" August 6, 1968
Advanced Computing Systems
Menlo Park, California

988/031
Ext. 391
~ Subject: The Computer Design Process:, A Proposed
-~ Plan for ACS
References: 1. ACS AP #66-022, ACS Simulation Technique,
D. P. Rozenberg, L. Conway, R. H. Riekert,
March 15, 1966.
2, ACS AP #67-115, MPM Timing Simulation,
L. Conway, August 25, 1967,
3. A Proposed'Loqic Simulation System.
L. Conway, ACS Dept. 988, October 31, 1967..
4, System Simulation Program in ACS Engineering, .
P. Shivdasani, ACS Dept. 988, April 24, 1968, .
9. Proposal for a Design Procedure for the ACS
System, Uno R. Kodres, July 19, 1968
(memorandum to D. P. Rozenberg).
6. Preliminary Description of Traceback and r
Simulation in ACS Fault Isolation, D. G. Keehn,
August, 1968.
Memorandum to: File
L. Conway
LCiaw
36T
L. Conway

Archives

i

August 6, 1968

The Computer Design Process: A Proposed Plan for ACS

by: L. Conway

Distribution

Mr., J. G. Adler
Dr. G. M. Amdahl
Mr. 5. F, Anderson
Dr. R. F. Arnold
Mr. A, M. Baptiste
Mr. B. O. Beebe

-Mr. R. T. Blosk

Mr. J. Earle

Mr., A. F. Fitch--B73/959 Pok.
Dr. H. Fleisher--C14/704 Pok,
Dr. H. Freitag--12/234 Yorktown
Mr. R. R. Hanko

Mr. L. J. Hasbrouck

Mr. F. B. Jones

Dr. D. G. Keehn

Mr. L. E. King--B57/979 Pok.

Mr. J. D. Kyffin
Mr. R. Litwiller
Dr. R. E. Love

Mr. B. C. Madden
Mr. B. J. Mooney
Mr. M. O, Paley
Mr, J. F. Parsons
Mr. R. E. Pickett
Mr. R. J, Robelen:
Dr. D. P. Rozenberg
Mr. P. Shivdasani
Dr. E. H. Sussenguth
Mr. G. E. Werner
Mr, E. L. Willette
Mr. W. P, Wissick
Mr. J. J. Zasio

Fn e A D ot lze s

3(0‘3

L. Conway
Archives

‘CONTENTS
Introduction
The Overall Design Process
System Architecture
]:_.ogic Design and Engineering
Design and Process Automation

Maintenance

Conclusions

B3E9

L. Conway
Archives

1-1

INTRODUCTION

For many years, computer designers have proposed the use of
various levels of simulation for design specification, verification
and evaluation. Simulation and automation have been applied to
some phases of the design process in a number of past projects.

At the present time, in ACS, we feel that we have sufficient
practical experience in system simulation and design automation to
propose a workable system plan for the whole computer design
process,

This plan has as its key element the specification of the system-
level design in a high-level simulator. All following phases of
design are viewed as implementations of this system specification.

Details of this plan are presented including initial design studies .
using timing simulation, design specification in a high-level
simulator, logic design verification by comparing two levels of
simulation, design automation and finally, hardware checkout

and maintenance.

Design automation eliminates routine human effort in the later

design phases. Simulation allows creative human effort where it is
Important--in the initial system level planning and evaluation. :
Rather than being merely a sideline in the design process, simulation
can be and should be viewed as the natural medium of expression of
the computer designer. A designer who can quickly generate

working models of his ideas can get the feedback necessary for real
design improvements. Adequate programming tools are now

available to the designer for this purpose.

This memorandum presents a brief description of all the phases
and components of the design process as it might exist in ACS. Much
of this material is well established practice and thus the memorandum
could serve as an introductory tutorial document on this subject.

The purpose of this memorandum is to make certain.specific

suggestions concerning important aspects of the planning, implementation
and operation of the total design process. The most important of

these suggestions are

O . L .. 370

L. Conway

Archives

1-2

(i) The careful planning of the design process itself is as
necessary for success of the project as is the careful
planning of the computer design. The design process

: should be planned as one integrated system. If the separate
)) phases are planned by different groups of people, the
result will be an ineffective overall plan with serious
difficulties at the interfaces of the phases.

