 1966 by G. T. Paul. The technique now appears to be
feasible because of the availability of an adequate logic simulator and ACS
experience with the current timing simulator.

Comments and criticisms are invited, especially on questions concerning
the feasibility of the system, its utility to the ACS logic designers, its
cost relative to any alternative systems, and the various practical problem
of its implementation and use.

55o

i L. Cor w y
Archives i

FIGI. THE IBRSIC IDER OF L$S :

RPPLY ST~E" ti’,IpuT "To E~e,’r’~ LEVF-L-% OFS,~TIaN .

Po.2¢ i-B

INPUT

$ |IvIULRTIO N OF

SYSTEM LEVEL "DESIGN

$|~ULRTIc,~ oF LoGiC

¢IRCU~T~ I ~’~f LE ~’,~ NT IN G-

-.~ OU’l- ?UTs
I
I

!
!
!
I

OU 1" PL)]-L.

J
FIG Z_. F~UTOM~T] C GENERRTION OF SVSTE ~q

LEVEL INPUT/OUTPUT, LOGI C 5IMULBTOE INPUT"

FiT I"~E])E$IGN IN’T~R.i::P,C~: . ~JE I~l~y L~,TER R~’PL"t’ "{’~T,E INPOT$ To THE" LOC~IC S,MUL~TO,~.

FoR THE ~RPtE ~i~S~c.N F~NI~ ¢c>HPR~ "T~ L~r.IC. <~uTPgT.~ ~lTit "1"PIE ¢’/STE~ LE~{I. oU’~PuT$o

SY,~TEM LtVEL. SI~L~-~’~R ~:oR CoP~P~£TE t~C.H~E

INPUT
I

FoR. P~RT OF FI~¢t41NE;

outPuTs
I

!

I

I

I L:)C-IC %IP1LILI~’~OR FOR
!

?1

I SE~ C~ EO P~T O~ n~�~l N{~

O0 T~OTL

ArchivesI L j,Arch!yes j

Page2 - 1

J

The I_SS Programs

In this section the programs forming the LSS are identified and described.
The relationships between the various programs and the designers input
and output to the system is described. This specification was developed
from information contained in ref. 1 and the notion of using the timing
simulator to drive the LSS. This specification is very tentative in nature.

The simulation of the logic of a portion of the ACS-I machine operating
on a sequence of inputs may be viewed as occurring in three distinct
phases within LSS.

The first phase is the selection of the specific partition of the machine to
be studied and the specification of the I/O interface for this partition.
The designer will specify the partition and interface in a card input deck.
This deck is used by the LSS to extract the detailed information describing
the logic circuitry of the partition from the DRKS files and DIRKS rules.
The program performing this extraction is termed the Simulation Interface
Program (SIP), and is to be written by the Poughkeepsie people.

The next phase of the LSS simulation is the generation of a sequence of
interface signals for the selected partition. This is done by running ACS
program on the modified timing simulator. Once the designer has assisted
in forming the proper timing simulator specification for his partition, the

production of these interface signals requires no more effort by him.
Many programs exist which run on the timer. The designer would merely
select those programs which might best be applied to debugging his
particular section of the machine. An addition must be made to the
existing timing simulator to extract and file the proper interface signals
during each cycle of simulated time. Let us call this the interface signal
file generator. This program would be written here at ACS.

The final phase of the LSS run is to perform the logic simulation itself.
This is done by a program to be called TALES, which is to be developed
by the Poughkeepsie group. The interface signal files produced by the
timer-interface file generator programs are processed by a reformatting
program called TAMIP (also to be written by Poughkeepsie) and then input
the TALES logic simulator. The TALES simulator uses the logic files formed
by the SIP program to perform the proper logical functions on the input
signals to yield interface output signals for each simulated cycle. If the
logic simulator output signals differ from the expected output signals produced
by the timing simulator, an output listing to this effect will be produced
and certain information printed to assist the designer in finding the cause
of the mismatch.

In figure 3 the functions of the three phases of LSS are illustrated by flow-
charting the relations between the designer’s input, the various LSS programs, .55~
the DRKS files, and the various LSS internal files.

I L. Conway
.&re. hlv,-, ~

I. SELECT ~PtR~tTION OF N~l~ ".

I
~S IGNgR $

II ~NPuT c~R~s. I ~"
I sPeCiFy LOGic. I

INTo INPUT FO~ LOG~, C ~"%LIL,’~’TOI"~

]]:. GENERRTE PF~IK~ITIC)H IN’PERFRCE 5~GNBLS :

.J

I’HK’ TIPPING SI~’,JLF~TO~;~ ~,IHIG ERC~ C~r~L~’

"I’i~LE......_..._%.~ PROGRR.______ ~ : "THE L(:3G~ C S~MULP,’TO~ : (’to B~ ,aP.crrs.~:’Po~’).[-
I

INTE~FRCE INPOT ~Gl.4~e.. C_ot,~p~P.E~ CI~R¢~vr o~’rpu, T" S~G.NR~-’J bolT~ F~

’ ~ -~s 5

() - __OUTPUT
i L. Conway i

"PE~,FORI,~% $’/STEN L~c~,/~L ,%t~Oi.,l~T~oN aF
,v~pp~ EXECU’T~NG ~’H~ I~.lPOT ~PR.OGR.P,(~

]]:I’. SIHULRTE LoG]c OF SELECTE’I3 ~RR’T~’iON :

J

Page 3 - 1

Possible Procedures for Use

So far we have examined the overall functions of the LSS and identified
the component programs and files. All of this is very tentative. In this
section let us explore some of the many different possibilities which
exist for organizing and using the LSS system, and identify those areas
which are only tentatively defined and need to be worked on.

Many questions and alternative approaches are outlined which must
be resolved before the system can be considered feasible, useful, and
economical. Criticism on these specific questions from everyone concerned
is needed to formulate the answers to these questions.

Most of these questions center on the organization and management of
the system, i.e., what technical form should the system have in order
to be usable by the designer ? For example, how do we partition the
machine, how large or small should the partitions be, and how do we
select the interfaces ? How should the designers specify the system
level description of their partition ?

(i) Partitioning the MPM: How large or small should a partition be ?
From an organizational and system simulator point of view, the
larger the better. If a partition is too large, however, the designers
may have a difficult time in debugging the logic. This problem might
be eased by placing certain triggers internal to a partition in the
set of outputs the designer can check. If the partitions are too small
and thus many in number, we will have difficulty in managing the
study--there will be too many interfaces, and some of them may be
inconvenient to specify at the system level.

It seems undesirable to have a single partition so large or so chosen
that two different design groups design sections of the partition. The
utility of the LSS system is increased by having formal interfaces
between the various groups of designers, to allow a successful
segmentation of the design. It is natural that the interfaces between
design groups would also be interfaces in the system level simulator
in LSS.

