Electrical Engineering and Computer Science

Defense Event & Computer Engineering Seminar

Dynamic Hardware Resource Management for Efficient Throughput Processing

Ankit Sethia

Wednesday, April 01, 2015
1:00pm - 3:00pm
3725 Beyster Bldg.

Add to Google Calendar

About the Event

High performance computing is evolving at a rapid pace, with throughput oriented processors such as graphics processing units (GPUs), substituting for traditional processors as the computational workhorse. Their adoption has seen a tremendous increase as they provide high peak performance and energy efficiency while maintaining a friendly programming interface. Furthermore, many existing desktop, laptop, tablet, and smartphone systems support accelerating non-graphics, data parallel workloads on their GPUs. However, the multitude of systems that use GPUs as an accelerator run different genres of data parallel applications, which have significantly contrasting runtime characteristics. GPUs use thousands of identical threads to efficiently exploit the on-chip hardware resources. Therefore, if one thread uses a resource (compute, bandwidth, data cache) more heavily, there will be significant contention for that resource. This contention will eventually saturate the performance of the GPU due to contention for the bottleneck resource, leaving other resources underutilized at the same time. Traditional policies of managing the massive hardware resources work adequately, on well designed traditional scientific style applications. However, these static policies, which are oblivious to the application's resource requirement, are not efficient for the large spectrum of data parallel workloads with varying resource requirements. Therefore, several standard hardware policies such as using maximum concurrency, fixed operational frequency and round-robin style scheduling are not efficient for modern GPU applications. This thesis defines dynamic hardware resource management mechanisms which improve the efficiency of the GPU by regulating the hardware resources at runtime. The first step in successfully achieving this goal is to make the hardware aware of the application's characteristics at runtime through novel counters and indicators. After this detection, dynamic hardware modulation provides opportunities for increased performance, improved energy consumption, or both, leading to efficient execution. The key mechanisms for modulating the hardware at runtime are dynamic frequency regulation, managing the amount of concurrency, managing the order of execution among different threads and increasing cache utilization. The resultant increased efficiency will lead to improved energy consumption of the systems that utilize GPUs while maintaining or improving their performance.

Additional Information

Sponsor(s): Professor Scott Mahlke

Faculty Sponsor: Professor Scott Mahlke

Open to: Public