{ii) The plans produced should be carefully documented
and maintained and made available'to all designers.
A common terminology would then develop for all
the many design phases, simulation and design auto~
mation programs, design languages, ete., and better
understanding and communication would develop
across design group boundaries,

(iii) It is strongly urged that the output of the Architecture
department be a formal, high-level description of
the computer in the form of a running simulator of
the system architecture. This simulator would have
to be maintained and modified as the design proceeded
into later phases. This simulator would, in effect,
be the design of the machine with all later phases
viewed as implementations of the.désign. The use of a
high-level language for this description is emphasized
to insure that the system description be readable and
intelligible to all designers. With the design formalized
at a high level the prediction of performance, ‘
modification, debugging and general understanding of
the design would be greatly simplified and improved.
Many of the essential functions in the total design
process proposed in this memorandum are completely
dependent upon the existence of this high-level
system architecture simulator. o

(iv). The design should be carefully "partitioned" at the
earliest possible point in the design process (i.e.,
in Architecture) into functional segments that will be
manageable by later design groups. Although it may
. be possible for a small group of people to design and
- comprehend the entire computer at the architectural
level, it is not possible at later levels of design.
The computer must be divided or partitioned among a
number of groups of logic designers. If this partitioning
is done in architecture along functional lines, the -
' interfaces between partitions can be kept narrow and

simple, These interfaces must be formally.specified T

L. Conway
Archives

1-3

in the high-level simulator and maintained throughout
later phases of design. '

The design process described in this memorandum,
including the above suggestions and the many programs .
implementing the process, is not just a speculation

as to what might be a good way to do things in the

distant future. There is considerable practical
experience within ACS with the various components

of the process.

RATL

L. Conway
Archives

a-1

THE OVERALL DESIGN PROCESS

Let us now identify and define the fundamental stages of the overall
design process. Then in the following sections of the memorandum
each stage will be described in some detail,

The design and production of the cogmputer passes through four
rather distinct stages. The stages are identified-by their final

production of a "formal description" of the computer in a particular

"language. " The output of one stage is the input to the succeeding
stage. Each stage of the process may be thought of as implementing
or redescribing the design of the prior stage in a lower level language.

These stages are as follows (see Figure 1 for a visualization of the
process):

System Architecture: This is the planning of the structure and function
of the computer system, developed from a consideration of predicted
market conditions and technology. The plan is developed to the level
of detail of system description such that the complete function of the
system is specified. The formal description produced by the
architecture group would be a running system level simulation program
written in a high-level language. The design would be carefully
partitioned along functional lines into formally specified partitions with
fairly narrow interfaces between them. The architectural design
would consist of (i) variables and arrays in the high-level language
symbolizing the various registers and control latches of the machine,

_and (ii) algorithms in the language expressing the functioning of the

control latches and the flow of data between registers and functional
units on a cycle to cycle basis.

Logic Design and Engineering: The logic designers and engineers
implement the structure and function of the architectural design in
the logic circuitry and physical package of the chosen technology.
The logic designer identifies and implements all the latches specified
in the architectural design and designs combinational logic circuitry

to connect the latches and implement the algorithms of the architectural
design. This logic design must then be mappéed onto real physical
circuitry. This involves the selection of a circuit chip on which a
given logic circuit is to be found, and the placement of that chip on
a particular MCM on a board. The interconnections between all
such chips, MCM's and boards must be specified. The output of

2773

L. Conway
Archives

FIGURE 1: VISUALIZING THE STAGES OF THE COMPUTAR DEZSIGN PRCCESS:

Each stege produces a partitioned description of the machine
design in a formal languesge, Each stage implements the design of
the preceding stage in a lower level language, with the design
then containing more detail but performing the same function.
The partitions can pass thru the process indspendantly.

SYSTEM ARCHITECTPRE: Produces the system
level description of the machine: a system
- simulation program:;

|
/7
N

LOGIC DZSIGN_AND ZNGINAZRING: Produces the
logic design and circuit placement and '
interconnections, specified in thes DRKS

language: / \
B

7
/7 /|
[\

DESIGN AUTOMATION: Produces the physical
files, a complete physical specification
of the machine including wiring, bonding.

I I -

f Vo
AR i
/ /
/ | /|

] J \

f

OCE : Produces the wired
cilrcuit boards composing the computer:

L

/ _)'/ 7

.

L. Conway

Archives

a-2

, this design pha'se is a formal specification of the logiec design, place-

ment, and interconnections in the input language to the Design Record
Keeping System (DRKS), which stores the design in a set of computer
files. An alternative logic description language is now in development,

Design Automation: - In the design automation phase a set of computer
programs operate upon the design filed in DRKS to produce as output

a complete physical description of the computer. This is done on

a board by board basis, Note that in the DRKS system the various

pads which must be interconnected to form a net are specified. However
the actual route of wiring to connect these points is not. This wiring

of all the nets on a board is computed by a wiring program, The

pattern for bonding the wires to the pads is completed, and terminating
resistors are assigned. The result of this design automation phase

is a set of computer files which contain the complete physical

description of all the boards of which the computer is composed.