An approach to choosing partition size might be the following:
choose the partitions as large as is possible subject to the following
constraints, (i) the boundaries of the various design groups,
(ii) the maximum amount of logic which the logic simulator will
handle. It is likely that the second limit will usually be met first.
This raises the question of whether the logic simulator (TALES)

..... Hu i,i

.J

(ii)

(iii)

Page 3 - 2

can handle a large enough partition for the LSS to be practical.
This question is quantitatively studied (section 4) later in this
memorandum, and the answer currently appears to be yes.

Selecting the Interface: Suppose we wish to formulate a partition of
the MPM whose approximate size and boundaries are known. We
face the problem of selecting the exact interface that is to exist
between this partition and the rest of the machine. This is the
problem of selecting an interface which is reasonable both in the
logic and in the system level of description. The problems involved
in doing this do not appear to be serious if the partition is large,
for then certain natural boundaries (the phases) within the MPM may
be chosen as interfaces. If the partitions must be very small and
many in number, wewill have serious problems for the system
level description as a whole will become much more detailed and
unmanageable. We might not be able to simulate on a cycle by
cycle basis, but have to generate and check interface signals at many
different times within a machine cycle.

Describing a Partition: In order to correctly generate the interface
signals for a given partition, the timing simulator must accurately
reflect the system level description of that partition. An important
question to be answered is how is the detailed system level description
of a partition to be formed, in what language, and by whom ? There is
a wide range of possibilities.

Method (a). The designers could give a verbal, nonformal description
of their partition to a programmer who would formalize the description
by writing the code which performs the system level simulation.
This is probably not adequate because it would be too difficult to
maintain the description. The designers would have no direct
link to the formal description when they desired to make a change.

Method (b). The designers could produce a "semi-formal" description
of their partition by creating a combination of flow charts, diagrams,
and written description which attempted to document as accurately
as possible (outside a formal language) all the details of their design.
A programmer could use documents of this type as a direct basis for
his coding of the system level simulation. This at least solves the
problem of maintenance of the program. A change in a flow chart
could fairly easily point to the necessary corresponding change in
the simulator code. Even with this method, serious problems arise
(even more serious if using Method (a)). Since the designers would
not themselves have a complete, formal description at a system level
of the thing they have designed, many errors are bound to occur

in the system description--errors which would be difficult to debug~
i i

[L Coowo !
i 3

J

(iv)

Page 3 - 3

Method (c). We might go a step further in the specification of a
partition by the designers and require that they help formulate and
have access to a complete, formal description of their partition
at the system level. This could be done by having the designers
partitipate actively in the production of the formal description.
The obvious choice of a language for formal description is the simulation
language used in the timing simulation program. This language is
an "elementary form" of "Simscript, " and is written in FORTRAN
(see ref. 4).

The designers could produce the flow charts, etc., as in Method (b),
but then assist in the production of the system simulation code to
the extent that they would fully understand and be able to modify (with
programming assistance) the system level description.

The system simulation code would then be the formal description
for the designer. It would be easy for the designer to introduce
changes into the formal description.

Method (d). We can go one step further and require that the designers
independently produce a formal system description of their partitions
in some language common to all the design groups. This is a goal
to strive for in later design efforts. It seems impractical at the
present time, however, because of(l) the time required to educate
the designers in some formal language, (2) the even greater time
required for them to gain "programing" experience--the experience
needed to use the language to describe their design at the proper system
level. Most logic designers probably conceptualize their design
not as a system description being implemented in some logic
circuitry, but as the logic circuit implementation itself. That
this is likely is indicated by the current lack of detailed system
descriptions within engineering and the current wealth of logic
circuit diagrams.

Considering the methods (a), (b), (c) and (d) outlined above, it
would appear that the most useful and feasible method for currently
producing the necessary system level descriptions for the LSS
is Method (c).

Selecting the Partition in the Logic: When we have selected and
described a partition at the system level, we face the problem of
selecting the same partition at the logic circuit level. The description
of the logic circuits is formal and is contained in the DRKS files.
The Poughkeepsie group will write the SIP program which actually
extracts the logic design of a partition and forms the file to input
the logic simulator.

J

(v)

Page 3 - 4

The designer’s input to specify the logic to be selected by the SIP
program has been tentatively defined in reference i. There will
have to be a study by all concerned to produce a specification of the
SIP input conventions. Once the procedures for use of the LSS
system have been defined, it would be desirable to specify input
conventions for SIP which are the simplest possible in nature which
meet the needs of the LSS. The smaller and simpler the interface
between ACS designers and Poughkeepsie programs the better.

Sequence of Partitions to be Studied: An important property of the
proposed LSS using the existing timing simulator as a starting
point in the system level description is that the debugging of one
partition may proceed independently of that of another partition.
We can thus choose a sequence of partitions to be debugged which
corresponds to the schedule of design of the partitions.

We could have chosen not to use the timer, but to apply Method (d)
of the previous section and develop a formal and accurate system level
description of the whole machine. Let us examine some of the
problems within this scheme and thus learn the advantages of using
the timer.

Suppose the machine could be divided into four partitions:

A

C

B

D

We could have the designers write the programs described A, B,
C, and D and then run these as an accurate timing simulator,
obtaining input and output signals at the interfaces.

The problem with this is that the system level programs must all
exist and be reasonably debugged before the whole system level
simulation will run. Of course the individual partition programs
could be run separately to yield partition outputs for a given set
of partition inputs. But this does not solve the original problem
affecting the feasibility of logic simulation--the difficulty of
generating by hand all the input-output patterns. It only half
solves the problem.

%S7
co0,oy I

Archives j

Page 3 - 5

Another difficulty with this approach is that we would be heavily
committed to whatever techniques were chosen to implement
Method (d).

Clearly we do not need to face these problems and uncertainties.
The existing timing simulator can be used to circumvent them as
follows:

We chose for LSS debugging the first partition whose design is
"completed. " Suppose this is partition A.

A !
Timing simulator dummy
for rest of machine

J

We already have a working, debugged timing simulator which simulates
an approximation to the whole MPM. We write and place into the
timer (replacing existing code) the the description of partition A at
the system level. Now the remainder of the timer serves as a
dummy machine which can properly interact with partition A once
the system description of A is debugged. Now we may not get
exactly the same feedback from the dummy portion of the machine
that we would get from the eventual real machine, but this does
not matter. We will get valid feedback which will properly drive
partition A. We will automatically get both inputs and outputs of
A every cycle while the simulated machine runs an input program.

This allows a considerable degree of freedom in the planning of the
debugging process. We may debug the partitions independently
and in sequence if we so desire. It is likely that the various
partitions will be ready for debugging at different times. We
could schedule the debugging to correspond to these design schedules.
We would not be committed to the first procedures chosen to debug
the first available partition. If a method proves unsatisfactory on
the first partition, we can modify our procedures for handling later
partitions.

