May 12, 1967
Advanced Computing Systems
Menlo Park
986/031

Subject: Architecturally Critical Paths in the MPM

To: Dr. H. Schorr

Attached is a list of critical timing paths within the MPM from an architectural point of view. Degradation in any of these paths would have a major detrimental effect on overall MPM performance. By overall is meant a global effect, rather than a local effect such as slippage in divider performance. Of the twelve points noted, those involving the contender stacks and interlocking are by far the most critical.

E. H. Sussenguth

EHS:slb

cc: SADL
I. Effective address path: (7 cycle path)

 ea generation (three input add) 1
 bus to BLCU 1/2
 BLCU interference resolution 1
 storage delay including bussing 3
 BLCU decision per tag entry 1
 bus to MPM 1/2
 internal MPM bus to functional unit 0

II. By-pass from functional unit output to input (0 cycle path)

1. Full bypassing is eminently desirable.
2. If specialized bypassing is necessary the following groupings are the most important:

 add to add
 add to mpy
 mpy to add
 mpy to mpy
 add to cmp
 mpy to cmp
 mixed mpy to d. p. add
 d. p. add to d. p. add
 integer add (with respect to carry register)
 shift to shift
 shift to logic
 logic to shift
 logic to logic
 shift to cmp
 logic to cmp
 index add to ea add
 index add to cmp
 cmp to branch/skip control

III. A-unit interlock control

When an instruction satisfies its interlock constraints, it must be logically removed from contention so that other instructions dependent on it (because of destination-source interlocks or bus conflict interlocks, for example) can start execution on the next cycle.
IV. X-unit interlock control

When an X-contender stack position is vacated, it is refilled with another instruction so that the new instruction can be interlocked and vacated on the next cycle.

The X-unit register data is bussed to the functional units simultaneously with the interlock determination. If the interlocks fail, the functional unit action is logically stopped in such a way that it can restart on the next cycle. (In particular, a unit with a pipeline rate of 2 or more, must not be "busy" working on the illegitimate data.)

V. Instruction start-up path (3 cycle path in X-unit)

<table>
<thead>
<tr>
<th>Storage bus to IB's</th>
<th>0 (bypass to dispatcher?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IB to dispatch register</td>
<td>1</td>
</tr>
<tr>
<td>Dispatch to contender</td>
<td>1</td>
</tr>
<tr>
<td>Contender to functional unit</td>
<td>1 (2 in A-unit)</td>
</tr>
</tbody>
</table>

VI. Effective branch address path

The worst case timing situation occurs when an EXIT has been detected (in the X-dispatch registers) and the BRANCH instruction has not been executed (is in the X-contender stack).

The computation path is:

- interlock tests on BRANCH cycle 1
- compute eba, successful/unsuccessful cycle 2
- test top DO table entry:
 - if DO entry is correct:
 - next instructions to dispatchers cycle 3
 - if DO entry is incorrect:
 - correct DO table cycle 3
 - next instructions to dispatchers cycle 4

VII. DO Table alteration

On each cycle both A- and X-pointers can be moved, an old entry be deleted, and a new entry be accepted.
VIII. DO table control of instruction flow

The table entries indicate the number of cycles required to validate DO table entries and permit movement of new instructions to dispatch registers.

<table>
<thead>
<tr>
<th>if top DO entry is</th>
<th>correct</th>
<th>incorrect</th>
</tr>
</thead>
<tbody>
<tr>
<td>if required instructions in</td>
<td>IB</td>
<td>IB</td>
</tr>
<tr>
<td>unsuccessful branch exit</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>successful branch exit</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>no exit (normal sequence)</td>
<td>1</td>
<td>2*</td>
</tr>
</tbody>
</table>

*pathological case (hence unimportant)

IX. Next-fetch mechanism

On each cycle the next-fetch mechanism must search IB addresses, send an address to BLCU, search PSC registers, increment its contents by 8, and accept an override signal from the branch control.

X. Computation dependent SKIPS

The following sequence of instructions illustrates the problem

\[A^3 \leftarrow \text{any } A \text{ instruction} \]
\[C_2 < A^3 \geq A^{10} \]

SKIP if \(C_2 \) or \(C_{30} \)

* any A instruction

The data/control sequence is

end of computation (A-unit) cycle 1
result to compare unit (A-unit) cycle 2
compare result to condition bit cycle 3
condition bits to skip test unit
compute skip condition (X-unit)
skip condition to A-unit interlocks
start bussing on NOP the *-ed op (A-unit) cycle 4
The sequence noted (A-unit compare, SKIP, * on A-op) is probably the worst case as the path involves A-to-X and X-to-A communication and is a relatively frequent occurrence in code. The dual sequences are:

(X-cmp, SK, * on A): X-unit skew should alleviate this
(X-cmp, SK, * on X): no inter-unit paths (but important in X-unit)
(A-cmp, SK, * on X): one inter-unit path, of less program significance

XI. Computation dependent branches

A discussion similar to VIII obtains. An illustrative sequence is:

\[A^3 \leftarrow \text{any A instruction} \]
\[C_2 \leftarrow A^3 \geq 10 \]
BRANCH if \(C_2 \) or \(C_{30} \)
EXIT

XII. Functional unit performance

The current performance of the functional units are noted below:

<table>
<thead>
<tr>
<th>Floating point, 48-bit</th>
<th>ADD</th>
<th>3/1 and 4/1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MPY</td>
<td>3/1</td>
</tr>
<tr>
<td></td>
<td>DIV</td>
<td>10/7 or 10/8</td>
</tr>
<tr>
<td></td>
<td>CMP</td>
<td>1/1</td>
</tr>
<tr>
<td>Floating point, 96-bit</td>
<td>ADD</td>
<td>4/1</td>
</tr>
<tr>
<td></td>
<td>MPY</td>
<td>5/3</td>
</tr>
<tr>
<td></td>
<td>DIV</td>
<td>17/14</td>
</tr>
<tr>
<td></td>
<td>CMP</td>
<td>1/1 (maybe 2/1)</td>
</tr>
<tr>
<td>Floating point, mixed</td>
<td>MPY</td>
<td>3/1</td>
</tr>
<tr>
<td></td>
<td>DIV</td>
<td>10/7</td>
</tr>
<tr>
<td>Integer</td>
<td>ADD</td>
<td>2/1</td>
</tr>
<tr>
<td></td>
<td>MPY</td>
<td>4/2</td>
</tr>
<tr>
<td>Index integers</td>
<td>ADD</td>
<td>1/1</td>
</tr>
<tr>
<td></td>
<td>MPY</td>
<td>4/2 (improve to 3/1)</td>
</tr>
<tr>
<td></td>
<td>DIV</td>
<td>13 max, 8 avg (improve to 8 max)</td>
</tr>
<tr>
<td></td>
<td>CMP</td>
<td>1/1</td>
</tr>
<tr>
<td>Shift, logic, moves (A and X)</td>
<td></td>
<td>1/1</td>
</tr>
</tbody>
</table>