Process Automation: We now have a complete physical description
of all the boards., But how do we actually wire a board; what
sequence of wire placements should we make? We must compute an
orderly and feasible sequence of wire placements to be made by
wiring machinery. The process automation programs operate on
the physical files to produce a set of tapes which drive the wiring
machinery tarough the proper sequence of operations to wire the
boards of the computer. The output of this phase is the physical
computer itself.

We are now ready to study the design process in more detail,
Figure 2 is a flow chart of the stages of the design process which

- indicates the various computer programs used at each stage and
‘the interaction of the various stages. This flow chart serves as

a basis for the detailed descriptions of each stage which follow in
the later sections of this memorandum.

275

L. Conway
Archives

FIG.2, FLOWCHART OF THS COMPUTZR DsSIGN PROCZSS:

STAGES OF TENTATIVE
SYSTEM RRCHITECTURE

!

TiMiNG S1MVLATION
: EXPERIMENTS

—_ e — =
“; gz FORMAL SYSTEM RRCH I TECTURE N prapuccs
g BISE: i
5 Wiy ZLY - - =
W 254 | merpaperc: corricr System SYS$Tepn ARCHITECTURE
al 2|§g:.:§ i TpEsien FRAoRS SimutATor) PROGRAM:
wl rag THE HiISH LFJEL DESC
2 w| =% - aF TR CoMPuTER
2. g STAGES OF TENTATIVE LoGiC Y
v Q' DESIEGN
zl zI
i K ‘
oo leo
$— — — -3 LomRLETE , FoRMAL LISQ meuTi Lo
£l e — DESWGN . DESCAIRE [N L Du . S1emnAlS AT
3| i DR DRAS 1™~PUT LanGUALE PARTIT ION
w20 p N\ e TER|eacES
pl Rt PLACEFmENT (SEE FIG 3), FeeNA AN
2l 218 POD TH DAKS INPYT OR cwt&‘.\’\ﬁ‘f’
3 & g2 LDL DESCaipTioN LoGre J\sss
Al ol FRAGRS v
& ’E‘I&.i . ‘PKQD\.\CSS \\
g i2€d - - _ JLoGcic .
3 usum LoGIC DESIGN/ PLACEMINT Y evl 2R G amutaTion| b,
XIS DESIGN FALES CEsisn D23¢7] PRoG RAM P
u] ﬁ:lor."‘ * { ga
y 3 X
g <-=-1 DproieN RuTomATIoN: Soy
S| _(ymmc», . 9 gf
% —— — - - TERM . A$SI1GN ., ¢ v
B! RoNDING La
i FRODUCES \ u - t,’ \
DELAY ‘ EX PR
cane. R—{ PHYSICAL DESIGR FILES)) . RlE
PR OGRAM Eogy ok 2
& s \TF 13w
,:!Q.m 18 e . <
[Process moTomATon | Slgs 283 R
‘ EE (1 %h J
v [EQp 34y 3
- Esm w3+ £ %
PROCESS AUTIMATIen TARES glog iv3? 5 3<
~ al¥ 12La g3y
* i Bea
LN G MACn (WERY
ConsTRYCTS v \ Vi
WIWRED BoARDS OF TRE “BRING LP, AND
COMPRTER | MAINTERARCE
PROGRAMS BAND
PROCEDURES

csRRGCTIAra AT THE
ACPROPAATE DFLIGN
LEvEw OF THE PROCESS

276

L. Conway
Archives

€

SYSTEM ARCHITECTURE

The function of the system architecture phase of design is to produce

a system-level specification of the machine. In the design process
as described in this memorandum this specification is to be in the
form of a running system simulation program.,

Tentative System Design: The development of a system design which
effectively meets cost and performance requirements calls for considerable
experimentation with tentative system designs. The design will thus

pass through these tentative, experimental phases until the experiments
indicate that it is satlsfactory Then the design can be completely

.placed into a formal description.

Now, how can one experiment with a tentative computer design? It
turns out that this is well established in ACS--by using a timing
simulation program. See Reference 2 for a description of a past
timing simulation ef fort, and Reference 1 for the simulation technique
used in that effort.

The timing simulator is written at essentially the same level of
description as the later system-level simulator and using the same
simulation technique, However, it can be simpler and quicker to
write because it does not require a data flow, Only the timing of
control operations is relevant to timing simulation. The input to

_ the timing simulator is the stream of instructions to be processed by

the simulated computer, and the output of the simulator is a chart
of the activities in the various machine registers, initiated by the
instructions being processed, as a function of time. The detailed
model of the proposed control structure can thus be tested quite

accurately to predict performance and uncover design bottlenecks,

In order for timing simulation to really interact with and affect the
system design, the simulator must be running while the system design
is in development. This is only possible if

(i) The system architects really want a simulator, beheve in its
value, and help in its production.