By using this method we can proceed only as far as we choose in
applying LSS to debugging the logic. We do not need to determine in
advance how much of the logic is to be debugged this way. Some
sections of the machine may remain in dummy (original timing
simulator) form. Some sections of logic such as functional units
(adders, multipliers) clearly can have their logic simulator input-
output signals formed by hand or by special programs of much
simpler form than system level simulators.

I L. cond, ay~

Page 3 - 6

Note that the timing simulator can eventually become an exact
system level simulator of the whole machine if that end is desired.
This method does not preclude that possibility. Indeed, this me thod
offers a practical means of achieving that end in a step by step
approach rather than attempting it directly.

J

(vi) Debugging a Partition: How does the designer use LSS to uncover
bugs in the logic design ? Let us consider various procedures which
might help in the debugging process.

An important consideration in the debugging of a partition is the
selection of some appropriate input programs for the system simulator.
We wish to run programs on the timer which exercise as fully as
possible the system logic of the partition under study, in order to
debug that partition as fully and efficiently as possible. This
selection process is yet to be developed.

A question which arises here is how far should the debugging of a
partition proceed using LSS. This is a function of input program choice,
the available computer time and manpower available foi~ debugging.
This question must be studied fully in order to estimate the performance
of the LSS system compared to its cost.

An important potential function of LSS which must be explored and
developed is that of providing the designer with information to
assist his debugging effort in addition to the mere indication of
an output mismatch.

One possibility, easily implemented, is to make available to the
designer the timing charts produced by the timing simulator (see
ref. 3) for the LSS run under study. It has proven possible, with
some practice, for individuals to use the timing charts to follow
completely the system level functioning of the MPM. The designer
would thus have available to him a concise description of the states
and functioning of the whole machine in the region of time surrounding
and including the cycle in which a bug was found in his partition.

Another possibility is to have the timer and the logic simulator
both provide as output the contents of important registers and
triggers within a partition in addition to those on the partition
interface. This would be especially important if the partition is a
large one. Of course we would have to have the timer quantities
behave exactly as the logic circuits in order for this to work. This
might provide a practical way of allowing large partition size, yet

i L. ConwaY7

Page 3 - 7

feasible debugging. As an example, suppose a large section of phase 1
of the MPM is to be contained in one partition. It would be very
useful in the debugging process if the designer had access to the
values of such things as NFA, HISTORY TABLE, DO TABLE, etc.,
in both levels of simulation (i. e., as "interface output quantities").
Usually these important internal quantities of a partition could be
easily made to function exactly the same at both simulation levels.

(viD Other Modes of Use: During the specification and development of
the I_~S system we must identify and meet the requirements for
any other possible uses of the system and its components.

An example of this is the need to allow manual insertion of interface
signals into the Poughkeepsie programs in order to perform the
debugging of isolated sections of design for which manual signal
insertion is adequate. Examples of such design areas where manual
or special program generation of the interface signals is possible
are functional units such as adders, multipliers, dividers, etc.

Another function the system might perform is the generation of
files suitable for hardware debugging at a later time.

l L coowoviAr,,.,hives j

o

Page 4 - I

Requirements for Development

The hardware, software, computer time and personnel required to develop,
use and maintain the LSS system must be estimated to determine if the
system is feasible and economical.

It has been determined that the ACS Mod. 75 computer will have adequate
hardware for both the Poughkeepsie programs and the ACS timer-interface
signal generator program.

Yet to be explored are possible work schedules, documentation requirements,
and forms of communication needed between ACS and Poughkeepsie. It
appears possible for the LSS development to proceed without altering
engineering design schedules, if a proper scheme of development is
chosen. Of course the time required for the designers to specify the system
descriptions of their design areas will add to the design schedule time,
but it appears likely that this system description will be necessary whether
LSS is implemented or not. The requirements for maintenance of the system
are yet to be determined. These depend on the role the designers play
in specifying and maintaining the specifications of their partitions.

There are two important considerations which strongly affect the feasibility
and economics of LSS. These are 6he computer time required to simulate
and the memory requirements of simulation (determines maximum partition
size).

Reference 2 indicates that a few seconds of Mod. 75 time would be required
for the TALES program to perform the logic simulation of one machine
cycle for the largest partition it could handle. The ACS system level
simulation of the whole machine will run at a rate of approximately i0
to 15 machine cycles/second on the Mod, 75.

Thus it appears likely that the feasibility of LSS is not impacted by the
computer time requirements. The required time is down in the range
where the human time and effort in debugging the results would probably
be a stronger limitation than available machine time. Of course these
machine time requirements could be heavy ones and thus it is very
important that the logic simulator (TALES) be made as efficient as
possible, for the running of TALES will probably be the major cost of
LSS.

Let us now consider the question of memory requirements and their
determination of the maximum partition size.

[t co ov i
Archives

Page 4 - 2

P. Shivdasani has formulated the following study of this question, based
on verbal communications with the Poughkeepsie group. His result of
56K ACS circuits as the maximum partition size indicates that we can
choose partitions large enough for LSS to be practical (see section 3(i)).

(i) Storage capacity, S, in K bytes, required to run the logic simulator
is

S = 98 + 2L (I0 + avg. fan-in + avg. fan-out)

where L = # of nets to be simulated (in thousands)

Also the fan-out from a block (macro, SJ. L. or dot) is

n
= ~ (sourcei¯ loadi) < 31

i=l

_)

Thus

macro

10 loads
source 1

10
2

10
3

fan-out = 30

Another 200K bytes must be allowed for the worst case op. system.

There is also an absolute limit of 32K on L due to the present simulation
programs.

Thus if we assume L = 32

fan-out = 31

fan-in = 15

We have S = 3882 K bytes which will easily be handled by the
two LCS’s ACS has on order.

]I "
L. Conway
Archlves

(ii).

Page 4 - 3

Nets:

A net is defined as a logic source feeding any number of sinks.
Thus in U. L, representation each U. L. block leading to a dot is
a net.

net 1

D net 2 net 4

~ net 3

4 nets

D I
U

net 1

(--macro

1 net

J
It is important, then to try and define as many macros as possible.

(iii) Assume 32K nets as maximum partition. Find equivalent in ACS
circuits.

a) Let X be the number of circuits corresponding to these nets.

b) Assume 80~ of the circuits can be represented in macros and
the remaining 20~ need a unit logic representation in DRKS.

c) Also assume each macro contains 5 circuits and has two
source outputs.

Thennetsduet°macr°s=(’8X)25

d) Assume an average dot of 4 in U. L.
for every 4 circuits.

Or nets due to U. L. = (’42-~X)

1.6X X
5 + "4 - 32,000

or X = 32,000
¯ 57

= 56K circuits

Then we have 5 nets

5

IL. Conwoy 1

Archives J

Page 4 - 4

(iv) DRKS does not handle macros made up of U. L. blocks from
different portions of the same chip, let alone different chips.
So if a high number of U. L. blocks is being dotted externally,
the above capability will be desirable to keep the net count down.

J

I LArchives

.2

Page 4 - 5

Additional Benefits of LSS

There are some additional benefits which might result from implementing
the proposed LSS system.

The formal specification of the machine at a system level would give the
various design groups a chance to uncover many system level design
errors before the logic itself is tested for bugs.

This formal system level description would be useful to many others in
ACS.

Of course this description would have to be maintained by the designers
to reflect all design changes. If maintained and the timing simulator
reflects the description accurately, then the LSS could be used later to
generate the interface signals for hardware circuit debugging.

Also, an accurate timing simulator would be very useful to the compiler
and system programmers and to any ACS customers who wish to optimize
hand code.

L. Conway

i ArchivesI

TO: L. Conway
Dept. 988
IBM - ACS
2800 Sand Hill Road
Menlo Park, California

Note: If you have any comments, questions, criticisms or ideas concerning the
proposed LSS system, jot them down in the space below and mail this page as indicated
above.

~o ~ G

i-L co~oyl
Archives

¯ % -.

August 6, 1968
Advanced Computing Systems
Menlo Park, California
988/031
Ext. 391

Subject:

References:

Memorandum to:

The Computer D@sign Process:. A Proposed
Plan for ACS

i. ACS AP #66-022, ACS Simulation Technique,
D. P. Rozenberg, L. Conway, R. H. Riekert,
March 15, 1966.

2. ACS AP #67-115, MPM Timinq Simulation,
L. Conway, August 25, 1967.

3. A Proposed Logic Simulation System.
L. Conway, ACS Dept. 988, October 31, 1967.

4. System Simulation Program in ACS Engineering,
P. Shivdasani, ACS Dept. 988, April 24, 1968.

5. Proposal for a Desiqn Procedure for the ACS
System, Uno R. Kodres, July 19, 1968
(memorandum to D. P. Rozenberg).

6. Preliminary Description of Traceback and
Simulation in ACS Fault Isolation, D. G. Keehn,
August, 1968.

File

LC:aw

L. Conway

I
%67

Arch.l.yes

August 6, 1968

The Computer Desiqn Process: A Proposed Plan for ACS

by: L. Conway

!

Distribution

Mr. J. G. Adler
Dr. G. M. Amdahl
Mr. S. F. Anderson
Dr. R. F. Arnold
Mr. A. M. Baptiste
Mr. B. O. Beebe
Mr. R. T. Blosk
Mr. J. Earle
Mr. A. F. Fitch--B73/959 Pok.
Dr.. H. Fleisher--Cl4/704 Pok.
Dr. H. Freitag--12/234 Yorktown
Mr. R. R. Hanko
Mr. L. J. Hasbrouck
Mr. F. B. lones
Dr. D. G. Keehn
Mr. L. E. King--B57/979 Pok.

Mr. J. D. Kyffin
Mr. R. Litwiller
Dr. R. E. Love
Mr. B. C. Madden
Mr. B. J. Mooney
Mr. M. O. Paley
Mr. J. F. Parsons
Mr. R. E. Pickett
Mr. R. J. Robelen
Dr. D. P. Rozenberg
Mr. P. Shivdasani
Dr. E.H. Sussenguth
Mr. G. E. Werner
Mr. E. L. Willette
Mr. W. P. Wissick
Mr. J. J. Zasio

j L. Conway i

Archives ~.

J

.CONTENTS

Introduction

The Overall Design Process

System Architecture

Logic Design and Engineering

Design and Process Automation

Maintenance

Conclusions

i-i

2-I

3-1

4-i

5-i

6-1

7-1

,J

"°

INTRODUCTION

I-I

For many years, computer designers have proposed the use of
various levels of simulation for design specification, verification
and evaluation. Simulation and automation have been applied to
some phases of the design process in a number of past projects.

!

At the present time, in ACS, we feel that we have’sufficient
practical experience in system simulation and design automation to
propose a worl~ble system plan for the wholecomputer design
process.

This plan has as its key element the specification of the system-
level design in a high-level simulator. All following phases of
design are viewed as implementations of this system specification.

Details of this plan are presented including initial design studies
using timing simulation, design specification in a high-level
simulator, logic design verification by comparing two levels of
simulation, design automation and finally, hardware checkout
and maintenance.

Q

Design automation eliminates routine human effort in the later
design phases. Simulation allows creative human effort where it is
important--in the initial system level planning and evaluation.
Rather than being merely a sideline in the design process, simulation
can be and should be viewed as the natural medium of expression of
the computer designer. A designer who can quickly generate
wor, king models of his ideas can get the feedback necessary for real
design improvements. Adequate programming tools are now
available to the designer for this purpose.

This memorandum presents a brief description of all the phases
and components of the design process as it might exist in ACS. Much
of this material is well established practice, and thus the memorandum
could serve as an introductory tutorial document on this subject.

The purpose of this memorandum is to make certain specific
suggestions concerning important aspects of the planning, implementation
and operation of the total design process. The most important of
these suggestions are

"5-z o

ILl C onwoy I

1-2

J

(i)

(it)

(ifi)

(iv)

The careful planning of the design process itself is as
necessary for success of the project as is the careful
planning of the computer design. The design process
should be planned as one integrated system. If the separate
phases are planned by different groups of people, the
result will be an ineffective overall plan with serious

.difficulties at the interfaces of the phases.

The plans produced should be carefully documented
~nd maintained and made available’to all designers.
A common terminology would then develop for all
the many design phases, simulation and design auto-
marion programs, design languages, etc., and better
understanding and communication would develop
across design group boundaries.

It is strongly urged that the output of the Architecture
department be a formal, high-level description of
the computer in the form of a running simulator of
the system architecture. This simulator would have
to be maintained and modified as the design proceeded
into later phases. This simulator would, in effect,
be the design of the machine with all later phases
viewed as implementations of the d~sign. Thq use of a
high-level language for this description is emphasized
to insure that the system description be readable and
intelligible to all designers. With thedesign formalized
at a high level the prediction of performance,
modification, debugginG and general understanding of
the design would be greatly simplified and improved.
Many of the essential functions in the total design
process proposed in this memorandum are completely
dependent upon the existence of this high-level
system architecture simulator.

The design should be carefully "partitioned" at the
earliest possible point in the design process (i. e.,
in Architecture) into functional segments that will be
manageable by later design groups. Although it may
be possible for a small group of people to design and
comprehend the entire computer at the architectural
level, it is not possible at later levels of design.
The computer must be divided or partitioned among a
number of Groups of logic designers. If this partitioning
is done in architecture along functional lines, the
interfaces between partitions can be kept narrow and
simple. These interfaces must be formally specified

I L. o0w-aVi
j Archives j

i-3

in the high-level simulator and maintained throughout
later phases of design.