(ii) The timing simulator is written in a high-level language: This
will make algorithm production and documentation much easier
than would assembly coding. Also, the timing simulator would
be consistent with and a basis for the later system simulator. 277

L. Conway
Archlves

55

3-2

(iii) The architects participate in its writing.

If the simulator writer(s) must form all the detailed algorithms

specifying a tentative design, then the simulator will lag the design
by many months, perhaps 4 to 6 months. However, if the architects

specify their tentative design in detail, then the coding of these
designs would be a far simpler process and might lag specification
by only one or two months, . '

This simulator should be partitioned along the same lines as the
machine and interfaces identified early in the design processes.
Then the separate partitions could be designed independently with

unspecified partitions modeled in the simulator by dummy subroutines

which roughly approximate the function of those partitions. In this
way the entire machine can be simulated as early as possible
even though some sections are not completely designed. Studies

~can then be made on those sections which have been designed.

Formal System Design: When timing simulation experiments indicate

that the system design is satisfactory and unlikely to change greatl
the construction of a complete system simulator describing that
design can begqin.

¥s

The design will already have been partitioned. Engineers from the

logic design groups assigned to implement these partitions could

work along with the architects to write the system simulator, This

simulator must be carried uniformly to the latch level of detail in
order to be useful in later stages of design. The engineers could
See that this requirement is met and that all algorithms specified

- for latch to latch operations in one cycle could probably be

implemented in combinatorial logic without breaking the machine
cycle, .

There is eicperience in ACS with this sort of simulation, where a number

of engineers write the program rather than having a simulation
programmer do it, See Reference 4.

Note that this production of the system level design by Both architects
and engineers blurs the traditional boundary between the two functions.
Both groups of designers work on the system level design, but from

different orientations.

When the system description is complete; it can be run as a simulator
and the design debugged at this level by running many actual programs

on the "computer." As the later stages of design are completed,

31%

L. Conway
Archives

3-3

much information will be-fed back to the architectural stage and force
revisions in the system description. For example, many algorithms
will not turn out to be realizable in logic in one cycle, ‘and will have
to be respecified, changing the system description. This system -
description must be accurately maintained if the design process

as described in this memo is to function properly.

The availability of an accurate, maintained system level simulator
will result in:

(i) Accurate performance prediction--potential users, compiler
writers, etc., can run code on this simulator and predict
machine performance and optimize their programs.

{(ii) ‘The logic design of the machine will proceed directly from

: the high-level description and thus will progress more
rapidly and with better communication between design groups
working on different partitions.

(iif) An effective logic simulation can be performed to compare the
logic design of 2 partition with the system specification of
that partition. The system level simulator can produce
the input/output signals on the partition interface which can
then be used to "drive" the logic simulator. More will be
said about this very important logic simulation later in this
memorandum,

(iv) Accurate system simulation plus accurate logic simulation
will make possible the implementation of a very effective
maintenance plan, This will be described later in this memo.
See also Reference 6.

The significance and importance of the system level simulator cannot
be overemphasized. It must be produced and maintained for the
proposed scheme to work. The higher the level at which a design is
formally specified, the easier it is for everyone involved to fully
understand the design, experiment with it, and change and debug

that design.

This system level simulator should really be viewed as "the machine,. "
All later design and automation of design and manufacture should be
viewed as implementations of the system design.

579

L. Conway
Archives

* LOGIC DESIGN AND ENGINEERING

This stage of the design process produces an implementation of the
structure and function of the architectural design in the logic circuitry
and physical package of the chosen technology.

In a manner similar to the system'design, the logic design and
engineering pass through two phases: (i) a tentative phase where
attempts are made at implementation, often resulting in revisions
being made in the system design, and (ii) 2 formal phase where
the formal description of the logic and physical placement is
produced.

Tentative Logic Design: When a partition of the system has completed
tentative system design and is ready to be formalized in the system
level simulator, then the tentative logic design of that
partition may begin. The tentative logic design is the attempt at’
implementation of the system partition in logic circuitry and
rackage. These early attempts will fail because many of the system
algorithms will not be realizable in one machine cycle of logic.
A strong interaction must exist between those persons producing
] the formal system specification and the logic designers. The
tentative logic design efforts must feed back enough information such
that the formal system description will have most of the algorithms
checked for feasibility of implementation in logic and package without
breaking the machine cycle time. For this reason it is suggested
that at least one of the logic designers who works on the tentative
- logic design of a partition also work along with the architect for that
partition and participate in the formation of the system level
description., In this way the partition of the system will not only
reflect architectural requirements, but will be implementable, as
described, in logic,

These early, tentative logic design and placement efforts will probably
- be specified nonformally. The designs at this stage are traditionally

sketched out as logic circuit diagrams on "yellow sheets." Rough

approximations of circuit placement can be made, and then estimates

of delays and circuit counts can be generated. These estimates

will be fed back, and perhaps modify the system design and/or the

logic design.

380

L. Conway
Archives

4-2

- ,._ﬁ.i____EQrmaLLomc_Dmg;l and Placement: When tentative logic_design

| studies have produced sufficient feedback to finalize the system des1gn,

. then the formal logic design and placement can begin. The formal
logic design must implement in logic circuitry the function of the
system design. The behavior of a partition of the machine, as seen
at its interfaces, must be the same at both levels of des1gn, system
and logic. '

There are two aspects to this implementation of the system design:
the implementation of the system function in logic¢ circuitry and
the mapping of that circuit design onto real hardware.

Currently the logic design phase is done by the designer with no

computer assistance, The mapping of the logic design onto

hardware and the placement of the different levels of hardware may
.be done in part, or perhaps entirely by computer programs.

The mapping or partitioning of logic circuitry onto hardware and-the
plagement of levels of hardware involves the following levels:

logic circuitry maps onto circuit chips, circuit chips are placed

on MCM's, and MCM's are placed on the board.

There are a number of possible techniques that might be used to
accomplish the placement which involve varying amounts of computer
assistance to the designer. Some methods being considered for
ACS use are

(i) In current use is a method where the designer must partition
the logic onto chips by hand, and then a sequence of computer
programs places the chips on MCM's on the board. :

(ii) In development is a placement system which will require that the
- designer merely partition the logic among MCM's, The
' selection of chips, assignment of logic to chips and placement
of chips on MCM's on the board would be accomplished by
computer programs, See Reference 5 which summarizes
Dr. U. Xodres' work in this area.

- (iii) Tt may eventually be possible to have the partitioning of logic
-among MCM's be automated also, thus automating the entire
partitioning and placement process. Mr. R. Goldbergis
working on this partitioning algorithm, Also, Research has
developed a program, ALMS, which may be applicable. :

These three placement schemes are summarized in the flow charts
e -—in. Flgure 3.
2384

L. Conway
Archives

: S 1 HOM
DNOWY 0ID0T NOILIIWYd
| TIIM {HUNEdI0D°H

‘X9 INIWJOTZAND NI)
WHLIY0DTY HNINOILITUV
DNILNFWATIWI WYdHOUd

SiWOW NO SJTIHD o0

. INFHEOVId WHOAHMTEd (TTT)
SdIHD FSTHI O

SNOIZHOd OIDOT NHISSY (TT)
S0 0L

S4THD 40 ISIT Fondoud (T)

STIIM QOHLTW SHHAOM ONO
DNIINIWNF TSN -SHYHDOUd

332
L. Conway

HOW HOVE NO SJIHD FESHEHL
d0 INEWHOVIJ STONAOHI
WVYHOOUd 1SWYVITIIM®T

1

ﬁ ._,

|__s¥pogoud E%mwpmm SITY

_ £

NDISHa DIDOT1

| .
| sXIBIVAILIN (TTT)
M .

quvod Vv 40 SiWOW
ONOWV XYLIINDHIO OIDNOT
SNOILILYVA HUNDISEd

QHYOd a0 WOW HOVY dod
SJIHD @SFHI JO ISIT

Sd IHD
OLNO OIDOT SAVW ANV

SNOZLIJHYd HANDISHT

:
NOISTA 9IH0T

CINFHIOTHEATNA NI (FT)

1

| NpISFa o1bH01 |

SMON DNIISIXHE (T)

: SANDINHOAL LNFWIOVId E1dISS0d ‘¢°DI1d

Archives

4-3

Formal Description of Logic Design/Placement: The output of

the formal logic design and placement is a formal description of

the design at this level. The language in which this description may
be placed is the DRKS input language. DRKS is the design record
keeping system which files the logic design and placement information.

An unfortunate aspect of the DRKS language is that it imposes a
totally arbitrary level of partitioning on the design description: the
ALD sheet (logic diagram sheet). The design is input to DRXS by
drawing logic diagrams on sheets of a fixed size and then describing
the drawing by statements in the DRKS language.