The design process described in this memorandum,
including the above suggestions and the many programs
implementing the process, is not just a speculation
as to what might be a good way to do things in the
distant future. There is considerable practical
experience within ACS with the various components
of the process.

I

2-1

@ THE OVERALL DESIGN PROCESS

I]et us now identify and define the fundamental stages of the overall
design process. Then in the following sections of the memorandum
each stage will be described in some detail.

The design and production of the cgmputer passes through four
rather distinct stages. The stages are identified-by their final
production of "a "formal description" of the computer in a particular
"language. " The output of one stage is the input to the succeeding
stage. Each stage of the process may be thought of as implementing
or redescribing the design of the prior stage in a lower level language.

These stages are as follows (see Figure 1 for a visualization of the
process):

J

System Architecture: This is the planning of the structure and function
of th.e computer system, developed from a consideration of predicted
market conditions and technology. The plan is developed to the level
of detail of system description such that the complete function of the
system is specified. The formal description produced by the
architecture group would be a running system level simulation program
written in a high-level language. The design would be carefully
partitioned along functional lines into formally specified partitions with
fairly narrow interfaces between them. The architectural design
would consist of (i) variables and arrays in the high-level language
symbolizing the various registers and control latches of the machine,
and (ii) algorithms in the language expressing the functioning of the
coi%trol latches and the flow of data between registers and functional
units on a cycle to cycle basis.

Lo~c Design and Enqineerinq: The logic designers and engineers
implement the structure and function of the architectural design in
the logic circuitry and physical package of the chosen technology.
The logic designer identifies and implements all the latches specified
in the architectural design and designs combinational logic circuitry
to connect the latches and implement the algorithms of the architectural
design. This logic design must then be mapped onto real physical
circuitry. This involves the selection of a circuit chip on which a
given logic circuit is to be found, and the placement of that chip on
a particular MCM on a board. The interconnections between all
such chips, MCM’s and boards must be specified. The output of

FIGURE l: VISUALIZING THE STAGES OF THE COMPUTER DESIGN FROCESS:
l J i ii i i

Each stage produces a partitioned description of the machine
design in a formal language. Each stage implements the design of
the preceding stage in a lower level language, with the design
then containing more detail but performing the same function.
The partitions can pass thru the process independantly.

J

SYSTEM ARCHITECTURE: Produces the system
level description of the machine: a system

¯ simulation program:

LOGIC DESIGN AND ENG~N_EERING: Produces the
logic design and circuit placement and
interconnections, specified in the DRKS

DESIGN AUTOmaTION: Produces the physical
files, a complete physical specification
of the machine including wiring, bonding.

./

t , J x
/ l

PROCESS AUTOMATION: Produces the wired
circuit boards composing the computer:

.9

-

2-2

this design phase is a formal specification of the logic design, place-
ment, and interconnections in the input language to the Design Re-cord
Keeping System (DRKS), which stores the design in a set of computer
files. An alternative logic description language is now in development.

Desi.qn Automation: In the design automation phase a set of computer
programs operate upon the design filed in DRKS toproduce as output
a complete physical description of the computer; This is done on
a board by board basis. Note that in the DRKS system the various
pads which must be interconnected to form a net are specified. However
the actual route of wiring to connect these points is not. This wiring
of all the nets on a board is computed by a wiring program. The
pattern for bonding the wires to the pads is completed, and terminating
resistors are assigned. The result of this design automation phase
is a set of computer files which contain the complete physical
description of all the boards of which the computer is composed.

Process Automation: We now have a complete physical description
of all the boards. But how do we actually wire a board; what
seqfience of wire placements should we make ? We must compute an
orderly and feasible sequence of wire placements to be made by
wiring machinery. The process automation programs operate on
the physical files to produce a set of tapes which drive the wiring
machinery tilrough the proper sequence of operations to wire the
boards of the computer. The output of this phase is the physical
computer itself.

We are now ready to study the design process in more detail.
Figure 2 is a flow chart of the stages of the design process which
indicates the various computer programs used at each stage and
the interaction of the various stages. This flow chart serves as
a basis for the detailed descriptions of each stage which follow in
the later sections of this memorandum.

II II

FIG.2. FLOWCHART OF THE COMPUTgR DESIGN PROCESS:

J

8-1

SYSTEM AR CHITECTURE

The function of the system architecture phase of design is to produce
a system-level specification of the machine. In the design process
as described in this memorandum this specification is to be in the
form of a runn.ing system simulation program.

.2

Tentative System Design: The development of a system design which
effectively meets cost and performance requirements calls for considerable
experimentation with tentative system designs. The design will thus
pass through these tentative, experimental phases until the experiments
indicate that it is satisfactory. Then the design can be completely

¯ placed into a formal description.

Now, how can one experiment with a tentative computer design ? "It
turns out that this is well established in ACS--by using a timing
simulation program. See Reference 2 for a description of a past
timing simulation effort, and Reference 1 for the simulation technique
used in that effort.

The timing simulator is written at essentially the same level of
description as the later system-level simulator and using the same
simulation technique. However, it can be simpler and quicker to
write because it does not require a data flow. Only the timing of
control operations is relevant to timing simulation. The input to
the timing simulator is the stream of instructions to be processed by
the simulated computer, and the output of the simulator is a chart
of the activities in the various machine registers, initiated by the
instructions being processed, as a function of time. The detailed
model of the proposed control structure can thus be tested quite
accurately to predict performance and uncover design bottlenecks¯

In order for timing simulation to really interact with and affect the
system design, the simulator must be running while the system design
is in development. This is only possible if

(i) The system architects really want a simulator, believe in its
value, and help in its production¯

(ii) The timing simulator is written in a high-level language; This
will make algorithm production and documentation much easier
than would assembly coding. Als9, the timing sire .ulator would
be consistent with and a basis for the later system simulator.

G-7-?

3-2

(iii) The architects participate in its writing.

If the simulator writer(s) must form all the detailed algorithms
specifying a tentative design, then the simulator will lag the design
by many months, perhaps 4 to 6 months. However, if the architects
specify their tentative design in detail, then the coding of these
designs would be a far simpler process and might lag specification
by only one or two months.

!

This simulator should be partitioned along the same lines as the
machine and interfaces identified early in the design processes.
Then the separate partitions could be designed independently with
unspecified partitions modeled in the simulator by dummy subroutines
which roughly approximate the function of those partitions. In this
way the entire machine can be simulated as early as possible
even though some sections are not completely designed. Studies
can then be made on those sections which have been designed.

Formal System Design: When timing simulation experiments indicate
tha~ the system design is satisfactory and unlikely to change greatly,
the construction of a complete system simulator describing that
design can begin.