This partitioning onto sheets is usually too fine to correspond to

any useful design partition. The designers partition of the machine
and even various functional entities within that partition will contain
logic circuitry requiring many, many ALD sheets to describe, The

“language used to input DRKS is awkward to use, and describes the

sheets rather than the logic directly. The statements of the language
are usually formulated by someone other than the designer, who
merely sketches the sheets,

It is strongly suggested that an alternative Logic Description Language
(LDL) be developed and used so that the designer can more-easily
specify his 1ogic design in a formal language. In this way the
processing and understanding of the logic designs might be improved
greatly. Dr., J. Cocke has proposed a tentative version of such

a language. Dr. R. Love, Mr., P. Shivdasani and I are now working
on completing the specification of this language.

" An important reason for the use of sheets as the formal logic design

description has been the traditional use of these sheets by CE's

who maintain the hardware, As we shall see later in this memorandum
(Section 6), the importance of the sheets may be reduced because

their use by CE's can be minimized by using improved maintenance
methods.

If the ALD sheet were needed, perhaps in some central maintenance facility,
a form of ALD sheet could be generated by program from the design

files formed from LDI, input. Thus there is no real reason for

requiring that the design be specified by sheets initially,

Another development which might really de-emphasize the imporiance
of ALD's is the possible use of prototype sheets, This plan involves

- the use of a very limited total number of chip-types. Eachchip ~

would be described by a prototype sheet., There would thus be only

a limited number of possible sheet types. These could be stored as

macros in a file, A design would be described by program statements
332

L. Conway
Archives

o A i S = A s = aeis

4-4

indicating the interconnection of such chips. No-actual sheet input
would be necessary as the sheet would be implied by chip type.
. Thus the logic could easily be described by a simple form of LDL.
Appropriate ALD sheets could be very easily generated by program
on those rare .occasions when someone really needed to look at them. :

Loq1c Slmulatlon When the logic desu;n of a part1t1on of the machme
has been completed and formally described, it is very desirable

to verify that the logic design correctly 1mp1ements the architectural
specification of the partition before going any further into the design
automation and process automation phases., An error found at this
stage will be much easier to correct than if found later on.

This verification of the logic design is performed using a logic
simulation program, A partition of the design can be simulated on
this program. Input signals are supplied at its interface and the
logic simulator produces the output signals at the interface,

The major problem in this sort of logic simulation is the generation
of test cases of interface input signals and expected output signals.
The generation of a large enough set of such signals to moderately
debug a partition of logic would be a very costly process if done
manually. It would probably be possnble to generate only a rather
s small number of such tests,

There is a solution to this problem. If the system level simulator
and logic description of a partition are really different levels of
_description of the same entity, then they should behave the same

at the partition interface. Thus it would be possible to run a program
on the system level simulator and store all the I/O signals

on a partition’s interface while the program is running. Then these
signals could be used to input and compacs against the logic of the
partition when it runs on the logic simulator. In this way many tests
could be automatically generated. The tests would be consistent over
the whole machine; if we debugged the logic of all partitions on a
given program, then when we put all partitions together later, they
might all function properly together when running that program.

This idea of using two levels of simulation to debug the logic design
has been extensively studied and descrlbed in an earlier memorandum.
See Reference 3.
Figures 4 and 5 graphlca.lly portray the idea of & Logic Simulation
System (LSS) using two simulators: a system simulator which -
O provides input/output signals for the partltlon which runs’on a logic
simulator. A}

L. Conway
Archlves

ool FIGL} THE BRSIC IDEF\ OF LSS

INPUT

Br?w SAME mPu'r To Batn Levtn.s oF Slr\uu\T\QN .

“ .'.‘T""‘N z'u\un. smsTs m Lne\c_ ‘ot‘:s\sn. o

 SIMULRTION OF
SYSTEM LEVEL DESIGN

SinuLn'r\oN of LoGI1C

v ©e
L}
[

Y

ke ;.'mg c.,..\,m; ou-rpu-rs " ou-r?u-rs ARE 'mrn:‘ten'r o

 — OUT?UTQ.H

" (comenre)

QIRCur TS 1MPERENTING [—= QUTPUT

THE SYSTEm LEvEL DESIGN

FIGS. AUTOMATIC GENERATION OF SYSTEM

LEVEL INPUT/QUTPUT, LOGIC smua_aT‘oR INPUT:

S-TSTGM LEvElL TESGEMN 1S IMBEDDED N TYSTEN LEVEL JtMubnBTION OF ENTIXD

MACH NG, WAZTN THIl SIMOLATOR RUNS WF AVTOMATIC ALY GENEAATE (nu':-. invi\ Toe I/o

AT Tm& DESIGN INTERAFALE . We MAY LATER APPLY TwEsE INPUTS To TnT LeGIC S»huLaTol

FoR Tng 3AME PEASIGN AND comPARE Ts-ia LAGIE QUTPYTS wiTH ThE SySTER LEVEL ouTAuTS.

R AT

-

SYSTEM LEVEL S1iMuLATAR FoR ComPLETE MACHINE |

SYSTI’H waVEL S\nusﬂ'roﬂ .

FaR PART 0= HECHINE

auTruT,

EER-1-NYR SHMULATOR, F;)_R-
LoGrQ c;ac;wr.'é IMPLE M.
. SELECTED PART 0F natwrne]

1]
T |
A

i

ARE) S

oerReT,

'} L. Conway
- -Archives |

'DESIGN AND PROCESS AUTOMATION

Suppose we now have a verified logic design along with physical
placement information resident in the DRKS files, There is still a

~ long way to go before the machine can actually be constructed. The
remainder of the design process is' completely automated, however. -

The stéps in the design automation process are as follows {(greatly
simplified): _

(i) The records describing the logic design and placement for a
board are selected from the DRKS files,

(ii) The nets on the board must now be wired, This involves
determining the best path for wiring together the points of a
net subject to the wiring rule constraints. For example,
given that points A, B, C, D, E must be wired together
we must decide whether to wire as in (a), (b) or some

“ other way.

(a) E (b}

(iii) When the wiring has been calculated for the nets, we must
assign the location of terminating resistors for the nets.

(iv) Suppose we have wired A, B, C,D, E, F, G together as follows:

-_ B | F @ | 236

L. Conway
Archives

5-2

We must now decide how to bond the wires on each pad of the net. In
the above example, D would be bonded as follows:

~”
'

v
:]
D: Tﬂ\
I
!

e

-
-

The actual DA programming becomes somewhat involved because

a situation may arise in the later stages of processing which cannot
yield a solution, and this will have to be fed back to the earlier
phases and a new pass made through the DA proqrams.

After the design automation is completed, we have in a "physical file"
the complete physical specification of the baards of the machine.

At this point we have sufficient information to perform delay
calculations to determine the circuit and wiring delays in various
paths through the machine., Computer programs can be written

to perform these calculations, Excessive delays will necessitate
design changes.. This raises an interesting point: We have proposed
four formal specification levels for the design, Thus, we can
envision four levels of design simulation: system, 10g1c "A-C" logic
including delays, and finally actual running hardware.

Unfortunately, the "A-C'" logic simulation, 1nclud1ng physical delays,
] is not really feasible for a machine of the size we are designing.

- - Even the usual logic simulation must be partitioned, and the AC
logic simulation includes much more detail. So a1l we can do at
this level is delay calculations on paths through the hardware, It
is of theoretical interest however to note that with sufficient
machine power a simulation at the physical level could be performed
and make this stage of the proposed process similar to the precedmg
stages in the use of s1mulat10n to verify the design,

3871

L. Conway
Archives

g S v U

The phase in the des1gn process which results in the production of
actual hardware is the process automation phase. After appropriate
reformattmg, the information in the physical file describing a board
is input to the process automation programs. These programs
produce as output the tapes which drive the wiring machinery Wthh
actually constructs the boards of the computer.

Now, how can the boards (or MCM' s) produced by the process
automation be debugged? Even if the design at the system level

and logic design level is error free, defects or errors may have been
introduced in the manufacture or wiring of the circuitry.

It is possible to partially debug the hardware in an economical manner
by using the two levels of simulators to generate test signals.

The signals could be generated as follows: The system simulator

can produce input signals for the logic simulator while running a

particular program. This would be done for the logic simulation

of the partition of the machine which contains the hardware to be

tested (usually the hardware would be a small subset of a partition). .
Al of the signals internal to the partition are generated during the

logic simulation. Thus the signals at the interface of the hardware

to be tested could be extracted, and filed, while running the logic

simulator,

Of course this method of debugging is only partial. Not all possible
input-output test patterns would be generated for the hardware,
However, this is a very special form of partial debugging: the same
program could be run on the system simulator to generate tests

for all hardware components. Thus, although only partially

debugged, the hardware will run tha.t particular proqram when it is all
put together.