The design will already have been partitioned. Engineers from the
logic design groups assigned to implement these partitions could
work along with the architects to write the system simulator. This
simulator must be carried uniformly to the latch level of detail in
order to be useful in later stages of design. The engineers could
see that this requirement is met and that all algorithms specified
for latch to latch operations in one cycle could probably be
implemented in combinatorial logic without breaking the machine
cycle.

There is experience in ACS with this sort of simulation, where a number
of engineers write the program rather than having a simulation
programmer do it. See Reference 4.

Note that this production of the system level design by both architects
and engineers blurs the traditional boundary between the two functions.
Both groups of designers work on the system level design, but from
different orientations.

When the system description is complete, it can be run as a simulator
and the design debugged at this level by running many actual programs
on the "computer. " As the later stages of design are completed,

.....

\

J

3-3

/

much information will be fed back to the architectural stage and force
revisions in the system description. For example, many algorithms
will not turn out to be realizal~le in logic in one cycle, and will have
to be respecified, changing the system description. This system
description must be accurately maintained if the design process
as described in this memo is to function properly.

The availability of an accurate, ma’~ntained system level simulator
will result in:

(i) Accurate performance prediction--potential users, compiler
writers, etc., can run code on this simulator and predict
machine performance and optimize their programs.

(ii) The logic design of the machine will proceed directly from
the high-level description and thus will progress more
rapidly and with better communication between design groups
working on different partitions.

o

(iii) An effective logic simulation can be performed to compare the
logic design of a partition with the system specification of
that partition. The system level simulator can produce
the input/output signals on the partition interface which can
then be used to "drive" the logic simulator. More will be
said about this very important logic simulation later in this
memorandum.

(iv) Accurate system simulation plus accurate logic simulation
will make possible the implementation of a very effective
maintenance plan. This will be described later in this memo.
See also Reference 6.

The significance and importance of the system level simulator cannot
be overemphasized. It must be produced and maintained for the
proposed scheme to work. The higher the level at which a design is
formally specified, the easier it is for everyone involved to fully
understand the design, experiment with it, and change and debug
that design.

This system level simulator should really be viewed as "the machine. "
All later design and automation of design and manufacture should be
viewed as implementations of the system design.

%79

I L, Conway i

[

LOGIC DESIGN AND ENGINEERING

This stage of the design process produces an implementation of the
structure and function of the architectural design in the logic circuitry
and physical package of the chosen technology.

In a manner similar to the system,design, the logic design and
engineering pass through two phases: (i) a tentative phase where
attempts are made at implementation, often resulting in revisions
being made in the system design, and (it) a formal phase where
the formal description of the logic and physical placement is
produced.

J

Tentative Logic Desiqn: When a partition of the system has completed
tentative system design and is ready to be formalized in the system
level simulator, then the tentative logic design of that
partition may begin. The tentative logic design is the attempt at"
implementation of the system partition in logic circuitry and
package. These early attempts will fail because many of the system
algorithms will not be realizable in one machine cycle of logic.
A strong interaction must exist between those persons producing
the formal system specification and the logic designers. The
tentative logic design efforts must feed back enough information such
that the formal system description will have most of the algorithms
checked for feasibility of implementation in logic and package without
breaking the machine cycle time. For this reason it is suggested
that at least one of the logic designers who works on the tentative
logic design of a partition also work along with the architect for that
partition and participate in the formation of the system level
description. In this way the partition of the system will not only
reflect architectural requirements, but will be implementab!e, as
described, in logic.

These early, tentative logic design and placement efforts will probably
be specified nonformally. The designs at this stage are traditionally
sketched out as logic circuit diagrams on "yellow sheets. " Rough
approximations of circuit placement can be made, and then estimates
of delays and circuit counts can be generated. These estimates
will be fed back, and perhaps modify the system design and/or the
logic design.

lI L’ c°nway I

4-2

~ Loqic_Desic~ and P_/ac emenl-_When_ tentative io gic_ de sign

studies have produced sufficient feedback to finalize the system design,
then the formal logic designand placement can begin. The formal
logic design must implement in logic circuitry the function of the
system design. The behavior of a partition of the machine, as seen
at its interfaces, must be the same at both levels of design, system
and logic.

There are two aspects to this implementation of the system design:
the implementation of the system function in logic circuitry and
the mapping of that circuit design onto real hardware.

Currently the logic design phase is done by the designer with no
computer assistance. The mapping of the logic design onto
hardware and the placement of the different levels of hardware may
be done in part, or perhaps entirely by computer programs.

The mapping or partitioning of logic circuitry onto hardware and.the
plaCement of levels of hardware involves the following levels:
logic circuitry maps onto circuit chips, circuit chips are placed
on MCM’s, and MCM,s are placed on the board.

There are a number of possible techniques that might be used to
accomplish the placement which involve varying amounts of computer
assistance to the designer. Some methods being considered for
ACS use are

(i)
I

In current use is a method where the designer must partition
the logic onto chips by hand, and then a sequence of computer
programs places the chips on MCM’s on the board.

(ii) In development is a placement system which will require that the
designer merely partition the logic among MCM’s. The
selection of chips, assignment of logic to chips and placement
of chips on MCM’s on the board would be accomplished by
computer programs. See Reference 5 which summarizes
Dr. U. Kodres’ work in this area.

It may eventually be possible to have the partitioning of logic
among MCM’s be automated also, thus automating the entire
partitioning and placement process. Mr. R. Goldberg is
working on this partitioning algorithm. Also, Research has
developed a program, ALMS, which may be applicable.

These three placement schemes are summarized in the flow charts
--inFigure 3. "

FIG.3. POSSIBLE PLACEMENT TECHNIQUES:

(1) EXISTING NOW:

I LOGIC DESIGN I

DESIGNER P!RTITIONS

IAND MAPS LOGIC ONTO

ICHIPS

4
IALMS PROGRAM PRODUCES

LIST OF THESE CHIPS
FOR EACH MCM OF BOARD

IL.WILLIA/~S’ PROGRAM 1
PRODUCES PLACEMENT OF
THESE CHIPS ON EACH MCM

co
o9

(il) IN DEVELOPMENT:

LOGIC DESIGN I
,

DESIGNER PARTITIONS
LOGIC CIRCUITRY ~ONG
MCMtS OF A BOARD

PROGRAMS’ IMPLEMENTING
UNO KODRES’ METHOD WILL:

(i) PRODUCE LIST OF CHIPS
TO USE
(il) ASSIGN LOGIC PORTION~
TO THESE CHIPS
(iii) PERFORM PLACEMENT
OF CHIPS ON MCM’S

(iii) ULTIMATELY:

I LOGIC;ESIGN I I

PROGRAM IMPLhLMENTIIG

FARTITION LOGIC AMONG
MCM w S

Formal Description of Loqic Design/Placement: The output of
the formal logic design and placement is a formal description of
the design at this level. The language in which this description may
be placed is the DRKS input language. DRKS is the design record
keeping system which files the logic design and placement information.