The key point to note is that the partia.l debugging is uniform over
the whole machine. Of course many programs could be run--the
number depending on the economics of the situation, Diagnostic
programs could be used for this hardware test generation. Then
the machine, when constructed, would run the diagnostics to isolate
residual hardware errors under normal mamtena.nce procedures,

Note that if each piece of hardware were very thoroughly, but not
completely, debugged with traditional methods, there would be no
assurance that any program would run when the pieces were put.
together,

. | 393

’ L. Conway
Archlves

Thus, the partial, but uniform, test generation could be a very
economical method of quickly getting hardware to the point where
it will run at least some programs when integrated into the whole
machine.

This could serve as a basis for planning the bring-up of the
machine. ' '

239

L. Conway
Archives

6-1

MAINT ENANCE

The design process is not completed with the wiring and construction
of the computer. A bring-up of the computer must be accomplished
and the machine must be maintained. Bring-up may uncover design
errors at any of the stages of design. In addition to the correction
of hardware failures, maintenance will involve the installation of
engineering changes. Thus, both of these activities involve cycling

- back through the design process and both are strongly tied into the

network of simulation and automation programs used in the design
process,

At this time the bring-up process has not been completely defined.
However, a complete maintenance procedure has been defined by
Dr. D. G. Keehn (See Reference 6), This plan will be briefly
described here to indicate how it depends upon the simulation
programs. Some leads to ways of planning bring-up might be
uncovered in this maintenance plan. The scheme functions as
follows:

(a) Diagnostic programs running on the ACS computer detect
an error. The program causing the error is identified.

(b) The error producing diagnostic program is repeated on both
the ACS computer and on the system architecture simulator
running on a smaller diagnostic computer. The ACS computer's
latches are logged out each cycle and compared to the latches
of the simulator. The failing latch and cycle of failure are
identified.

(c) A traceback program is run on the diagnostic computer,
operating on the logic files, to find all latches which could
set/reset the failing latch in one cycle, This is the latch
tree of the failing latch.

(d) All scopeable points in the logic of the selected latch tree are

found from the design files and output by another program running

- on the diagnostic computer.

(e} The logic of the latch tree is extracted from the design files.
A logic simulation of the latch tree is performed for the cycles
of interest: the cycle preceding failure and the failing cycle.
The scopeable point values are output for these cycles. -

L. Conwcy
Archlves

(f)

(g)

6-2

A technicié.n can now scope the ACS machine at the appropriate
points and compare the values with the above values for the
cycles of interest. This will isolate the point of error.

The technician then decides what unit of hardware to pull
and replace in order to correct the failure, _

There are some very interesting operational charactemstlcs in
this maintenance plan:

(1)

(ii)

(iii)

The diagnostic computer can be physically distant from the
ACS machine being repaired with communication between the
two locations handled by teleproce ssing. Thus, one central
diagnostic computer and maintenance system could maintain
several ACS machines in the field.

The person repairing the machine in the field need not be a

-CE in the usual sense. He could be a technician instead, for

no knowledge of the functioning of computer logic would be
required to perform repair work.

Because of (ii), it is clear that the distribution of ALD sheets
to many CE's in the field would not be necessary. The
significance of these sheets is thus greatly reduced,

This particular maintenance plan has significant advantages over
previous plans. These advantages are bought at a price: dependence

-on the existence of accurate system architecture and logic simulators.

L. Conway
Archives

CONCLUSIONS

We have now covered all the phases of the design process in some
detail, For the sake of simplicity and brevity, the presentation has
treated these phases as separate activities which follow each other

in 2 serial manner,

The actual design situation is obviously far more compleXx and requires
careful planning, scheduling and management of human and machine
resources. There are three factors in the process {not fully
developed in this initial memorandum) which lead to this additional
complexity:

(1) Design phases do not follow serially, but overlap in time.
For example, the tentative logic design may be proceeding
while the formal system specification is still in process.

(ii) There is a relative independence of the design of different
.partitions., We might be far along in the design process
on one partition of the machine, but only experimenting at
the system level with another partition. :

(iii) There is consistent feedback (as indicated in Figure 2) from
later phases of design to earlier phases. Very often the
design at a given phase cannot be feasibly or economically
implemented at a later stage and must be modified.

Therefore this basic plan for the design process must be made
considerably more detailed and account for these additional complexities
before it is really a working plan for the process.

This elaboration of the plan will have to await the feedback produced
by this memorandum.

In conclusion, it is felt that the suggestions proposed in this memorandum,
especially the fundamental uses of the system simulation program, can
lead to a workable system plan for the whole computer design process

if they are properly elaborated and detailed.

A key factor in reaching this conclusion is the existence of practical
experience within ACS in the separate phases of the plan.

It is hoped that this memorandum will stimulate discussion and new _
ideas on this subject. Your comments and criticisms concerning the ‘
various suggestions made herein are welcomed by the author. 392

L. Conway
Archives

e

v wma