An unfortunate aspect of the DRKS language is that it imposes a
totally arbitrary level of partitioning on the design description: the
AID sheet (logic diagram sheet). The design is input to DRKS by
drawing logic diagrams on sheets of a fixed size and then describing
the drawing by statements in the DRKS language.

This partitioning onto sheets is usually too fine to correspond to
any useful design partition. The designers~ partition of the machine
and even various functional entities within that partition will contain
logic circuitry requiring many, many AID sheets to describe. The

¯ language used to input DRKS is awkward to use, and describes the
sheets rather than the logic directly. The statements of the lang~uage
areusually formulated by someone other than the designer, who
mei’ely sketches the sheets.

J

It is strongly suggested that an alternative Logic Description Language
(LDL) be developed and used so that the designer can more’easily
specify his i, ogic design in a formal language. In this way the
processing and understanding of the logic designs might be improved
greatly. Dr. J. Cocke has proposed a tentative version of such
a language. Dr. R. Love, Mr. P. Shivdasani and I are now working
on completing the specification of this language.

An important reason for the use of sheets as the formal logic design
description has been the traditionaluse of these sheets by CE’s
who maintain the hardware. As we shall see later in this memorandum
(Section 6), the importance of the sheets may be reduced because
their use by CE’s can be minimized by using improved maintenance
methods.

If bhe ALD sheet were needed, perhaps in some central maintenance facility,
a form of AID sheet could be generated by program from the design
files formed from LDL input. Thus there is no real reason fbr
requiring that the design be specified by sheets initially.

Another development which might really de-emphasize the importance
of AID’s is the possible use of prototype sheets. This plan involves
the use of a very limited total number of chip-types. Each chip
would be described by a prototype sheet. There would thus be only
a limited number of possible sheet types. These could be stored as
macros in a file. A design would be described by program statements

4-4

indicating the interconnection of such chips. Noactual sheet input
would be necessary as the sheet would be implied by chip type.
Thus the logic could easily be described by a simple form of LDL.
Appropriate AnD sheets could be very easily generated by program
on those rare.occasions when someone really needed to look at them.

Logic Simulation: When the logic design of a partition of the machine
has been completed and formally described, it is very desirable
to verify that the logic design correctly implements the architectural
specification of the partition before going any further into the design
automation and process automation phases. An error found at this
stage will be much easier to correct than if found later on.

J

This verification of the logic design is performed using a logic
simulation program. A partition of the design can be simulated on
this program. Input signals are supplied at its interface and the
logic simulator produces the output signals at the interface.

The major problem in this sort of logic simulation is the generation
of test cases of interface input signals and expected output signals.
The generation of a large enough set of such signals to moderately
debug a partition of logic would be a very costly process if done
manually. It would probably be possible to generate only a rather
small number of such tests.

There is a solution to this problem. If the system level simulator
and logic description of a partition are really different levels of
description of the same entity, then they should behave the same
at the partition interface. Thus it would be possible to run a program
on the system level simulator and store all the I/O signals
on a partition ’s interface while the program is running. Then these
signals could be used to input and compaJre against the logic of the
partition when it runs on the logic simulator. In this way many tests
could be automatically generated. The tests would be consistent over
the whole machine; if we debugged the logic of all partitions on a
given program, then when we put all partitions together later, they
might all function properly together when running that program.

This idea of using two levels of simula{ion to debug the logic design
has been extensively studied and described in an earlier memorandum.
See Reference 3.

.]"

Figures 4 and 5 graphically portray the idea of a~ Logic Simulation
System (LSS) using two simulators: a system simulator which
provides input/output signals for the partition which runs on a logic
simulator.

.... :.. _ -. .I"11,;; 1,4

.-, ", -’:-T:: . ’: :
..... - . - , . .

-....... . .

..,. . . . :

¯ . -.:

INPUT

. , -. %. ,.

-

- . o

. ...

l¢t R¢~IT S I ,’~IP ~.E ~’.E’NT | N Cr

OUT?UTs
I

:11
I
I

Y

|
° | .

I

J

°.

FIGS. RUTOVIRTIC GENERRTION OF SYSTEi

o

.

..--

¯ - . - . .

" " "
r

:--~

.

." . ~

"- - " I

Fa.~. P~T .oF m~<:~NE;
,’

. .."
" ." : _’-. - -: ~ I

" " " ":-: ia"’-i"r" """ ’ : " "- ’’" " " " :I " - " " -.. ...- ._..,: :.-:.. . --
(~-)¯ - " - ’ ~,,~i~t,~ -~

..":..".T.--:/:..:..~.:. .::::-,.:%~:-.-~ .::.". ::_::!I : - I ~o~,~ ~,~o~ ~o.~ I 1 : ."~---::’-": ~ - " " "

.:: ’ " ::.---:j-:’?-.:-’. :---:.:".-.- .-.- .1 : ~,,~,~o ,~: o, "^~"’"~I ~ ’ " %B5:’ ".:-’.:":::;.’..-;..-V-’-.-~:. i ’ :’----.;.--:-~:::. " " : - _ - " " - " . ". - -’.- . " ’ - ...- - --

- . . -
_

¯ --.... _- _ - - ."’::. :-.: .. "
.__ ::--.: -. ."

¯ .:. J: ." . . " . :..-." :: : : - . . ,

’.DESIGN AND PROCESS AUTOMATION

Suppose we now have a verified logic design along with physical :
placement information resident in the DRKS files. There is still a
long way to go before the machine can actually be constructed. The
remainder of the design process is completely automated, however.

The steps in the desi0"n automation process are as follows (greatly
simplified):

(i) The records describing the logic design and placement for a
board are selected from the DRKS files.

(fi) The nets on the board must now be wired. This involves
determining the best path for wiring together the points of a
net subject to the wiring rule constraints. For example,
given that points A, B, C, D, E must be wired together
we must decide whether to wire as in (a), (b) or some
other way.

J
(a) WE . (b)

A

D

(iv)

When the wiring has been calculated for the nets, we must
assign the location of terminatinq resistors for the nets.

Suppose we have wired A, B, C, D, E, F, G together as follows:

B
)�

E . × "
F G

C

We must now decide how to bon___dd the wires on each pad of the net.
the above example, D would be bonded as follows:

5-2

In ..

D"

- ,,. I /

"

The actual DA programming becomes somewhat involved because
a situation may arise in the later stages of processing which canno~
yield a solution, and this will have to be fed back to the earlier
phases and a new pass made through the DA programs.

J After the design automation is completed, we have in a "physical file"
the complete physical specification of the boards of the machine.

At this point we have sufficient information to perform delay
calculations to determine the circuit and wiring delays in various
paths through the machine. Computer programs can be written
to perform these calculations. Excessive delays will necessitate
design changes.. This raises an interesting point: We have proposed
four formal specification levels for the design. Thus, we can
envision four levels of design simulation: system, logic, "A-C" logic
including delays, and finally actual running hardware.

Unfortunately, the "A-C" logic simulation, including physical delays,
is not really feasible for a machine of the size we are designing.
Even the usual logic simulation must be partitioned, and the AC
logic simulation includes much more detail. So all we can do at
this level is delay calculations on paths through the hardware. It
is of theoretical interest however to note that with sufficient
machine power a simulation at the physical level could be performed
and make this stage of the proposed process similar to the preceding~

stages in the use of simulation to verify the design.
o. °...

/

The phase in the design process which results in the production of
actual hardware is the process automation phase. After appropriate
reformatting, the information in the physical file describing a board
is input to the process automation programs. These programs
produce as output the tapes which drive the wiring machinery which
actually constructs tl~e boards of the computer.

5-3

Now, how can the boards (or MCM’s~ produced by the process
automation be debugged ? Even if the design at the system level
and loGic design level is error free, defects or errors may have been
introduced in the manufacture or wiring of the circuitry.

J

It is possible to partially debug the hardware in an economical manner
by using the two levels of simulators to generate test signals.

The signals could be generated as follows: The system simulator
can produce input signals for the logic simulator while running a
particular program. This would be d(me for the logic simulation
of the partition of the machine which contains the hardware to be
tested (usually the hardware would be a small subset of a partition).
All of the signals internal to the partition are generated during the
logic simulation. Thus the signals at the interface of the hardware
to be tested could be extracted, and filed, while running the logic
simulator.

Of course this method of debugging is only partial. Not all possible
input-output test patterns would be generated for the hardware.
However, this is a very special form of partial debugging: the same
program could be run on the system simulator to generate tests
for all hardware components. Thus, although only partially
debugged, the hardware will run that particular proGram when it is all
put together.

The key point to note is that the partial debugging is uniform over
the whole machine. Of course many programs could be run--the
number depending on the economics of the situation. Diagnostic
programs could be used for this hardware test generation. Then
the machine, when constructed, would run the diagnostics to isolate
residual hardware errors under normal maintenance procedures.

Note that if each piece of hardware were very thoroughly, but not
completely, debugged with traditional methods, there would be no
assurance that any program would run when the pieces were put
together.

Thus, the partial, but uniform, test generation could be a very
economical method of quickly getting hardware to the point where
it will run at least some programs when integrated into the whole
machine.

This could serve as a basis for planning the bring-up of the
machine.

5-4

J

Archives i

MAINTENANCE

6-1

J

The design process is not completed with the wiring and construction
of the computer. A bring-up of the computer must be accomplished
and the machine must be maintained. Bring-up may uncover design
errors at any of the stages of design. In addition to the correction
of hardware failures, maintenance v~ill involve the installation of
engineering changes. Thus, both of these activities involvecycling
back through the design process and both are strongly tied into the
network of simulation and automation programs used in the design
process.

At this time the bring-up process has not been completely defined.
However, a complete maintenance procedure has been defined by
Dr. D. G. Keehn (See Reference 6). This plan will be briefly
described here to indicate how it depends upon the simulation
programs. Some leads to ways of planning bring-up might be
uncovered in this maintenance plan. The scheme functions as
follows:

(a)

(b)

Diagnostic programs running on the ACS computer detect
an error. The program causing the error is identified.

The error producing diagnostic program is repeated on both
the ACS computer and on the system architecture simulator
running on a smaller diagnostic computer. The ACS computer~
latches are logged out each cycle and compared to the latches
of the simulator. The failing latch and cycle of failure are
identified.

(c) A traceback program is run on the diagnostic computer,
operating on the logic files, to find all latches which could
set/reset the failing latch in one cycle. This is the latch
tree of the failing latch.

(d) All scopeable points in the logic of the selected latch tree are
found from the design files and output by another program running
on the diagnostic computer.

(e) The logic of the latch tree is extracted from the design files.
A logic simulation of the latch tree is performed for the cycles
of interest: the cycle preceding failure and the failing cycle.
The scopeable point values are output for these cycles.

6-2

(f) A technician can now scope the ACS machine at the appropriate
points and compare the values with the above values for the
cycles of interest. This will isolate the point of error.

(g) The technician then decides what unit of hardware to pull
and replace in order to correct the failure.

!

There are some very interesting operational characteristics in
this maintenance plan:

J

(i) The diagnostic computer can be physically distant from the
ACS machine being repaired with communication between the
two locations handled by teleproce ssing. Thus, one central
diagnostic computer and maintenance system could maintain
several ACS machines in the field.

(ii) The person repairing the machine in the field need not be a
¯ CE in the usual sense. He could be a technician instead, for
no knowledge of the functioning of computer 19gic would be
required to perform repair work.

(ifi)
4

Because of (ii), it is clear that the distribution of ALD sheets
to many CE’s in the field would not be necessary. The
significance of these sheets is thus greatly reduced.

This particular maintenance plan has significant advantages over
previous plans. These advantages are bought at a price: dependence

on the existence of accurate system architecture and lociic simulators.

_f

7-1

J

CONCLUSIONS

We have now covered all the phases of the design process in some
detail. For the sake of simplicity and brevity, the presentation has
treated these phases as separate activities which follow each other
in a serial manner.

!

The actual design situation is obviously far more complex and requires
careful planning, scheduling and management of human and machine
resources. There are three factors in the process (not fully
developed in this initial memorandum) which lead to this additional
complexity:

(i) Design phases do not follow serially, but overlap in time.
For example, the tentative logic design may be proceeding
while the formal system specification is still in process.

(ii) There is a relative independence of the design of different
.partitions. We might be far along in the design process

on one partition of the machine, but only experimenting at
the system level with another partition.

(ifi) There is consistent feedback (as indicated in Figure 2)"from
later phases of design to earlier phases. Very often the
design at a given phase cannot be feasibly or economically
implemented at a later stage and must be modified.

Therefore this basic plan for the design process must be made
considerably more detailed and account for these additional complexities
before it is really a working plan for the process.

This elaboration of the plan will have to await the feedback produced
by this memorandum.

In conclusion, it is felt that the suggestions proposed in this memorandum,
especially the fundamental uses of the system simulation program, can
lead to a workable system plan for the whole computer design process
if they are properly elaborated and detailed.

A key factor in reaching this conclusion is the existence of practical
experience within ACS in the separate phases of the plan.

It is hoped that this memorandum will stimulate discussion and new _
ideas on this subject. Your comments and criticisms concerning the 3~ 0._
various suggestions made herein are welcomedby the author.

